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No, emptiness is not nothingness. Emptiness is a type of existence. You must use this

existential emptiness to fill yourself.

Liu Cixin, The Three-Body Problem



To my parents and my wife.
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SUMMARY

Let G be a graph and a0, a1, a2, b1, and b2 be distinct vertices of G. Motivated by their

work on Jørgensen’s conjecture, Robertson and Seymour asked when does G contain dis-

joint connected subgraphs G1, G2, such that {a0, a1, a2} ⊆ V (G1) and {b1, b2} ⊆ V (G2).

We prove that if G is 6-connected then such G1, G2 exist. Joint work with Robin Thomas

and Xingxing Yu.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The Four Color Theorem [1, 2, 3] asserts that every loopless planar graph admits a

vertex 4-colouring. The related problem was first put forward by Francis Guthrie in 1852,

who asked whether it was true that any planar map can be colored with four colors such that

adjacent regions receive different colors. In 1976, Appel and Haken [1] claimed a proof of

the Four Color Theorem with the help of a computer. However, some computer-free parts

of their proof are complicated and tedious to verify. In 1997, Robertson, Sanders, Seymour,

and Thomas [2, 3] gave a much simpler proof for the Four Color Theorem.

According to Kuratowski’s theorem [4], a graph is planar if and only if it contains

no K5-subdivision or K3,3-subdivision. Moreover, it is well known that any 3-connected

nonplanar graph other than K5 contains a K3,3-subdivision. Hence, as an extension of

the Four Color Theorem, it is natural to ask whether every graph without K5-subdivision

is also 4-colorable. More generally, Hajós [5] conjectured that for any positive integer

k, every graph containing no Kk+1-subdivision is k-colorable. This conjecture is true for

k ≤ 3, but Catlin [5] found counterexamples to this conjecture for each k ≥ 6. However,

the cases for k = 4 and k = 5 are still open. Efforts have been made to resolve Hajós’

conjecture for k = 4. Yu and Zickfeld [6] proved that a minimum counterexample to Hajós’

conjecture when k = 4 must be 4-connected. Moreover, Sun and Yu [7] showed that if G

is a minimum counterexample to Hajós’ conjecture and S is a 4-cut in G then G − S has

exactly two components. In fact, if one can show a minimum counterexample to Hajós’

conjecture for k = 4 is 5-connected, then Hajós’ conjecture for k = 4 will immediately

follow from the Kelmans-Seymour conjecture [8, 9]: Every 5-connected nonplanar graph

contains K5-subdivision. This Kelmans-Seymour conjecture was recently proved by He,

Wang, and Yu [10, 11, 12, 13].
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While Hajós’ conjecture concerns the chromatic number of graphs withoutKk+1-subdivision,

Hadwiger [14], in 1943, conjectured a far-reaching generalization of the Four Color Theo-

rem in terms of Kk+1-minor: For any positive integer k, if a graph contains no Kk+1-minor

then it is k-colorable.

It is easy to prove that Hadwiger’s conjecture holds for k ≤ 2. Hadwiger [14] and

Dirac [15] proved the case for k = 3. For k = 4, Hadwiger’s conjecture is equivalent to the

Four Color Theorem by the result of Wagner [16], which characterized graphs containing

no K5-minor and showed that Four Color Theorem implies that graphs containing no K5-

minor are 4-colorable. The case k = 5 can also be reduced to the Four Color Theorem, as

shown by Robertson, Seymour, and Thomas [17]. However, this conjecture remains open

for k ≥ 6.

In fact, there are also many other interesting results related to Hadwiger’s conjecture.

Suppose Hadwiger’s conjecture is false for some k, and let G be a minor minimal coun-

terexample. Dirac [15] showed that G is 5-connected when k ≥ 5, and Mader [18] showed

that G is 6-connected when k ≥ 5, and 7-connected when k ≥ 6. Kawarabayashi and G.

Yu [19] proved that G is (2k/27)-connected, improving upon an earlier bound in [20].

Let the stability number α(G) of a graphG denote the size of the largest stable set. Then

every n-vertex graph G has chromatic number at least dn/α(G)e, and should contain a

clique minor of this size if Hadwiger’s conjecture is true. In 1982, Duchet and Meyniel [21]

proved that every n-vertex graph G has a Kk minor where k ≥ n/(2α(G)− 1). Moreover,

there has been a subsequent improvement by Fox [22]. And then Balogh and Kostochka

[23] further improved the result, and showed that every n-vertex graph G has a Kk minor

where k ≥ 0.51338n/α(G). Later, in 2007, Kawarabayashi and Song [24] proved that

every n-vertex graph G with α(G) ≥ 3 has a Kk minor where k ≥ n/(2α(G)− 2).

For an n-vertex graph G with α(G) = 2, the Duchet-Meyniel theorem implies that

there is a Kk minor with k ≥ n/3, which was strengthened by Böhme, Kostochka and

Thomason [25] in 2011. They proved that every n-vertex graph with chromatic number t
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has a Kk minor where k ≥ (4t− n)/3.

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours. So graphs

with stability number two are claw-free. Fradkin [26] showed that every n-vertex connected

claw-free graph G with α(G) ≥ 3 has a Kk minor where k ≥ n/α(G). Furthermore, in

2010, Chudnovsky and Fradkin [27] proved that every claw-free graph G with no Kk+1

minor is b3k/2c-colourable.

Since line graphs are claw-free, these results about claw-free graphs are related to a

theorem of Reed and Seymour. They showed [28] that Hadwiger’s conjecture is true for

line graphs (of multigraphs).

We say that H is an odd minor of G if H can be obtained from a subgraph G′ of G by

contracting a set of edges that is a cut of G′. Clearly, a graph contains K3 as an odd minor

if and only if it is not 2-colourable. In 1979, Catlin [5] showed that if G has no K4 odd

minor then G is 3-colourable.

A fully odd K4 in G is a subgraph of G which is obtained from K4 by replacing each

edge of K4 by a path of odd length in such a way that the interiors of these six paths are

disjoint. Then in 1998, Zang [29] proved (and, independently, Thomassen [30] proved in

2001) the conjecture of Toft [31] that if G contains no fully odd K4 then G is 3-colourable.

Moreover, in 1995, Gerards and Seymour conjectured a strenthening of Hadwiger’s

conjecture (see [32]) that for every k ≥ 0, if G has no Kk+1 odd minor, then G is k-

colourable, and it is known as true for k ≤ 3.

In fact, one can find more interesting results and open problems about Hadwiger’s con-

jecture and its variations from a survey [33], written by Seymour in 2016.

Now, we just go back and spend a bit more space on the k = 5 case of the Hadwiger

conjecture. As we mentioned, Mader [18] proved that any minor minimal counterexample

to the Hadwiger conjecture for k = 5 is 6-connected. Jørgensen [34] conjectured that every

6-connected graph contains a K6-minor or has a vertex whose removal results in a planar

graph. Therefore, if Jørgensen’s conjecture holds, then Hadwiger’s conjecture for k = 5
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easily reduces to the Four Color Theorem. In 2017, Kawarabayashi, Norine, Thomas, and

Wollan [35] showed that Jørgensen’s conjecture holds for sufficiently large graphs.

In their work [17], Robertson, Seymour, and Thomas proved that Jørgensen’s conjec-

ture holds for each 6-connected graph in which some edge is contained in four triangles.

(However, they were not able to resolve the Jørgensen conjecture. Instead, they explored

different structures of a minimum counterexample to the Hadwiger conjecture.) It is natural

and useful to extend this result to graphs in which some edge is contained in three triangles:

Given a 6-connected graph G and triangles aib1b2ai for i = 0, 1, 2 in G, can we prove that

G contains K6 minor or has a vertex whose removal results in a planar graph?

A first step is to prove that 6-connected graphs are two-three linked: If G is a 6-

connected graph and a0, a1, a2, b1, b2 are distinct vertices of G, then G contains disjoint

connected subgraphs G1, G2 such that {a0, a1, a2} ⊆ V (G1) and {b1, b2} ⊆ V (G2). In

fact, Robertson and Seymour asked for a characterization of two-three linked graphs. We

believe that we have such a characterization which is quite complicated (even to state) and

its proof is long.

For convenience, we use (G, a0, a1, a2, b1, b2) to denote a graph G and distinct vertices

a0, a1, a2, b1, b2 ofG, and call it a rooted graph. A cluster in a graphG is a set X of disjoint

subsets of V (G) such that each member of X induces a connected subgraph of G. We say

that a rooted graph (G, a0, a1, a2, b1, b2) is feasible if there exists a cluster {X1, X2} in G

such that {a0, a1, a2} ⊆ X1 and {b1, b2} ⊆ X2. We can now state our result as follows.

Theorem 1.0.1 Let (G, a0, a1, a2, b1, b2) be a rooted graph, and assume G+ b1b2+ {aibj :

i = 0, 1, 2 and j = 1, 2} is 6-connected. Then (G, a0, a1, a2, b1, b2) is feasible.

We may view the problem of characterizing feasible rooted graphs as a generalization

of the following problem of characterizing 2-linked graphs: Given a graph G and four

distinct vertices a1, a2, b1, b2 of G, when does G contain disjoint paths from a1, a2 to b1, b2,

respectively? Several characterizations of 2-linked graphs are given in [36, 37, 38, 39]
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and have been used extensively in the literature for proving important structural results on

graphs (e.g., in the graph minors project of Robertson and Seymour).

On a high level of the proof, we will always assume that γ := (G, a0, a1, a2, b1, b2) is

a given rooted infeasible graph such that b1b2 /∈ E(G), aibj /∈ E(G) for i = 0, 1, 2 and

j = 1, 2, and G∗ := G+ b1b2 + {aibj : i = 0, 1, 2 and j = 1, 2} is 6-connected.

Then in Chapter 2, we show that G has a frame A,B with respect to ai for some i ∈

{0, 1, 2} in (G, a0, a1, a2, b1, b2), where A,B are disjoint paths in G − ai from ai−1, b1 to

ai+1, b2, respectively (with a−1 = a2, a3 = a0). We say that a B-bridge of G is a subgraph

of G induced by all edges in a component of G−V (B) and all edges from that component

to B. Given a frame A,B w.r.t. ai for some i ∈ {0, 1, 2}, we can prove that the B-bridge of

G containing ai has a disk representation with B, ai occurring on the boundary of the disk.

Moreover, we define a doublecross in frame A,B, and prove that A,B has no doublecross.

These properties make the structure of G much simpler and clearer, but it is still not

enough. Hence, in Chapter 3, we need to produce good frames and ideal frames A,B w.r.t.

ai for some i ∈ {0, 1, 2} in G (with desired nice properties, such as the B-bridge of G

containing ai is maximal). We also divide the (A∪B)-bridges of G between A and B into

slim connectors and fat connectors. Then our proof is split into two cases: when there does

not exist any fat connector in any ideal frame A,B, which is solved in Chapter 6, and when

there exists at least one fat connector in some ideal frame A,B, which is solved in Chapter

4 and 5.

For the case without any fat connector, G − V (A) has a disk representation with B

and a0 on the boundary of the disk, and any A-B path in G is induced by a single edge.

So the structure of G is quite simple in some sense. For the second case, the structure is

more complicated, where an A-B path in G is not just a single edge, and different A-B

paths may intersect with each other. However, in both cases, we will try to find a con-

figuration with special properties, which may help us force a small cut in G or show that

(G, a0, a1, a2, b1, b2) is feasible.
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Finally, we end this chapter with some notation and terminology. Let G1, G2 be two

graphs. We useG1∪G2 (respectively,G1∩G2) to denote the graph with vertex set V (G1)∪

V (G2) (respectively, V (G1)∩V (G2)) and edge set E(G1)∪E(G2) (respectively, E(G1)∩

E(G2)). Let G be a graph, a separation in G is a pair (G1, G2) of edge-disjoint subgraphs

G1, G2 of G such that G = G1 ∪G2. And |V (G1) ∩ V (G2)| is the order of the separation

(G1, G2).

Let P be a path, and let u, v ∈ V (P ). Then P [u, v) := P [u, v]−v, P (u, v] := P [u, v]−

u, and P (u, v) := P [u, v] − {u, v}. Let B be a subgraph of a graph G. Then a B-bridge

of G is a subgraph of G induced by all edges in a component of G − V (B) and all edges

from that component to B.
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CHAPTER 2

FRAMES

In this chapter, we state some known results and prove some lemmas that we will use. In

particular, we show that an infeasible rooted graph must contain a ”frame” which consists

of two disjoint paths.

A result we use often is Seymour’s characterization of 2-linked graphs [37]. To state

this result we introduce several concepts. A disk representation of a graph G is a drawing

of G in a disk in which no two edges cross. A 3-planar graph (G,A) consists of a graph

G and a set A = {A1, ..., Ak} of pairwise disjoint subsets of V (G) (possibly A = ∅) such

that

(i) for i 6= j, N(Ai) ∩ Aj = ∅,

(ii) for 1 ≤ i ≤ k, |N(Ai)| ≤ 3, and

(iii) if p(G,A) denotes the graph obtained from G by (for each i) deleting Ai and adding

edges joining every pair of distinct vertices in N(Ai), then p(G,A) can be drawn in

the plane with no edge crossings.

If, in addition, b0, b1, ..., bn are vertices in G such that bi /∈ A for 0 ≤ i ≤ n and A ∈ A,

p(G,A) can be drawn in a closed disk with no edge crossings, and b0, b1, ..., bn occur on the

boundary of the disk in this cyclic order, then we say that (G,A, b0, b1, ..., bn) is 3 -planar.

If there is no need to specify A, we may simply say that (G, b0, b1, ..., bn) is 3-planar. If

A = ∅, we say that (G, b0, b1, ..., bn) is planar. Moreover, we say that a face of (the disk

representation of) G is finite, if the face is inside the disk.

Lemma 2.0.1 (Seymour, 1980) LetG be a graph with distinct vertices x1, x2, x3, x4. Then

either (G, x1, x2, x3, x4) is 3-planar, or G has a cluster {X1, X2} such that {x1, x3} ⊆ X1
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and {x2, x4} ⊆ X2.

We say a sequence (α1, · · · , αn) is larger than (β1, · · · , βm) with respect to the lexico-

graphic ordering if either

(i) m < n and αi = βi for i = 1, · · · ,m, or

(ii) there exists j with 1 ≤ j ≤ min(m,n) so that αj > βj and αi = βi for i =

1, · · · , j − 1.

We will also use the following lemma to modify a certain path.

Lemma 2.0.2 Let G be a connected graph and P be a path in G between vertices u1 and

u2 of G, and let C denote a component of G− V (P ). Then one of the following holds:

• G has a separation (G1, G2) such that |V (G1 ∩G2)| ≤ 2, V (P ∪ C) ⊆ V (G1), and

|V (G2 −G1)| ≥ 1, or

• G has an induced path Q from u1 to u2 such that G − V (Q) is connected with

C ⊆ (G− V (Q)).

Proof. We choose a path Q in G from u1 to u2 and label the components of G − Q as

C1, . . . , Cn such that C ⊆ C1 and |V (C2)| ≥ · · · ≥ |V (Cn)|, and, subject to this, s(Q) :=

(|V (C1)|, |V (C2)|, · · · , |V (Cn)|) is maximum under the lexicographical ordering. Note

that Q is well defined because of P .

Then Q is an induced path in G. For, otherwise, let Q′ be the induced path in G[Q]

from u1 to u2 then s(Q′) > s(Q), a contradiction. If n = 1 then the assertion of the lemma

holds. So assume n ≥ 2.

Let ln, rn ∈ N(Cn) ∩ V (Q) such that Q[ln, rn] is maximal. We may assume there

exists Cj with j < n such that N(Cj) ∩ P (ln, rn) 6= ∅; otherwise, G has a separation

(G1, G2) such that V (G1 ∩ G2) = {ln, rn}, V (P ∪ C) ⊆ V (G1), and V (Cn) ⊆ V (G2), a

contradiction.
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Now letQ′ be an induced path between u1 and u2 inG[Q∪Cn] such thatQ′∩Q(ln, rn) =

∅. Clearly, s(Q′) > s(Q) under the lexicographical ordering, a contradiction. 2

In the remainder of this chapter, we will always assume that γ := (G, a0, a1, a2, b1, b2)

is a given rooted graph such that b1b2 /∈ E(G), aibj /∈ E(G) for i = 0, 1, 2 and j = 1, 2,

and G∗ := G + b1b2 + {aibj : i = 0, 1, 2 and j = 1, 2} is 6-connected. When we write

ai+j , we understand that the subscript i+ j is taken modulo 3. In the next two lemmas, we

show that G does not certain separations.

Lemma 2.0.3 G has no separation (G1, G2) such that V (G1∩G2) = {c1, c2, c3, c4, c5, c6},

|V (G2 −G1)| ≥ 2, {a0, a1, a2, b1, b2} ⊆ V (G1), and (G2, c1, c2, c3, c4, c5, c6) is planar.

Proof. For, otherwise, let G′2 := G2 + {c1c2, c2c3, c3c4, c4c5, c5c6, c6c1, c1c3, c3c5, c5c1},

which is planar as (G2, c1, c2, c3, c4, c5, c6) is planar.

Since G∗ is 6-connected, G2 has at least one edge from each ci to V (G2 − G1) and,

hence, the number of edges inG2 with at least one end in V (G2−G1) is at least (6|V (G2−

G1)| + 6)/2 = 3|V (G2 − G1)| + 3 = 3|V (G2)| − 15. Thus, G′2 has at least 3|V (G2)| −

15 + 9 = 3|V (G2)| − 6 edges.

Thus, G′2 is a planar graph with exactly 3|V (G′2)| − 6 edges and each ci has a unique

neighbor in G2−G1. Note thatG′2 must be a planar triangulation. Therefore, the neighbors

of c1, · · · , c6 in G2−G1 are the same. Hence, since G∗ is 6-connected, |V (G2−G1)| = 1,

a contradiction. 2

Lemma 2.0.4 G has no separation (G1, G2) such that |V (G1 ∩ G2)| = 4 and for some

permutation π of {0, 1, 2}, aπ(0), aπ(1), bj ∈ V (G2 −G1), |V (G2 −G1)| ≥ 4, aπ(2), b3−j ∈

V (G1), and (G2, aπ(0), bj, aπ(1), V (G1 ∩G2)) is planar.

Proof. Suppose to the contrary that such a separation (G1, G2) exists in G and let V (G1 ∩

G2) = {c1, c2, c4} such that (G2, aπ(0), bj, aπ(1), c4, c3, c2, c1)) is planar. Let X := V (G2 −

G1) − {aπ(0), aπ(1), bj}. Since G∗ is 6-connected, we see that G2 has at least two edges

from bj to X and at least three edges from aπ(i) to X for i ∈ [2].
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Further, for any i ∈ [4], ci has a neighbor in X . For, otherwise, suppose, for some i ∈

[4], ci has no neighbor in X . Then by applying Lemma 2.0.3 to the separation (G[V (G1)∪

{ci}], G2 − ci) in G, we see that |X| = 1. It then follows from planarity that bj has at most

one neighbor in X , a contradiction.

Hence, the number of edges inG2 with at least one end inX is at least (6|X|+1+1+1+

1+3+3+2)/2 = 3|X|+6. SoG′2 := G2+{c1c2, c2c3, c3c4, c4aπ(1), aπ(1)bj, bjaπ(0), aπ(0)c1,

c2aπ(0), c2bj, c2c4, c4bj} has edges at least 3|X| + 6 + 11 = 3(|X| + 7) − 4. On the other

hand, since G′2 is planar (as (G2, aπ(0), bj, aπ(1), c4, c3, c2, c1) is planar), G′2 has at most

3(|X|+ 7)− 6 edges, a contradiction. 2

For i ∈ {0, 1, 2}, an ai-frame in γ consists of disjoint pathsA,B inG−ai from ai−1, b1

to ai+1, b2, respectively, such that A is induced in G, G − V (A) is connected, and the B-

bridge of G containing ai does not contain A. The next lemma says that if γ is infeasible

then it has a frame.

Lemma 2.0.5 If γ is infeasible then there exists i ∈ {0, 1, 2} such that γ has an ai-frame.

Proof. Since G∗ is 6-connected, G− {a0, a1, a2} contains an induced path P from b1 to b2

such that G − {a0, a1, a2} − V (P ) 6= ∅. Now, by Lemma 2.0.2, G − {a0, a1, a2} has an

induced path Q from b1 to b2 such that C := G − {a0, a1, a2} − V (Q) is connected and

C 6= ∅.

Note that there exists a permutation i, j, k of {0, 1, 2} such that NG(aj) ∩ V (C) 6= ∅

and NG(ak) ∩ V (C) 6= ∅, or NG(aj) ∩ V (C) = ∅ and NG(ak) ∩ V (C) = ∅. In the

former case, G − ai contains disjoint paths from b1, aj to b2, ak, respectively. In the latter

case, NG(aj) ∩ V (Q(b1, b2)) 6= ∅ and NG(ak) ∩ V (Q(b1, b2)) 6= ∅; so we have a path

in G[Q(b1, b2) + {aj, ak}] from aj to ak and a path from b1 to b2 in G − {a0, a1, a2} −

V (Q(b1, b2)).

Hence, there exists i ∈ {0, 1, 2} such that G − ai has disjoint paths A∗ and B from

ai−1, b1 to ai+1, b2, respectively. Since γ is infeasible, ai and A∗ are contained in different

10



components of G − B. Hence, ai and B are contained in a component of G − V (A∗).

So by Lemma 2.0.2, G has an induced path A between ai−1 and ai+1 such that G − V (A)

is connected and V (B) ∪ {ai} ⊆ V (G − A). Since γ is infeasible, the B-bridge of G

containing ai does not contain A. Hence, A,B is an ai-frame in γ. 2

In the next two lemmas, we derive useful information about frames in γ.

Lemma 2.0.6 Suppose γ is infeasible and A,B is an ai-frame in γ. Let Ai(B) denote the

B-bridge ofG containing ai, and let V (Ai(B)∩B) = {d1, · · · , dt} such that b1, d1, · · · , dt, b2

occur on B in this order. Then (Ai(B) ∪B, ai, b1, d1, · · · , dt, b2) is planar.

Proof. Let G′ = G/A, and let a′ denote the vertex representing the contraction of A.

Since γ is infeasible, G′ has no disjoint paths from a′, b1 to a0, b2, respectively. So by

Lemma 2.0.1, there exists a set S of pairwise disjoint subsets of V (G′), such that (G′,S, a′, b1, ai, b2)

is 3-planar.

Note that for any S ∈ S , a′ ∈ NG′(S). For, otherwise, NG(S) is a cut in G∗ separating

S from {a0, a1, a2, b1, b2}. But this contradicts the assumption that G∗ is 6-connected.

Thus, for any S ∈ S, we have |NG′(S) ∩ V (B)| ≤ 2. Hence, S ∩ Ai(B) = ∅. For

otherwise, since a′ ∈ NG′(S), there exists u ∈ V (Ai(B) ∩ B), such that u ∈ S. But then

G−V (A) contains three independent paths from u to b1, b2, ai, respectively, a contradiction

to the existence of cutNG′(S). Therefore,Ai(B) ⊆ G′−∪S∈SS, andG′−∪S∈SS has a disk

representation with b1, b2, ai on the boundary of the disk. Thus, Ai(B) ∪ B inherits a disk

representation with b1, b2, ai occurring on the boundary of the disk. Since Ai(B) ∪ B − B

has only one component, (Ai(B) ∪B, ai, b1, d1, · · · , dt, b2) is planar. 2

Suppose A,B is an ai-frame in γ. Let Ai(B) denote the B-bridge of G containing ai.

By a doublecross in A,B we mean a pair of disjoint connected subgraphs A′, B′ (in this

order) of G− (V (Ai(B)) \ V (B)) for which there exist a′1, a
′
2 ∈ V (A) and b′1, b

′
2 ∈ V (B),

such that V (A′) includes a′1, a
′
2 and at least one vertex ofB(b′1, b

′
2) and is otherwise disjoint

from A∪B[b1, b
′
1]∪B[b′2, b2], and V (B′) includes b′1, b

′
2 and at least one vertex of A(a′1, a

′
2)
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and is otherwise disjoint from B ∪ A[a1, a′1] ∪ A[a′2, a2]. The vertices a′1, a
′
2, b
′
2, b
′
1 (in this

order) are called the terminals of the doublecross.

Lemma 2.0.7 If γ is infeasible then there is no double cross in any frame in γ.

Proof. Without loss of generality, assume A,B is an a0-frame in γ. Suppose A′, B′ is a

double cross in A,B with terminals a′1, a
′
2, b
′
2, b
′
1. Let H = A(a′1, a

′
2) ∪ B(b′1, b

′
2) ∪ (A′ −

{a′1, a′2}) ∪ (B′ − {b′1, b′2}). Consider the graph G′ obtained from G by contracting H to a

single vertex h.

Since G∗ is 6-connected, then, combined with the existence of four disjoint paths

A[a1, a
′
1], A[a

′
2, a2], B[b1, b

′
1], B[b′2, b2] and Menger’s theorem, G′ contains five vertex dis-

joint paths between {a′1, a′2, b′1, b′2, h} and {a0, a1, a2, b1, b2}. So G contains five disjoint

paths Pi, i = 1, . . . , 5, (also internally disjoint from H) joining a′1, a
′
2, b
′
1, b
′
2 and H to

{a0, a1, a2, b1, b2}. Without loss of generality, assume that a1 ∈ V (P1), a2 ∈ V (P2),

b1 ∈ V (P3), b2 ∈ V (P4), and a0 ∈ V (P5).

Let S1 = (V (P1 ∪ P2 ∪ P5)) ∩ ({a′1, a′2, b′1, b′2} ∪ V (H)), and S2 = (V (P3 ∪ P4)) ∩

({a′1, a′2, b′1, b′2} ∪ V (H)). Using the properties of a double cross, we can show that H

contains a cluster {H1, H2} such that Si ⊆ V (Hi), i = 1, 2. LetX1 := H1∪V (P1∪P2∪P5)

and X2 := V (P3 ∪ P4) ∪H2. Then {X1, X2} is a cluster in G, a contradiction. 2

In the next two lemmas, we consider the intersection of special cuts in a planar graph,

which may force another cut or interesting structures of the graph.

Lemma 2.0.8 Let γ be infeasible with an a0-frame A,B, and let G0 be obtained from G∗

by deleting the component of G∗ − B containing A. Suppose (G0, a0, b1, B, b2) is planar,

and G0 has 3-cuts {a′0, b′1, b′2} and {a′′0, b′′1, b′′2} separating {a0, b1, b2} from B[b′1, b
′
2] and

B[b′′1, b
′′
2], respectively, such that b1, b′′1, b

′
1, b
′′
2, b
′
2, b2 occur on B in order, b′1 6= b′′2, and G0

contains a path from B(b′1, b
′′
2) to a0, internally disjoint from B. Then one of the following

holds:

(i) {b′′1, b′2} is contained in a 3-cut of G0 separating {a0, b1, b2} from B[b′′1, b
′
2].
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(ii) {b′′1, b′2} = {b1, b2}, and a′0 = a′′0 = a0.

(iii) {a′′0, b′′1, b′2} = {a0, b1, b2}, b′′2 is a cut vertex of G0 separating b2 from {a0, b1}, and

a′0, a
′′
0, b
′
2, b
′′
2 are incident with a common finite face of G0.

(iv) {a′0, b′′1, b′2} = {a0, b1, b2}, b′1 is a cut vertex of G0 separating b1 from {a0, b2}, and

a′0, a
′′
0, b
′
1, b
′′
1 are incident with a common finite face of G0.

Proof. We may assume a′0 6= a′′0. For, otherwsie, since (G0, a0, b1, B, b2) is planar, ei-

ther {a′0, b′′1, b′2} is a 3-cut in G0 separating {a0, b1, b2} from B[b′′1, b
′
2] and (i) holds, or

{a′0, b′′1, b′2} = {a0, b1, b2} and (ii) holds.

For i ∈ [2], let F ′i be a finite face of G0 incident with both b′i and a′0 and let F ′′i be a

finite face of G0 incident with both b′′i and a′′0. Since a′0 6= a′′0, b1, b′′1, b
′
1, b
′′
2, b
′
2 occur on B in

order, and G0 contains a path from B(b′′1, b
′
2) to a0 and internally disjoint from B, we have

F ′i = F ′′i for some i ∈ [2].

By symmetry, we may assume F ′1 = F ′′1 . Then a′0, a
′′
0, b
′
1, b
′′
1 are incident with a common

finite face of G0. Thus, either {a′0, b′′1, b′2} is a 3-cut of G0 separating {a0, b1, b2} from

B[b′′1, b
′
2], or {a′0, b′′1, b′2} = {a0, b1, b2} and b′1 is a cut vertex of G0 separating b1 from

{a0, b2}. So (i) or (iv) holds, a contradiction. 2

Lemma 2.0.9 Let γ be infeasible and A,B be an a0-frame in γ, and let G0 be obtained

from G∗ by deleting the component of G∗ − B containing A. Suppose (G0, a0, b1, B, b2) is

planar, and G0 has four distinct vertices b′′1, b
′
1, b
′′
2, b
′
2 with b1, b′′1, b

′
1, b
′′
2, b
′
2, b2 on B in order,

and b′′1, b
′′
2 are incident with a common finite face of G0.

(i) If {b′1, b′2} is a 2-cut in G0 separating B[b′1, b
′
2] from {a0, b1, b2}, then b′′1, b

′
1, b
′′
2, b
′
2 are

incident with a common finite face of G0, and {b′′1, b′2} is a 2-cut in G0 separating

B[b′′1, b
′
2] from {a0, b1, b2}.

(ii) If there exists a vertex a′0 in G0, such that {a′0, b′1, b′2} is a 3-cut in G0 separating

B[b′1, b
′
2] from {a0, b1, b2}, then one of the following occurs:
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(a) a′0, b
′′
1, b
′
1, b
′′
2 are incident with a common finite face of G0, and {a′0, b′′1, b′2} is a

3-cut in G0 separating B[b′′1, b
′
2] from {a0, b1, b2} or {a′0, b′′1, b′2} = {a0, b1, b2};

(b) a′0, b
′′
1, b
′′
2, b
′
2 are incident with a common finite face ofG0, and {b′′1, b′2} is a 2-cut

in G0 separating B[b′′1, b
′
2] from {a0, b1, b2}.

Proof. Let F ′′ be a finite face of G0 incident with b′′1, b
′′
2. To prove (i), we let F ′ be a finite

face of G0 incident with b′1, b
′
2. Since b1, b′′1, b

′
1, b
′′
2, b
′
2, b2 occur on B in order, F ′ = F ′′, and

so (i) holds.

Next, we prove (ii). For each i ∈ [2], we let F ′i be a finite face of G0 incident with both

b′i and a′0. Since b1, b′′1, b
′
1, b
′′
2, b
′
2, b2 occur on B in order, then F ′1 = F ′′ or F ′2 = F ′′. Now, if

F ′1 = F ′′, then (a) of (ii) holds; if F ′2 = F ′′, then (b) of (ii) holds. 2
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CHAPTER 3

GOOD FRAMES AND IDEAL FRAMES

In this chapter, we show that if γ is infeasible then γ has a special frame. For an ai-

frame A,B in γ, we fix the following notation:

• α(A,B) = |{bi : N(bi) ∩ V (Ai(B)− ai −B) 6= ∅}|, and

• c(A,B) = |{v ∈ V (Ai(B)∩B)− {b1, b2} : {v, ai} separates b1 from b2 in Ai(B)∪

B}|.

We say that an ai-frame A,B in γ is good, if among all the frames in γ,

(i) α(A,B) is maximum,

(ii) subject to (i), c(A,B) is minimum,

(iii) subject to (ii), Ai(B) is maximal.

Lemma 3.0.1 Suppose γ is infeasible and A,B is a good frame in γ. Let i ∈ {0, 1, 2} and

A′, B′ be disjoint paths in G− ai from ai−1, b1 to ai+1, b2, respectively.

(i) If, for some j ∈ [2], G has a path B0 from ai to bj and independent from A′, B′, then

α(A,B) ≥ 1.

(ii) If {ai, b1, b2} is contained in a component of G − (A′ ∪ (B′ − {b1, b2})), then

α(A,B) = 2.

(iii) If G has a path B′′ from b1 to b2 and independent from A′, B′, then α(A,B) = 2 and

c(A,B) = 0.

Proof. We first prove (i). We see that B′, B0 are contained in a common component of

G− V (A′). By Lemma 2.0.2 and the existence of A′, there exists an induced path A∗ from
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ai−1 to ai+1, such that G − V (A∗) is connected, and B′, B0 ⊆ G − V (A∗). Since γ is

infeasible, A∗ and ai are in different components of G − B′. So A∗, B′ is a frame. By the

existence of B0, α(A∗, B′) ≥ 1, and so α(A,B) ≥ 1.

Similarly, for (ii), let C be the component of G − (A′ ∪ (B′ − {b1, b2})) containing

b1, b2, ai, we may assume there exists an induced path A∗ from ai−1 to ai+1, such that

G− V (A∗) is connected, and B′, C ⊆ G− V (A∗). So A∗, B′ is a frame. By the existence

of C, α(A∗, B′) = 2, and so α(A,B) = 2.

For (iii), since γ is infeasible, B′ ∪ B′′ + ai must be contained in a component of

G−V (A′). Hence, we may assume that B′′+ ai is contained in a component of G− (A′ ∪

(B′ − {b1, b2})). So by (ii), α(A,B) = 2. Now by Lemma 2.0.2 and the existence of A′,

there exists an induced path A∗ from ai−1 to ai+1, such that G − V (A∗) is connected, and

B′ ∪ B′′ + ai ⊆ (G − V (A∗)). So A∗, B′ is a frame. Since B′′ + ai is contained in a

component of G− (A′ ∪ (B′ − {b1, b2})), we see that c(A,B) = 0. 2

For a frame A,B in γ, an A-B bridge is an (A ∪ B)-bridge of G with at least three

vertices and intersecting both A and B. Let M be an A-B bridge, l, r ∈ V (A ∩M), and

l′, r′ ∈ V (B ∩M), such that A[l, r] and B[l′, r′] are maximal. Then we say that l, r are the

extreme hands of M , and that l′, r′ are the feet of M . We say that M lies on B[b′1, b
′
2] for

some b′1, b
′
2 ∈ V (B), if B[l′, r′] ⊆ B[b′1, b

′
2]. We say that M is fat if |V (M ∩ B)| ≥ 2 and

non-fat if it is not fat.

Lemma 3.0.2 Suppose γ is infeasible andA,B is a good a0-frame in γ. Let {d1, · · · , dt} =

V (B ∩ A0(B)) such that b1, d1, · · · , dt, b2 occur on B in order, and let d0 = b1, dt+1 = b2.

Then the following conclusions hold:

(i) For any i ∈ [t], G− (A0(B)− (B − di))) does not contain disjoint paths from a1, b1

to a2, b2, respectively.

(ii) For any A-B bridge M , M ∩B ⊆ B[di−1, di] for some i ∈ [t+ 1].
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(iii) Let N be a B-bridge of G not containing A or a0, then |V (N ∩ B)| ≥ 4, and

N ∩B ⊆ B[di−1, di] for some i ∈ [t+ 1].

Proof. First, we note that (ii) and (iii) follow immediately from (i). So we prove (i). Sup-

pose (i) fails, and let A∗, B′ be disjoint paths in G − (A0(B) − (B − di))) from a1, b1 to

a2, b2, respectively.

Then A0(B) ∪ B′ is contained in a component of G − V (A∗). By Lemma 2.0.2 and

the existence of A∗, there exists an induced path A′ from a1 to a2, such that G − V (A′) is

connected, and A0(B) ∪ B′ ⊆ (G − V (A′)). So A′, B′ is a frame in γ. Now, due to the

existence of di, the B-bridge of G containing a0 is properly contained in the B′-bridge of

G containing a0, a contradiction. 2

An ai-frame A,B in γ is ideal if A,B is a good such that

(i) the union of those B-bridges of G not containing A or ai is maximal,

(ii) subject to (i), the union of those fat A-B bridges is maximal,

(iii) subject to (ii), the number of non-fat A-B bridges is minimum.

Lemma 3.0.3 Suppose γ is infeasible with ideal frameA,B. Then allA-B bridges are fat.

Proof. Let M be a non-fat A-B bridge with extreme hands l, r and foot u. Then V (M ∩

A(l, r)) 6= ∅, to avoid the cut {l, r, u} in G∗. Note that M − u − A(l, r) has a path from l

to r. Hence, by Lemma 2.0.2, M ∪A[l, r]−u contains an induced path P from l to r, such

that M ∪ A[l, r] − u − V (P ) is connected with A(l, r) ⊆ M ∪ A[l, r] − u − V (P ). Let

A′ := A[a1, l] ∪ P ∪ A[r, a2]. We show that A′, B contradicts the choice of A,B.

Clearly, A′, B is a good frame, and the union of those B-bridges of G not containing

A or a0 is equal to the union of those B-bridges of G not containing A′ or a0. Moreover,

A(l, r) is contained in a non-fatA′-B bridge; otherwise, the union of those fatA′-B bridges

properly contains the union of those fat A-B bridges, a contradiction.
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Let M1, · · · ,Mk be the A-B bridges such that for each i ∈ [k], Mi ∩ A(l, r) 6= ∅,

Mi 6= M . Then k 6= 0; otherwise, G has at least two disjoint edges from A(l, r) to B (as

G∗ is 6-connected), which contradicts that A(l, r) is contained in a non-fat A′-B bridge.

SinceMi∩A(l, r) 6= ∅ for i ∈ [k],
⋃
i∈[k]Mi andA(l, r) are contained in a same non-fat

A′-B bridge; soM1, . . . ,Mk are non-fatA-B bridges. Now, sinceM∪A[l, r]−u−V (P ) is

connected withA(l, r) ⊆M∪A[l, r]−u−V (P ), then
⋃
i∈[k]Mi andM∪A[l, r]−u−V (P )

are contained in one single A′-B bridge. Hence, the number of non-fat A′-B bridges is

strictly smaller than the number of non-fat A-B bridges, a contradiction. 2

LetA,B be a good ai-frame in γ, let {d1, · · · , dt} = V (B∩Ai(B)) with b1, d1, · · · , dt, b2

on B in order, and let d0 = b1 and dt+1 = b2. For any i ∈ [t + 1], we let J∗i be the

union of B[di−1, di], all the edges between A and B[di−1, di], all those A-B bridges M

with M ∩ B ⊆ B[di−1, di], and all those B-bridges N of G with (A + ai) ∩ N = ∅ and

N ∩ B ⊆ B[di−1, di]. Let u1, u2 ∈ V (A ∩ J∗i ), such that a1, u1, u2, a2 occur on A in order

with A[u1, u2] maximal. Then we say Ji = G[V (J∗i ∪A[u1, u2])] is an A-B connector, and

u1, u2 are the extreme hands of Ji. We say that di−1, di are the feet of Ji. Note that our

definition does not require Ji ∩ Jj = ∅ for i 6= j.

AnA-B connector J (with feet v1, v2 and extreme hands u1, u2) is slim if (J−A[u1, u2], B[v1, v2])

is planar, and each edge of J with exactly one end inA[u1, u2] has its other end inB[v1, v2].

Thus, no slim A-B connector contains an A-B bridge. If J is not a slim connector, we say

that J is a fat A-B connector.

Lemma 3.0.4 Let γ be infeasible with an ideal frame A,B. Let J be an A-B connector

with feet v1, v2 and extreme hands u1, u2, such that V (J)\{u1, u2, v1, v2} 6= ∅. Then

(i) u1 6= u2, there exists a unique j ∈ [2] such that G has an A-B path from B[bj, vj) to

A(u1, u2), and (J − vj, A[u1, u2], v3−j) is planar, and

(ii) if J is fat then NG(vj) ∩ V (J − vj − A) * Lp for p ∈ [2], where Lp denotes the

subpath of the outer walk of (J − vj, A[u1, u2], v3−j) from up to v3−j without going
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through u3−p.

Proof. Since V (J)\{u1, u2, v1, v2} 6= ∅ and G∗ is 6-connected, then u1 6= u2 and G has an

A-B path from B − B[b1, b2] to A(u1, u2). By Lemma 2.0.7, there exists a unique j ∈ [2]

such that G has an A-B path from B[bj, vj) to A(u1, u2).

To prove (J − vj, A[u1, u2], v3−j) is planar, let T be an A-B path from t′ ∈ B[bj, vj) to

t ∈ A(u1, u2). If J − vj contains disjoint paths A∗, B∗ from u1, t to u2, v3−j , respectively,

thenA′ := A[a1, u1]∪A∗∪A[u2, a2] andB′ := B[bj, t
′]∪T ∪B∗∪B[v3−j, b3−j] are disjoint

paths in G − vj − V (A0(B) − B) from a1, b1 to a2, b2, respectively; which contradicts

(i) of Lemma 3.0.2. So assume that such A∗, B∗ do not exist. Then by Theorem 2.0.1,

there exist m ≥ 0 and a set D = {D1, · · · , Dm} of pairwise disjoint nonempty subsets of

V (J − vj) − {u1, u2, t, v3−j} such that (J − vj,D, u1, t, u2, v3−j) is 3-planar. We choose

D1, . . . , Dm such that
⋃
i∈[m]Di is minimal. Then for all p ∈ [m], G[Dp∪NJ−vj(Dp)] does

not have a disk representation with NJ−vj(Dp) occurring on the boundary of the disk (or

else, Dp could be chosen to be empty). Obviously, |Dp| ≥ 2.

Note that J − vj − A[u1, u2] is connected. For, otherwise, let C be a component of

J − vj − A[u1, u2] disjoint from B(vj, v3−j]. Then NG(C) ⊆ V (A[u1, u2]) ∪ {vj}. Since

G−A is connected, vj ∈ N(C); hence, G[V (C)∪N(C)]−E(A) is a non-fat A-B bridge,

contradicting Lemma 3.0.3.

If m = 0 then D = ∅, and (J − vj, u1, t, u2, v3−j) is planar; so (J − vj, A[u1, u2], v3−j)

is planar as J − vj − A[u1, u2] is connected. Hence, m ≥ 1. Since G∗ is 6-connected,

for all p ∈ [m], NJ−vj(Dp) ∪ {vj} is not a cut of G separating Dp from other vertices.

So Dp ∩ V (A) 6= ∅. Since Dp ∩ {u1, u2, t, v3−j} = ∅, |NJ−vj(Dp) ∩ A| ≥ 2. Moreover,

sinceA is an induced path andG[Dp∪NJ−vj(Dp)] does not have a disk representation with

NJ−vj(Dp) occurring on the boundary of the disk, Dp 6⊆ V (A). Thus, NJ−vj(Dp) 6⊆ V (A)

as J − vj − A[u1, u2] is connected. So |NJ−vj(Dp)| = 3 and |NJ−vj(Dp) ∩ A| = 2.

Moreover, if we let {s1, s2, s} = NJ−vj(Dp) such that s /∈ V (A) and u1, s1, s2, u2 occur

on A in order, then J − vj has a path D from s to v3−j disjoint from A; or else, there exists
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a non-fat A-B bridge with foot vj , or G − V (A) is not connected. Moreover, since G∗ is

6-connected, G has an A-B path R from r′ ∈ V (B − B[v1, v2]) to r ∈ V (A(s1, s2)). By

Lemma 2.0.7, r′ ∈ B[bj, vj).

Let H := G[Dp ∪ NJ−vj(Dp)]. If H contains disjoint paths X ′, R1 from s1, r to s2, s,

respectively, then the paths A′ := A[a1, s1]∪X ′ ∪A[s2, a2] and B′ := B[bj, r
′]∪R∪R1 ∪

D∪B[v3−j, b3−j] inG−V (A0(B)−B)−{vj} from a1, b1 to a2, b2, respectively, contradict

Lemma 3.0.2. So such X ′ and R1 do not exist. By Lemma 2.0.1, there exist n ≥ 0 and

a set V = {V1, · · · , Vn} of pairwise disjoint subsets of Dp such that (H,V , s1, r, s2, s) is

3-planar. However, we see that {D1, · · · , Dm}\{Dp}∪{V1, · · · , Vn} contradicts our choice

of {D1, . . . , Dm}. This completes the proof of (i).

Next, we prove (ii). Since J contains disjoint paths A[u1, u2] and B[v1, v2], NG(vj) ∩

V (J − vj − A) 6= ∅. Suppose NG(vj) ∩ V (J − vj − A) ⊆ Lp for some p ∈ [2]. Let u ∈

NG[vj]∩V (Lp), such that u 6= up, and Lp[up, u] is minimal. Since (J−vj, A[u1, u2], v3−j)

is planar, J − vj − A[u1, u2] is also planar. Let P ′ denote the subpath of the outer walk of

J − vj −A[u1, u2] from u to v3−j with P ′ ⊆ Lp. Then NG(vj)∩ V (J − vj −A) ⊆ V (P ′).

Let B′ = B[bj, vj]∪ {vju} ∪P ′ ∪B[v3−j, b3−j]. Then A,B′ is a good frame. The union of

those B-bridges of G not containing A and a0 is contained in the union of those B′-bridges

of G not containing A and a0, which forces B = B′ by the choice of A,B. Moreover, by

Lemma 3.0.3 and the planarity of J − vj , each edge of J with exactly one end in A[u1, u2]

has its other end in B[v1, v2]; so J is a slim connector, a contradiction. 2
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CHAPTER 4

CORE FRAMES

In this chapter, we consider the situation when there is a fat connector for some ideal

frame in γ. The first two lemmas study the inside of fat connectors, and show that each fat

connector has a core in which we can find various disjoint paths.

Lemma 4.0.1 Suppose γ is infeasible and A,B is an ideal a0-frame in γ. Let J be a fat

A-B connector with feet v1, v2 and extreme hands u1, u2, such that (J − v1, A[u1, u2], v2)

is planar, a1, u1, u2, a2 occur on A in order, b1, v1, v2, b2 occur on B in order, and G has an

A-B path from A(u1, u2) to B[b1, v1). Then there exists a separation (H,L) in J of order

4 (we allow H = J and L consists of u1, u2, v2 and no edges), such that

(i) V (H ∩ L) = {v1, x1, x2, y2}, u1, x1, x2, u2 occur on A in order, v1, y2, v2 occur on

B in order, A[x1, x2] ∪B[v1, y2] ⊆ H, {u1, u2, v2} ⊆ V (L);

(ii) (L−A,B[y2, v2], v1) is planar, and each edge of L with exactly one end in A has its

other end in V (B[y2, v2]) ∪ {v1};

(iii) (H − v1, A[x1, x2], y2) is planar, H − v1 − A[x1, x2] is connected, x1y2, x2y2 /∈

E(H), H − A(x1, x2) − {v1x1, v1x2} contains disjoint paths from v1, y2 to x1, x2,

respectively, and disjoint paths from v1, y2 to x2, x1, respectively, and V (X1∩X2) =

{y2} and N(v1) ∩ V (H − A) 6⊆ V (Xi) for i ∈ [2], where Xi is the path from xi to

y2 on the outer walk of H − v1 without going through x3−i.

Proof. Note that by Lemma 3.0.4, if we take H = J and let L consist of u1, u2, v2 and no

edges, then (H,L) satisfies (i) and (ii) (with xi = ui for i ∈ [2] and y2 = v2). Hence, we

choose (H,L) satisfying (i) and (ii) and, subject to this, H is minimal. We show that (iii)

holds.
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Since (J − v1, A[u1, u2], v2) is planar, (H − v1, A[x1, x2], y2) is planar. Note that H −

v1−A[x1, x2] is connected; for otherwise, let C be a component of H − v1−A[x1, x2] not

containing y2, which is also a component of J − v1 − A[u1, u2]. Then either it contradicts

the definition of frame that G − V (A) is connected, or it contradicts Lemma 3.0.3 that all

A-B bridges are fat. By the minimality of H , we see that x1y2, x2y2 /∈ E(H).

For i = 1, 2, let Xi denote the path in the outer walk of H − v1 from y2 to xi not

containing x3−i. Then V (X1 ∩ X2) = {y2}. For, otherwise, H has a separation (H1, H2)

such that |V (H1 ∩ H2)| = 1, y2 ∈ V (H1 − H2), and A[x1, x2] ⊆ H2. Since G∗ is 6-

connected, V (H1 − H2) = {y2}. Let y′2 ∈ V (H1 − y2). Now it is easy to check that the

separation (H − y2, G[L+ y′2]) contradicts the choice of (H,L) (that H is minimal).

Next we show that N(v1) ∩ V (H − A) 6⊆ V (Xi) for i = 1, 2. For, suppose this is

false and, by symmetry, that N(v1) ∩ V (H −A) ⊆ V (X2). Let y′2 ∈ N(v1) ∩ V (X2) with

X2[y
′
2, y2] minimal. Let B′ denote the path in the outer walk of H − A from y′2 to y2 not

containing X2[y
′
2, y2]. We could choose B so that B′ ⊆ B. However, this shows that J is

not fat, a contradiction.

It remains to show that for j ∈ [2], H − A(x1, x2) − {v1x1, v1x2} contains disjoint

paths from v1, y2 to x3−j, xj , respectively. For, otherwise, we may assume by symmetry

that H − A(x1, x2) − {v1x1, v1x2} does not have disjoint paths from v1, y2 to x1, x2, re-

spectively. Hence, H − A(x1, x2) − X2 − {v1x1, v1x2} has no path from v1 to x1. Since

(H − v1, A[x1, x2], X2, X1) is planar, there exist x′1 ∈ V (A(x1, x2)), y′2 ∈ V (X2), and

a 2-separation (H1, H2) in H − v1 such that V (H1 ∩ H2) = {x′1, y′2}, x1, y2 ∈ V (H1),

A[x′1, x2] ⊆ H2, and N(v1) ∩ V (H) ⊆ V (H2 ∪ A[x1, x2] ∪ X2). Then we see that the

separation (H2, G[H1 ∪ L]) of J contradicts the choice of (H,L). 2

With the notation in Lemma 4.0.1, we say that H is an A-B core or a core of the fat

connector J . Moreover, we say that x1, x2 are the extreme hands of H , v1, y2 are the feet

of H , and y2 is the main foot of H . For convenience, we write y1 := v1. By symmetry, we

may always assume that a1, x1, x2, a2 occur on A in order, and that b1, y1, y2, b2 occur on B
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in order. Note that y1 ∈ V (A0(B)) and G has a path from a0 to y1 internally disjoint from

B. For i ∈ [2], let x′i ∈ V (A(x1, x2)) such that x′i, xi are incident with a common finite

face of H − y1, and H − y1 has a path from x′i to y2 and internally disjoint from A. And

for i ∈ [2], let X ′i be the path from y2 to x′i on the outer walk of H−{y1, xi} without going

through x3−i.

Lemma 4.0.2 Suppose γ is infeasible, A,B is an ideal a0-frame, and H is an A-B core

with extreme hands x1, x2 and feet y1, y2, where y2 is the main foot. Then the degree of y2

in H − y1 is at least 2 and, for i ∈ [2], |V (Xi(xi, y2))| ≥ 1 and V (Xi ∩ X ′3−i) = {y2}.

Moreover, if, for some i ∈ [2], H does not contain disjoint paths from y1, y2 to xi, x′3−i,

respectively, and internally disjoint from A, then the following are true:

(i) No finite face of H − y1 is incident with both y2 and a vertex of A(x1, x2).

(ii) For any v ∈ N(y1)∩V (H) with v /∈ X ′3−i ∪A(xi, x3−i], there exist c1 ∈ A(xi, x′3−i)

and c2 ∈ X ′3−i(x
′
3−i, y2), such that {c1, c2} is a cut in H − {y1, x3−i} separating

v from xi, and there exist independent paths from v to c1, c2 in H − {y1, x3−i},

respectively, which are internally disjoint from X ′3−i ∪ A[xi, x′3−i].

(iii) H has disjoint paths from y1, y2 to x3−i, x′i, respectively, and internally disjoint from

A.

Proof. By Lemma 4.0.1, V (X1 ∩ X2) = {y2} and x1y2, x2y2 /∈ E(H); so the degree of

y2 in H − y1 is at least 2 and |V (Xi(xi, y2))| ≥ 1. Moreover, V (Xi ∩ X ′3−i) = {y2} for

i ∈ [2]; for, suppose there exists c ∈ V (Xi ∩X ′3−i)− {y2}, then {c, y1, y2, x3−i} is a cut in

G separating V (X3−i) from {a0, a1, a2, b1, b2}, a contradiction.

By symmetry, we may assume that H does not contain disjoint paths from y1, y2 to

x1, x
′
2, respectively, that are internally disjoint from A.

To prove (i), suppose there exists v0 ∈ V (A(x1, x2)) such that v0, y2 are incident with

a common finite face in H − y1. Since (H − y1, A[x1, x2], y2) is planar, H − y1 has a
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separation (H1, H2) such that V (H1 ∩H2) = {y2, v0}, X1 ⊆ H1, and X2 ⊆ H2. Now, we

further choose v0 so that H1 is minimal.

Now, we see that H2 contains a path P2 from y2 to x′2 and internally disjoint from A;

for otherwise, V (H2 ∩ A) = {x2} and, hence, {y1, y2, x2} is a cut in G separating V (X2)

from {a0, a1, a2, b1, b2}, a contradiction.

Now, let P1 be the path from y1 to x1 inH−V (A(x1, x2])∪{y2} (by (iii) of Lemma 4.0.1).

Since v0 6= x1, V (P1 ∩H2) = ∅, and so V (P1 ∩ P2) = ∅. However, the existence of P1, P2

contradicts that H does not contain disjoint paths from y1, y2 to x1, x′2, respectively, and

internally disjoint from A. This completes the proof of (i).

To prove (ii), let v ∈ N(y1) ∩ V (H) such that v /∈ X ′2 ∪ A(x1, x2]. Since (H −

{y1, x2}, A[x1, x′2] ∪ X ′2[x′2, y2]) is planar and H − y1 − A(x1, x2] ∪ X ′2 does not have a

path from v to x1, there exist c1, c2 ∈ V (A(x1, x
′
2] ∪ X ′2) such that {c1, c2} is a cut in

H − {y1, x2} separating v from x1. We may assume c1, c2 occur on A(x1, x′2] ∪X ′2[x′2, y2]

in order.

Note that c1 /∈ V (X ′2), to avoid the cut {c1, c2, y1, x2} in G∗. Moreover, c2 /∈ A(x′2, y2];

or else, H − V (A) ∪ {y1} is not connected, contradicting (iii) of Lemma 4.0.1.

We choose c1, c2 such that A[c1, x′2] and X ′2[x
′
2, c2] are minimal. Then H − {y1, x2}

contains independent paths from v to c1, c2, respectively, and internally disjoint from A ∪

X ′2. Moreover, by (i), c2 6= y2. This completes the proof of (ii).

To prove (iii), observe that V (X ′1∩X ′2) = {y2}. For otherwise, let c ∈ V (X ′1∩X ′2) with

c 6= y2. Since y2 has degree at least 2 in H − y1 and x1y2, x2y2 /∈ E(H), {x1, x2, y1, y2, c}

is a cut in G∗ separating V (X1 ∪X2) from {a0, a1, a2, b1, b2}, a contradiction.

Now, let u2 ∈ V (X2 ∩X ′2) such that X2[x2, u2] is minimal. Moreover, let v ∈ N(y1)∩

V (H − A). If v ∈ V (X ′2) then let P2 = v = c2; and if v /∈ V (X ′2) then by (ii), there

exist c1 ∈ V (A(x1, x
′
2)) and c2 ∈ V (X ′2(x

′
2, y2)), such that {c1, c2} is a cut in H−{y1, x2}

separating v from x1, and there exists a path P2 from v to c2 in H − {y1, x2}, which is

internally disjoint fromX ′2∪A[x1, x′2]. Since V (X ′1∩X ′2) = ∅ and (H−y1, A[x1, x2]∪X2)

24



is planar, P2 is disjoint fromX ′1. Now, X ′1 and y1v∪P2∪X ′2[c2, u2]∪X2[u2, x2] are disjoint

paths from y2, y1 to x′1, x2, respectively, in H , which are internally disjoint from A. 2

The next lemma describes some interactions between cores from different connectors

and finds a path B′ so that A,B′ is a good frame in γ which will eventually be used to form

a special frame A′, B′ in γ.

Lemma 4.0.3 Let γ be infeasible with an ideal a0-frame A,B, and let Hj , j ∈ [m], be the

A-B cores in γ such that Hj has extreme hands xj1, x
j
2 and feet yj1, y

j
2. Then

(i) for any distinct i, j ∈ [m], A[xi1, x
i
2] ⊆ A[xj1, x

j
2] or A[xj1, x

j
2] ⊆ A[xi1, x

i
2],

(ii) for any j ∈ [m], Hj − A[x1, x2] has a path Pj from y1 to y2 such that |V (Pj)| ≥ 3,

Hj − Pj is connected, and Pj is induced in G− y1y2,

(iii) A,B′ is a good a0-frame and A0(B
′) = A0(B), where B′ is obtained from B by

replacing B[yj1, y
j
2] with the path Pj in (ii) for j ∈ [m], and

(iv) withG′0 as the graph obtained fromG by deleting the component ofG−B′ containing

A, (G′0, a0, b1, B
′, b2) is planar and, for any v ∈ B′(yj1, y

j
2), the degree of v in G′0 is

2.

Proof. To prove (i), assume for some distinct i, j ∈ [m] with i 6= j, we have A[xi1, x
i
2] *

A[xj1, x
j
2], and A[xj1, x

j
2] * A[xi1, x

i
2]. Without loss of generality, let b1, yi1, y

i
2, y

j
1, y

j
2, b2

occur on B in this order, and a1, xi1, x
j
2, a2 occur on A in this order with xi2, x

j
1 ∈ A(xi1, x

j
2).

By Lemma 4.0.1, H i − A(xi1, xi2) has two disjoint A-B paths P1, P2 from yi1, y
i
2 to xi2, x

i
1,

respectively, and Hj − A(xj1, x
j
2) has two disjoint A-B paths P3, P4 from yj1, y

j
2 to xj2, x

j
1,

respectively. Therefore, P1, P2, P3, P4 form a doublecross in A,B, a contradiction.

For (ii), let j ∈ [m]. SinceHj is a core,Hj−yj1y
j
2−A has a path Tj from yj1 to yj2. So by

Lemma 2.0.2, Hj−yj1y
j
2 has an induced path Pj from yj1 to yj2 such that Hj−yj1y

j
2−V (Pj)

is connected and A[xj1, x
j
2] ⊆ Hj − yj1y

j
2 − Pj .
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To see (iii), we observe that A0(B
′), the B′-bridge of G containing a0, is the same as,

A0(B), the B-bridge of G containing a0. So A,B′ is also a good a0-frame.

To prove (iv), let C denote the component of G − B′ containing A; so G′0 = G − C.

By Lemma 2.0.6, (A0(B
′), a0, b1, B

′, b2) is planar. Thus, to show that (G′0, a0, b1, B
′, b2) is

planar, it suffices to show that for any A-B connector J with feet v1, v2, (J −C,B′[v1, v2])

is planar. This is clear when J is a slim connector. So assume J is a fat connector. Then J

has a separation (H,L) satisfying (i), (ii), and (iii) of Lemma 4.0.1. By (ii) of Lemma 4.0.1,

(L− A,B′ ∩ L) is planar. Since H −B′ ⊆ C, we see that (J − C,B′[v1, v2]) is planar.

Moreover, for any v ∈ B′(yj1, y
j
2), since B′[yj1, y

j
2] is a path in the core Hj , then, com-

bined with (ii) that Pj is induced in G− y1y2, the degree of v in G′0 is exactly 2. 2

In the remainder of this chapter, suppose γ is infeasible and A,B is an ideal frame in

γ. By (i) of Lemma 4.0.3, there exists an A-B core (or said an A-B′ core) H with extreme

hands x1, x2 and feet y1, y2 (y2 as the main foot), such that for any core Hj with extreme

hands xj1, x
j
2, we have A[xj1, x

j
2] ⊆ A[x1, x2]. We call such a core H a main A-B′ core (or

said a main A-B core). We also use B′ to denote the path in (iii) of Lemma 4.0.3 and G′0

to denote the graph in (iv) of Lemma 4.0.3. By (iii) of Lemma 4.0.2, for i ∈ [2], we let

P1,i, P2,3−i be disjoint paths in H − A(x1, x2) from x1, x2 to yi, y3−i, respectively.

We consider the structure of G outside H . Let r1 ∈ V (B′[b1, y1)), such that B′[b1, r1)

contains no foot of A-B cores in γ, G has no A-B′ path from A(x1, x2) to B′[b1, r1), and

subject to these conditions, B′[b1, r1] is maximal. Then G has a path R1 from r1 to some

r ∈ V (A(x1, x2)) and internally disjoint from A such that R1 = r1r or R1 is contained in

some A-B core H ′ with r1 as a foot and does not contain the other foot of H ′.

For notational convenience, we let t1 := r1 and t2 := y2. We derive useful structure of

G outside A[x1, x2] ∪B′[t1, t2].

Lemma 4.0.4 G has no A-B′ path from A(x1, x2) to B′ − B′[t1, t2] or from B′(t1, t2) to

A− A[x1, x2].
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Proof. By the maximality of B′[b1, r1], G has no A-B′ path from A(x1, x2) to B′[b1, t1).

Since no double cross exists inA,B (by Lemma 2.0.7), G has noA-B′ path fromA(x1, x2)

toB′(t2, b2]. Moreover,G has noA-B′ path fromB′(t1, t2) toA[a1, x1)∪A(x2, a2]; to avoid

forming a double cross with R1 and one of {P1,2, P2,1}, {P1,1, P2,2} in A,B. 2

Lemma 4.0.5 Let e3 = a3b3, e4 = a4b4 ∈ E(G) with a3, a4 ∈ V (A) and b3, b4 ∈ V (B′).

(i) If for some i ∈ [2], a3 ∈ V (A[ai, xi)), b3 ∈ V (B′[t2, b2)), a4 ∈ V (A(a3, xi]),

and b4 ∈ V (B′[b1, t1)), then G′0 has a 3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b1, b4] and

b′2 ∈ B′[t2, b3], which separates B′[b′1, b
′
2] from {a0, b1, b2} in G′0.

(ii) If for some i ∈ [2], a3 ∈ V (A[ai, xi)), b3 ∈ V (B′(b1, t1]), a4 ∈ V (A(a3, xi]), and

b4 ∈ V (B′(t2, b2]), then one of the following holds:

(a) G′0 has a 3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b3, t1] and b′2 ∈ B′[b4, b2], which sepa-

rates B′[b′1, b
′
2] from {a0, b1, b2} in G′0;

(b) G′0 has a 2-cut {y1, b′2} with b′2 ∈ B′[b4, b2], which separates B′[y1, b′2] from

{a0, b1, b2} in G′0.

(iii) If a3 ∈ V (A[a1, x1]), a4 ∈ V (A[x2, a2]), and b3, b4 ∈ V (B′(b1, t1)), then G′0 has a

3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b3, b4] and b′2 ∈ B′[t2, b2], which separates B′[b′1, b
′
2]

from {a0, b1, b2} in G′0.

(iv) If a3 ∈ V (A[a1, x1]), a4 ∈ V (A[x2, a2]), and b3, b4 ∈ V (B′(t2, b2)), then one of the

following holds:

(a) G′0 has a 3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b1, t1] and b′2 ∈ B′[b3, b4], which sepa-

rates B′[b′1, b
′
2] from {a0, b1, b2} in G′0;

(b) G′0 has a 2-cut {y1, b′2} with b′2 ∈ B′[b3, b4], which separates B′[y1, b′2] from

{a0, b1, b2} in G′0.
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Proof. Suppose (i) fails. Then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main foot

of H , there exist disjoint paths B′2, A
′
0 in G′0 − (B′[b1, b4]∪B′[y2, b3]) from b2, a0 to y1, r1,

respectively. Now, A[ai, a3]∪e3∪B′[y2, b3]∪P3−i,2∪A(xi, a3−i]∪R1∪A′0 andB′[b1, b4]∪

e4 ∪ A[a4, xi] ∪ Pi,1 ∪B′2 show that γ is feasible, a contradiction.

Now suppose (ii) fails. Then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main

foot of H , G′0 − (B′[b3, r1] ∪ B′[b4, b2]) contains two disjoint paths B∗1 , A
∗
0 from b1, a0 to

y1, y2, respectively. Now A[ai, a3] ∪ e3 ∪ B′[b3, r1] ∪ R1 ∪ A(xi, a3−i] ∪ P3−i,2 ∪ A∗0 and

B∗1 ∪ Pi,1 ∪ A[a4, xi] ∪ e4 ∪B′[b4, b2] show that γ is feasible, a contradiction.

If (iii) fails then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main foot of H ,

G′0 − (B′[b3, b4] ∪ B′[t2, b2]) has disjoint paths B∗1 , A
∗
0 from b1, a0 to r1, y1, respectively.

Moreover, by Lemma 4.0.2, for some p ∈ [2],H contains disjoint paths Y1, Y2 from xp, x
′
3−p

to y1, y2, respectively. Thus, A[a1, x1] ∪ e3 ∪ B′[b3, b4] ∪ e4 ∪ A[x2, a2] ∪ Y1 ∪ A∗0 and

B∗1 ∪R1 ∪ A(x1, x2) ∪ Y2 ∪B′[t2, b2] show that γ is feasible, a contradiction.

Finally, suppose (iv) fails. Then, since (G′0, a0, b1, B
′, b2) is planar and y2 is the main

foot of H , G′0 − (B′[b1, t1] ∪ B′[b3, b4]) has disjoint paths B′2, A
′
0 from b2, a0 to y2, y1,

respectively. Thus, A[a1, x1] ∪ e3 ∪ B′[b3, b4] ∪ e4 ∪ A[x2, a2] ∪ Y1 ∪ A′0 and B′[b1, r1] ∪

R1 ∪ A(x1, x2) ∪ Y2 ∪B′2 show that γ is feasible, a contradiction. 2

Lemma 4.0.6 G′0 does not have 3-cuts {a′0, b′1, b2} and {a′′0, b1, b′′2} with b′1 ∈ V (B′(b1, t1])

and b′′2 ∈ V (B′[t2, b2)) such that {a′0, b′1, b2} separates B′[b′1, b2] from {a0, b1, b2} and

{a′′0, b1, b′′2} separates B′[b1, b′′2] from {a0, b1, b2}.

Proof. For, suppose both 3-cuts exist. We choose {a′0, b′1, b2} with B′[b1, b′1] minimal, and

choose {a′′0, b1, b′′2} with B′[b′′2, b2] minimal. Then, since G′0 has a path from a0 to y1 and

internally disjoint from B′, it follows from Lemma 2.0.8 that

(1) (ii) or (iii) or (iv) of Lemma 2.0.8 holds (and so c(A,B′) ≥ 1).

By the minimality ofB[b1, b
′
1] andB[b′′2, b2], it follows from (1) and planarity of (G′0, a0, b1, B

′, b2)

that
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(2) G′0−B′(b1, b′1)−B′(b′′2, b2) has disjoint paths B∗1 , B
∗
2 , A

∗
0 from b1, b2, a0 to b′1, b

′′
2, y1,

respectively, which are internally disjoint from B′.

Also by the minimality of B[b1, b
′
1] and B[b′′2, b2], it follows from (iii) and (iv) of

Lemma 4.0.5 and Lemmas 2.0.8 and 2.0.9 that

(3) G has no edge fromB′(b1, b
′
1) toA[a1, x1] or no edge fromB′(b1, b

′
1) toA[x2, a2]; and

G has no edge from B′(b′′2, b2) to A[a1, x1] or no edge from B′(b′′2, b2) to A[x2, a2].

Next, we claim that

(4) α(A,B′) ≤ 1.

For, suppose α(A,B′) = 2. Then, by (1), a0 = a′0 = a′′0; so c(A,B′) ≥ 2. For convenience,

let s1 := b′1 and s2 := b′′2. Now, since α(A,B′) = 2, G′0 has a path A∗i (for each i ∈ [2])

from a0 to bi and internally disjoint fromB′. Hence, sinceG∗ is 6-connected,B′(bi, si) 6= ∅

for i ∈ [2].

We claim that there do not exist e = ab, e′ = a′b′ ∈ E(G), such that for some i ∈ [2],

a, a′ ∈ A(ai, xi), b ∈ B′[b1, s1), and b′ ∈ B′(s2, b2]. For, otherwise, α(A,B′) = 2 and

c(A,B′) = 0 by Lemma 3.0.1, because of the path B′[b1, b] ∪ e ∪ A[a, a′] ∪ e′ ∪ B′[b′, b2]

from b1 to b2, the path B∗1 ∪ B′[b′1, r1] ∪ R1 ∪ A[xi, x3−i) ∪ Pi,2 ∪ B′[y2, b′′2] ∪ B∗2 from b1

to b2, and the path A∗0 ∪ P3−i,1 ∪ A[x3−i, a3−i] from a0 to a3−i. This is a contradiction.

SinceG∗ is 6-connected, G has at least three pairwise disjoint edges fromB′(bi, si) (for

each i ∈ [2]) to A[a1, x1] ∪ A[x2, a2]. By (3), for each i ∈ [2], we may assume for some

j ∈ [2], G has no edge from B′(bi, si) to A[aj, xj]. Now, by symmetry, we assume G has

no edge from B′(b1, s1) to A[x2, a2].

By Lemma 2.0.7, G has no cross from A[a1, x1] to B′(b1, s1). So, let fi = uivi for

i ∈ [3] be pairwise disjoint edges of G with ui ∈ A[a1, x1] and vi ∈ B′(b1, s1), such that

a1, u1, u3, u2, a2 occur on A in order, and b1, v1, v3, v2, b2 occur on B′ in order. We choose

f1, f2 so that A[u1, u2] ∪B′[v1, v2] is maximal.
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Then G has no edge from B′(s2, b2) to A[a1, x1]. For otherwise, G has no edge from

B′(s2, b2) to A[x2, a2] and, hence, has at least three pairwise disjoint edges from B′(s2, b2)

to A[a1, x1]. Therefore, G has an edge from A(a1, x1) to B′(s2, b2), which together with f3

contradicts our claim above.

Thus, G has three pairwise disjoint edges from B′(s2, b2) to A[x2, a2]. Since G has no

cross from A[x2, a2] to B′(s2, b2) (by Lemma 2.0.7), we let fj = ujvj for j ∈ {4, 5, 6} be

pairwise disjoint edges ofGwith uj ∈ A[x2, a2] and vj ∈ B′(s2, b2), such that a1, u4, u6, u5, a2

occur on A in order, and b1, v4, v6, v5, b2 occur on B′ in order. Choose f4, f5 so that

A[u4, u5] ∪B′[v4, v5] is maximal.

Now by the maximality of A[u1, u2], G has an edge f7 = u7v7 with u7 ∈ A(u1, u2) and

v7 ∈ B′[t2, b2], to avoid the cut {u1, u2, b1, s1, a0} in G∗. Similarly, by the maximality of

A[u4, u5], G has an edge f8 = u8v8 with u8 ∈ A(u4, u5) and v8 ∈ B′[b1, t1]. Now, by the

claim above, v7 ∈ B′[t2, s2] and v8 ∈ B′[s1, t1]. Hence, f2, f4, f7, f8 form a double cross,

contradicting Lemma 2.0.7. 2

For i ∈ [2], let a′i ∈ V (A[ai, xi]) with A[ai, a′i] minimal such that a′i = xi or G has an

edge from a′i to B′(b′1, b2). Then G has an edge e4 = a4b4 with a4 ∈ A(a′1, x1] ∪ A[x2, a′2)

and b4 ∈ B[b1, b
′
1); for, otherwise, {a0, a′1, a′2, b′1, b2} would be a 5-cut in G∗ separating H

from {a0, a1, a2, b1, b2}, a contradiction. By symmetry, we may assume

(5) a4 ∈ A(a′1, x1].

Let e3 = a3b3 ∈ E(G) with a3 = a′1 and b3 ∈ B′(b′1, t1] ∪ B′[t2, b2). Since e3, e4 and

the paths in H do not form a double cross (by Lemma 2.0.7), we have

(6) b3 ∈ B′[t2, b2).

Let e = ab ∈ E(G) with a ∈ A[a1, a3] and b ∈ B′[b3, b2], such that B′[b, b2] is minimal,

and subject to this, A[a1, a] is minimal. Further, let e′ = a′b′ ∈ E(G) with a′ ∈ A[a1, a4]

and b′ ∈ B′[b1, b4], such that B′[b1, b′] is minimal, and subject to this, A[a1, a′] is minimal.
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Similarly, for each i ∈ [2], let a′′i ∈ V (A[ai, xi]) with A[ai, a
′′
i ] minimal such that

a′′i = xi or G has an edge from a′′i to B′(b1, b′′2). Since G∗ is 6-connected, there exist j ∈ [2]

and e6 = a6b6 ∈ E(G) such that a6 ∈ A(a′′j , xj] and b6 ∈ B′(b′′2, b2]. Since a′′j 6= xj ,

it follows from Lemma 2.0.7 that there exists e5 = a5b5 ∈ E(G) such that a5 = a′′j and

b5 ∈ B′(b1, t1].

(7) b ∈ B′(b′′2, b2].

For, otherwise, b /∈ B′(b′′2, b2]. Then, j = 2 and a6 ∈ A[x2, a′′2) by the choice of e. Hence,

b5 ∈ B′[b1, b4] to avoid the double cross e3, e4, e5, e6. So b5 = b1 by (3), and thus a5 6= a2.

Let e∗2 = a2b
∗
2 ∈ E(G). Then b∗2 ∈ B′[b6, b2] to avoid the double cross e5, e∗2, e3, e6.

Note that a5 6= x2. Then α(A,B′) = 2 by Lemma 3.0.1 and the following paths: the

path A[a5, a2] ∪ e5 from a2 to b1, the path e∗2 ∪ B′[b∗2, b2] from a2 to b2, the path B∗1 ∪

B′[b′1, r1] ∪R1 ∪A(x1, x2] ∪ P2,2 ∪B′[y2, b′′2] ∪B∗2 from b1 to b2, and the path A∗0 ∪ P1,1 ∪

A[a1, x1] from a0 to a1. This is a contradiction to (4). 2

If a′ 6= x1 then α(A,B′) = 2 by Lemma 3.0.1 and the following paths: the path

A[a1, a
′] ∪ e′ ∪ B′[b1, b′] from a1 to b1, the path A[a1, a] ∪ e ∪ B′[b, b2] from a1 to b2, the

path B∗1 ∪ B′[b′1, r1] ∪ R1 ∪ A[x1, x2) ∪ P1,2 ∪ B′[y2, b′′2] ∪ B∗2 from b1 to b2, and the path

A∗0 ∪ P2,1 ∪ A[x2, a2] from a0 to a2. This contradicts (4).

So a′ = x1. Hence, by the choice of e′ and Lemma 2.0.7, G has no edge from A[a1, x1)

to B′[b1, t1]. Thus, G has an edge from a1 to B′[t2, b2]. So by the choice of e and by

Lemma 2.0.7, a = a1 and, hence, b 6= b2.

We claim a6 ∈ A[x2, a
′′
2). For, otherwise, a6 ∈ A(a′′1, x1]. Then a5 ∈ A[a1, x1).

Now, e5 contradicts the choice of e′, or e5, e′, P1,2, P2,1 form a double cross, contradicting

Lemma 2.0.7.

Thus, by (3), b6 = b2. So b5 ∈ B′[b1, b′] to avoid the double cross e, e′, e5, e6.

Suppose H contains disjoint paths Y1, Y2 from x1, x
′
2 to y1, y2, respectively, and inter-

nally disjoint from A. Then α(A,B′) = 2 by Lemma 3.0.1 and the following paths: the
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path A[a5, a2] ∪ e5 ∪B′[b1, b5] from a2 to b1, the path A[a6, a2] ∪ e6 ∪B′[b6, b2] from a2 to

b2, the path B∗1 ∪ B′[b′1, r1] ∪ R1 ∪ A(x1, x2) ∪ Y2 ∪ B′[y2, b′′2] ∪ B∗2 from b1 to b2, and the

path A∗0 ∪ Y1 ∪ A[a1, x1] from a0 to a1. This contradicts (4).

So by Lemma 4.0.2, H has disjoint paths Y1, Y2 from x2, x
′
1 to y1, y2, respectively, and

internally disjoint from A. We have a contradiction to (4) as α(A,B′) = 2 because of

Lemma 3.0.1 and the following paths: the path A[a1, x1] ∪ e′ ∪ B′[b1, b′] from a1 to b1, the

path A[a1, a]∪ e∪B′[b, b2] from a1 to b2, the path B∗1 ∪B′[b′1, r1]∪R1 ∪A(x1, x2)∪ Y2 ∪

B′[y2, b
′′
2] ∪B∗2 from b1 to b2, and the path A∗0 ∪ Y1 ∪ A[x2, a2] from a0 to a2. 2

Lemma 4.0.7 Let {a′0, b′1, b′2} be a cut in G′0 separating B′[b′1, b
′
2] from {a0, b1, b2}, with

b′1 ∈ B′[b1, t1] and b′2 ∈ B[t2, b2]. Then b′1 = b1, b′2 6= b2, a′0 = a0, y1 is a cut vertex in G′0

separating b2 from {a0, b1}, b2 has degree 1 in G′0, and for some p ∈ [2], G has an edge

from b2 to xp and no edge from b2 to A− xp.

Proof. For i ∈ [2], let a′i ∈ V (A[ai, xi]) with A[ai, a′i] minimal such that a′i = xi or G has

an edge from a′i to B′(b′1, b2). Since G∗ is 6-connected, there exist i, j ∈ [2] such that G

has an edge e4 = a4b4 with a4 ∈ A(a′i, xi] and b4 ∈ B′[bj, b′j). By symmetry, assume i = 1.

Then a′1 6= x1 and let e3 = a3b3 ∈ E(G) such that a3 = a′1 and b3 ∈ B′(b′1, t1] ∪ B′[t2, b′2).

Now b3 ∈ B′[t3−j, b′3−j), to avoid the double cross formed by e3, e4 and two paths in H (by

Lemma 2.0.7).

First, we show that

(1) b′1 = b1.

For, suppose b′1 6= b1. Choose the 3-cut {a′0, b′1, b′2} with b′1 6= b1, such that B[b′2, b2] is

minimal and, subject to this, B[b1, b
′
1] is minimal.

Observe that b4 ∈ B[b1, b
′
1). For, otherwise, b4 ∈ B(b′2, b2]. Then b3 ∈ B(b′1, t1].

Now, by Lemma 2.0.9 and (ii) of Lemma 4.0.5, G′0 has a 3-cut contradicting the choice of

{a′0, b′1, b′2}.
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Then b3 ∈ B′[t2, b′2). Hence, because of e3, e4, it follows from (i) of Lemma 4.0.5 that

G′0 has a 3-cut {a′′0, b′′1, b′′2} with b′′1 ∈ B′[b1, b4] and b′′2 ∈ B′[t2, b3], separating B′[b′′1, b
′′
2]

from {a0, b1, b2}. By Lemma 2.0.8 and the choice of {a′0, b′1, b′2}, we have b′′1 = b1.

By Lemma 4.0.6, b′2 6= b2. Hence, by Lemma 2.0.8, there exists a∗0 ∈ V (G′0), such

that {b′′1, b′2, a∗0} is a 3-cut in G′0 separating {a0, b1, b2} from B′[b′′1, b
′
2]. For i ∈ [2], let

a′′i ∈ A[ai, xi] with A[ai, a
′′
i ] minimal such that a′′i = xi or G has an edge from a′′i to

B′(b′′1, b
′
2).

Since G∗ is 6-connected, there exist k ∈ [2] and e5 = a5b5 ∈ E(G) with a5 ∈ A(a′′k, xk]

and b5 ∈ B′(b′2, b2]. Let e6 = a6b6 ∈ E(G) with a6 = a′′k and b6 ∈ B′(b′′1, t1] ∪ B′[t2, b′2).

Then b6 ∈ B′(b′′1, t1], to avoid the double cross formed by e5, e6 and two paths in H .

Because of e5 and e6, it follows from (ii) of Lemma 4.0.5 and the choice of {a′0, b′1, b′2}

that G′0 has a 2-cut {y1, b∗2} with b∗2 ∈ B′[b5, b2], separating B′[y1, b∗2] from {a0, b1, b2}. But

then, by Lemma 2.0.9, {y1, b∗2} and {a′0, b′1, b′2} force a 3-cut in G′0, which contradicts the

choice of {a′0, b′1, b′2}. 2

Since G∗ is 6-connected, it follows from (1) that b2 6= b′2. We choose {a′0, b′1, b′2} so that

B[b2, b
′
2] is minimal. Then, by (1) and (ii) of Lemma 4.0.5, G′0 has a 2-cut {y1, b′′2} with

b′′2 ∈ B′[b4, b2], separating B′[y1, b′′2] from {a0, b1, b2}.

Moreover, b′′2 = b2; for, otherwise, by Lemma 2.0.9, {y1, b′′2} and {a′0, b′1, b′2} force a

3-cut in G′0, which contradicts the choice of {a′0, b′1, b′2}. Hence, y1 is a cut vertex in G′0

separating b2 from {a0, b1} and α(A,B′) ≤ 1. And (for any choice of {a′0, b′1, b′2},) a′0 = a0;

or else, since y1 is a cut vertex in G′0 separating b2 from {a0, b1}, {b1, a′0, b′2, b2} is a cut in

G separating a0 from {a1, a2}, a contradiction.

So by (1), G′0−V (B′(b1, t1)∪B′(y1, b2]) has disjoint paths B∗1 , A
∗
0 from b1, a0 to t1, y1,

respectively, such that A∗0 is internally disjoint from B′. By the choice of {a′0, b′1, b′2},

G′0 − V (B′(b′2, b2)) has a path B∗2 from b2 to b′2.

(2) For i ∈ [2], if G has an edge from B′(b′2, b2] to A[ai, xi), then G has no edge from

A[ai, xi) to B′[b1, t1).
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For, suppose for some i ∈ [2], G has an edge e from b ∈ B′(b′2, b2] to a ∈ A[ai, xi) and an

edge e′ from a′ ∈ A[ai, xi) to b′ ∈ B′[b1, t1).

Then, α(A,B′) = 2, by Lemma 3.0.1 and the following paths: A[ai, a′]∪ e′ ∪B′[b1, b′]

from ai to b1, the path A[ai, a]∪ e∪B′[b, b2] from ai to b2, the path B∗1 ∪R1∪A[xi, x3−i)∪

Pi,2 ∪ B∗2 from b1 to b2, and the path A∗0 ∪ P3−i,1 ∪ A[x3−i, a3−i] from a0 to a3−i. This is a

contradiction. 2

(3) B′(b′2, b2) = ∅, and so b2 has degree 1 in G′0.

For, suppose B′(b′2, b2) 6= ∅. Then, as G∗ is 6-connected, G has edges from B′(b′2, b2) to

A[a1, x1] ∪ A[x2, a2].

Indeed, G has an edge e3 from B′(b′2, b2) to A[a1, x1], and an edge e4 from B′(b′2, b2)

to A[x2, a2]. For otherwise, there exists i ∈ [2], such that all edges of G from B′(b′2, b2)

to A end in A[ai, xi]. Let u1, u2 ∈ V (A[ai, xi]), such that G has edges from B′(b′2, b2) to

u1, u2, respectively, and, subject to this, A[u1, u2] is maximal. Now, by Lemma 2.0.7, G

has no edge from A(u1, u2) to B′[t2, b′2). Moreover, by (2), G has no edge from A(u1, u2)

to B′[b1, t1). But then, {t1, u1, u2, b′2, b2} is a cut in G separating V (A[u1, u2] ∪ B′[b′2, b2])

from {a0, a1, a2, b1, b2}, a contradiction.

NowA[a1, x1]∪e3∪B′(b′2, b2)∪e4∪A[x2, a2]∪Y1∪A∗0 andB′[b1, r1]∪R1∪A(x1, x2)∪

Y2 ∪B′[y2, b′2] ∪B∗2 show that γ is feasible, a contradiction. 2

(4) G has no edge from b2 to A[a1, x1) ∪ A(x2, a2].

Suppose for some i ∈ [2], G has an edge e from b2 to a ∈ A[ai, xi). Let e′ = a1b
′ ∈ E(G)

with b′ 6= t1. Obviously, b′ /∈ B′[t2, b2); otherwise, e, e′ and two disjoint paths in H force a

double cross, contradicting Lemma 2.0.7.

So b′ ∈ B[b1, t1). Now α(A,B′) = 2 by Lemma 3.0.1 and the following paths: the

path e′ ∪ B′[b1, b′] from ai to b1, the path A[ai, a] ∪ e from ai to b2, the path B∗1 ∪ R1 ∪

A[xi, x3−i) ∪ Pi,2 ∪ B′[y2, b2] from b1 to b2, and the path A∗0 ∪ P3−i,1 ∪ A[x3−i, a3−i] from

a0 to a3−i. However, this is a contradiction. 2
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Now, since the degree of b2 inG is at least 2, it follows from (4) thatG has an edge from

b2 to xp for some p ∈ [2]. If G has no edge from b2 to x3−p then we are done. So assume

b2x1, b2x2 ∈ E(G). Then a1 6= x1 and a2 6= x2. Now, by Lemma 2.0.7, G has no edge

from {a1, a2} to B′[t2, b2). Since G∗ is 6-connected, G has edges e1, e2 from B′(b1, t1) to

a1, a2, respectively. But then, it follows from (iii) of Lemma 4.0.5 that G′0 contains a 3-cut,

which contradicts (1). 2

Lemma 4.0.8 H is the unique main A-B′ core in γ.

Proof. Suppose for a contradiction that H ′′ is a main A-B′ core with H ′′ 6= H , and let

w1, w2 be the feet of H ′′ (with w2 as the main foot). Then, by Lemma 2.0.7, w2 = r1 and

b1, w2, w1, y1, y2, b2 occur on B′ in order.

Recall that the definition of x′i, X
′
i before Lemma 4.0.2. For i ∈ [2], let x′′i ∈ V (A(x1, x2))

such that x′′i , xi are incident with a common finite face of H ′′−w1, and H ′′−w1 has a path

from x′′i to w2 and internally disjoint from A. So for i ∈ [2], let X ′′i be the path from w2 to

x′′i on the outer walk of H ′′ − {w1, xi} without going through x3−i, and, moreover, let X∗i

be the path from xi to w2 on the outer walk of H ′′ − w1 without going through x3−i.

Suppose H contains disjoint paths from y1, y2 to x2, x
′
1, respectively, and internally

disjoint from A, as well as disjoint paths from y1, y2 to x1, x′2, respectively, and internally

disjoint from A. Then, by Lemma 2.0.7, for any i ∈ [2], H ′′ does not contain disjoint paths

from w1, w2 to xi, x′′3−i, respectively, and internally disjoint from A. This contradicts (iii)

of Lemma 4.0.2.

Hence, by symmetry, we may assume that H contains no disjoint paths from y1, y2 to

x1, x
′
2, respectively, and internally disjoint from A. Then by Lemma 4.0.2, H contains

disjoint paths Y ′1 , Y
′
2 from y1, y2 to x2, x′1, respectively, and internally disjoint from A.

Then by Lemma 2.0.7 and 4.0.2, we may further assume H ′′ contains disjoint paths

Y ′′1 , Y
′′
2 from w1, w2 to x2, x′′1, respectively, and internally disjoint from A, but no disjoint

paths from w1, w2 to x1, x
′′
2, respectively, and internally disjoint from A. Moreover, by
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(i) of Lemma 4.0.2, H − {y1, y2} ∪ V (A(x1, x2)) contains a path D′ from x1 to x2, and

H ′′ − {w1, w2} ∪ V (A(x1, x2)) contains a path D′′ from x1 to x2.

(1) There is no A-B′ path in G from A(x1, x2) to B′(w1, y1).

For, suppose that P is an A-B′ path from p ∈ V (A(x1, x2)) to p′ ∈ V (B′(w1, y1)). Then

G′0 − B′(w2, w1) − B′[y2, b2] does not contain disjoint paths B∗1 , A
∗
0 from b1, a0 to p′, y1,

respectively; otherwise, A[a1, x1]∪D′′∪A[x2, a2]∪Y ′1 ∪A∗0 and B∗1 ∪P ∪A(x1, x2)∪Y ′2 ∪

B′[y2, b2] show that γ is feasible, a contradiction. Hence, there exists w′ ∈ V (B′(w2, w1)),

a′0 ∈ V (G′0), and b′2 ∈ V (B′[y2, b2]), such that {w′, a′0, b′2} is a 3-cut in G′0 separating

B′[w′, b′2] from {a0, b1, b2}.

Now b1 = w2. For, suppose not. Since w1, w2 are feet of H ′′, w1, w2 are incident with

a common finite face of G′0. Therefore, {w2, a
′
0, b
′
2} is a 3-cut in G′0 separating B′[w2, b

′
2]

from {a0, b1, b2}, a contradiction to Lemma 4.0.7. Similarly, by the symmetry between H

and H ′′, we can also prove b2 = y2.

Now, since b′2 ∈ V (B′[y2, b2]), b′2 = b2. So a′0 = a0; or else, {b1, a′0, b2} is a 3-cut in

G′0 separating a0 from B′(b1, b2), a contradiction. Then a0, b1, w′, w1 are incident with a

common finite face of G′0. Similarly, by the symmetry between H and H ′′, a0, b2, y1 are

incident with a common finite face of G′0, which implies α(A,B′) = 0.

By Lemma 4.0.2, V (X ′′2 ∩X∗1 ) − {w2} = ∅. Now α(A,B′) ≥ 1 by Lemma 3.0.1 and

the following paths: the pathA∗0∪Y ′1∪A[x2, a2] from a0 to a2, the pathX ′′2 ∪A(x1, x2)∪Y ′2

from b1 to b2, and the path A[a1, x1] ∪X∗1 from a1 to b1. This is a contradiction. 2

(2) a1 = x1 and a2 = x2.

Recall that for i ∈ [2], P1,i and P2,3−i are disjoint paths from x1, x2 to yi, y3−i, respectively,

in H − A(x1, x2). For i ∈ [2], let Q1,i, Q2,3−i be disjoint paths from x1, x2 to wi, w3−i,

respectively, in H ′′ − A(x1, x2).

We claim that for i ∈ [2], G has no edge from A[ai, xi) to B′(b1, w2]. For, suppose

there exists e′ = a′b′ ∈ E(G) with a′ ∈ A[ai, xi) and b′ ∈ B′(b1, w2]. Then b1 6= w2.
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By Lemma 4.0.7, G′0 −B′[b′, w2]−B′[y2, b2] contains disjoint paths B∗1 , A
∗
0 from b1, a0 to

w1, y1, respectively. Now A[ai, a
′] ∪ e′ ∪ B′[b′, w2] ∪ Q3−i,2 ∪ A[x3−i, a3−i] ∪ P3−i,1 ∪ A∗0

and B∗1 ∪Qi,1 ∪ Pi,2 ∪B′[y2, b2] show that γ is feasible, a contradiction.

Due to the symmetry between H and H ′′, with the same argument above, we can

show that for i ∈ [2], G has no edge from A[ai, xi) to B′[y2, b2). Thus, (2) follows from

Lemma 4.0.4 and the assumption that G∗ is 6-connected. 2

(3) H ′′ − V (X∗1 ∪X∗2 ) contains a path Q′′ from w1 to A(x1, x2); and H − V (X1 ∪X2)

contains a path Q from y1 to A(x1, x2).

By the symmetry between H and H ′′, we only prove the existence of Q′′. Suppose for a

contradiction that Q′′ does not exist.

We see that (N(w1) ∩ V (H ′′)) ⊆ V (X ′′2 ∪ A(x1, x2]). For, otherwise, by (ii) of

Lemma 4.0.2, there exists v′′ ∈ N(w1) ∩ V (H ′′), c′′1 ∈ A(x1, x
′′
2), and c′′2 ∈ X ′′2 (x

′′
2, w2),

such that v′′ /∈ X ′′2 ∪ A(x1, x2], {c′′1, c′′2} is a cut in H ′′ − {w1, x2} separating v′′ from x1,

and there exists a path P ′′1 from v′′ to c′′1 in H ′′ −w1 − x2, which is internally disjoint from

X ′′2 ∪A[x1, x′′2]. But then, w1v
′′ ∪ P ′′1 is a path from w1 to A(x1, x2) in H ′′ − V (X∗1 ∪X∗2 ),

a contradiction.

Now, since Q′′ does not exist, combined with (N(w1)∩V (H ′′)) ⊆ V (X ′′2 ∪A(x1, x2]),

we may further assume (N(w1) ∩ V (H ′′)) ⊆ V (X∗2 ), contradicting (iii) of Lemma 4.0.1.

2

(4) b1 = w2 and b2 = y2.

By the symmetry between H and H ′′, we only show b1 = w2. Suppose for a contradiction

that b1 6= w2.

Sincew1, w2 are incident with a common finite face ofG′0, it follows from Lemma 4.0.7

that G′0 − B′[w2, w1) − B′[y2, b2] contains disjoint paths B∗1 , A
∗
0 from b1, a0 to w1, y1, re-

spectively.
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Now, A[a1, x1]∪X∗1 ∪X∗2 ∪A[x2, a2]∪Y ′1∪A∗0 andB∗1∪Q′′∪A(x1, x2)∪Y ′2∪B′[y2, b2]

show that γ is feasible, a contradiction. 2

Note that G has no A-B′ path from a1 to B′(w1, y1), as such a path together with

Y ′′2 , Y
′
1 , Y

′
2 forms a double cross, contradicting Lemma 2.0.7. So by (1) and (4), {b1, b2, w1, y1, a2}

is a cut in G separating a0 from a1, a contradiction. 2

We now use A,B′ to form a new frame A′, B′, called core frame.

Lemma 4.0.9 Let M0 denote the union of all the A-B′ bridges that are disjoint from H −

A − y1. Then there exists an induced path A′ ⊆ (A ∪M0) − B′ from a1 to a2 in G, such

that A′[ai, xi] = A[ai, xi] for i ∈ [2] and the following hold:

(i) A′, B′ is a good frame in γ.

(ii) Each A′-B′ bridge lying on B′[r1, y1] is contained in some A-B′ bridge.

(iii) There exists an induced subgraph H∗ in G, such that A′[x1, x2] ∪ H ⊆ H∗, all A′-

B′ bridges not lying on B′[r1, y1] are contained in H∗, and H∗ is separated from

{a0, a1, a2, b1, b2} by V (A′[x1, x2]) ∪ {y1, y2} in G.

(iv) For any v ∈ (V (H∗) − V (A′) ∪ {y1}), H∗ − y1 contains a path from v to y2 and

internally disjoint from A′.

(v) If l, r are the extreme hands of an A′-B′ bridge lying on B′[r1, y1] then {l, r} 6=

{x1, x2}, and H∗ − y1 does not contain a path from y2 to A′(l, r) and internally

disjoint from A′.

Proof. We choose the induced path A′ so that A′ ⊆ A∪M0−B′ is from a1 to a2, such that

A′[ai, xi] = A[ai, xi] for i ∈ [2], (i)-(iv) are satisfied, and, subject to this, H is maximal.

Note that such A′ exists, as A satisfies (i)-(iv).

To prove (v), let M be an A′-B′ bridge M lying on B′[r1, y1] with extreme hands l, r

and feet l′, r′. If {l, r} = {x1, x2} then, sinceM is contained in anA-B′ bridge (by (ii)),M
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is contained in a main A-B′ core, a contradiction to Lemma 4.0.8. Hence, H − y1 contains

a path Y2 from y2 to y′2 ∈ A′(l, r) and internally disjoint from A′.

Let T be an induced path inM−V (A′(l, r)∪B′[l′, r′]) from l to r, and letC1, C2, . . . , Cn

be the components ofM∪A′[l, r]∪B′[l′, r′]−V (T ) not containingA′(l, r) and not contain-

ingB′[l′, r′]. We choose T , such that |T | := (−|V (
⋃
i∈[n]Ci)|, |V (C1)|, |V (C2)|, . . . , |V (Cn)|)

is maximal with respect to the lexicographical ordering.

We claim n = 0. For, suppose n > 0. Let ln, rn ∈ N(Cn) ∩ V (T ) such that T [ln, rn]

is maximal. Since G∗ is 6-connected, there exists another component C of (M ∪ A′[l, r] ∪

B′[l′, r′])−V (T ), such thatN(C)∩T (ln, rn) 6= ∅.Now, let T ′ be an induced path inG[T ∪

Cn] between ln and rn, such that T ′ ∩ T (ln, rn) = ∅. Clearly, |T ′| > |T |, a contradiction.

Now, let A′′ be obtained from A′ by replacing A′[l, r] with T . Clearly, A′′[ai, xi] =

A[ai, xi] for i ∈ [2]. Since T is induced, A′′ is induced. Moreover, since n = 0, then

any component of G[V (M ∪ A′[l, r] ∪ B′[l′, r′])]− T contains A′(l, r) or B′[l′, r′], and so

G − V (A′′) is connected. Hence, A′′, B′ is a frame. Since A′′0(B
′) = A′0(B

′) = A0(B
′),

we see that A′′, B′ is a good frame in γ.

Next, we show that G has no A′-B′ path from A′(l, r) to B′[b1, y1) and disjoint from T .

For otherwise, let S be an A′-B′ path from s ∈ A′(l, r) to s′ ∈ B′[b1, y1) and disjoint from

T . Then A′′ and B′[b1, s′] ∪ S ∪ A′[s, y′2] ∪ Y2 ∪ B′[y2, b2] are disjoint paths from a1, b1 to

a2, b2, respectively, in G− V (A0(B
′)−B′)− y1, a contradiction to (i) of Lemma 3.0.2.

Hence, there does not exist an A′-B′ bridge N lying on B′[r1, y1], such that N 6= M ,

N ∩ A′(l, r) 6= ∅, and N ∩ B′[b1, y1) 6= ∅. So each A′′-B′ bridge lying on B′[r1, y1] must

be contained in some A′-B′ bridge and, hence, contained in some A-B′ bridge. So A′′, B′

satisfies (ii).

Moreover, V (A′′[x1, x2])∪{y1, y2} is a cut inG separating V (H) from {a0, a1, a2, b1, b2}.

Now, we let V ′′ be the set of vertices of A′′ ∪B′[b1, y1] ∪B′[y2, b2]-bridge of G containing

A′(l, r), and let H ′′ := G[V ′′ ∪ V (A′′[x1, x2])]. Then clearly (iii) and (iv) holds for A′′, B′.

However, H ′′ properly contains H , a contradiction. 2
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CHAPTER 5

INSIDE THE MAIN A′-B′ CORE

We use the notation of the previous chapter: γ is infeasible, A′, B′ is a core frame, and

let H ′ := H∗ − {x1y2, x2y2} with extreme hands x1, x2 and feet y1, y2 (such that y2 is the

main foot), where B′ is defined as in Lemma 4.0.3, A′, H∗, x1, x2, y1, y2 are defined as in

Lemma 4.0.9, and t1, t2, R1, r1 are defined after Lemma 4.0.3. And we say that H ′ is the

main A′-B′ core in γ.

We now study the structure of G inside the main A′-B′ core H ′.

Lemma 5.0.1 (H ′ − y1, A′[x1, x2], y2) is planar, the degree of y2 in H ′ − y1 is at least 2,

and H ′ − y1 − A′(x1, x2) contains disjoint paths from y1, y2 to xi, x3−i, respectively, for

i ∈ [2]. Moreover, for i ∈ [2], let Xi be the path from xi to y2 on the outer walk of H ′ − y1

without going through x3−i, then N(y1) ∩ V (H ′ − y1 − A′) 6⊆ V (Xi) for i ∈ [2].

Proof. We can apply the same proof in Lemma 3.0.4, and show that (H ′−y1, A′[x1, x2], y2)

is planar, and N(y1) ∩ V (H ′ − y1 − A′) 6⊆ V (Xi) for i = 1, 2.

Moreover, since V (H− y1) ⊆ V (H ′− y1), then, by (iii) of Lemma 4.0.1, the degree of

y2 in H ′ − y1 is at least 2, and H ′ −A′(x1, x2)− {y1x1, y1x2} contains disjoint paths from

y1, y2 to x1, x2, respectively, as well as disjoint paths from y1, y2 to x2, x1, respectively. 2

Lemma 5.0.2 Let R be an A′-B′ path from r ∈ A′(x1, x2) to r′ ∈ B′[r1, y1) such that

B′[r1, r
′] is minimal. If r′ 6= r1 then the following conclusions hold:

(i) There exists an A-B core H1 with r1 as a foot.

(ii) Let r2 be the other foot of H1, then there exists an A′-B′ bridge with r1 as a foot,

intersecting A′ only at xj for some j ∈ [2], and lying on B′[r1, r2].
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(iii) r′ ∈ V (B′(r1, r2)), and G has an A′-B′ bridge with feet l′1, r
′
1, which is internally

disjoint from R and intersecting A′ only at xj , such that r′ ∈ B′(l′1, r′1).

(iv) If G′0 has a cut {a′0, b′1, b′2} separating B′[b′1, b
′
2] from {a0, b1, b2} such that b′1 ∈

B′(r1, r
′] and b′2 ∈ B′[y2, b2], then r1 = b1 and a′0 = a0; G′0 has no path from a0

to b1 and internally disjoint from B′, and α(A′, B′) ≤ 1.

Proof. To prove (i), assume that r1 is not a foot of any A-B core. Then by the definition of

r1, G has an edge from r1 to a′ ∈ V (A(x1, x2)). Since r′ 6= r1, a′ /∈ A′(x1, x2). Moreover,

a′ is not contained in any A′-B′ bridge lying on B′[r1, y1], as any such A′-B′ bridge is

contained in an A-B′ bridge (by (ii) of Lemma 4.0.9). So a′ ∈ V (H ′−y1)\V (A′). Hence,

by (iv) of Lemma 4.0.9, H ′− y1 has a path Y2 from a′ to y2 and internally disjoint from A′.

Therefore, A′ and B′[b1, r1] ∪ r1a′ ∪ Y2 ∪ B′[y2, b2] are disjoint paths from a1, b1 to a2, b2,

respectively, in G− V (A′0(B
′)−B′) ∪ {y1}, contradicting (i) of Lemma 3.0.2.

Now, we prove (ii). By Lemma 4.0.4, r2 is the main foot of H1. Hence, by (iii) of

Lemma 4.0.1, r1 has two neighbors u1, u2 in H1 − r2 − A. Since B′[r1, r2] is induced in

G − {r1r2} (by Lemma 4.0.3), up /∈ B′ for some p ∈ [2]. Moreover, up /∈ A′(x1, x2)

since r′ 6= r1. Thus, up must be contained in some A′-B′ bridge M0 lying on B′[r1, r2],

which must have r1 as a foot and cannot have both x1 and x2 as extreme hands (by (v) of

Lemma 4.0.9). Hence, since r′ 6= r1, this A′-B′ bridge intersect A′ only at xj for some

j ∈ [2].

Obviously, since G∗ is 6-connected, r′ ∈ B′(r1, r2) to avoid the cut {r1, r2, x1, x2} in

G∗ separating V (H1) from {a0, a1, a2, b1, b2}. Let l′0, r
′
0 be the feet of M0 with l′0 = r1 and

r′0 ∈ B′[r1, r2]. For, suppose (iii) fails. Then r′ ∈ B′[r′0, r2]. Since x3−j /∈ V (H1 ∩ A′)

(by Lemma 4.0.8), then by the definition of r′, {xj, r1, r′} is a cut in G separating M0 from

{a0, a1, a2, b1, b2}, a contradiction.

To prove (iv), we observe that B′[r1, r2] is on the boundary of a finite face of G′0.

Therefore, since r′ ∈ B′(r1, r2), a′0 and r1 are also incident with that finite face. Suppose

r1 6= b1 or a′0 6= a0. Then {a′0, r1, b′2} is a 3-cut in G′0 separating B′[r1, b′2] from {a0, b1, b2}.
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By Lemma 4.0.7, r1 = b1. So a′0 6= a0. Then, by Lemma 4.0.7, {a′0, b1, b′2, b2} is a cut in G

separating a0 from {a1, a2}, a contradiction. So, r1 = b1 and a′0 = a0. Hence, G′0 has no

path that is from a0 to b1 and internally disjoint from B′. In particular, α(A′, B′) ≤ 1. 2

Since G∗ is 6-connected, G has two disjoint A′-B′ paths from p, q ∈ V (A′(x1, x2))

to p′, q′ ∈ V (B′[r1, y1)), respectively. We choose P,Q to first maximize A′[p, q], then

minimize B′[b1, p′] ∩ B′[b1, q′], and finally maximize B′[p′, q′]. By the symmetry between

a1 and a2, we may relabel a1, x1, x2, a2 so that

• a1, x1, p, q, x2, a2 occur on A′ in order, and b1, r1, p′, q′, y1, b2 occur on B′ in order.

Lemma 5.0.3 Any A′-B′ path from B′[r1, p
′) to A′(x1, x2) must be disjoint from P,Q,

and end in A′(p, q). Moreover, if H ′ − y1 contains a path from u ∈ A′[q, x2) to y2 and

internally disjoint from A′, then all A′-B′ paths from A′(u, x2) to B′[r1, y1] and internally

disjoint from H ′ − y1, are edges ending in {r′, y1}.

Proof. First, assume S is an A′-B′ path from s′ ∈ V (B′[r1, p
′)) to s ∈ V (A′(x1, x2)).

Then V (S ∩ (P ∪ Q)) = ∅; for otherwise, let v ∈ V (S ∩ (P ∪ Q)) with S[s′, v] minimal

then P ′ := S[s′, v] ∪ P [v, p] and Q (when v ∈ V (P )) or P and Q′ := S[s′, v] ∪ Q[v, q]

(when v ∈ V (Q)) contradict the choice of P,Q. Hence, s ∈ A′(p, q) as otherwise S, P or

S,Q contradict the choice of P,Q.

Now let Y2 be a path inH ′−y1 from u ∈ V (A′[q, x2)) to y2 and internally disjoint from

A′. We first see that G has no path from A′(u, x2) to B′[r1, y1)− p′. For, suppose not. Let

S be an A′-B′ path from s ∈ V (A′(u, x2)) to s′ ∈ V (B′[r1, y1)− p′). Then V (S ∩P ) 6= ∅,

or else, P, S contradict the choice of P,Q. Since s′ 6= p′, S, P are contained in an A′-B′

bridge. However, by u ∈ A′(p, s), the existence of Y2 contradicts (v) of Lemma 4.0.9.

Now let S be an arbitrary A′-B′ path from s ∈ A′(u, x2) to s′ ∈ B′[r1, y1]. Suppose

S has length at least 2. Then S is contained in some A′-B′ bridge N with feet n′1, n
′
2 and

extreme hands n1, n2. Then n′1, n
′
2 ∈ {p′, y1}. By (v) of Lemma 4.0.9 and the existence of

S and Y2, A′[n1, n2] ⊆ A[u, x2]. Let h1, h2 ∈ A′[x1, x2], such that A′[n1, n2] ⊆ A′[h1, h2],
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H ′ − y1 does not contain a path from A′(h1, h2) to y2 and internally disjoint from A′,

and subject to this, A′[h1, h2] is maximal. Clearly, A′(h1, h2) ⊆ A′(u, x2), and for i ∈ [2],

H ′−y1 contains a path from hi to y2 and internally disjoint fromA′. By (v) of Lemma 4.0.9,

{h1, h2, p′, y1} is a cut in G∗ separating V (N) from {a0, a1, a2, b1, b2}, a contradiction.

Thus, S must be an edge. To complete the proof, we need to show r′ = p′. For, suppose

r′ 6= p′. By (i), R is disjoint from P,Q with r ∈ A′(p, q), and so R,P, S, Y2 force a double

cross in A,B, contradicting Lemma 2.0.7. 2

Let R = P if r′ = p′, and if r′ 6= p′ then by Lemma 5.0.3, R is disjoint from P,Q with

r ∈ A′(p, q). By Lemma 5.0.1, for i ∈ [2], we let P1,i, P2,3−i be disjoint paths from x1, x2

to yi, y3−i, respectively, in H ′ − y1 − A′(x1, x2).

We now use the structure inside H ′ to derive further structure outside H ′.

Lemma 5.0.4 (i) G has no edge fromA′(x2, a2] toB′(b1, r1] and no edge fromA′[a1, x1)

to B′[y2, b2).

(ii) G has no edge from b1 to A′[a1, x1] ∪ A′[x2, a2] and no edge from b2 to A′[x2, a2].

(iii) r1 = b1 implies x1 = a1, and y2 = b2 implies x2 = a2.

(iv) If y2 6= b2 and y2 is a cut vertex of G′0 separating b2 from {a0, b1}, then N(b2) =

{y2, x1}, a1 6= x1, and a2 = x2.

Proof. By Lemma 4.0.7 and (iv) of Lemma 5.0.2, we may assume

(1) when b1 6= r1, G′0 − B′(b1, r′]− B′[y2, b2] contains disjoint paths B∗1 , A
∗
0 from b1, a0

to q′, y1, respectively.

(2) G has no edge from A′(x2, a2] to B′(b1, r1].

For, let e = ab ∈ E(G) with a ∈ A′(x2, a2] and b ∈ B′(b1, r1]. Then b1 6= r1; so B∗1 , A
∗
0

exist by (1). Now A′[a1, r]∪R∪B′[b, r′]∪e∪A′[a, a2]∪P1,1∪A∗0 andB∗1 ∪Q∪A′[q, x2]∪

P2,2 ∪B′[y2, b2] show that γ is feasible, a contradiction. 2
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(3) G has no edge from b2 to A′[x2, a2].

For, let e = ab2 ∈ E(G) with a ∈ A′[x2, a2]. Then a 6= a2 and let e′ = a2b
′ ∈ E(G)

with b′ ∈ B′(b1, b2). Now b′ /∈ B′[y2, b2) to avoid the double cross e, e′, P1,2, P2,1. Hence,

b′ ∈ B′(b1, r1], contradicting (2). 2

(4) G has no edge from A′[a1, x1) to B′[y2, b2).

Otherwise, let e = ab ∈ E(G) with a ∈ A′[a1, x1) and b ∈ B′[y2, b2). Then G has no edge

from b2 to {x1, x2}; as such an edge must be b2x1 by (3), which forms a double cross with

e, P1,1 and P2,2, contradicting Lemma 2.0.7.

Hence, by Lemma 4.0.7 and (iv) of Lemma 5.0.2, G′0−B′[b1, r′]−B′[y2, b] has disjoint

paths B2, A0 from b2, a0 to y1, q′, respectively. But then, A′[a1, a] ∪ e ∪ B′[y2, b] ∪ P2,2 ∪

A′[q, a2] ∪ Q ∪ A0 and B′[b1, r′] ∪ R ∪ A′[x1, r] ∪ P1,1 ∪ B2 show that γ is feasible, a

contradiction. 2

(5) (i)–(ii) hold.

For, suppose not. Then G has an edge e = b1a with a ∈ A′[a1, x1] ∪ A′[x2, a2].

Suppose a ∈ A′[a1, x1]. Then a 6= a1, and let e′ = a1b
′ ∈ E(G) with b′ ∈ B′(b1, b2).

Now b′ /∈ B′(b1, r1] to avoid the double cross e, e′, P1,2, P2,1. So b′ ∈ B′[y2, b2), contradict-

ing (4).

Hence, a ∈ A′[x2, a2]. Then a 6= a2, and let e′ = a2b
′ ∈ E(G) with b′ ∈ B′(b1, b2).

Now b′ /∈ B′(b1, r1] to avoid the double cross e, e′, P1,1, P2,2. Hence, b′ ∈ B′[y2, b2).

If G has an edge e3 from b2 to {x1, x2} then, by (3), it ends with x1. So a1 6= x1,

and G has an edge e4 from a1 to B′(b1, b2). But now, e, e′, e3, e4 force a double cross, a

contradiction.

So G has no edge from b2 to {x1, x2}. Hence, by Lemma 4.0.7, G′0 − B′[b1, r1] −

B′[y2, b
′] has disjoint paths B2, A0 from b2, a0 to y1, q′, respectively. But then, A′[a1, q] ∪
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P1,2 ∪ B′[y2, b′] ∪ e′ ∪ Q ∪ A0 and e ∪ A′[x2, a] ∪ P2,1 ∪ B2 show that γ is feasible, a

contradiction. 2

Since G∗ is 6-connected, it follows from (2) and (4) that (iii) holds. It remains to prove

(iv). So assume y2 6= b2 and y2 is a cut vertex of G′0 separating b2 form {a0, b1}. Then

α(A′, B′) ≤ 1.

Suppose B′(y2, b2) 6= ∅. Then, since G∗ is 6-connected, it follows from (4) that G

has edges from B′(y2, b2) to distinct u1, u2 ∈ V (A′[x2, a2]), and we choose u1, u2 so that

A′[u1, u2] is maximal. Now, by (2) and (3), {u1, u2, y2, b2, x1} is a cut in G∗ separating

V (B′(y2, b2)) from {a0, a1, a2, b1, b2}, a contradiction.

SoB′(y2, b2) = ∅. Then a2 = x2; for otherwise, sinceG∗ is 6-connected,G has an edge

from a2 to B′(b1, r1], contradicting (2). We may assume that there exists e = b2a ∈ E(G)

with a ∈ A′(a1, x1); as otherwise, (iv) holds. Let e′ = a1b
′ ∈ E(G) with b′ ∈ B′(b1, b2).

Then b′ ∈ B′(b1, r1] by (4); so b1 6= r1, and B∗1 , A
∗
0 exist by (1). Now, by Lemma 3.0.1,

we derive α(A′, B′) = 2 with the following paths: the path e′ ∪B′[b1, b′] from a1 to b1, the

path A′[a1, a] ∪ e from a1 to b2, the path B∗1 ∪ Q ∪ A′[x1, q] ∪ P1,2 ∪ B′[y2, b2] from b1 to

b2, and the path A∗0 ∪ P2,1 from a0 to a2. This contradicts α(A′, B′) ≤ 1 as A′, B′ is a good

frame. 2

Let H0 denote the minimal union of blocks of H ′ − y1 − A′[q, x2] containing X1, let

W denote the path between x1 and y2, such that W is contained in the outer walk of H0,

and for any vertex v ∈ V (W − A′), there exists a vertex u ∈ A′[q, x2], such that u, v are

incident with a finite face of H ′ − y1, and let w1 ∈ V (A′ ∩W ) with A′[x1, w1] maximal.

Next, we further study the structure inside H ′.

Lemma 5.0.5 (i) H0 = H ′− y1−A(w1, x2], and each vertex in W (w1, y2] has at most

two neighbors on A′[q, x2], inducing a subpath of A′ with vertices at most two.

(ii) H ′ − {y1, y2} − A′(x1, x2) contains a path from x1 to x2.

Proof. Suppose (i) is not true. ThenH ′−y1 has a nontrivial (H0∪A′[q, x2])-bridge J which
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has exactly one vertex in W (w1, y2] (by definition of H0 and since G − A′ is connected)

or some vertex w ∈ V (W (w1, y2]) has two neighbors on A′[q, x2] such that the subpath

of A′ between them has at least three vertices. In the first case, let w ∈ V (J ∩ H0) and

u, v ∈ V (J∩A′) such that J∩A′ ⊆ A′[u, v]; and in the second case, let u, v be the neighbors

of w on A′[q, x2] such that A′[u, v] is maximal. Then by Lemma 5.0.3, {u, v, w, y1, r′} is a

cut in G∗, a contradiction.

Now suppose (ii) is not true. Then there exists v0 ∈ V (A′(x1, x2)) such that y2, v0 are

incident with a finite face of H ′ − y1. We further choose v0 so that A′[v0, x2] is minimal,

and let (L1, L2) be a separation in H ′ − y1 such that V (L1 ∩ L2) = {y2, v0}, x1 ∈ V (L1),

and x2 ∈ V (L2).

By Lemma 5.0.1, for each j ∈ [2], H ′ − A′(x1, x2) contains disjoint paths from y1, y2

to xj, x3−j , respectively. So for j ∈ [2], G[V (Lj) ∪ {y1}] − y2 contains a path Tj from y1

to xj and internally disjoint from A′.

We see that y2, v0 are not incident with a common finite face of H0. For otherwise,

v0 ∈ A′(x1, w1], x1 6= w1, and W [w1, y2] ⊆ L2. Hence, T1, W [w1, y2], P and Q are

disjoint, which form a doublecross, a contradiction to Lemma 2.0.7.

Now, by the minimality ofA′[v0, x2] and planarity ofH ′−y1, v0 ∈ A′[q, x2). Therefore,

by Lemma 5.0.3, {v0, x2, r′, y1, y2} is a cut inG∗ separating V (L2) from {a0, a1, a2, b1, b2},

a contradiction. 2

Letw2, · · · , wm be the vertices onW in order from x1 to y2 such that for i ∈ {2, · · · ,m},

wi has a neighbor on A′[q, x2], and for i ∈ {2, · · · ,m}, let ui, vi ∈ N(wi ∩ A′), such that

a1, ui, vi, a2 occur on A′ in order with A′[ui, vi] maximal.

Lemma 5.0.6 w1 6= x1, and H0 is 2-connected.

Proof. Suppose this is false. Let z ∈ V (H0) such that z = x1 (when x1 = w1) or z is a cut

vertex of H0 and, subject to this, W [x1, z] is maximal. Then V (W [z, y2] ∩X1) = {z, y2}.

Note that z ∈ X1[x1, y2) and wm ∈ W (z, y2).
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Let k be minimum such that wk ∈ W (z, y2] and u ∈ N(wk) ∩ V (A′[q, x2]) such

that A′[q, u] is minimal. Moreover, let K denote the {z, u}-bridge of H ′ − y1 containing

A′[u, x2] ∪X2, and let K∗ := G[V (K) ∪ {y1}].

By (v) of Lemma 4.0.9 and by the existence of W [y2, wk] ∪ wku,

(1) no A′-B′ bridge has one extreme hand in A′[x1, u) and the other in A′(u, x2].

Thus, since {y1, y2, z, u, x2} is not a cut inG∗ separating V (K) from {a0, a1, a2, b1, b2},

G has an A′-B′ path from A′(u, x2) to B′[r1, y1) and internally disjoint from H ′. By

Lemma 5.0.3,

(2) all A′-B′ paths from A′(u, x2) to B′[r1, y1] and internally disjoint from H ′ are edges

from A′(u, x2) to {r′, y1}.

So let e = ar′ ∈ E(G) with a ∈ A′[u, x2), and choose a such that A′[u, a] is minimal.

(3) Let L denote the path on the outer walk of K between y2 and u not going through x2,

and let L0 := L∪A′[u, a]. Then V (L0 ∩X2) = {y2}, and N(y1)∩ V (K) ⊆ V (L0).

First, suppose there exists v ∈ V (L0 ∩ X2), such that v 6= y2. Then {v, y1, u, x2, r′} is a

cut in G∗ separating V (A′(u, x2)) from {a0, a1, a2, b1, b2}, a contradiction.

Now suppose there exist v ∈ N(y1) ∩ V (K) such that v /∈ V (L0). We claim that

K∗− V (L0) has a path Y1 from y1 to x2. For otherwise, by the planar structure of K, there

exist c1, c2 ∈ V (L0), such that c1, c2 are incident with a finite face of K, and {c1, c2} is a

2-cut in K separating v from x2. Thus, by (2) and the choice of a, {c1, c2, y1, u, z} is a cut

in G∗ separating v from {a0, a1, a2, b1, b2}, a contradiction.

If G has an A′-B′ path T from A′(x1, u) to B′(r′, y1] and internally disjoint from H ′,

then T, e, L, Y1 force a double cross, a contradiction. So T does not exist. Then u = q and,

by (1), {x1, u, z, r′} is a cut in G∗ separating r from {a0, a1, a2, b1, b2}, a contradiction. 2

We will need the following claim.
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(4) G′0 contains a path A∗0 from B′(r′, y1) to a0 and internally disjoint from B′.

For otherwise, there exists b′1 ∈ V (B′[b1, r
′]), such that {b′1, y1} is a 2-cut in G′0 separating

B′[b′1, y1] from {a0, b1, b2}. Furthermore, {b′1, y1, y2} is a 3-cut in G′0 separating B′[b′1, y2]

from {a0, b1, b2}. We choose b′1 so that B′[b1, b′1] is minimal. By Lemma 4.0.7 and (iv)

of Lemma 5.0.2, b′1 = b1, and {b1, y1, y2, b2} is a cut in G∗ separating a0 from {a1, a2}, a

contradiction. 2

Let y′1, y
′′
1 ∈ V (L0) ∩N(y1) such that a, y′1, y

′′
1 , y2 occur on L0 in order and, subject to

this, L0[y
′
1, y
′′
1 ] is maximal.

(5) y′′1 ∈ L0[z, u).

For, otherwise, y′′1 ∈ L0(z, y2]. Then y′1 /∈ L0[z, y2]; otherwise, G has a separation

(G1, G2), such that V (G1 ∩ G2) = {r′, u, z, y1, y2, x2}, {a0, a1, a2, b1, b2} ⊆ V (G1),

G2 = K∗, and (G2, r
′, u, z, y1, y2, x2) is planar, which contradicts Lemma 2.0.3.

We claim that K − V (L0[y
′
1, a] ∪ L0[y2, y

′′
1 ]) contains a path X ′ from x2 to z. For

otherwise, by (3) and the planar structure of K, there exist c1 ∈ V (L0[y
′
1, a]) and c2 ∈

V (L0[y2, y
′′
1 ]), such that c1, c2 are incident with a finite face of K, and {c1, c2} is a 2-

cut in K separating x2 from z. If c1 ∈ A′[u, a] then {c1, c2, y2, x2, r′} is a cut in G∗

separating V (X2) from {a0, a1, a2, b1, b2}, a contradiction. So c1 /∈ A′[u, a]. Then G has

a separation (G1, G2), such that V (G1 ∩ G2) = {r′, u, c1, c2, y2, x2}, {a0, a1, a2, b1, b2} ⊆

V (G1), V (A′[u, x2]∪X2) ⊆ V (G2), and (G2, r
′, u, c1, c2, y2, x2) is planar. This contradicts

Lemma 2.0.3.

Now, the following paths give a contradiction to (i) of Lemma 3.0.2: the pathA′[a1, x1]∪

X1[x1, z]∪X ′ ∪A′[x2, a2] from a1 to a2, the path B′[b1, r′]∪ e∪L0[a, y
′
1]∪ y′1y1 ∪ y1y′′1 ∪

L0[y
′′
1 , y2] ∪B′[y2, b2] from b1 to b2, and the path A∗0 from B′(r′, y1) to a0. 2

We claim that y′1 ∈ A′(u, a]. For, otherwise, y′1, y
′′
2 ∈ L0[z, u]. Now, G has a separation

(G1, G2), such that V (G1 ∩G2) = {r′, u, y1, z, y2, x2}, {a0, a1, a2, b1, b2} ⊆ V (G1), G2 =

K∗, and (G2, r
′, u, y1, z, y2, x2) is planar. This contradicts Lemma 2.0.3.
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Moreover,K−V (L0[y
′
1, a]∪L0[y2, y

′′
1 ]) contains a pathX ′ from x2 to u. For otherwise,

by (3) and the planar structure of K, there exist c1 ∈ V (L0[y
′
1, a]) and c2 ∈ V (L0[y2, y

′′
1 ]),

such that c1, c2 are incident with a finite face of K, and {c1, c2} is a 2-cut in K separating

x2 from u. If c2 ∈ L0[y2, z] then {c1, c2, y2, x2, r′} is a cut in G∗ separating V (X2) from

{a0, a1, a2, b1, b2}, a contradiction. So c2 /∈ L0[y2, z]. Then G has a separation (G1, G2),

such that V (G1 ∩ G2) = {r′, c1, c2, z, y2, x2}, {a0, a1, a2, b1, b2} ⊆ V (G1), V (A′[c1, x2] ∪

X2) ⊆ V (G2), and (G2, r
′, c1, c2, z, y2, x2) is planar. This contradicts Lemma 2.0.3.

Hence, the following paths contradict (i) of Lemma 3.0.2: the path A′[a1, u] ∪ X ′ ∪

A′[x2, a2] from a1 to a2, the pathB′[b1, r′]∪e∪L0[a, y
′
1]∪y′1y1∪y1y′′1∪L0[y

′′
1 , y2]∪B′[y2, b2]

from b1 to b2, and the path A∗0 from B′(r′, y1) to a0. 2

Lemma 5.0.7 Let z1, z2 ∈ V (W ) with W [z1, z2] is maximal, such that x1, z1, z2, y2 occur

on W in order, and for each i ∈ [2], G[H0 + y1] has a path Zi from y1 to zi and internally

disjoint from W . Then, N(y1) ∩ V (X1[x1, y2)) = ∅ and Z1 ∩ (X1 ∪X2) = ∅.

Proof. By Lemma 5.0.6, w1 6= x1 and H0 is 2-connected. So V (X1 ∩W ) = {x1, y2}.

If N(y1) ∩ V (X1[x1, y2)) 6= ∅ or Z1 ∩ X1 6= ∅ then Z1 ∪ X1 contains a path S from

y1 to x1 and disjoint from W [w1, y2]. Now S, W [w1, y2], P , and Q force a double cross,

contradicting Lemma 2.0.7. So N(y1) ∩ V (X1[x1, y2)) = ∅ and Z1 ∩X1 = ∅.

Moreover, Z1 ∩X2 = ∅. For, otherwise, by the choice of z1 and Z1, it follows from the

planarity of H ′ − y1 that z1 ∈ V (X2). But then, H ′ −A′(x1, x2) contains no disjoint paths

from y1, y2 to x1, x2, respectively. This contradicts Lemma 5.0.1. 2

Lemma 5.0.8 a2 = x2, and if y2 6= b2 then y1, y2 are cut vertices in G′0 separating b2 from

{a0, b1}, N(b2) = {y2, x1}, and a1 6= x1. Moreover, one of the following holds:

(i) there exists a 2-cut {z′1, z′2} in H0 with x1, z′1, z1, z2, z
′
2, y2 on W in order such that

W (z′1, z
′
2) 6= ∅ and z′1, z

′
2 are incident with a finite face of H0, or

(ii) N(y1) ∩ V (H0) ⊆ V (W [w1, y2]) and, for any i ∈ [m], wi /∈ W (z1, z2).
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Proof. By Lemma 5.0.6, w1 6= x1, and H0 is 2-connected. If y2 = b2, then by (iii) of

Lemma 5.0.4, we have a2 = x2.

Now assume y2 6= b2. We claim that G′0 has a 3-cut {a′0, b′1, y2} with b′1 ∈ B′[b1, r1],

which separates B′[b′1, y2] from {a0, b1, b2}. For otherwise, by (iv) of Lemma 5.0.2, G′0 −

B′[b1, r
′]− y2 contains disjoint paths A0, B2 from a0, b2 to q′, y1, respectively. Let Y1 be a

path in Z1∪W [z1, w1]∪A′[w1, r] from y1 to r. Note that r /∈ A′[q, x2] and, by Lemma 5.0.7,

Y1 ∩ (A′[q, x2] ∪ X1 ∪ X2) = ∅. Now, A′[a1, x1] ∪ X1 ∪ X2 ∪ A′[q, a2] ∪ Q ∪ A0 and

B′[b1, r
′] ∪R ∪ Y1 ∪B2 show that γ is feasible, a contradiction.

Thus, when y2 6= b2, we may apply Lemma 4.0.7 (with b′2 = y2), and conclude that

b′1 = b1, a′0 = a0, and y1, y2 are cut vertices in G′0 separating b2 from {a0, b1}. By (iv) of

Lemma 5.0.4, we have NG(b2) = {y2, x1}, a1 6= x1, and a2 = x2.

We now show (i) or (ii) holds. First, suppose z1 = z2. Then N(y1) ∩ V (H0) = {z1};

or else, there exists v ∈ N(y1) ∩ V (H0) with v 6= z1, and {z1, y1} is a cut in G separating

v from {a0, a1, a2, b1, b2}, a contradiction. Clearly, z1 ∈ V (W (w1, y2)), and so (ii) holds.

So we may assume z1 6= z2. Now suppose W (z1, z2) ∩ {w1, . . . , wm} = ∅. Then (ii)

holds or there exists v ∈ N(y1) ∩ V (H0) such that v /∈ V (W ). In the latter case, there

exist c1, c2 ∈ V (W (x1, y2]), such that {c1, c2} is a 2-cut in H0 separating v from x1; since,

otherwise,H0−W (x1, y2] contains a path T from v to x1, and y1v∪T,W [w1, y2], R,Q force

a double cross, contradicting Lemma 2.0.7. Now, {y1, c1, c2} is a cut inG∗, a contradiction.

Hence, we may assume W (z1, z2) ∩ {w1, . . . , wm} 6= ∅. Now suppose (i) fails. Then

by the planar structure of H0, H0 −W (x1, z1] −W [z2, y2] contains a path X ′ from x1 to

W (z1, z2) and internally disjoint from W .

We claim that X ′ must be disjoint from Z1, Z2. For otherwise, let x∗ ∈ V (X ′ ∩ Zj)

for some j ∈ [2]. As X ′, Z1, Z2 are all internally disjoint from W , Zj[sj, x∗] ∪ X ′[x∗, x1]

implies that z1 = x1, contradicting Lemma 5.0.7 that V (Z1 ∩ (X1 ∪X2)) = ∅.

We claim w1 ∈ W (z1, z2). For otherwise, wi ∈ W (z1, z2) for some i ≥ 2. By Lemma

4.0.7 and (iv) of Lemma 5.0.2, there exists a path A∗0 in G′0 from a0 to B′(r′, y1) internally
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disjoint from B′. Now A′[a1, x1]∪X ′ ∪W (z1, z2)∪wivi ∪A′[q, a2]∪Q∪B′(r′, y1)∪A∗0

and B′[b1, r′]∪R∪A′[r, w1]∪W [w1, z1]∪Z1 ∪Z2 ∪W [z2, y2]∪B′[y2, b2] show that γ is

feasible, a contradiction.

So z1 ∈ A′(x1, w1). Moreover, r /∈ A′(x1, z1]; otherwise, A′[a1, x1]∪X ′ ∪W (z1, z2)∪

A′[w1, a2]∪Q∪B′(r′, y1)∪A∗0 andB′[b1, r′]∪R∪A′[r, z1]∪Z1∪Z2∪W [z2, y2]∪B′[y2, b2]

show that γ is feasible, a contradiction. But now, A′[a1, z1] ∪ Z1 ∪ B′(r′, y1] ∪ A∗0 ∪ Q ∪

A′[q, a2] and B′[b1, r′] ∪ R ∪ A′[r, w1] ∪W [w1, y2] ∪ B′[y2, b2] show that γ is feasible, a

contradiction. 2

Lemma 5.0.9 Suppose (i) of Lemma 5.0.8 holds, and a 2-cut {z′1, z′2} in G′0 is chosen with

W [z′1, z
′
2] maximal. Then z′1 ∈ A′[x1, w1].

Proof. For, suppose 2-cut {z′1, z′2} is chosen with W [z′1, z
′
2] maximal, and z′1 /∈ A′[x1, w1].

By Lemma 5.0.5, we can define u′, u′′, v′, v′′, such that u′, u′′ ∈ V (A′[q, x2]), x1, u′, u′′, x2

occur on A′ in order, H ′ − y1 has edges from u′, u′′ to v′, v′′ ∈ V (W (z′1, z
′
2)), respectively,

subject to this, A′[u′, u′′] is maximal, and subject to this, W [v′, v′′] is maximal. Obviously,

there exists a separation (K,K0) in H ′ − y1, such that V (K ∩ K0) = {u′, u′′, z′1, z′2},

V (W [z′1, z
′
2] ∪ A′[u′, u′′]) ⊆ V (K), and V (W [x1, z

′
1] ∪ X1) ⊆ V (K0). We also let

K∗ := G[V (K) ∪ {y1}].

By (v) of Lemma 4.0.9 and by the existence of the paths from u′, u′′ to y2, respectively,

in H ′ − y1,

(1) there does not exist an A′-B′ bridge with extreme hands n1, n2, such that for some

v ∈ {u′, u′′}, n1 ∈ A′[x1, v) and n2 ∈ A′(v, x2].

Now, since {y1, z′1, z′2, u′, u′′} is not a cut inG separating V (K) from {a0, a1, a2, b1, b2},

then, combined with (1), we may assume

(2) A′(u′, u′′) 6= ∅, and G has an A′-B′ path from A′(u′, u′′) to B′[r1, y1), internally

disjoint from H ′ − y1.
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By Lemma 5.0.3, we may further assume

(3) all A′-B′ paths from A′(u′, u′′) to B′[r1, y1], internally disjoint from H ′ − y1, are

edges from A′(u′, u′′) to {r′, y1}.

Now, we let e = ar′ ∈ E(G) with a ∈ A′[u′, u′′), such that A′[u′, a] is minimal.

(4) G′0 contains a path A∗0 from B′(r′, y1) to a0, internally disjoint from B′.

For otherwise, there exists b′1 ∈ B′[b1, r
′], such that {b′1, y1} is a 2-cut in G′0 separating

B′[b′1, y1] from {a0, b1, b2}. Furthermore, {b′1, y1, y2} is a 3-cut in G′0 separating B′[b′1, y2]

from {a0, b1, b2}. By Lemma 4.0.7 and (iv) of Lemma 5.0.2, b′1 = b1, and {b1, y1, y2, b2} is

a cut in G separating a0 from {a1, a2}, a contradiction. 2

Since z′1 may not be chosen so that z′1 ∈ A′[x1, w1], then there does not exist a vertex

v ∈ A′[x1, w1], such that v, z′2 are incident with a common finite face of K0. Thus, we may

assume

(5) K0 − V (A′[x1, u
′]) contains a path Y from y2 to z′1, internally disjoint from A′.

Let L denote the path on the outer walk of K from z′1 to u′ without going through u′′.

Obviously, z′2 /∈ V (L). Moreover, we let L0 := L ∪ A′[u′, a].

(6) N(y1) ∩ V (K) 6⊆ (V (L0) ∪ {z′2}).

For, supposeN(y1)∩V (K) ⊆ (V (L0)∪{z′2}). Obviously, V (L0)∩N(y1) 6= ∅; otherwise,

{u′, u′′, z′1, z′2, r′} is a cut in G separating V (K) from {a0, a1, a2, b1, b2}, a contradiction.

Now, we let y′1, y
′′
1 ∈ V (L0) ∩ N(y1), such that a, y′1, y

′′
1 , z
′
1 occur on L0 in order, and

L0[y
′
1, y
′′
1 ] is maximal.

We first claim y′1 ∈ L0(u
′, a]. For otherwise, y′1, y

′′
2 ∈ V (L0[z

′
1, u
′]). Now, G has a

separation (G1, G2), such that V (G1 ∩ G2) = {r′, u′, y1, z′1, z′2, u′′}, {a0, a1, a2, b1, b2} ⊆

V (G1), V (K) ⊆ V (G2), and (G2, r
′, u′, y1, z

′
1, z
′
2, u
′′) is planar, which contradicts Lemma 2.0.3.
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Now, we see that y′′1 ∈ L0[z
′
1, u
′). For, suppose y′′1 /∈ L0[z

′
1, u
′). Then y′′1 ∈ L0[u

′, a] and

z′2 ∈ N(y1). Now,G has a separation (G1, G2), such that V (G1∩G2) = {r′, y1, u′, z′1, z′2, u′′},

{a0, a1, a2, b1, b2} ⊆ V (G1), V (K) ⊆ V (G2), and (G2, r
′, y1, u

′, z′1, z
′
2, u
′′) is planar,

which contradicts Lemma 2.0.3.

Then we claim that K − V (L0[z
′
1, y
′′
1 ] ∪ L0[y

′
1, a]) ∪ {z′2} contains a path X ′ from

u′′ to u′. For otherwise, by the planar structure of K, there exist c1 ∈ V (L0[y
′
1, a]),

c2 ∈ V (L0[z
′
1, y
′′
1 ]) ∪ {z′2}, such that c1, c2 are incident with a common finite face of

K, and {c1, c2} is a 2-cut in K separating u′ from u′′. By the existence of the path

u′′v′′ ∪ W [v′′, v′] ∪ v′u′ from u′′ to u′, we may assume c2 = v′. Moreover, v′ 6= v′′;

otherwise, {v′, u′, u′′, r′, y1} is a cut in G separating V (A′(u′, u′′)) from {a0, a1, a2, b1, b2},

a contradiction. But then, as G∗ is 6-connected, G has a separation (G1, G2), such that

V (G1 ∩G2) = {r′, c1, v′, z′1, z′2, u′′}, {a0, a1, a2, b1, b2} ⊆ V (G1), V (A′[c1, u
′′]) ∪ {v′′} ⊆

V (G2), and (G2, r
′, c1, v

′, z′1, z
′
2, u
′′) is planar, which contradicts Lemma 2.0.3.

Now, the pathA′[a1, u′]∪X ′∪A′[u′′, a2] from a1 to a2, the pathB′[b1, r′]∪e∪L0[a, y
′
1]∪

y′1y1 ∪ y1y′′1 ∪ L0[y
′′
1 , z
′
1] ∪ Y ∪ B′[y2, b2] from b1 to b2, and the path A∗0 from B′(r′, y1) to

a0 contradict (i) of Lemma 3.0.2. 2

(7) K∗ − V (L0) ∪ {z′2} contains a path Y1 from y1 to u′′.

For, suppose (7) fails. By (6), there exists v ∈ N(y1)∩V (K), such that v /∈ V (L0)∪{z′2}.

Since K∗ − V (L0) ∪ {z′2} contains no path from y1 to u′′, then by the planar structure

of K, there exist c1, c2 ∈ V (L0) ∪ {z′′2}, such that c1, c2 are incident with a common finite

face of K, and {c1, c2} is a 2-cut in K separating v from u′′. Thus, combined with (3)

and the choice of a, {c1, c2, y1, u′, z′1} is a cut in G separating v from {a0, a1, a2, b1, b2}, a

contradiction. 2

(8) G has no A′-B′ path from A′[a1, u
′) to B′(r′, y1], internally disjoint from H ′ − y1.

For, suppose G has an A′-B′ path T from A′[a1, u
′) to B′(r′, y1], internally disjoint from

H ′ − y1. Then T, e, Y ∪ L, Y1 force a doublecross, a contradiction. 2
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(9) b1 = r1 = r′.

We may assume b1 = r1 and so a1 = x1 by (iii) of Lemma 5.0.4. For, suppose b1 6= r1.

By Lemma 4.0.7 and (iv) of Lemma 5.0.2, G′0 − r′ − B′[y2, b2] contains disjoint paths

B1, A0 from b1, a0 to q′, y1, respectively. Now, A′[a1, r] ∪ R ∪ e ∪ A′[a, a2] ∪ Y1 ∪ A0 and

B1 ∪Q ∪ A′[q, u′] ∪ L ∪ Y ∪B′[y2, b2] show that γ is feasible, a contradiction.

We may assume r1 = r′. For, suppose r1 6= r′. By (iii) of Lemma 5.0.2, there exists

an A′-B′ bridge M4 with feet l′4, r
′
4, such that R is internally disjoint from M4, and r′ ∈

B′(l′4, r
′
4). Let P ∗ be the path from l′4 to r′4 in M4, internally disjoint from A′, B′, and let

A′0 be the path from a0 to y1 in G′0, internally disjoint from B′, then A′[a1, r] ∪ R ∪ e ∪

A′[a, a2]∪ Y1 ∪A′0 and B′[b1, l′4]∪P ∗ ∪B′[r′4, q′]∪Q∪A′[q, u′]∪L∪Y ∪B′[y2, b2] show

that γ is feasible, a contradiction. 2

Now, by (8), (9), Lemma 5.0.8, and Lemma 5.0.3, {b1, u′, a2, y1, b2} is a cut in G sepa-

rating a0 from a1, a contradiction. 2

Lemma 5.0.10 (i) α(A′, B′) = 1, and y1 is a cut vertex in G′0 separating b2 from

{a0, b1};

(ii) Let A′0 be the path from y1 to a0 in G′0, internally disjoint from B′ and on the bound-

ary of G′0, then G′0 −B′(b1, r′]− A′0 contains a path B′1 from b1 to q′.

Proof. We may assume H ′ − {y1, y2} − Z1 ∪W [z1, w1] ∪ A′(x1, x2) contains a path X0

from x1 to x2. For otherwise, by the planar structure of H ′ − y1, there exists a vertex

v ∈ V (Z1 ∪W [z1, w1]∪A′(x1, x2)), such that y2, v are incident with a common finite face

of H0. By Lemma 5.0.5, v /∈ A′(x1, x2), and so v ∈ V (Z1 ∪W [z1, w1]). Now, we claim

that there exists c ∈ W [x1, z1], such that {y2, c} is a cut in H0 separating W (c, y2) from

x1. For otherwise, v /∈ W [z1, w1]. So v ∈ Z1[s1, z1), and (i) of Lemma 5.0.8 holds with

2-cut {z′1, z′2}. But then, z′1, v, y2 are incident with a common finite face ofH0, and {y2, z′1}

is a 2-cut, which still leads to our claim. Thus, our claim is true. Now, the existence of
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{y2, c} show that (i) of Lemma 5.0.8 holds. By Lemma 5.0.9, {y2, c} may be chosen with

c ∈ A′[x1, w1], a contradiction to Lemma 5.0.5.

We now prove y1 is a cut vertex in G′0 separating b2 from {a0, b1}. For, suppose not.

Then by Lemma 5.0.8, we may assume y2 = b2.

Moreover, we may assume G′0 − B′[b1, r′] − B′(y1, b2) contains disjoint paths A0, B2

from a0, b2 to q′, y1, respectively. For otherwise, by planar structure of G′0, there exists a

3-cut {a′0, b′1, b′2} with b′1 ∈ B′[b1, r′] and b′2 ∈ B′(y1, b2), which separates B′(b′1, b
′
2) from

{a0, b1, b2}. Since y1, b2, b′2 are incident with a common finite face of G′0, then a′0, b2 are

incident with a common finite face of G′0, and so {b′1, a′0, b2} is a 3-cut in G′0. Moreover,

since y1 is not a cut vertex in G′0, then a′0 6= a0. But now, by (iv) of Lemma 5.0.2, b′1 /∈

B′(r1, r
′], and therefore, b′1 ∈ B′[b1, r1]. Now, by Lemma 4.0.7, b′1 = b1. Then {b1, b2, a′0}

is a cut in G separating a0 from {a1, a2}, a contradiction.

Now, by the existence of A0, B2, A′[a1, x1] ∪X0 ∪ A′[q, a2] ∪ Q ∪ A0 and B′[b1, r′] ∪

R ∪ A′[r, w1] ∪W [w1, z1] ∪ Z ′1 ∪ B2 show that γ is feasible, a contradiction. Thus, y1 is a

cut vertex in G′0, and α(A′, B′) ≤ 1.

Next, we show that α(A′, B′) = 1. We let A∗0 be the path from a0 to y1 in G′0, in-

ternally disjoint from B′. When y2 = b2, we let B∗ := A′[a1, x1] ∪ X1; when y2 6=

b2, by Lemma 5.0.8, x1b2 ∈ E(G), and we let B∗ := A′[a1, x1] ∪ x1b2. Then com-

bined with Lemma 3.0.1, the path A∗0 ∪ B′[q′, y1] ∪ Q ∪ A′[q, a2] from a0 to a2, the path

B′[b1, r
′]∪R ∪A′[r, w1]∪W [w1, y2]∪B′[y2, b2] from b1 to b2, and the path B∗ from a1 to

b2 show that α(A′, B′) = 1.

Finally, we prove (ii) holds. For otherwise, by planar structure of G′0, there exists a

2-cut {a′0, b′1} with a′0 ∈ A′0 and b′1 ∈ B′(b1, r
′], which separates b1 from q′. Since y1 is

a cut vertex of G′0, then {a′0, b′1, b2} is a 3-cut in G′0 separating B′[b′1, b2] from {a0, b1, b2}.

By Lemma 4.0.7, b′1 /∈ B′(b1, r1], and so b′1 ∈ (r1, r
′]. But, by (iv) of Lemma 5.0.2,

a′0 = a0, which implies that G′0 has no path from a0 to b1, internally disjoint from B′, and

so α(A′, B′) = 0, a contradiction. 2
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Lemma 5.0.11 Suppose (i) of Lemma 5.0.8 does not hold and (ii) of Lemma 5.0.8 holds,

then N(y1) ∩ V (H0) ⊆ V (W [w1, w2]).

Proof. Since z1 /∈ V (X2) (by Lemma 5.0.7), then z1 /∈ W [wm, y2]. So, by (ii) of Lemma 5.0.8,

we may assume that there exists j ∈ [m − 1], such that z1, z2 ∈ W [wj, wj+1] with

z2 ∈ W (wj, wj+1]. We may also assume z2 /∈ W [w1, w2] and j 6= 1; otherwise, N(y1) ∩

V (H0) ⊆ V (W [w1, w2]).

Since (i) of Lemma 5.0.8 does not hold and z2 /∈ W [w1, w2], then we may assume

H0 −W [x1, w1]−W [z2, wm] contains a path Y2 from y2 to w2.

We may assume b2 = y2. For, suppose b2 6= y2. Then by Lemma 5.0.8, G has an

edge from b2 to x1, and a1 6= x1. Let e = a1b ∈ E(G) with b ∈ B′(b1, r1]. Now,

combined with Lemma 3.0.1, the path A′0 ∪ y1z2 ∪W [z2, wm] ∪ wmx2 from a0 to a2, the

path B′1 ∪Q ∪ A′[w1, q] ∪W [w1, w2] ∪ Y2 ∪ B′[y2, b2] from b1 to b2, the path e ∪ B′[b1, b]

from a1 to b1, and the path A′[a1, x1] ∪ x1b2 from a1 to b2 show that α(A′, B′) = 2, a

contradiction to (i) of Lemma 5.0.10.

Now, we distinguish two cases.

Case 1. u2 = x2.

(1.1) There does not exist a cross C,D from c, d ∈ A′[x1, x2) to c′, d′ ∈ B′[b1, y1], such

that, c ∈ A′[a1, w1), a1, c, d, a2 occur on A′ in order, and C,D are internally disjoint

from A′, B′, H ′.

For otherwise, such a cross C,D, together with the path y1z2 ∪W [z2, wm]∪wmx2 from y1

to x2 and the path Y2 ∪W [w2, w1] from y2 to w1, forces a doublecross. 2

(1.2) G has an A′-B′ path T from t ∈ A′[a1, w1) to t′ ∈ B′[b1, y1], internally disjoint from

H ′.

For, suppose not, then {a1, w1, x2, y1, y2} is a 5-cut inG separating V (H0) from {a0, a1, a2, b1, b2},

a contradiction. 2
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We further choose T so thatB′[b1, t′] is minimal, and subject to this,A′[a1, t] is minimal.

(1.3) t′ ∈ B′[b1, r′], V (T ∩ Q) = ∅, and G has no A′-B′ path from A′[a1, t) to B′[b1, y1],

internally disjoint from H ′.

We first prove t′ ∈ B′[b1, r′]. For, suppose t′ ∈ B′(r′, y1]. Then by the choice of T , we may

assume T,R are disjoint, and r ∈ A′[w1, q). But then, T,R form a cross, contradicting

(1.1).

We may assume V (T ∩Q) = ∅; otherwise, T,Q are contained in a same A′-B′ bridge,

then by w1 ∈ A′(t, q), the path from w1 to y2 in H ′− y1, contradicting (v) of Lemma 4.0.9.

Finally, suppose G has an A′-B′ path S from s ∈ A′[a1, t) to s′ ∈ B′[b1, y1], internally

disjoint from H ′. Then by the choice of T , we have S, T are disjoint, and s ∈ B′(t′, y1].

But then, T, S form a cross, contradicting (1.1). 2

(1.4) H0 − A′[x1, t] ∪X1[x1, y2) ∪W [z1, wj] contains a path Y ′2 from y2 to w1.

For otherwise, by the planar structure of H0, there exist c1 ∈ W [z1, wj] and c2 ∈ A′[x1, t]∪

X1[x1, y2), such that {c1, c2} is a cut in H0 separating y2 from w1. We notice that j < m

and z1 /∈ V (X2), and so z1 ∈ W [wj, wm). We may assume c2 /∈ X1[x1, y2); otherwise,

{c1, c2, y1, y2, x2} is a cut in G separating wm from {a0, a1, a2, b1, b2}, a contradiction. So,

t ∈ A′(x1, w1) and c2 ∈ A′(x1, t]. But then, by (1.3),G has a separation (G1, G2), such that

V (G1 ∩G2) = {x1, y2, x2, y1, c1, c2}, {a0, a1, a2, b1, b2} ⊆ V (G1), V (X1 ∪X2) ⊆ V (G2),

and (G2, x1, y2, x2, y1, c1, c2) is planar, which contradicts Lemma 2.0.3. 2

Now, combined with Lemma 3.0.1, the path A′0 ∪ y1z1 ∪W [z1, wj] ∪ wjx2 from a0 to

a2, the path B′1 ∪Q∪A′[w1, q]∪Y ′2 from b1 to b2, the path A′[a1, t]∪T ∪B′[b1, t′] from a1

to b1, and the path A′[a1, x1] ∪ X1 from a1 to b2 show that α(A′, B′) = 2, a contradiction

to (i) of Lemma 5.0.10. 2

Case 2. u2 6= x2.

(2.1) G has no A′-B′ path from a2 to B′(b1, r′].
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For, suppose G has an A′-B′ path S from a2 to s′ ∈ B′(b1, r′]. Then, combined with (ii)

of Lemma 5.0.10, A′[a1, r] ∪ R ∪ B′[s′, r′] ∪ S ∪ a2wm ∪ W [wm, z2] ∪ z2y1 ∪ A′0 and

B′1 ∪Q ∪ A′[q, u2] ∪ u2w2 ∪ Y2 show that γ is feasible, a contradiction. 2

(2.2) There does not exist a cross C,D from c, d ∈ A′[x1, x2) to c′, d′ ∈ B′[b1, y1], such

that a1, c, d, a2 occur on A′ in order, and C,D are internally disjoint from A′, B′, H ′.

For, suppose such a cross exists. We claim that c /∈ A′[a1, u2); otherwise, such a cross

C,D, together with the path y1z2∪W [z2, wm]∪wmx2 from y1 to x2 and the path Y2∪w2u2

from y2 to u2, forces a doublecross.

So, d ∈ A′(u2, x2). Then, by Lemma 5.0.3, D is an edge with d′ = r′. Moreover, by

(2.1), b1 = r′.

Now, we may assume G has no A′-B′ path from A′[a1, u2) to B′(b1, y1], internally

disjoint from H ′; otherwise, such a path together with D forms a cross, contradicting our

claim that c /∈ A′[a1, u2). But then, combined with Lemma 5.0.3, {b1, b2, y1, u2, a2} is a

cut in G separating a1 from a0, a contradiction. 2

(2.3) H0 − A′(x1, w1]−W [z2, y2] has a path X ′ from x1 to wj .

For otherwise, by planarity of H0, there exist c1 ∈ A′(x1, w1] and c2 ∈ W [z2, y2], such that

c1, c2 are incident with a common finite face of H0, and {c1, c2} is a cut in H0 separating

x1 from wj . But then, (i) of Lemma 5.0.8 holds, a contradiction. 2

(2.4) H0 − A′[x1, w1] ∪X1[x1, y2) ∪W [z2, wm) contains a path Y ∗2 from y2 to w2.

For otherwise, by planarity of H0, there exist c1 ∈ W [z2, wm) and c2 ∈ A′[x1, w1] ∪

X1[x1, y2), such that c1, c2 are incident with a common finite face of H0. Clearly, c2 /∈

A′[x1, w1]; otherwise, (i) of Lemma 5.0.8 holds, a contradiction. So c2 ∈ X1[x1, y2).

Now, let wi ∈ W (c1, y2) such that i is minimum. Then we may assume G has an A′-

B′ path S from s ∈ A′(ui, x2) to s′ ∈ B′[b1, y1], internally disjoint from H ′; otherwise,

{ui, c1, c2, y2, x2} is a cut in G separating wm from {a0, a1, a2, b1, b2}, a contradiction.

58



By Lemma 5.0.3, S is an edge with s′ ∈ {r′, y1}. Now, if s′ = y1, then A′[a1, w1] ∪

W [w1, z1]∪z1y1∪A′0∪s′s∪A′[s, a2] and B′[b1, q′]∪Q∪A′[q, ui]∪uiwi∪W [wi, y2] show

that γ is feasible, a contradiction. So s′ = r′. But then, S,Q form a cross, contradicting

(2.2). 2

(2.5) z1, x2 are incident with a common finite face of H ′ − y1.

For otherwise, we may assume there exists some k ∈ {j + 1, · · · ,m}, such that G has

an edge from wk to uk ∈ A′[u2, x2). We further choose k so that k is minimum, and so

k = j + 1 or k = j + 2.

Now, we claim that G has no A′-B′ path from a2 to B′[b1, y1], internally disjoint from

H ′. For, suppose G has an A′-B′ path S from a2 to s′ ∈ B′[b1, r′]. By (2.1), s′ /∈ B′(b1, r′].

We may also assume s′ /∈ B′(r′, y1]; otherwise, S together with R, ukwk ∪W [wk, y2], and

X ′ ∪W [wj, z1] ∪ z1y1 forces a doublecross. So s′ = b1. Moreover, since G has no edge

from a2 to b1, then S is not an edge, and so s′ = r1 = b1 and S is contained in an A′-B′

bridge N with extreme hands n1, n2 and feet n′1, n
′
2. Since s′ = b1, we have n′1 = n′2 = b1.

By Lemma 5.0.3, V (N ∩ A′(u2, x2)) = ∅. By (v) of Lemma 4.0.9, n1 /∈ A′[a1, u2), and

so n1 = u2. But then, {n1, n2, b1} is a cut in G separating V (N) from {a0, a1, a2, b1, b2}, a

contradiction.

Now, since the degree of a2 inG is at least 4, then we may assumeG has an edge from a2

tow ∈ W [wk, wm).But then, combined with Lemma 3.0.1, the pathA′[a1, r]∪R∪B′[b1, r′]

from a1 to b1, the pathA′[a1, x1]∪X1 from a1 to b2, the pathB′1∪Q∪A′[q, u2]∪u2w2∪Y ∗2

from b1 to b2, and the path a2w∪W [w, z2]∪z2y1∪A′0 from a2 to a0 show that α(A′, B′) = 2,

a contradiction to (i) of Lemma 5.0.10. 2

(2.6) G has two disjoint A′-B′ paths from A′(x1, vj) to B′[b1, y1], internally disjoint from

H ′.

For otherwise, there exists a vertex v ∈ V (G), such that G− v does not contain any A′-B′

paths from A′(x1, vj) to B′[b1, y1], internally disjoint from H ′. But then, combined with
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(2.6), G has a separation (G1, G2), such that V (G1 ∩ G2) = {v, x1, y2, x2, u, vj} with

u = y1 (when z1 6= z2) or u = z1 (when z1 = z2), {a0, a1, a2, b1, b2} ⊆ V (G1), and

V (A′[x1, vj] ∪X1) ⊆ V (G2).

Now, we claim that (G2, v, x1, y2, x2, u, vj) is planar, and so Lemma 2.0.3 applies. Ob-

viously, when v ∈ A′, this claim is true. So we may assume v /∈ A′. Furthermore, if all

the A′-B′ paths from v to A′ are edges, then our claim is still true. Therefore, we may as-

sume there exists someA′-B′ bridgeN with feet n′1, n
′
2 and extreme hands n1, n2, such that

v ∈ N and N contains a path P ∗ from v to A′[n1, n2], which is not an edge and internally

disjoint from A′. By (v) of Lemma 4.0.9, H ′ − y1 does not contain a path from A′(n1, n2)

to y2, internally disjoint from A′. Hence, {n1, n2, v} is a cut in G separating V (P ∗) from

{a0, a1, a2, b1, b2}, a contradiction. 2

Now, we let T1, T2 be disjoint A′-B′ paths from t1, t2 ∈ A′(x1, uj) to t′1, t
′
2 ∈ B′[b1, y1],

respectively, internally disjoint from H ′, such that a1, t1, t2, a2 occur on A′ in order, subject

to this, B′[t′1, t
′
2] is maximal, and subject to this, A′[t1, t2] is maximal. By (2.2), b1, t′1, t

′
2, b2

occur on B′ in order.

(2.7) t′1 ∈ B′[b1, r′].

For otherwise, t′1 ∈ B′(r′, y1]. We may first assume R is internally disjoint from T1, T2.

For otherwise, let v ∈ V (R ∩ (T1 ∪ T2)), such that R[r′, v] is minimal. If v ∈ V (T1),

then R[r′, v]∪ T1[v, t1], T2 contradict the choice of T1, T2; if v ∈ V (T2), then T1, R[r′, v]∪

T2[v, t2] form a cross, contradicting (2.2).

Now, if r ∈ A′[a1, t1], then R, T2 contradict the choice of T1, T2; if r ∈ A′(t1, q), then

R, T1 form a cross, contradicting (2.2). 2

(2.8) There exist c1, c2 ∈ V (G′0), such that c1 ∈ B′[b1, t′1], c2 ∈ B′[t′2, y1], and c1, c2 are

incident with a common finite face of G′0.

In fact, due to the existence of the path A′[a1, x1] ∪ X ′ ∪ wjvj ∪ A′[vj, a2] from a1 to a2

and the path B′[b1, t′1] ∪ T1 ∪ A′[t1, t2] ∪ T2 ∪ B′[t′2, y1] ∪ y1z2 ∪W [z2, y2] from b1 to b2,
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G′0 contains no path from a0 to B′(t′1, t
′
2), internally disjoint from B′ (by Lemma 3.0.2).

Hence, (2.8) holds. 2

Now, we further choose c1, c2 so that B′[c1, c2] is maximal.

(2.9) G′0 −B′(b1, c1) ∪B′[c2, y1] ∪ A′0 contains a path B′0 from b1 to c1.

For otherwise, V (B′(b1, c1)) 6= ∅, and by planarity of G′0, we may assume there exist

b′1 ∈ B′(b1, c1) and a′0 ∈ B′[c2, y1] ∪ A′0, such that b′1, a
′
0 are incident with a common finite

face of G′0. Now, if a′0 ∈ B′[c2, y1], then b′1, a
′
0 contradict the choice of c1, c2; if a′0 ∈ A′0,

then {b′1, a′0, b2} is a 3-cut in G′0, contradicting Lemma 4.0.7. 2

(2.10) G′0 −B′(b1, c2) ∪B′(c2, y1] ∪ A′0 contains a path B′′0 from b1 to c2.

For otherwise, by planarity of G′0, we may assume there exist b′1 ∈ B′(b1, c2) and a′0 ∈

B′(c2, y1] ∪ A′0, such that b′1, a
′
0 are incident with a common finite face of G′0. Now, if

a′0 ∈ B′(c2, y1], then b′1, a
′
0 or c1, a′0 contradict the choice of c1, c2. So a′0 ∈ A′0. We may

further assume b1 = c1 and b′1 ∈ B′(c1, c2); otherwise, {b′1, a′0, b2} or {c1, a′0, b2} is a 3-cut

in G′0, contradicting Lemma 4.0.7. But now, since a0, b1, b′1, c2 are incident with a common

finite face of G′0, then α(A′, B′) = 0, a contradiction to (i) of Lemma 5.0.10. 2

(2.11) G has no A′-B′ path from B′(b1, c1) to A′.

For otherwise, since c1 ∈ B′[b1, t′1] and t′1 ∈ B′[b1, r1], then c1 ∈ B′[b1, r1], and so such an

A′-B′ path fromB′(b1, c1) to A′ should be an edge e from b ∈ B′(b1, c1) to a ∈ A′[a1, x1]∪

{a2}. By (2.2), a 6= a2, and so a ∈ A′[a1, x1].

But then, combined with Lemma 3.0.1, the pathA′[a1, a]∪e∪B′[b1, b] from a1 to b1, the

path A′[a1, x1]∪X1 from a1 to b2, the path A′0∪B′[q′, y1]∪Q∪A′[q, a2] from a0 to a2, and

the path B′0 ∪B′[c1, r′] ∪R ∪A′[r, w1] ∪W [w1, y2] from b1 to b2 show that α(A′, B′) = 2,

a contradiction to (i) of Lemma 5.0.10. 2

(2.12) G has an A′-B′ path T from t′ ∈ B′(c2, y1) to t ∈ A′[x1, x2].
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For otherwise, combined with (2.11), {b1, c1, c2, y1, b2} is a cut in G separating a0 from

{a1, a2}, a contradiction. 2

Now, we choose T so that A′[t, a2] is minimal.

(2.13) t 6= a2.

For otherwise, combined with Lemma 3.0.1, the path A′[a1, t1] ∪ T1 ∪ B′[b1, t′1] from a1

to b1, the path A′[a1, x1] ∪ X1 from a1 to b2, the path T ∪ B′[t′, y1] ∪ A′0 from a2 to a0,

and the path B′′0 ∪ B′[t2, c2] ∪ T2 ∪ A′[t2, u2] ∪ u2w2 ∪W [w2, y2] from b1 to b2 show that

α(A′, B′) = 2, a contradiction to (i) of Lemma 5.0.10. 2

(2.14) T is internally disjoint from T1, T2, and t = u2 = vj .

First, we may assume T is internally disjoint from T1, T2. For otherwise, let v ∈ V (T ∩

(T1 ∪ T2)), such that T [v, t′] is minimal. Now, if v ∈ T1, then T1[t1, v] ∪ T [v, t′], T2 form

a cross, contradicting (2.2); if v ∈ T2, then T1, T2[t2, v] ∪ T [v, t′] contradict the choice of

T1, T2.

Now, by (2.2), we may assume t ∈ A′[t2, a2). By the choice of T1, T2, we may further

assume t /∈ A′[t2, vj). Finally, by Lemma 5.0.3, we have t /∈ A′(u2, a2), and so t = u2 =

vj . 2

(2.15) t1 ∈ A′[a1, w1).

For otherwise, t1 ∈ A′[w1, vj). We first claim G has an A′-B′ path T0 from t0 ∈ A′(x1, w1)

to t′0 ∈ B′[b1, y1], internally disjoint from H ′. For otherwise, by (2.5) and u2 = vj , G has

a separation (G1, G2), such that V (G1 ∩ G2) = {x1, w1, u2, u, x2, y2} with u = y1 (when

z1 6= z2) or u = z1 (when z1 = z2), {a0, a1, a2, b1, b2} ⊆ V (G1), V (X1 ∪ X2) ⊆ V (G2),

and (G2, x1, w1, u2, u, x2, y2) is planar, a contradiction to Lemma 2.0.3.

We may assume T0 is disjoint from T1, T2. For otherwise, let v ∈ V (T0 ∩ (T1 ∪ T2)),

such that T0[v, t′0] is minimal. Now, if v ∈ T1, then T1[t1, v] ∪ T0[v, t′0], T2 contradict the

choice of T1, T2; if v ∈ T2, then T1, T2[t2, v] ∪ T0[v, t′0] form a cross, contradicting (2.2).
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But then, either T0, T2 contradict the choice of T1, T2, or T0, T1 form a cross, contra-

dicting (2.2). 2

Now, combined with (2.15) and Lemma 3.0.1, the path from A′[a1, t1] ∪ T1 ∪B′[b1, t′1]

from a1 to b1, the path A′[a1, x1]∪X1 from a1 to b2, the path A′[t, a2]∪ T ∪B′[t′, y1]∪A′0

from a2 to a0, and the path B′′0 ∪B′[t2, c2]∪ T2 ∪A′[w1, t2]∪W [w1, y2] from b1 to b2 show

that α(A′, B′) = 2, a contradiction to (i) of Lemma 5.0.10. 2

Lemma 5.0.12 None of (i) and (ii) of Lemma 5.0.8 holds.

Proof. For, suppose (i) or (ii) of Lemma 5.0.8 holds.

(i) When (i) of Lemma 5.0.8 holds, by Lemma 5.0.9, we may choose 2-cut {z′1, z′2} so

that z′1 ∈ A′[x1, w1].

(ii) When (ii) of Lemma 5.0.8 holds, by Lemma 5.0.11, we may assumeN(y1)∩V (H0) ⊆

V (W [w1, w2]). For notation convenience, we let z′1 := w1 and z′2 := z1.

(1) z′2 /∈ V (X2).

For, suppose z′2 ∈ V (X2). Since z1 /∈ V (X2) by Lemma 5.0.7, we may assume (i) holds.

Then z′1 = x1; or else, it contradicts Lemma 5.0.1 thatH ′−y1−A′(x1, x2) contains disjoint

paths from N(y1) − V (A′), y2 to x1, x2, respectively. But now, {x1, y2, z′2} is a cut in G

separating V (X1(x1, y2)) from {a0, a1, a2, b1, b2}, a contradiction. 2

Since z′2 /∈ V (X2), then wm ∈ W (z′2, y2). Now, we let h ∈ {2, · · · ,m}, such that

wh ∈ W (z′2, y2), and subject to this, h is minimum.

(2) H0 −W [wh, y2] ∪ A′(x1, w1] contains a path Y from N(y1)− V (A′) to x1.

Let v ∈ N(y1) ∩ V (H0), such that v /∈ V (W [wh, y2] ∪ A′(x1, w1]). For, suppose such a

path Y does not exist. Then, combined with the planar structure of H0, there exist z′′1 ∈

A′[x1, z
′
1], z

′′
2 ∈ W [wh, y2], such that z′′1 , z

′′
2 are incident with a common finite face of H ,
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and {z′′1 , z′′2} is a 2-cut in H0. Hence, (i) holds. But then, {z′′1 , z′′2} contradicts the choice of

{z′1, z′2}. 2

Now, we let Y1 be the path obtained from Y by adding the vertex y1 and the edge from

y1 to the end of Y ∗, such that Y1 is a path from y1 to x1, and let Y2 := W [y2, wh] ∪ whuh,

and so Y2 is a path from y2 to uh, disjoint from Y1.

(3) H0 −W [z2, wm] has a path Y ′2 from y2 to z′1, internally disjoint from A′.

For otherwise, by the planar structure of H0, there exist z′′1 ∈ A′[x1, z′1), z′′2 ∈ W [z2, wm],

such that z′′1 , z
′′
2 are incident with a common finite face of H0, and {z′′1 , z′′2} is a 2-cut in H0.

Hence, (i) holds. But then, {z′′1 , z′′2} contradicts the choice of {z′1, z′2}. 2

Now, we let Y ′1 := Z ′2 ∪W [z2, wm] ∪ wmvm, and so Y ′1 is a path from y1 to x2, disjoint

from Y ′2 .

(4) G has no cross C,D from c, d ∈ A′ to c′, d′ ∈ B′[b1, y1], such that C,D are internally

disjoint from A′, B′, H ′, c ∈ A′[a1, z′1), and d ∈ A′(c, x2).

For otherwise, C,D, Y ′1 , Y
′
2 force a doublecross, a contradiction. 2

(5) If uh 6= x2 and G has an A′-B′ path S from s ∈ A′(uh, x2] to s′ ∈ B′[b1, y1],

internally disjoint from H ′, then b1 = r1 = r′ = s′ and S is an edge from s to s′.

We may first assume S andR are disjoint; otherwise, S,R are contained in anA′-B′ bridge,

which contradicts (v) of Lemma 4.0.9 due to the path uhwh ∪W [wh, y2] from uh to y2.

Now, s′ /∈ B′(r′, y1]; otherwise, S,R, Y1, Y2 form a doublecross by uh 6= x2. Thus, G

has no A′-B′ path from A′(uh, x2] to B′(r′, y1], which further implies that S,Q are disjoint.

We may assume b1 = r1 and so a1 = x1 by (iii) of Lemma 5.0.4. For, suppose b1 6= r1.

Then s′ 6= b1; otherwise, s = x2 = a2, and S is an edge from a2 to b1, a contradiction.

So s′ ∈ B′(b1, r
′]. But then, A′[a1, r] ∪ R ∪ B′[s′, r′] ∪ S ∪ A′[s, a2] ∪ Y1 ∪ A′0 and
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B′1 ∪ Q ∪ A′[q, uh] ∪ Y2 ∪ B′[y2, b2] show that γ is feasible, a contradiction. (B′1, A
′
0 are

defined in (ii) of Lemma 5.0.10.)

We may also assume r1 = r′. For, suppose r1 6= r′. By Lemma 5.0.2, there exist

a core H ′ of A,B with r1, r2 as feet and r′ ∈ B′(r1, r2), and an A′-B′ bridge M4 with

extreme hands l4, r4 and feet l′4, r
′
4, such that R is internally disjoint from M4, l4 = r4 = xi

for some i ∈ [2], and r′ ∈ B′(l′4, r
′
4). Since G has no A′-B′ path from A′(uh, x2] to

B′(r′, y1], then i 6= 2 and S is internally disjoint from M4. Next, s′ 6= r′. For, suppose

s′ = r′. Let P ∗ be the path from l′4 to r′4 in M4, internally disjoint from A′, B′, then

A′[a1, r]∪R∪S ∪A′(uh, a2]∪Y1 ∪A′0 and B′[b1, l′4]∪P ∗ ∪B′[r′4, q′]∪Q∪A′[q, uh]∪Y2

show that γ is feasible, a contradiction. So s′ ∈ B′[r1, r
′) and s = x2 (by the definition

of r′). Now, we see that s′ /∈ B′(r1, r
′) and S is not contained in an A′-B′ bridge. For

otherwise, by Lemma 4.0.9, S is contained in H ′, which further implies x2 is an extreme

hand of H ′. So H ′ is a main core of A,B, a contradiction to Lemma 4.0.8. Therefore,

s′ = r1, and S is an edge from b1 to x2, which implies a2 6= x2, a contradiction.

Thus, now, b1 = r1 = r′ = s′. To finish (5), we just need to prove that S is an edge

from A′(uh, x2] to s′. For otherwise, S is contained in an A′-B′ bridge N with extreme

hands n1, n2. Obviously, V (N ∩ B′) ⊆ {b1, y1} (by s′ = r′). Moreover, by Lemma 5.0.3,

V (N ∩ A′(uh, x2)) = ∅. Hence, n1 ∈ A′[x1, uh] and n2 = x2. By (v) of Lemma 4.0.9,

H ′ − y1 does not have a path from A′(n1, n2) to y2, internally disjoint from A′. So, by the

existence of path Y2, n1 /∈ A′[x1, u2). So n1 = uh. But then, {n1, n2, b1, y1} is a cut in G

separating V (N) from {a0, a1, a2, b1, b2}, a contradiction. 2

(6) x1 6= z′1.

For, suppose x1 = z′1. Since w1 6= x1, then (i) holds. And G has an A′-B′ path from

A′(uh, x2) to B′[b1, y1] internally disjoint from H ′ − y1; otherwise, G has a separation

(G1, G2) of order 5, such that V (G1 ∩ G2) = {x1, z′2, uh, x2, y2}, {a0, a1, a2, b1, b2} ⊆

V (G1), and V (X1 ∪ X2) ⊆ V (G2), a contradiction. Hence, A′(uh, x2) 6= ∅, and by (5),

b1 = r1 = r′, and a1 = x1 (by (iii) of Lemma 5.0.4). But then, G has a separation
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(G1, G2) of order 6, such that V (G1 ∩ G2) = {x1, z′2, uh, x2, y2, b1}, {a0, a1, a2, b1, b2} ⊆

V (G1), V (X1 ∪ X2) ⊆ V (G2), and (G2, x1, y2, x2, b1, uh, z
′
2) is planar, a contradiction to

Lemma 2.0.3. 2

(7) b2 = y2.

For, suppose b2 6= y2. By Lemma 5.0.8, N(b2) = {y2, x1} and a1 6= x1. Now, let e′ =

a1b
′ ∈ E(G) with b′ ∈ B′(b1, r1]∪B′[y2, b2). By (i) of Lemma 5.0.4, b′ ∈ B′(b1, r1]. Now,

since x1 6= z′1, combined with Lemma 3.0.1, the path A′0 ∪ Y ′1 ∪ A′[x2, a2] from a0 to a2,

the path B′1 ∪ Q ∪ A′[z′1, q] ∪ Y ′2 ∪ B′[y2, b2] from b1 to b2, the path e′ ∪ B′[b1, b′] from a1

to b1, and the path A′[a1, x1] ∪ e from a1 to b2 show that α(A′, B′) = 2, a contradiction to

(i) of Lemma 5.0.10. 2

(8) G has an A′-B′ path from A′[a1, z
′
1) to B′(b1, y1], internally disjoint from H ′.

For, suppose G has no A′-B′ path from A′[a1, z
′
1) to B′(b1, y1], internally disjoint from

H ′. Then a1 = x1. Now, by (5) and (7), when (i) holds, {b1, b2, z′1, z′2, uh} is a cut in

G separating a1, a2 from a0, a contradiction; when (ii) holds, {b1, b2, z′1, y2, uh} (when

z1 6= w2) or {b1, b2, z′1, z1, uh} (when z1 = w2) is a cut in G separating a1, a2 from a0, a

contradiction. 2

(9) If uh 6= x2, then G has no A′-B′ path from A′(uh, x2] to B′[b1, y1], internally disjoint

from H ′.

Suppose G has an A′-B′ path S from s ∈ A′(uh, x2] to s′ ∈ B′[b1, y1], internally disjoint

from H ′. Then by (5), S is an edge from s to b1 with b1 = r1 = r′ = s′. So s 6= a2, and

s ∈ A′(uh, a2).

By (8), G has an A′-B′ path from A′[a1, z
′
1) to B′(b1, y1], internally disjoint from H ′.

Now, this path together with S forms a cross, which contradicts (4). 2

(10) G has disjoint A′-B′ paths from A′[a1, z
′
1) to B′[b1, y1], internally disjoint from H ′.
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For otherwise, there exists a vertex v ∈ V (G), such that G − v has no A′-B′ path from

A′[a1, z
′
1) to B′[b1, y1], internally disjoint from H ′. Then combined with (10), there exists

a separation (G1, G2) in G of order 4, such that V (G1 ∩ G2) = {v, z′1, z′2, uh}, a0, y1 ∈

V (G1 −G2), and a1, a2, b2 ∈ V (G2).

Now, we claim that (G2, v, z
′
1, z
′
2, uh, a2, b2, a1) is planar. Obviously, when v ∈ A′,

this claim is true. So we may assume v /∈ A′. Furthermore, if v ∈ B′ and all the A′-B′

paths from v to A′ are edges, then our claim is still true. Therefore, we may assume there

exists some A′-B′ bridge N with feet n′1, n
′
2 and extreme hands n1, n2, such that v ∈ N .

By (v) of Lemma 4.0.9, H ′ − y1 does not contain a path from A′(n1, n2) to y2, internally

disjoint from A′. Now, v /∈ B′; otherwise, n′1 = n′2 = v, and {n1, n2, v} is a cut in G

separating V (N) from {a0, a1, a2, b1, b2}, a contradiction. So v /∈ V (A′ ∪ B′). Now, N

has a separation (N ′, N ′′) of order 1, such that V (N ′ ∩N ′′) = {v}, n1, n2 ∈ V (N ′ −N ′′),

and n′1, n
′
2 ∈ V (N ′′ − N ′). We see that V (N ′) = {n1, n2, v}; or else, {n1, n2, v} is

a cut in G separating V (N ′) − {n1, n2, v} from {a0, a1, a2, b1, b2}, a contradiction. So,

V (N ′) = {n1, n2, v}, N ′ is planar, and (G2, v, z
′
1, z
′
2, uh, a2, b2, a1) is planar. So our claim

is true.

Now, we see that if v = a1, uh = a2, then {v, z′1, z′2, uh, b2} is a cut in G separating

V (X1∪X2) from {a0, a1, a2, b1, b2}, a contradiction; if v 6= a1, uh = a2 or v = a1, uh 6= a2,

then Lemma 2.0.3 applies; if v 6= a1, uh 6= a2, then Lemma 2.0.4 applies. 2

By (10), we let T1, T2 be two disjoint A′-B′ paths from t1, t2 ∈ A′[a1, z
′
1) to t′1, t

′
2 ∈

B′[b1, y1], such that T1, T2 are internally disjoint from H ′, a1, t1, t2, a2 occur on A′ in order,

and subject to this, A′[t1, t2] ∪ B′[t′1, t′2] are maximal. By (4), T1, T2 do not form a cross,

and so b1, t′1, t
′
2, y1 occur on B′ in order.

(11) Q is internally disjoint from T1, T2, t′1 ∈ B′[b1, r′], and t′2 /∈ B′(q′, y1].

For, suppose Q is not internally disjoint from Tj for some j ∈ [2], then Q, Tj are contained

in a same A′-B′ bridge. But then, the existence of the path from z′1 to y2 in H ′ − y1

contradicts (v) of Lemma 4.0.9.
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Hence, t′2 /∈ B′(q′, y1] (to void the cross contradicting (4)).

We also see that t′1 ∈ B′[b1, r′]. For otherwise, t′1 ∈ B′(r′, t′2). Now, V (R∩(T1∪T2)) =

∅. For, suppose there exists u ∈ V (R ∩ (T1 ∪ T2)), then we choose u so that R[r′, u] is

minimal. Now, if u ∈ T1, then R[r′, u] ∪ T1[u, t1] and T2 contradict the choice of T1, T2; if

u ∈ T2, then T1, R[r′, u]∪T2[u, t2] form a cross, contradicting (4). So V (R∩(T1∪T2)) = ∅.

But then if r ∈ A′[a1, t1], R and T2 contradict the choice of T1, T2; if r ∈ A′(t1, q), then

T1, R form a cross, contradicting (4). 2

We let Q0 be an A′-B′ path from q0 ∈ A′(z′1, a2] to q′0 ∈ B′[b1, y1], internally disjoint

from H ′, such that B′[q′0, y1] is minimal. By the existence of Q, obviously, q′0 ∈ B′[q′, y1].

(12) There do not exist c1, c2 ∈ V (G′0), such that c1 ∈ B′[b1, t′1], c2 ∈ B′[q′0, y1], and c1, c2

are incident with a common finite face of G′0.

For, suppose (12) fails. We choose c1, c2 so that B′[c1, c2] is maximal. Since t′1 ∈ B′[b1, r′],

then c1 ∈ B′[b1, r′]. We may further assume c1 ∈ B′[b1, r1]. In fact, by (iii) of Lemma 5.0.2,

when r′ 6= r1, we have r′ ∈ B′(r1, r2), and so r′, r1, r2 are incident with a common finite

face of G′0, which further implies c1 ∈ B′[b1, r1] by the choice of c1, c2.

Now, we may assume G has an A′-B′ path T3 from t′3 ∈ B′(b1, c1) ∪ B′(c2, y1) to

t3 ∈ A′. For otherwise, {b1, b2, c1, c2, y1} is a cut in G separating a0 from {a1, a2}, a

contradiction.

We may assume t′3 ∈ B′(c2, y1). For otherwise, t′3 ∈ B′(b1, c1), and so t′3 ∈ B′(b1, r1),

which further implies T3 is an edge. Now, by the choice of T1, T2, and by (4) and (9), we

have t3 = uh = a2. Thus,A′[a1, t1]∪T1∪B′[t′3, t′1]∪T3∪Y ′1∪A′0 andB′1∪Q∪A′[z′1, q]∪Y ′2

show that γ is feasible, a contradiction.

Now, by the choice of Q0, t3 /∈ A′(z′1, a2] and T3, Q0 are disjoint. Moreover, by (4), to

forbid the cross T3, Q0, t3 /∈ A′[a1, z′1), and so t3 = z′1.

We claim that G′0 − B′[t′1, q
′
0] − A′0 contains a path B∗3 from b1 to t′3. For otherwise,

by maximality of B′[c1, c2], there exists a vertex c3 ∈ V (A′0), such that {c2, c3} is a cut in
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G′0 separating b1 from t′3. Moreover, by the maximality of B′[c1, c2], there does not exist

an A′-B′ bridge with feet n′1, n
′
2, such that n′1 ∈ B′[b1, c2) and n′2 ∈ B′(c2, y1]. Hence,

{z′1, c2, c3, y1} is a cut in G separating t′3 from {a0, a1, a2, b1, b2}, a contradiction.

Now, A′[a1, t1]∪T1 ∪B′[t′1, q′0]∪Q0 ∪A′[q0, a2]∪Y ′1 ∪A′0 and B∗3 ∪T3 ∪Y ′2 show that

γ is feasible, a contradiction. 2

(13) G′0 −B′(b1, t′1]−B′[q′0, y1] ∪ A′0 contains a path B∗1 from b1 to B′(t′1, q
′
0).

For otherwise, b1 6= t′1, and there exist c1, c2 ∈ V (G′0) with c1 ∈ B′(b1, t
′
1] and c2 ∈

B′[q′0, y1] ∪ A′0, such that c1, c2 are incident with a common finite face of G′0. By (12),

c2 /∈ B′[q′0, y1]. So we may assume c2 ∈ A′0. Since t′1 ∈ B′[b1, r
′], then c1 ∈ B′(b1, r

′].

By Lemma 4.0.7, c1 /∈ B′(b1, r1]. So c1 ∈ B′(r1, r
′]. But then, by (iv) of Lemma 5.0.2,

c2 = a0 and b1 = r1. Then α(A′, B′) = 0, a contradiction to (i) of Lemma 5.0.10. 2

(14) When (i) holds, H ′ − y1 − V (X1[x1, y2)) ∪ {z′2} contains a path Y ∗2 from z′1 to y2,

internally disjoint from A′.

For otherwise, there exists a vertex u ∈ V (A′[x1, z
′
1) ∪ X1[x1, y2)), such that u, z′2 are

incident with a common finite face ofH ′−y1. By the choice of {z′1, z′2}, u /∈ V (A′[x1, z
′
1)).

So u ∈ V (X1(x1, y2)). But then, {u, z′2, uh, x2, y2} is a cut in G separating V (X2) from

{a0, a1, a2, b1, b2}, a contradiction. 2

(15) When (i) holds, H ′ − y1 − A′(x1, z′1)−W [z′2, y2] contains a path X∗ from x1 to z′1;

when (ii) holds, H ′ − y1 − A′(x1, z′1)−W [z2, y2] contains a path X∗ from x1 to z′1.

For otherwise, let v = z′2 when (i) holds; and let v = z2 when (ii) holds. Then there exists a

2-cut {z′′1 , z′′2} in H0, such that z′′1 ∈ A′(x1, z′1), z′′2 ∈ W [v, y2], and z′′1 , z
′′
2 are incident with

a common finite face of H0. Hence, (i) holds. But then {z′′1 , z′′2} contradicts the choice of

{z′1, z′2}. 2

(16) G has no A′-B′ path from A′(t1, z
′
1] to B′(t′1, q

′
0), disjoint from T1, Q0.
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For, suppose G has an A′-B′ path T from t ∈ A′(t1, z
′
1] to t′ ∈ B′(t′1, q

′
0), disjoint from

T1, Q0. When (i) holds, we let B∗ be the path from b1 to b2 in B∗1 ∪ B′(t′1, q′0) ∪ T ∪

A′[t, z′1] ∪ Y ∗2 ; when (ii) holds, we let B∗ be the path from b1 to b2 in B∗1 ∪ B′(t′1, q′0) ∪

T ∪ W ′[t, y2]. Now, combined with Lemma 3.0.1, the path B∗ from b1 to b2, the path

A′[q0, a2] ∪Q0 ∪B′[q′0, y1] ∪A′0 from a2 to a0, the path A′[a1, t1] ∪ T1 ∪B′[b1, t′1] from a1

to b1, and the path A′[a1, x1] ∪ X1 from a1 to b2 show that α(A′, B′) = 2, a contradiction

to (i) of Lemma 5.0.10. 2

(17) t′2 = q′0.

For otherwise, by (16), V (T2 ∩ Q0) 6= ∅. So T2, Q0 are contained in a same A′-B′ bridge.

But the existence of the path from z′1 to y2 in H ′ − y1 contradicts (v) of Lemma 4.0.9. 2

(18) G has an A′-B′ path R∗ from r′ to A′(x1, z′1), and t′1 = r′.

We may assume G has an A′-B′ path from r′ to A′(x1, z′1). For otherwise, R is disjoint

from T2, and R, T2 form a cross, contradicting (4).

Now, we prove t′1 = r′. For otherwise, r′ ∈ B′(t′1, q′0). Now, by (16), V (R∗ ∩ (T1 ∪

Q0)) 6= ∅. Obviously, by the definition of r′, V (R∗ ∩ T1) = ∅. Thus, R∗, Q0 are contained

in a same A′-B′ bridge. But then, the path from z′1 to y2 in H ′ − y1 contradicts (v) of

Lemma 4.0.9. 2

Now, the path A′[a1, x1] ∪ X∗ ∪ A′[z′1, a2] from a1 to a2 and the path B′[b1, r′] ∪ R ∪

A′[r, t2] ∪ T2 ∪ B′[t′2, y1] ∪ Z ′2 ∪W [z2, y2] from b1 to b2 show that G′0 does not contain a

path from B′(t′1, t
′
2) to a0, internally disjoint from B′; or else, it contradicts (i) of Lemma

3.0.2. So, there exist c1 ∈ B′[b1, t′1] and c2 ∈ B′[t′2, y2], such that c1, c2 are incident with a

common finite face of G′0, a contradiction to (12). 2
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CHAPTER 6

SLIM CONNECTOR

In this chapter, we deal with the case, when no ideal frame in γ = (G, a0, a1, a2, b1, b2)

admits a fat connector.

Definition. Let A,B be an ideal frame in γ w.r.t. a0. Assume there does not exist

any fat connectors of ideal frame A,B, then let G0 := G − A. By Lemma 2.0.6 and the

structure of slim connectors, G0 has a disk representation with B and a0 occurring on the

boundary of the disk, and any A-B path in γ is induced by a single edge.

Lemma 6.0.1 Suppose γ is infeasible, and A′, B′ is a core a0-frame in γ. Let a−1 := a2

and a3 := a0. Then

(i) There do not exist i ∈ {0, 1, 2}, a graph H and vertices s, s′ ∈ V (H), such that G is

obtained from H by identifying s with s′, and (H, ai−1, b1, ai+1, b2) is planar.

(ii) For any i ∈ {0, 1, 2}, (G − ai−1, ai, b1, ai+1, b2) or (G − ai+1, ai, b1, ai−1, b2) is not

planar.

(iii) There do not exist a permutation π of {0, 1, 2}, a graph H and s, t, s′, t′ ∈ V (H),

such that G is obtained from H by identifying s with s′ and t with t′, respectively,

(H, aπ(0), b1, aπ(1), s, t, s
′, t′, aπ(2), b2) is planar, and aπ(1), t, s

′, aπ(2) are distinct in

H .

Proof. Let n denote the number of vertices in G. Obviously, |E(G)| ≥ 3n− 7.

For, suppose (i) fails, and there exist i ∈ {0, 1, 2}, a graph H and vertices s, s′ ∈

V (H), such that G is obtained from H by identifying s with s′, and (H, ai−1, b1, ai+1, b2)

is planar. Obviously, |E(H)| ≥ |E(G)| ≥ 3n − 7. Moreover, we let H ′ := H +

{ai−1b1, ai−1b2, ai+1b1, ai+1b2, b1b2}, thenH ′ is planar with |V (H ′)| = n+1 and |E(H ′)| ≥
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3n−2 = 3(n+1)−5. But now, it contradicts that a planar graph with n+1 (≥ 3) vertices

has at most 3(n+ 1)− 6 edges.

For, suppose (ii) fails, and for some i ∈ {0, 1, 2}, (G − ai−1, ai, b1, ai+1, b2) and (G −

ai+1, ai, b1, ai−1, b2) are planar. Without loss of generality, we assume i = 0, and the degree

of a1 in G is no more than the degree of a2 in G. Let k denote the degree of a1 in G, and

let G′ := G + {a2b1, a2b2, a0b1, a0b2, b1b2}. Obviously, G′ − a1 is planar. We also see

that a2 has degree at least k + 2 in G′, a0 has degree at least 6 in G′, and bj has degree at

least 5 in G′ for j ∈ [2]. Moreover, all other vertices of G′ not in {a0, a1, a2, b1, b2} have

degree at least 6 in G′. Hence, the sum of degrees of each vertices in G′ − a1 is at least

6(n − 5) + (k + 2) + 6 + 5 + 5 − k = 6n − 12. So the number of edges in G′ − a1 is at

least 3n− 6 = 3(n− 1)− 3. But now, it contradicts that a planar graph with n− 1 (≥ 3)

vertices has at most 3(n− 1)− 6 edges.

For, suppose (iii) fails due to some permutation π of {0, 1, 2}, a graphH and s, t, s′, t′ ∈

V (H). Obviously, |E(H)| ≥ |E(G)| ≥ 3n−7. Moreover, we letH ′ := H+{b1aπ(0), b1aπ(1),

b2aπ(0), b2aπ(2), aπ(0)aπ(1), aπ(0)aπ(2), aπ(0)t, aπ(0)s
′}. SinceG∗ is 6-connected and (H, aπ(0),

b1, aπ(1), s, t, s
′, t′, aπ(2), b2) is planar, then aπ(0)aπ(1), aπ(0)aπ(2), aπ(0)t, aπ(0)s′ /∈ E(H), and

so H ′ is planar with |V (H ′)| = n + 2 and |E(H ′)| ≥ 3n + 1 = 3(n + 2)− 5. But now, it

contradicts that a planar graph with n+2 (≥ 3) vertices has at most 3(n+2)− 6 edges. 2

Definition. Let γ = (G, a0, a1, a2, b1, b2) be a rooted graph with an ideal frame A,B

w.r.t. a0. Let a′b′, a′′b′′ ∈ E(G) with a′, a′′ ∈ V (A) and b′, b′′ ∈ V (B) all distinct. We say

that a′b′, a′′b′′ form a cross (w.r.t. A,B) if a1, a′, a′′, a2 occur on A in order, and b1, b′′, b′, b2

occur on B in order. We say that a′b′, a′′b′′ are parallel if a1, a′, a′′, a2 occur on A in order,

and b1, b′, b′′, b2 occur on B in order.

For i = 5, 6, 7, let ei = aibi ∈ E(G) with ai ∈ V (A) to bi ∈ V (B). We say

that (e5, e6, e7) is a 3-edge configuration (w.r.t. A,B) if b6 ∈ B(b5, b7) and a1, a2, a6 /∈

A[a5, a7].

For i = 3, 4, 5, 6, 7, let ei = aibi ∈ E(G) with ai ∈ V (A) and bi ∈ V (B). We say that
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(e3, e4, e5, e6, e7) is a 5-edge configuration (w.r.t. A,B) if

• (e5, e6, e7) is a 3-edge configuration w.r.t. A,B,

• A[a5, a7] ⊆ A(a3, a4), and

• b3, b4 ∈ B(bj, b5) ∩B(bj, b7) for some j ∈ [2].

Lemma 6.0.2 Suppose γ is infeasible, and A′, B′ is a core a0-frame in γ. Suppose A,B is

an ideal frame w.r.t. a0 in γ. Then there exists a 5-edge configuration w.r.t. A,B.

Proof. (1) For any i ∈ [2], G has a cross from A− ai to B.

For, suppose (1) fails. Without loss of generality, we assumeG has no cross fromA−a2

toB. Now, we let b′ ∈ B[b1, b2], such thatG has an edge e′ from b′ toA[a1, a2), and subject

to this, B[b′, b2] is minimal.

We first see that G has an edge from a2 to B[b1, b
′); otherwise, (G, a1, a2, b2, a0, b1) is

planar, a contradiction to (i) of Lemma 6.0.1.

Now, we let u1, u2 ∈ B[b1, b
′), such that G has an edge from uk to a2 for each k ∈ [2],

and subject to this, B[u1, u2] is maximal.

We claim that G has an edge e from b ∈ B(u1, u2) to a ∈ A[a1, a2). For otherwise,

we can obtain a new graph H from G by splitting a2 as s, s′, such that H has no edge

from B[u1, u2] to s′ and no edge from B[b′, b2] to s, and (H, a1, b2, a0, b1) is planar, which

contradicts (i) of Lemma 6.0.1.

We also see that a /∈ A(a1, a2). For otherwise, let e∗ = a1b
∗ ∈ E(G) with b∗ 6= b.

Since G has no cross from A− a2 to B, then b∗ ∈ B(b1, b). Now, (e∗, u1a2, e, u2a2, e′) is a

5-edge configuration, a contradiction.

So, a = a1, and all edges from B(u1, u2) to A[a1, a2) are end in a1. But now, (G −

a1, a2, b2, a0, b1) and (G − a2, a1, b2, a0, b1) are planar, contradicting (ii) of Lemma 6.0.1.

2

We let b′1, b
′
2 ∈ B[b1, b2], such that b1, b′1, b

′
2, b2 occur on B in order, G has an edge from

b′i to A for each i ∈ [2], and subject to this, B[b′1, b
′
2] is maximal.
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(2) For some i ∈ [2], G has no edge from b′i to A(a1, a2).

For, suppose G has an edge e′i from b′i to A(a1, a2) for each i ∈ [2]. For each k ∈ [2],

since the degree of ak in G is at least 4, then we may assume G has an edge ek from ak to

B(b′1, b
′
2). But now, e1, e2, e′1, e

′
2 form a doublecross, a contradiction. 2

By symmetry, without loss of generality, we may assume that G has no edge from b′1 to

A(a1, a2), and has an edge e3 from b′1 to a1.

By (1), there exist e4 = a4b4, e5 = a5b5 ∈ E(G) with a4, a5 ∈ A(a1, a2] and b4, b5 ∈

B[b′1, b2], such that e4, e5 form a cross, and b1, b4, b5, b2 occur on B in order. We further

choose e4, e5 so thatB[b′1, b4]∪A[a1, a5] is minimal, and subject to this,B[b5, b2]∪A[a4, a2]

is minimal. By the choice of e4, e5, we may assume

(3) G has no edge from B[b1, b4) to A(a5, a2], no edge from A(a1, a5) to B(b4, b2], no

edge from b4 to A(a4, a2], and no edge from a5 to B(b5, b2].

(4) G has no cross from B[b1, b4] to A[a1, a5] and no cross from B[b5, b2] to A[a4, a2].

For otherwise, such a cross together with e4, e5 forms a doublecross. 2

(5) If G has an edge from B(b5, b2] to A(a1, a4), then G has no edge from B(b4, b5) to

A(a1, a4)− a5.

For, suppose G has an edge e from b ∈ B(b5, b2] to a ∈ A(a1, a4) and an edge e′ from

b′ ∈ B(b4, b5) to a′ ∈ A(a1, a4)− a5. Now, by (3), we have a /∈ A(a1, a5], a′ /∈ A(a1, a5),

and so a, a′ ∈ A(a5, a4). But then, (e3, e4, e′, e5, e) is a 5-edge configuration. 2

Let b′5 ∈ B(b4, b5], such thatG has an edge e′5 from a5 to b′5, and subject to this,B[b′5, b2]

is maximal.

(6) G has no edge from B(b′5, b5) to A− a5.

For, suppose G has an edge e from B(b′5, b5) to A− a5. Then b5 6= b′5, and (e3, e4, e
′
5, e, e5)

forms a 5-edge configuration, a contradiction. 2

74



(7) G− a4b′5 has no cross from B[b′5, b2] to A(a5, a2].

For, suppose there exist e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with a′, a′′ ∈ A(a5, a2] and b′, b′′ ∈

B[b′5, b2], such that e′, e′′ form a cross, a1, a′, a′′, a2 occur on A in order, and e′′ 6= a4b
′
5.

Then we may assume a′′ /∈ A(a4, a2]; otherwise, e4, e′5, e
′, e′′ form a doublecross. So a′ ∈

A(a5, a4). Now, we see that b′′ = b′5; otherwise, (e3, e4, e′5, e
′′, e′) is a 5-edge configuration.

Since e′′ 6= a4b
′
5, then a′′ 6= a4. So a′′ ∈ A(a5, a4). Now, let e∗ = a′′b∗ ∈ E(G) with

b∗ ∈ B[b1, b2]. Since the degree of a′′ in G is at least 6, we may further let b∗ /∈ {b′, b′′, b4}.

First, we see that b∗ /∈ B[b1, b4); otherwise, e∗, e′, e4, e′5 form a doublecross. Next, b∗ /∈

B(b4, b
′
5); otherwise, (e3, e4, e∗, e′5, e

′) is a 5-edge configuration. Moreover, b∗ /∈ B(b′5, b
′);

otherwise, (e3, e4, e′5, e
∗, e′) is a 5-edge configuration. So we may assume b∗ ∈ B(b′, b2],

but then (e3, e4, e
′′, e′, e∗) is a 5-edge configuration, a contradiction. 2

If a4 6= a2, we let b∗1, b
∗
2 ∈ B(b4, b2], such that b1, b∗1, b

∗
2, b2 occur on B in order, G has

an edge e∗i from a∗i ∈ A(a4, a2] to b∗i for i ∈ [2], and subject to this, B[b∗1, b
∗
2] is maximal.

(8) If a4 6= a2, then G has no edge from B(b∗1, b
∗
2) to a5.

For, suppose a4 6= a2, and G has an edge e∗5 from b∗5 ∈ B(b∗1, b
∗
2) to a5. We see that b∗2 6= b2.

For otherwise, b∗2 = b2 and a∗2 6= a2. By (3), G has no edge from a2 to B[b1, b4], and so G

has an edge from a2 to B(b4, b2), which together with e4, e∗2, e
∗
5 forms a doublecross. Then

we shall show that we can obtain a new graph H from G by splitting a5 or b∗5 as s, s′, such

that (H, a1, b2, a0, b1) is planar.

We first claim thatG has no edge fromB[b1, b
∗
1) toA(a4, a2] and no cross fromB[b1, b

∗
1)

to A[a1, a2]. In fact, we see that G has no edge from B(b4, b
∗
1) to A[a1, a2] − a4. For

otherwise, let e = ab ∈ E(G) with b ∈ B(b4, b
∗
1) and a ∈ A[a1, a2] − a4. Then by the

definition of b∗1, b
∗
2, we have a /∈ A(a4, a2]. Moreover, a 6= a1 to avoid the doublecross

e, e4, e
∗
5, e
∗
1. But then a ∈ A(a1, a4), and so (e3, e4, e, e

∗
1, e
∗
5) is a 5-edge configuration,

a contradiction. Now, combined with (3) and (4), we may assume G has no edge from

B[b1, b
∗
1) to A(a4, a2] and no cross from B[b1, b

∗
1) to A[a1, a2].
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We also claim that G has no edge from B(b∗2, b2] to A[a1, a2]. For, suppose G has an

edge e from b ∈ B(b∗2, b2] to a ∈ A[a1, a2]. Then a 6= a1; otherwise, (e, e∗2, e
∗
5, e
∗
1, e4)

is a 5-edge configuration. And a /∈ A(a1, a4); otherwise, (e3, e4, e∗5, e
∗
2, e) is a 5-edge

configuration. We may also assume a 6= a4; otherwise, e4, e∗1, e
∗
5, e form a doublecross. So

a ∈ A(a4, a2], but it contradicts the definition of b∗1, b
∗
2.

Moreover, we claim thatG−{a5, b∗5} has no edge e fromB[b∗1, b
∗
2] toA[a1, a4], such that

e 6= a4b
∗
1. For, suppose there exists e = ab ∈ E(G) with e 6= a4b

∗
1, a ∈ A[a1, a4]− a5, and

b ∈ B[b∗1, b
∗
2]−b∗5. Then we may assume b /∈ B(b∗5, b

∗
2]; otherwise, if a ∈ A[a1, a5), then a =

a1 by (3), and (e∗2, e, e
∗
5, e
∗
1, e4) is a 5-edge configuration; if a ∈ A(a5, a4], then e4, e∗5, e, e

∗
1

form a doublecross. So b ∈ B[b∗1, b
∗
5). Now, if a ∈ A[a1, a5), then e4, e

∗
5, e, e

∗
1 form a

doublecross. So a ∈ A(a5, a4]. We may further assume b = b∗1; or else, b ∈ B(b∗1, b
∗
5),

and (e∗2, e
∗
5, e, e

∗
1, e4) is a 5-edge configuration. Since e 6= a4b

∗
1, then a ∈ A(a5, a4). Now,

we let e0 = ab0 ∈ E(G) with b0 ∈ B[b1, b2]. Since the degree of a in G is at least 6, we

may further let b0 /∈ {b4, b∗1, b∗5}. By (3), b0 /∈ B[b1, b4). Moreover, b0 /∈ B(b4, b
∗
1); or else,

(e3, e4, e0, e
∗
1, e
∗
5) is a 5-edge configuration. By b = b∗1, we have b0 /∈ B(b∗1, b

∗
2] − b∗5. So

b0 ∈ B(b∗2, b2], but it contradicts that G has no edge from B(b∗2, b2] to A[a1, a2].

Finally, we claim that G has no cross from A(a4, a2] to B[b∗1, b
∗
5) ∪ B(b∗5, b

∗
2]. For,

suppose there exist e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with a′, a′′ ∈ A(a4, a2] and b′, b′′ ∈

B[b∗1, b
∗
5) ∪ B(b∗5, b

∗
2], such that e′, e′′ form a cross, and a1, a′, a′′, a2 occur on A in order.

Then b′ ∈ B[b∗1, b
∗
5) to avoid the doublecross e4, e∗5, e

′, e′′, and so b′′ ∈ B[b∗1, b
∗
5). Moreover,

a∗2 ∈ A[a′′, a2] to avoid the doublecross e4, e∗5, e
′′, e∗2. But now, (e∗2, e

∗
5, e
′, e′′, e4) is a 5-edge

configuration.

Now, we let e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with b′ ∈ B[b∗1, b
∗
5), b

′′ ∈ B(b∗5, b
∗
2], and

a′, a′′ ∈ A(a4, a2], such that B[b′, b′′] is minimal.

We may assume G has an edge e0 from b∗5 to a0 ∈ A[a1, a′) ∪ A(a′′, a2] with a0 6= a5.

For otherwise, combined with (6) and our claims, we can obtain a new graph H from

G by splitting a5 as s, s′, such that (H, a1, b2, a0, b1) is planar, which contradicts (i) of
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Lemma 6.0.1.

To avoid the doublecross e∗5, e0, e
′′, e4, we may further assume a0 ∈ A[a1, a′).

Now, we claim that G has no edge from a5 to B(b4, b2] − b∗5. For, suppose G has an

edge e from a5 to b ∈ B(b4, b2] − b∗5. Assume b ∈ B(b4, b
∗
5). Now, if a0 ∈ A(a5, a′), then

e, e0, e4, e
′ form a doublecross. So a0 ∈ A[a1, a5). Now, let e6 = a5b6 ∈ E(G). Since the

degree of a5 in G is at least 6, then we may let b6 /∈ {b4, b′, b∗5}. To avoid the doublecross

e6, e0, e4, e
′, b6 /∈ B(b∗5, b2]. Moreover, b6 /∈ B(b′, b∗5); or else, (e∗2, e0, e6, e

′, e4) is a 5-edge

configuration. By (6), b6 /∈ B(b4, b
′). So b6 ∈ B[b1, b4). But then (e∗2, e0, e, e4, e6) is a

5-edge configuration. So we may assume b ∈ B(b∗5, b2]. By (6), b /∈ B(b∗2, b2]. Now, if

a0 ∈ A[a1, a5), then e0, e, e4, e′ form a doublecross; if a0 ∈ A(a5, a′), then (e∗2, e, e0, e
′, e4)

is a 5-edge configuration, a contradiction.

Hence, by our claims, we can obtain a new graph H from G by splitting b∗5 as s, s′, such

that (H, a1, b2, a0, b1) is planar, which still contradicts (i) of Lemma 6.0.1. 2

For each aj , we let uj1, u
j
2 ∈ B[b1, b2], such that b1, u

j
1, u

j
2, b2 occur on B in order, G has

an edge f ji from aj to uji for i ∈ [2], and subject to this, B[uj1, u
j
2] is maximal.

(9) If a4 6= a2, then G has an edge from a2 to B(b5, b2].

For, suppose a4 6= a2 and G has no edge from a2 to B(b5, b2]. Since the degree of a2 in

G is at least 4, then, combined with a4 6= a2 and the choice of e4, e5, we have u21, u
2
2 ∈

B(b4, b5], u21 6= u22, and G has an edge f2 from a2 to B(u21, u
2
2). Then we shall show that

(G, a1, b2, a0, b1) is planar.

We claim that G has no edge from B(u21, u
2
2) to A[a1, a2). For, suppose G has an edge

e from b ∈ B(u21, u
2
2) to a ∈ A[a1, a2). First, a /∈ A[a1, a5); otherwise, e, e4, e5, f 2

1 form a

doublecross. By (8), a 6= a5. So a ∈ A(a5, a2). Now, we may assume b5 = b2; otherwise,

(e5, f
2
2 , e, f

2
1 , e4) is a 5-edge configuration, a contradiction. Since b5 = b2, then u22 6= b5.

But now, (e3, f 2
1 , e, f

2
2 , e5) is a 5-edge configuration, a contradiction.

We also claim that G has no cross from A[a1, a2) to B[b1, u
2
1]. For, suppose there exist

e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with a′, a′′ ∈ A[a1, a2) and b′, b′′ ∈ B[b1, u
2
1], such that
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e′, e′′ form a cross, and a1, a
′, a′′, a2 occur on A in order. We see that b′′ ∈ B[b4, u

2
1].

For otherwise, b′′ ∈ B[b1, b4), and by the choice of e4, e5, a′′ ∈ A[a1, a5] and a′ = a1.

But now e′, e′′, e4, e5 form a doublecross, a contradiction. Moreover, a′ = a1; otherwise,

(e3, e
′′, e′, f2, e5) is a 5-edge configuration. But then, e′, f2, e4, e5 form a doublecross.

Finally, we claim that G has no parallel edges from A[a1, a2) to B[u22, b2]. For, suppose

there exist e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with a′, a′′ ∈ A[a1, a2) and b′, b′′ ∈ B[u22, b2], such

that e′, e′′ are parallel, and a1, a′, a′′, a2 occur onA in order. We see that a′ ∈ A[a4, a2); oth-

erwise, e′, e′′, e4, f 2
1 form a doublecross. Moreover, b′′ ∈ B[u22, b5]; otherwise, e5, e′′, e4, f 2

1

form a doublecross. We may assume b5 = b2; otherwise, (e5, e′′, e′, f 2
1 , e4) is a 5-edge con-

figuration. So u22 6= b5. Now, let e = a′′b ∈ E(G) with b /∈ {b′, b5}. Then b /∈ B[b1, u
2
1] to

avoid the doublecross e, e′′, f 2
2 , e
′. Moreover, b /∈ B[u22, b

′); otherwise, (e3, f 2
1 , e, e

′, e′′) is a

5-edge configuration. Since G has no edge from B(u21, u
2
2) to A[a1, a2), then b ∈ B(b′, b5).

But now, (e3, f 2
1 , e
′, e, e5) is a 5-edge configuration.

Hence, by our claims, (G, a1, b2, a0, b1) is planar, contradicting (i) of Lemma 6.0.1. 2

(10) G has no edge from B(b5, b2] to A(a1, a4).

For, suppose G has an edge e from b ∈ B(b5, b2] to a ∈ A(a1, a4). We choose e so that

B[b, b2] is minimal. By (3), a ∈ A(a5, a4). By (5), G has no edge from B(b4, b5) to

A(a1, a4)− a5. Moreover, since the degree of a in G is at least 6, then we let e0 = ab0 with

b0 ∈ B[b1, b2] and b0 /∈ {b4, b5, b}. Now, by (3) and (5), and by the definition of b, we have

b0 ∈ B(b5, b).

G has no edge from A(a4, a2] to B[b1, b). For, suppose there exists e′ = a′b′ ∈ E(G)

with a′ ∈ A(a4, a2] and b′ ∈ B[b1, b). Then by (3), b′ /∈ B[b1, b4]. So b′ ∈ B(b4, b). But

then, e, e′, e4, e5 form a doublecross.

G has no edge from b4 to A(a5, a4) or no edge from a4 to B(b4, b); otherwise, such two

edges together with e5, e form a doublecross, a contradiction.

Now, we see that G has an edge e′ from a1 to b′ ∈ B(b4, b2]; otherwise, since G has

no edge from b4 to A(a5, a4) or no edge from a4 to B(b4, b), then combined with (3), (4),
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(6), and (7), we can obtain a new graph H from G by splitting a4 or b4 as s, s′, such that

(H, a1, a2, b2, a0, b1) is planar, a contradiction to (i) of Lemma 6.0.1.

We also see that G has no edge from a1 to B(b′5, b); otherwise, such an edge together

with e3, e4, e′5, e forms a 5-edge configuration, a contradiction.

Hence, b′ ∈ B(b4, b
′
5] ∪ B[b, b2]. We further choose e′ so that B[b′, b2] is maximal.

Moreover, we let e′′ = a1b
′′ ∈ E(G) with b′′ ∈ B(b4, b

′
5] ∪ B[b, b2] so that B[b′′, b2] is

minimal.

Now, assume b′′ ∈ B(b4, b
′
5]. Then by the choice of e′′, G has no edge from a1 to

B[b, b2]. Moreover, G has no edge from B[b1, b4) to A(a1, a2]; otherwise, by (3), such an

edge must end in A(a1, a5], which together with e′, e4, e5 forms a doublecross. Hence, G

has an edge e6 from a4 to b6 ∈ B(b4, b5); or else, we can obtain a new graph H from

G by splitting b4 as s, s′, such that (H, a1, a2, b2, a0, b1) is planar, a contradiction to (i) of

Lemma 6.0.1. Now, G has no edge from b4 toA(a1, a4); or else, such an edge together with

e5, e
′, e6 forms a doublecross. So we may assume a2 6= a4; otherwise, (G−a1, a2, b2, a0, b1)

and (G − a2, a1, b2, a0, b1) are planar, a contradiction to (ii) of Lemma 6.0.1. Then u22 ∈

B[b, b2] (by (7) and (9)). Moreover, b6 /∈ B(b′, b5]; otherwise, (f 2
2 , e, e6, e

′, e4) is a 5-edge

configuration. SoG has no edge from a4 toB(b′, b5]. Therefore, we can obtain a new graph

H from G by splitting a4 as s, s′, such that (H, a1, a2, b2, a0, b1) is planar, a contradiction

to (i) of Lemma 6.0.1.

So we may assume b′′ ∈ B[b, b2]. Now, a2 = a4; otherwise, u22 ∈ B[b, b2] (by (7) and

(9)) and (f 2
2 , e
′′, e0, e5, e4) is a 5-edge configuration.

We also claim that G has an edge e6 from a6 ∈ A(a1, a2) to b6 ∈ B[b1, b4]; other-

wise, (G− a1, a2, b2, a0, b1) and (G− a2, a1, b2, a0, b1) are planar, a contradiction to (ii) of

Lemma 6.0.1.

Then b6 /∈ B[b1, b4); otherwise, a6 ∈ A(a1, a5], and (e, e′′, e5, e4, e6) is a 5-edge con-

figuration. Hence, b6 = b4, and G has no edge from a5 to B[b1, b4), which further implies

b′5 6= b5 (as the degree of a5 in G is at least 6).
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Now, we may assume u22 /∈ B[b, b2]. For, suppose not. Then G has no edge from

{a1, a2} to B(b4, b5); otherwise, such an edge together with f 2
2 , e
′′, e5, e6 forms a 5-edge

configuration. Moreover, a6 /∈ A(a5, a2); otherwise, (f 2
2 , e
′′, e0, e5, e6) is a 5-edge configu-

ration. But now, (G−a1, a2, b2, a0, b1) and (G−a2, a1, b2, a0, b1) are planar, a contradiction

to (ii) of Lemma 6.0.1.

Since u22 /∈ B[b, b2], then G has no edge from a2 to B[b, b2]. By (7), G has no edge

from a2 to B(b′5, b). By (3), G has no edge from a2 to B[b1, b4). Since the degree of

a2 in G is at least 4, then G has an edge e′2 from a2 to B(b4, b
′
5). Now, a6 /∈ A(a5, a2);

otherwise, e6, e5, e, e′2 form a doublecross. Moreover, b′ /∈ B(b4, b) to avoid the doublecross

e′, e′2, e6, e. Hence, combined with (6), we can obtain a new graph H from G by splitting

a2 as s, s′, such that (H, a1, b2, a0, b1) is planar, a contradiction to (i) of Lemma 6.0.1. 2

Now, by (3), (8), (9), and (10), we have

(11) G has no edge from A(a1, a5) ∪ A(a4, a2] to B(b4, b5) and no edge from B[b1, b4) ∪

B(b5, b2] to A(a5, a4).

(12) There do not exist e′ = a′b′, e′′ = a′′b′′ ∈ E(G) with a′, a′′ ∈ A[a5, a4] and b′, b′′ ∈

B[b4, b5], such that e′, e′′ are parallel, a1, a′, a′′, a2 occur on A in order, and e′ 6=

a5b4, e
′′ 6= a4b5.

For, suppose such e′, e′′ exist. Then b′ = b4 or b′′ = b5; otherwise, (e3, e4, e′, e′′, e5) is a

5-edge configuration, a contradiction.

We may further assume b′ = b4. For otherwise, b′′ = b5 and a′′ 6= a4. Now, let

e = a′′b ∈ E(G) with b ∈ B[b1, b2]. Since the degree of a′′ inG is at least 6, we may further

let b /∈ {b4, b′, b5}. By (11), b /∈ B[b1, b4) ∪ B(b5, b2]. Moreover, b /∈ B(b4, b
′); otherwise,

(e3, e4, e, e
′, e′′) is a 5-edge configuration. So b ∈ B(b′, b5). But then (e3, e4, e

′, e, e5) is a

5-edge configuration.

By b′ = b4, we have that G− a4b5 has no parallel edges from B(b4, b5] to A[a5, a4].
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Now, since e′′ 6= a4b5 and the degree of a′′ in G is at least 6, then combined with (11),

we may choose b′′ 6= b5, and so b′′ ∈ B(b4, b5).

Since e′ 6= a5b4, then a′ ∈ A(a5, a4). Moreover, since the degree of a′ in G is at least

6, we let e = a′b ∈ E(G) with b ∈ B[b1, b2] and b /∈ {b4, b′′, b5}. By (11), b /∈ B[b1, b4) ∪

B(b5, b2]. And b /∈ B(b4, b
′′); otherwise, (e3, e4, e, e′′, e5) is a 5-edge configuration. So

b ∈ B(b′′, b5).

Now, G has no edge from a2 to B[b5, b2]; otherwise, (f 2
2 , e5, e, e

′′, e′) is a 5-edge con-

figuration. Hence, a4 = a2 (by (9)), and so G has no edge from a4 to B[b5, b2]. Moreover,

G has no edge from a1 to B(b4, b5); otherwise, such an edge together with e′, e5, e′′ forms

a doublecross.

Hence, since G−a4b5 has no parallel edges from B(b4, b5] to A[a5, a4], then, combined

with (3), (4) and (11), any two edges from B[b1, b4] to A do not form a cross, and any two

edges from B(b4, b2] to A are not parallel, which further implies that (G, a1, b2, a0, b1) is

planar, a contradiction to (i) of Lemma 6.0.1. 2

(13) G has an edge e0 from a1 to b0 ∈ B(b4, b2].

For, suppose G has no edge from a1 to B(b4, b2]. Then by (3), (4), (11), and (12), we can

obtain a new graph H from G by splitting a5, a4 as s, s′ and t, t′, respectively, such that

(H, a0, b1, a1, s, t, s
′, t′, a2, b2) is planar, a contradiction to (iii) of Lemma 6.0.1. 2

We choose e0 so that B[b0, b2] is maximal. Moreover, we let e′0 = a1b
′
0 ∈ E(G) with

b′0 ∈ B(b4, b2] so that B[b′0, b2] is minimal.

(14) a4 6= a2.

For, suppose a4 = a2. We first claim that A(a5, a2) 6= ∅.

For otherwise, A(a5, a2) = ∅. Now, we may assume G has an edge e from b ∈ B[b1, b4]

to a ∈ A(a1, a5]; or else, combined with (3), (4) and (6), (G − a1, a2, b2, a0, b1) is planar

and (G− a2, a1, b2, a0, b1) is planar, a contradiction to (ii) of Lemma 6.0.1.
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Moreover, G has no edge from a2 to B(b4, b5). For, suppose G has an edge e′ from a2

to b′ ∈ B(b4, b5). Then G has no edge from a1 to B(b4, b5); or else, such an edge together

with e, e′, e5 forms a doublecross. So b0 ∈ B[b5, b2]. Now, G has no edge from a2 to

B(b′5, b2]; otherwise, such an edge together with e0, e′5, e
′, e forms a 5-edge configuration.

So, combined with (3), (4) and (6), (G, a1, b2, a0, b1) is planar, a contradiction to (i) of

Lemma 6.0.1.

Now, since G has no edge from a2 to B(b4, b5), then G has an edge from a2 to B(b5, b2]

(by the degree of a2 in G), and so u22 ∈ B(b5, b2].

Assume b0 ∈ B(b4, b5). Then b /∈ B[b1, b4) to avoid the doublecross e0, e, e4, e5. Now,

by the degree of a5 in G, b′5 6= b5, and G has an edge e′′5 from a5 to b′′5 ∈ B(b′5, b5). By (6),

b0 ∈ B(b4, b
′
5]. So G has no edge from a1 to B[b5, b2]; otherwise, such an edge together

with f 2
2 , e
′′
5, e0, e forms a 5-edge configuration. Hence, combined with (3), (4) and (6), we

can obtain a new graph H from G by splitting b4 as s, s′, such that (H, a1, a2, b2, a0, b1) is

planar, a contradiction to (i) of Lemma 6.0.1.

Therefore, we may assume G has no edge from a1 to B(b4, b5). Moreover, G has an

edge fromB[b1, b4) toA(a1, a5]; otherwise, (G−a1, a2, b2, a0, b1) and (G−a2, a1, b2, a0, b1)

are planar, a contradiction to (ii) of Lemma 6.0.1. Hence, we may choose e so that

b ∈ B[b1, b4). Then b′0 /∈ B(b5, b2] and b′5 = b5; otherwise, (f 2
2 , e
′
0, e
′
5, e4, e) is a 5-edge

configuration. Hence, b0 = b′0 = b5, and we can obtain a new graph H from G by splitting

b5 as s, s′, such that (H, a1, a2, b2, a0, b1) is planar, a contradiction to (i) of Lemma 6.0.1.

Thus, our claim that A(a5, a2) 6= ∅ holds, and there exists a6 ∈ A(a5, a2). Since the

degree of a6 in G is at least 6 and G has no edge from a6 to B[b1, b4) ∪B(b5, b2] (by (11)),

we may let b′6, b
′′
6 ∈ B(b4, b5) with b′6 6= b′′6, such that b1, b′6, b

′′
6, b2 occur on B in order, G

has an edge e′6 from a6 to b′6 and an edge e′′6 from a6 to b′′6, and subject to this, B[b′6, b
′′
6] is

maximal.

We now claim that G has no edge from B[b1, b4] to A(a1, a5]. For, suppose G has

an edge e′′ from b′′ ∈ B[b1, b4] to a′′ ∈ A(a1, a5]. Then b0 ∈ B(b4, b
′
6] to avoid the
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doublecross e0, e′′, e5, e′′6. Moreover, b0 /∈ B(b′6, b5); otherwise, (e3, e4, e′6, e0, e5) is a 5-

edge configuration. Hence, b0 ∈ B[b5, b2] and G has no edge from a1 to B(b4, b5). We also

see that G has no edge from a1 to B(b5, b2] or no edge from a2 to B(b5, b2]; otherwise, such

two edges together with e5, e′6, e
′′ form a 5-edge configuration. But then, combined with

(3), (4), (11), and (12), we can obtain a new graph H from G by splitting a2 as s, s′, such

that (H, a1, b2, a0, b1) is planar, a contradiction to (i) of Lemma 6.0.1.

Thus,G has no edge fromB[b1, b4] toA(a1, a5], and so by (11) and (12), (G−a1, a2, b2, a0, b1)

is planar. Now, by (ii) of Lemma 6.0.1, (G− a2, a1, b2, a0, b1) is not planar, and so we may

assume G has an edge e from a1 to b ∈ B(b4, b5) and an edge e′ from b′ ∈ B[b1, b) to

a′ ∈ A(a1, a2). And b /∈ B(b′6, b5) to avoid 5-edge configuration (e3, e4, e
′
6, e, e5). More-

over, we may assume G has no edge from a2 to B(b4, b5); otherwise, such an edge together

with e, e′, e5 forms a doublecross. So, by the degree of a2, u22 ∈ B[b5, b2]. But now,

(f 2
2 , e5, e

′′
6, e, e

′) is a 5-edge configuration. 2

Now, by (9) and (14), G has an edge from a2 to B(b5, b2], and so u22 ∈ B(b5, b2]. By

(3), (11) and (14), G has no edge from a2 to B[b1, b5), and so u21 ∈ B[b5, b2].

(15) b0 ∈ B(b4, b5).

For otherwise, b0 ∈ B[b5, b2]. Now, we see that b′0 6= b5; otherwise, b0 = b′0 = b5, and by

(3), (4), (11), (12), and (14), we can obtain a new graph H from G by splitting a4 as s, s′,

such that (H, a1, a2, b2, a0, b1) is planar, a contradiction to (i) of Lemma 6.0.1.

Then G has no edge from B[b1, b4) to A(a1, a5]; or else, such an edge together with

f 2
2 , e
′
0, e5, e4 forms a 5-edge configuration. Hence, A(a1, a5) = ∅, and by the degree of a5

in G, b′5 6= b5. Now, G has no edge from B[b5, b
′
0) to A[a4, a2); otherwise, such an edge

together with f 2
2 , e
′
0, e
′
5, e4 forms a 5-edge configuration.

Moreover, if b4a5 ∈ E(G), then G has no edge from B(b4, b5) to A(a5, a2]; otherwise,

such an edge together with f 2
2 , e
′
0, e5, a5b4 forms a 5-edge configuration.

We may assume u21 ∈ B[b5, b
′
0). For otherwise, G has no edge from B[b5, b

′
0) to

A[a4, a2]. Now, by (3), (4), (11), (12), and our previous statements, we can obtain a new
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graph H from G by splitting a1, a4 as s, s′ and t, t′, respectively, such that a1 := s in H ,

and (H, a0, b1, a1, s, t, s
′, t′, a2, b2) is planar, a contradiction to (iii) of Lemma 6.0.1.

Now, by u21 ∈ B[b5, b
′
0), G has no edge from B[b5, b2] to A[a4, a2), and so, by (3), (4),

(11), (12), and our previous statements, (G − a1, a2, b2, a0, b1) and (G − a2, a1, b2, a0, b1)

are planar, a contradiction to (ii) of Lemma 6.0.1. 2

Now, we see that A(a5, a4) = ∅. For otherwise, there exists a ∈ A(a5, a4). Since

the degree of a in G is at least 6, then combined with (11), G has an edge e from a to

b ∈ B[b4, b5] with b /∈ {b4, b5, b0}. Now, if b ∈ B(b4, b0), then (e3, e4, e, e0, e5) is a 5-edge

configuration; if b ∈ B(b0, b5), then (f 2
2 , e5, e, e0, e4) is a 5-edge configuration.

We may assume G has no edge from A(a1, a5] to B[b1, b4); otherwise, such an edge

together with e0, e4, e5 forms a doublecross.

Then we claim that G has no edge from B(b0, b
′
0) to A(a1, a2]. For, suppose G has an

edge e from b ∈ B(b0, b
′
0) to a ∈ A(a1, a2]. Then b′0 /∈ B(b5, b2]; otherwise, (f 2

2 , e
′
0, e5, e0, e4)

is a 5-edge configuration. So b′0 ∈ B(b4, b5]. Hence, b ∈ B(b4, b5), and by (11), a ∈

A[a5, a4]. But then, (f 2
2 , e
′
0, e, e0, e4) is a 5-edge configuration.

Now, if G has no edge from a4 to B(b4, b5), then, combined with (3), (4), (6), (11), and

our previous statements, we can obtain a new graph H from G by splitting b4 as s, s′, such

that (H, a1, a2, b2, a0, b1) is planar, a contradiction to (i) of Lemma 6.0.1.

So we may assume G has an edge e from a4 to b ∈ B(b4, b5). Then b /∈ B(b0, b5);

otherwise, (f 2
2 , e5, e, e0, e4) is a 5-edge configuration. Moreover, G has no edge from b4

to a5, since, otherwise, such an edge together with e5, e0, e forms a doublecross. But now,

combined with (3), (4), (6), (11), and our previous statements, we can obtain a new graph

H from G by splitting a4 as s, s′, such that (H, a1, a2, b2, a0, b1) is planar, a contradiction

to (i) of Lemma 6.0.1. 2

Lemma 6.0.3 Suppose γ is infeasible, and A′, B′ is a core a0-frame in γ. Suppose P =

(e3, e4, e5, e6, e7) is a 5-edge configuration w.r.t. an ideal frameA,B in γ with a1, a3, a4, a2
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onA in order and b1, b3, b4, b5, b6, b7, b2 onB in order. LetG0 := G−A, where (G0, a0, b1, B, b2)

is planar.

Then G0 has a separation (G1, G2) such that b′1, b
′
2 ∈ V (G1) ∩ V (G2), |V (G1) ∩

V (G2)| ≤ 3, {a0, b1, b2} ⊆ V (G1), B[b′1, b
′
2] ⊆ G2, |V (G1 − G2)| ≥ 1, and one of the

following holds:

(i) V (G1)∩V (G2) = {a′0, b′1, b′2}, b′1 ∈ B[b3, b4], b′2 ∈ B[b7, b2], and G0 has a path from

a0 to B(b′1, b
′
2) through a′0 and internally disjoint from B.

(ii) V (G1) ∩ V (G2) = {b′1, b′2}, b′1 ∈ B[b3, b4], and b′2 ∈ B[b7, b2].

(iii) V (G1) ∩ V (G2) = {b′1, b′2}, b′1 ∈ B[b3, b4], and b′2 ∈ B[b6, b7).

(iv) V (G1) ∩ V (G2) = {b′1, b′2}, b′1 ∈ B(b4, b5], and b′2 ∈ B[b7, b2].

Proof. Since otherwise, G0 − (B[b3, b4] ∪ B[b7, b2]) contains disjoint paths B1, A0 from

b1, a0 to b5, b6, respectively. Now (A − A[a5, a7]) ∪ e3 ∪ B[b3, b4] ∪ e4 ∪ e6 ∪ A0 and

B1 ∪ e5 ∪ A[a5, a7] ∪ e7 ∪B[b7, b2] show that γ is feasible, a contradiction. 2

Definition. Let γ = (G, a0, a1, a2, b1, b2) be a rooted graph. Suppose A,B is an ideal

frame w.r.t. a0 in γ, and (e3, e4, e5, e6, e7) is a 5-edge configuration w.r.t. A,B, where

ei = aibi ∈ E(G) with ai ∈ V (A) and bi ∈ V (B) for i = 3, 4, 5, 6, 7.

For notational convenience, we further assume a1, a3, a4, a2 occur on A in order, and

b1, b3, b4, b5, b6, b7, b2 occur on B in order. Then we say that (e3, e4, e5, e6, e7) is an ideal

frame if the following requirements are satisfied in the order listed:

• B[b4, b7] is maximal,

• B[b6, b7] is minimal,

• B[b4, b5] is minimal,

• A[a5, a7] is minimal,
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• A[a3, a4] is maximal,

• B[b1, b3] is minimal, and

• A[a6, a5] ∩ A[a6, a7] is maximal.

Lemma 6.0.4 Suppose γ is infeasible, and A′, B′ is a core a0-frame in γ. Suppose P =

(e3, e4, e5, e6, e7) is a 5-edge configuration w.r.t. an ideal frameA,B in γ with a1, a3, a4, a2

onA in order and b1, b3, b4, b5, b6, b7, b2 onB in order. LetG0 := G−A, where (G0, a0, b1, B, b2)

is planar.

Assume a7 ∈ A[a1, a5], a6 ∈ A(a5, a2], G has no edge from B(b4, b5] to A[a1, a5),

and G has no edge from B[b7, b2] to A(a5, a2]. Then there does not exist a separation

(G1, G2) in G0 such that V (G1 ∩ G2) = {b∗1, b∗2} with b∗1 ∈ B[b1, b4] and b∗2 ∈ B[b6, b2],

{a0, b1, b2} ⊆ V (G1), V (B[b∗1, b
∗
2]) ⊆ V (G2), and |V (G1 −G2)| ≥ 1.

Proof. We choose (G1, G2) so that B[b∗1, b
∗
2] is maximized. To avoid forming a doublecross

with e5, e6, we may assume

(1) G has no parallel edges from B[b6, b2] to A[a1, a5].

(2) If ab ∈ E(G) with a ∈ A(a5, a2] and b ∈ V (B) then b ∈ B[b4, b6].

Suppose e = ab ∈ E(G) with a ∈ A(a5, a2] and b ∈ V (B) − V (B[b4, b6]). We may

assume b ∈ B[b1, b4). For, if b ∈ B(b6, b2], then since G has no edge from B[b7, b2] to

A(a5, a2], b ∈ B(b6, b7). Now (e3, e4, e5, e, e7) contradicts the choice of P .

Suppose a ∈ A(a5, a4). Then b ∈ B[b3, b4) to avoid the doublecross e, e3, e4, e5. But

then b3 6= b4, and (e3, e, e5, e6, e7) contradicts the choice of P .

Thus a ∈ A[a4, a2]. Then b = b1 as, otherwise, (e3, e, e5, e6, e7) contradicts the choice

of P . Hence, a 6= a2; and let e′ = a2b
′ ∈ E(G) with b′ ∈ V (B) − {b1, b2}. Then

b′ ∈ B[b7, b2) to avoid the doublecross e, e′, e3, e7. But it contradicts that G has no edge

from B[b7, b2] to A(a5, a2]. 2
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Let e9 = a9b9 with a9 ∈ A[a1, a5] and b9 ∈ B(b∗1, b
∗
2), and choose e9 so that A[a1, a9] is

minimal.

Since G∗ is 6-connected, then

(3) There exists e∗ = a∗b∗ ∈ E(G) with a∗ ∈ A(a9, a2] and b∗ ∈ B −B[b∗1, b
∗
2].

By (2), we have a∗ /∈ A(a5, a2]; so a∗ ∈ A(a9, a5] and a9 ∈ A[a1, a5). Moreover,

(4) b9 ∈ B(b∗1, b4] ∪B[b6, b
∗
2).

For otherwise, b9 ∈ B(b5, b6) by a9 ∈ A[a1, a5) and the assumption that G has no edge

from B(b4, b5] to A[a1, a5). Now, a9 ∈ A[a7, a5) to avoid the doublecross e5, e6, e7, e9. By

a∗ ∈ A(a9, a5], b∗ ∈ B[b1, b
∗
1) to avoid the doublecross e9, e∗, e5, e6, and b∗ /∈ B[b1, b3)

to avoid the doublecross e3, e∗, e6, e7. Hence, b3, b∗ ∈ B(b1, b4), and (e3, e
∗, e9, e6, e7)

contradicts the choice of P . 2

Case 1. b9 ∈ B[b6, b
∗
2).

Then b∗ ∈ B[b1, b
∗
1) to avoid the doublecross e9, e∗, e5, e6.

We claim that G has no edge from B(b∗1, b4] to A[a1, a5). For suppose e = ab ∈ E(G)

with a ∈ A[a1, a5) and b ∈ B[b∗1, b4]. Note that b∗1 and b∗2 are feet of some connector J , and

B[b∗1, b
∗
2] ⊆ J . Let u1, u2 denote the extreme hands for J . Note that e∗ is from A(x1, x2)

to B[b1, b
∗
1); so we know (J − b∗1, u1, A(u1, u2), u2, b∗2) is planar by Lemma 3.0.4. But this

cannot be the case because of e, e4, e5.

Because of (G1, G2), G has a separation (G′1, G
′
2) such that V (G′1 ∩ G′2) = {b′1, b′2}

with b∗1, b
′
1, b4, b6, b

′
2, b
∗
2 on B in order, B[b′1, b

′
2] ⊆ G′1, and {a0, b′1, b′2} ⊆ V (G′2). We

choose (G′1, G
′
2) such that B[b6, b

′
2] is minimal and, subject to this, B[b∗1, b

′
1] is minimal.

Let e′9 = a′9b
′
9 ∈ E(G) with a′9 ∈ A[a1, a5] and b′9 ∈ B(b′1, b

′
2), and choose e′9 so that

A[a1, a
′
9] is minimal. We may assume that there exists e′ = a′b′ ∈ E(G) with a′ ∈ A(a′9, a2]

and b′ ∈ B −B[b′1, b
′
2] (as G∗ is 6-connected).
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Then b′9 ∈ B[b6, b
′
2) (sinceG has no edge fromB(b∗1, b4] toA[a1, a5)) and b′ ∈ B[b1, b

∗
1]−

b′1 (to avoid doublecross with e5, e6, e′9, e
′). So (e′9, e6, e5, e4, e

′) is a 5-edge configuration.

By Lemma 2.0.9 and 6.0.3,G0 has a cut that contradicts the choice of (G1, G2) or (G′1, G
′
2).

Case 2. b9 ∈ B(b∗1, b4].

Then b∗ ∈ B(b∗2, b2] to avoid the doublecross e9, e∗, e4, e5.

We claim that G has no edge from B[b6, b
∗
2) to A[a1, a5). For suppose e = ab ∈ E(G)

with a ∈ A[a1, a5) and b ∈ B[b6.b
∗
2). Note that b∗1 and b∗2 are feet of some connector J , and

B[b∗1, b
∗
2] ⊆ J . Let u1, u2 denote the extreme hands for J . Note that e∗ is from A(u1, u2)

to B(b∗2, b2]; so we know (J − b∗2, u1, A(u1, u2), u2, b∗1) is planar by Lemma 3.0.4. But this

cannot be the case because of e, e5, e6.

Because of (G1, G2), G has a separation (G′1, G
′
2) such that V (G′1 ∩ G′2) = {b′1, b′2}

with b∗1, b
′
1, b4, b6, b

′
2, b
∗
2 on B in order, B[b′1, b

′
2] ⊆ G′1, and {a0, b′1, b′2} ⊆ V (G′2). We

choose (G′1, G
′
2) such that B[b′1, b4] is minimal and, subject to this, B[b′2, b

∗
2] is minimal.

Let e′9 = a′9b
′
9 ∈ E(G) with a′9 ∈ A[a1, a5] and b′9 ∈ B(b′1, b

′
2), and choose e′9 so that

A[a1, a
′
9] is minimal. We may assume that there exists e′ = a′b′ ∈ E(G) with a′ ∈ A(a′9, a2]

and b′ ∈ B −B[b′1, b
′
2] (as G∗ is 6-connected).

Then b′9 ∈ B(b′1, b4] (sinceG has no edge fromB[b6, b
∗
2] toA[a1, a5)) and b′ ∈ B[b∗2, b2]−

b′2 (to avoid doublecross e′, e′9, e4, e5). So (e′9, e4, e5, e6, e
′) is a 5-edge configuration. By

Lemma 2.0.9 and 6.0.3,G0 has a separation that contradicts choice of (G1, G2) or (G′1, G
′
2).

2

Lemma 6.0.5 Suppose γ is infeasible, and A′, B′ is a core a0-frame in γ. Suppose P =

(e3, e4, e5, e6, e7) is a 5-edge configuration w.r.t. an ideal frameA,B in γ with a1, a3, a4, a2

onA in order and b1, b3, b4, b5, b6, b7, b2 onB in order. LetG0 := G−A, where (G0, a0, b1, B, b2)

is planar.

Then G0 has a separation (G1, G2) such that b′1, b
′
2 ∈ V (G1) ∩ V (G2), |V (G1) ∩

V (G2)| ≤ 3, |V (G1 − G2)| ≥ 1, {a0, a1, a2} ⊆ V (G1), B[b′1, b
′
2] ⊆ G2, and one of the

following holds:

88



(i) V (G1)∩V (G2) = {a′0, b′1, b′2}, b′1 ∈ B[b1, b4], b′2 ∈ B[b7, b2], and G0 has a path from

a0 to B(b′1, b
′
2) through a′0 and internally disjoint from B.

(ii) V (G1) ∩ V (G2) = {b′1, b′2}, b′1 ∈ B[b1, b4], and b′2 ∈ B[b7, b2].

(iii) V (G1) ∩ V (G2) = {b′1, b′2}, b′1 ∈ B[b1, b4], b′2 ∈ B[b6, b7), and G has no edge from

B(b′2, b7) to A− a7.

(iv) V (G1) ∩ V (G2) = {b′1, b′2}, b′1 ∈ B(b4, b5], b′2 ∈ B[b7, b2], and G has no edge from

B(b4, b
′
1) to A− a4.

Proof. By Lemma 6.0.3,G0 has a separation (G1, G2) such that V (G1)∩V (G2) = {b′1, b′2},

B[b′1, b
′
2] ⊆ G1, {a0, b1, b2} ⊆ G2, and one of the following holds:

(A) b′1 ∈ B[b1, b4], b′2 ∈ B[b6, b7), and there exists e8 = a8b8 ∈ E(G) with a8 ∈ V (A −

a7) and b8 ∈ V (B(b′2, b7)), or

(B) b′1 ∈ B(b4, b5], b′2 ∈ B[b7, b2], and there exists e8 = a8b8 ∈ E(G) with a8 ∈ V (A −

a4) and b8 ∈ V (B(b4, b
′
1)).

So we consider two cases.

Case 1. (A) holds.

We choose {b′1, b′2} so thatB[b′1, b4] is minimal and, subject to this, B[b′2, b7] is minimal.

We also choose e8 so that A[a8, a5] is minimal. Note that a8 ∈ A[a5, a7), for otherwise,

(e3, e4, e5, e8, e7) contradicts P . So a5 6= a7.

We consider two subcases according to the positions of a5 and a7.

Subcase 1.1. a5 ∈ A(a7, a2].

First, we note that for e = ab ∈ E(G) with a ∈ V (A) and b ∈ V (B), if a ∈ A(a5, a2]

and b ∈ B(b1, b
′
1), then (e3, e, e5, e6, e7) contradicts the choice of P , and if a ∈ A(a8, a5]

or b ∈ B[b1, b3) then e, e3, e8, e4 form a doublecross. So we have
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(1.1.1) G has no edge from A(a5, a2] to B(b1, b
′
1), and G has no edge from A(a8, a5] to

B[b1, b3).

(1.1.2) G has no edge from A(a8, a2] to B(b′2, b2) + b1.

For, let e = ab with a ∈ A(a8, a2] and b ∈ B(b′2, b2) + b1.

Suppose b = b1. Then a 6= a2, and let e2 = a2b
′ ∈ E(G) with b′ ∈ B(b1, b2). Then

b′ ∈ B[b7, b2) to avoid the doublecross e, e3, e7, e2. But now (e2, e7, e5, e3, e) contradicts

the choice of P .

So b ∈ B(b′2, b2). If b ∈ B(b′2, b7) then a ∈ A(a5, a2] (by the minimality of A[a8, a5]);

but then (e3, e4, e5, e, e7) contradicts the choice of P . So b ∈ B[b7, b2). Then a ∈ A(a5, a2],

as otherwise (e3, e4, e5, e6, e) contradicts the choice of P . Now (e, e7, e8, e6, e5) is a 5-edge

configuration. By Lemma 2.0.9 and 6.0.3, G0 has a separation, which admits (i) or (ii), or

contradicts the choice of {b′1, b′2}. 2

(1.1.3) G has no edge from A(a7, a2] to b2.

To prove (1.1.3), let e = ab2 ∈ E(G) with a ∈ A(a7, a2]. We claim that a ∈ A(a5, a4).

To see this, first note that a 6= a2. Moreover, a ∈ A(a5, a2); as otherwise, (e3, e4, e5, e6, e)

contradicts the choice of P . Now suppose to the contrary that a /∈ A(a5, a4). Then a ∈

A[a4, a2), and let e2 = a2b
′
2 ∈ E(G) with b′2 ∈ V (B)−{b1, b2}. So b′2 ∈ B(b1, b4] to avoid

the doublecross e2, e, e4, e8. But then (e3, e2, e5, e6, e7) contradicts the choice of P .

Thus b7 = b2, or else (e3, e4, e5, e7, e) contradicts the choice of P . Moreover, a8 = a5,

or else (e3, e4, e5, e8, e) contradicts the choice of P .

Suppose a6 ∈ A[a1, a7). Let e′7 = a7b
′
7 ∈ E(G) with b′7 ∈ V (B − b7). Then b′7 /∈

B[b1, b6) to avoid the doublecross e6, e′7, e7, e8. Also b′7 6= b6 as otherwise (e3, e4, e′7, e8, e7)

contradicts the choice of P . So b′7 ∈ B(b6, b2). Then (e3, e4, e5, e
′
7, e7) contradicts the

choice of P .

So a6 ∈ A(a5, a2] for all choices of e6. Then a6 ∈ A[a4, a2], or else (e3, e4, e6, e8, e)

contradicts the choice of P . Let e′ = ab′ ∈ E(G) with b′ ∈ V (B − b2). Then b′ 6= b6 as
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a6 ∈ A[a4, a2] for all choices of e6. So b′ ∈ B(b6, b2) to avoid the doublecross e8, e6, e, e′.

But then (e3, e4, e5, e
′, e7) contradicts the choice of P . 2

(1.1.4) There exists e9 = a9b9 ∈ E(G) with a9 ∈ A[a1, a8) and b9 ∈ B(b′1, b
′
2].

For, suppose such an edge does not exist. Then a6 ∈ A(a5, a2] and G has no edge from

B(b4, b5] to A[a1, a5) by the choice of P . Note that we have a5 6= a7 and a7 ∈ A[a1, a5]

and that, by (1.1.2) and (1.1.3), G has no edge from B[b7, b2] to A(a5, a2]. Thus, we may

apply Lemma 6.0.4, a contradiction. 2

(1.1.5) b9 ∈ B(b4, b
′
2], a9 = a3, and so all edges from B(b′1, b

′
2] to A[a1, a8) must be from

B(b4, b
′
2] to a3.

First, suppose b9 ∈ B(b′1, b4]. Then (e9, e4, e5, e6, e8) is 5-edge configuration. Thus, by

Lemma 2.0.9 and 6.0.3, G0 has a separation, which admits (i) or (ii), or contradicts the

choice of {b′1, b′2}. So we may assume b9 ∈ B(b4, b
′
2]. Suppose a9 6= a3. Then a9 ∈

A(a3, a4), to avoid the doublecross e3, e9, e5, e7. But now (e3, e4, e9, e8, e7) is a 5-edge

configuration contradicting the choice of P . 2

(1.1.6) a4 = a2.

Suppose a4 6= a2. Let e∗2 = a2b
∗
2 ∈ E(G) with b∗2 ∈ V (B). Then b∗2 ∈ B(b1, b4] to avoid

the doublecross e∗2, e4, e9, e8. Now (e3, e, e5, e6, e7) contradicts the choice of P . 2

Thus, G has no edge e from B[b1, b
′
1) to v ∈ V (A(a8, a2]); for, if v 6= a2 then

e, e9, e8, e4 would form a doublecross, and if v = a2 then (e3, e, e5, e6, e7) contradicts

the choice of P . Hence, by (1.1.2) and (1.1.5), G has a 5-separation (H1, H2) such that

V (H1 ∩ H2) = {b′1, b′2, a8, a3, a2}, V (A[a8, a2]) ∪ V (B[b′1, b
′
2]) ∪ {a3} ⊆ V (H1), and

V (A[a3, a8]) ∪ {a0, a1, a2, b1, b2} ⊆ V (H2), a contradiction.

Subcase 1.2. a5 ∈ A[a1, a7).

Then a6 /∈ A(a4, a2) to avoid the doublecross e4, e6, e5, e7, and a6 /∈ A(a7, a4) as,

otherwise, (e3, e4, e6, e8, e7) contradicts the choice of P . Hence,
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(1.2.1) a6 ∈ A[a1, a5) or a6 = a4.

(1.2.2) There exists v ∈ {a4, b4} such that all edges from A(a8, a2] to B(b′1, b
′
2] are incident

with v.

To prove (1.2.2), we first claim that G has no edge from A(a8, a2] − a4 to B(b′1, b
′
2] − b4.

For otherwise, suppose there exists e9 = a9b9 ∈ E(G) with a9 ∈ A(a8, a2] − a4 to b9 ∈

B(b′1, b
′
2]−b4. If b9 ∈ B(b′1, b4) then a9 ∈ A(a4, a2] to avoid the doublecorss e9, e4, e7, e8; so

(e3, e9, e5, e6, e7) contradicts the choice of P . Hence, b9 ∈ B(b4, b
′
2). Then a9 ∈ A(a8, a4)

to avoid the doublecross e4, e9, e8, e7. Now (e3, e4, e9, e8, e7) contradicts the choice of P .

Next, we see that either no edge is from b4 to A(a8, a2] − a4, or no edge is from a4 to

B(b′1, b
′
2]− b4. In fact, by the choice of P , any edge from b4 to A(a8, a2]− a4 must end in

A(a8, a4), and any edge from a4 to B(b′1, b
′
2] − b4 must end in B(b4, b

′
2]. If G has an edge

from b4 to A(a8, a2] − a4 and an edge from a4 to B(b′1, b
′
2] − b4, then such two edges and

e7, e8 form a doublecross in γ, a contradiction. 2

Define a′1 ∈ A[a1, a8] such thatG has no edge fromA[a1, a
′
1) toB(b′1, b

′
2] and, subject to

this,A[a1, a′1] is maximal. By the definition of a′1,G has an edge e1 from a′1 to b ∈ B(b′1, b
′
2].

We claim that a′1 ∈ A[a3, a8). For otherwise, a′1 ∈ A[a1, a3). Now, if b ∈ B(b3, b
′
2]

then e1, e3, e4, e8 form a doublecross; if b ∈ B(b1, b3] then (e1, e4, e5, e6, e7) contradicts the

choice of P .

So a1, a3, a′1, a5, a8, a7, a4, a2 occur on A in order.

(1.2.3) G has no edge from A(a′1, a8) to B −B[b′1, b
′
2].

For, otherwise, a′1 6= a8, and there exists e9 = a9b9 ∈ E(G) with a9 ∈ A(a′1, a8) to

b9 ∈ B −B[b′1, b
′
2]. Then b9 /∈ B[b1, b

′
1) to avoid the doublecross e1, e9, e4, e7.

We claim b9 = b2 and a9 /∈ A[a5, a8). For, if b9 ∈ B(b′2, b7) then a9 ∈ A(a′1, a5) by the

choice of e8 (that A[a5, a8] is minimal); now (e3, e4, e5, e9, e7) contradicts the choice of P .

Hence, b9 ∈ B[b7, b2]. Thus, a9 /∈ A[a5, a8); as otherwise (e3, e4, e5, e8, e9) contradicts the
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choice of P . Now suppose b9 6= b2. Then (e7, e9, e8, e6, e5) is a 5-edge configuration. Thus,

by Lemma 2.0.9 and 6.0.3, G0 has a separation, which admits (i) or (ii), or contradicts the

choice of {b′1, b′2}.

We see a8 = a5; otherwise, (e3, e4, e5, e8, e9) contradicts the choice of P . Moreover,

a4 = a2; for otherwise, G has an edge e′ from a2 to B, then either (e3, e′, e5, e6, e7) contra-

dicts the choice of P or e′, e4, e5, e7 form a doublecross.

Next, we claim that all edges from A(a8, a2) to B must end in {b4, b2}. First, G has

no edge from A(a8, a2) to b1; otherwise, such an edge together with e7, e3, e4 forms a

doublecross. G has no edge from A(a8, a2) to B(b1, b4); otherwise, such an edge together

with e3, e5, e1, e9 forms a 5-edge configuration contradicting the choice of P . G has no

edge from A(a8, a2) to B(b4, b8); otherwise, such an edge together with e3, e4, e8, e7 forms

a 5-edge configuration contradicting the choice of P . G has no edge from A(a8, a2) to

B[b8, b2); otherwise, such an edge together with e3, e4, e5, e9 forms a 5-edge configuration

contradicting the choice of P .

Therefore, since a7 ∈ A(a8, a2), then {a2, a8, b2, b4} is a 4-cut in G separating a7 from

{a0, a1, a2, b1, b2}, a contradiction. 2

By (1.2.2) and (1.2.3),G has a separation (H1, H2) such that V (H1∩H2) = {b′1, b′2, a8, a′1, v},

b5 ∈ V (H2 −H1), and {a0, a1, a2, b1, b2} ⊆ H1, a contradiction.

Case 2. (B) holds.

We choose (G1, G2) such that B[b′1, b
′
2] is maximal.

We claim that a8 ∈ A[a1, a3] ∪ A(a4, a2]. For, suppose a8 ∈ A(a3, a4). Then a6 ∈

A[a7, a8] and a8 /∈ A[a7, a5]; for otherwise (e3, e4, e8, e6, e7) contradicts the choice of P .

Therefore, a5 /∈ A[a6, a8] (since a6 /∈ A[a5, a7]). So (e3, e4, e8, e5, e6) is a 5-edge config-

uration. Thus, by Lemma 2.0.9 and 6.0.3, G0 has a separation, which admits (i) or (ii), or

contradicts the choice of {b′1, b′2}.

Therefore, we have distinguished two cases.

Subcase 2.1. a8 ∈ A(a4, a2].
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Choose e8 so that A[a8, a2] is minimal. Note that a6 ∈ A[a8, a2] and a7 ∈ A(a3, a5],

since, otherwise, e4, e8 and two of {e5, e6, e7} force a doublecross.

(2.1.1) G has no edge from A(a5, a2] to B[b1, b4) ∪B(b6, b2].

For, let e = ab ∈ E(G) with a ∈ A(a5, a2] and b ∈ B[b1, b4) ∪B(b6, b2].

Suppose b ∈ B(b6, b2]. Then a ∈ A[a8, a2] to avoid the doublecross e, e4, e5, e8. So

b ∈ B[b7, b2], or else (e3, e4, e5, e, e7) contradicts the choice of P . Suppose b = b2. Then

a 6= a2, so there exists e′ = a2b
′ ∈ E(G) with b′ ∈ B(b1, b2). Now b′ ∈ B(b1, b4] to avoid

the doublecross e4, e5, e, e′. But then, (e3, e′, e5, e6, e7) contradicts the choice of P . Thus,

b 6= b2. Now (e, e7, e5, e8, e4) is a 5-edge configuration. Hence, by Lemma 2.0.9 and 6.0.3,

G0 has a separation, which admits (i) or (ii), or contradicts the choice of {b′1, b′2}.

Thus, b ∈ B[b1, b4) for every choice of e = ab. Assume a ∈ A[a4, a2]. Then b = b1,

or else, (e, e3, e5, e6, e7) contradicts the choice of P . Now, since G has no edge from

B(b6, b2] to A(a5, a2], G has an edge from a2 to B(b1, b7), which together with e, e3, e7

forms a doublecross. So a ∈ A(a5, a4). Then either e3, e4, e5, e form a doublecross, or

(e3, e, e5, e6, e7) contradicts the choice of P . 2

(2.1.2) G has no edge from B(b1, b3) to A.

For otherwise, let e = ab ∈ E(G) with a ∈ A and b ∈ B(b1, b3). If a ∈ A[a1, a3],

then (e, e4, e5, e6, e7) contradicts the choice of P; if a ∈ A(a3, a4), then e, e3, e4, e7 form

a doublecross; if a ∈ A[a4, a2], then (e3, e, e5, e6, e7) contradicts the choice of P . Hence,

(2.1.2) holds.2

(2.1.3) b′2 = b2 and G0 has a separation (G′1, G
′
2) that V (G′1 ∩ G′2) = {b1, b′′2, a0}, b′′2 ∈

B(b′1, b
′
2), B[b1, b

′′
2] ⊆ G′1, and {a0, b1, b2} ⊆ V (G′2).

For, otherwise, we claim that there exists v ∈ {a5, b5} such that all edges from B(b′1, b
′
2)

to A[a1, a8) in G contain v. To prove this, we first assume that b5 ∈ B(b′1, b
′
2), and there
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exist e′5 = a5b
′
5, e
′′
5 = a′5b5 ∈ E(G) with a′5 ∈ A[a1, a8) and b′5 ∈ B(b′1, b

′
2) such that

a′5 6= a5 and b′5 6= b5. Then e′5, e
′′
5 form a cross to avoid the doublecross e′5, e

′′
5, e4, e8. But

now, b′5 ∈ B(b5, b
′
2) by the choice of P , and so (e6, e

′
5, e
′′
5, e8, e4) is a 5-edge configuration;

and since (i) or (ii) does not hold, then (2.1.3) follows from Lemmas 2.0.9 and 6.0.3 and

the choice of {b′1b′2}. So assume that such e′5, e
′′
5 do not exist. Therefore, if the claimed

v does not exist, then there exists e = ab ∈ E(G) such that a ∈ A[a1, a8) − a5 and

b ∈ B(b′1, b
′
2)− b5. If b ∈ B(b′1, b5) then a ∈ A(a5, a8) to avoid the doublcross e, e5, e4, e8.

Hence, (e6, e5, e, e8, e4) is a 5-edge configuration and (2.1.3) follows from Lemmas 2.0.9

and 6.0.3 and the choice of {b′1b′2}; or else, (i) or (ii) holds. So b ∈ B(b5, b
′
2). Then

a /∈ A(a5, a8) to avoid the doublecross e4, e5, e8, e. Hence, (e, e6, e5, e8, e4) is a 5-edge

configuration and (2.1.3) follows from Lemmas 2.0.9 and 6.0.3 and the choice of {b′1b′2};

or else, (i) or (ii) holds.

Now, we see that G has no edge from A(a8, a2) to B − B[b′1, b
′
2]. For otherwise, by

our claim, G has an edge e = ab with a ∈ A(a8, a2) and b ∈ B − [b′1, b
′
2]. By (2.1.1),

b ∈ B[b4, b
′
1). By the choice of P , b 6= b4. So b ∈ B(b4, b

′
1), which contradicts the choice

of e8.

Thus,G has a separation (H1, H2) such that V (H1∩H2) = {v, a8, a2, b′1, b′2}, a0, a1, a2, b1, b2 ∈

V (H1), and b6 ∈ V (H2 −H1), a contradiction. 2

By (2.1.3), α(A,B) ≤ 1. We may assume

(2.1.4) b′′2 /∈ B[b7, b2], and either b7 = b2 (in which case let B0 = B[b′′2, b2]) or b7 6= b2 and

G0 − (B[b1, b
′′
2) ∪B[b7, b2)) has a path B0 from b′′2 to b2.

Clearly, b′′2 /∈ B[b7, b2] as otherwise the conclusion of the lemma holds. Now suppose b7 6=

b2 and the desired path B0 in G0 − (B[b1, b
′′
2) ∪ B[b7, b2)) does not exist. Then there exist

b∗2 ∈ V (B[b7, b2)) and a separation (H1, H2) in G0 such that V (H1 ∩ H2) = {b1, b∗2, a0}.

This implies the conclusion of this lemma, a contradiction. 2

We choose b′′2 so that B[b′′2, b7] is minimal.
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(2.1.5) G has two non-incident edges from B(b′1, b2] to A[a1, a5].

For otherwise, b′1 = b5, and there exists v ∈ {a7, b7} such that all edges in G from B(b′1, b2]

to A[a1, a5] are incident with v.

G has no edge from B(b′1, b6] to A(a5, a8). For otherwise, let e = ab ∈ E(G) with

b ∈ B(b′1, b6] and a ∈ A(a5, a8). Now, since b′1 = b5, then e, e4, e5, e8 form a doublecross,

a contradiction.

G has no edge from A(a8, a2] to B[b4, b
′
1). For otherwise, let e = ab ∈ E(G) with

b ∈ B[b4, b
′
1) and a ∈ A(a8, a2]. By the choice of e8, b /∈ B(b4, b

′
1), and so b = b4. But

then, (e3, e, e5, e6, e7) contradicts the choice of P .

Now, combined with (2.1.1), G has a separation (H1, H2) of order 5, such that V (H1 ∩

H2) = {v, b′1, b2, a8, a2}, {a0, a1, a2, b1, b2} ⊆ V (H1), and V (B′[b′1, b2] ∪ A[a8, a2]) ⊆

V (H2), a contradiction. 2

Note that no two edges of G from B(b′1, b2] to A[a1, a4] can be parallel, as such edges

would form a doublecross with e4, e8. Therefore, there exist two non-incident edges e′9 =

a′9b
′
9, e′′9 = a′′9b

′′
9 with a′9, a

′′
9 ∈ A[a1, a5] and b′9, b

′′
9 ∈ B(b′1, b2] such that b1, b′9, b

′′
9 occur

on B in order, and a1, a′′9, a
′
9 occur on A in order. Moreover, we further choose e′9, e

′′
9 so

that A[a′9, a2] ∪ B[b′′9, b2] is minimal. By the existence of e7, we have a′9 ∈ A[a7, a2] and

b′′9 ∈ B[b7, b2].

(2.1.6) G has two parallel edges e′, e′′ from b′, b′′ ∈ B(b3, b
′
1) to a′, a′′ ∈ A[a4, a2], with

b1, b
′, b′′, b2 occurring on B in order.

Suppose it fails. Then b3 = b4 as otherwise e4, e8 give the desired edges for (2.1.6). Let

e = a1b ∈ E(G) with b /∈ {b1, b2, b3, b7}. Then b /∈ B(b1, b3); otherwise, (e, e4, e5, e6, e7)

contradicts the choice of P . Moreover, b /∈ B(b3, b7) to avoid the doublecross e, e4, e7, e8.

So b ∈ B(b7, b2).

Now, since (e, e6, e5, e8, e4) is a 5-edge configuration, then b′′2 ∈ B[b6, b7); or else, by

Lemma 2.0.9 and 6.0.3, (i) or (ii) holds, or it contradicts the choice of b′1, b
′
2 or contradicts
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the choice of b′′2.

Now, let a∗ ∈ A[a1, a2], such that G has an edge e∗ from b∗ ∈ B(b′′2, b7) ∪ B(b7, b2) to

a∗, subject to this, A[a∗, a2] is minimal, and subject to this, B[b′′2, b
∗] is minimal.

We claim that a∗ /∈ A(a5, a2]. For otherwise, suppose a∗ ∈ A(a5, a2]. Now, if b∗ ∈

B(b′′2, b7), then (e3, e4, e5, e
∗, e7) is a 5-edge configuration contradicting the choice ofP . So

b∗ ∈ B(b7, b2). If a∗ ∈ A(a5, a8), then e4, e5, e8, e∗ form a doublecross; if a∗ ∈ A[a8, a2],

then (e, e∗, e5, e8, e4) is a 5-edge configuration contradicting the choice of P . This finishes

our claim.

Now, we further claim that G has no edge from A(a1, a
∗) to B[b1, b3) ∪ B(b3, b

′′
2). For

otherwise, let e′ = a′b′ ∈ E(G) with a′ ∈ A(a1, a∗) and b′ ∈ B[b1, b3) ∪ B(b3, b
′′
2). Then

b′ /∈ B(b3, b
′′
2) to avoid the doublecross e4, e8, e′, e∗. So b′ ∈ B[b1, b3). But then a′ /∈

A(a3, a
∗) to avoid the doublecross e3, e4, e′, e7. So a′ ∈ A[a1, a3], and (e′, e4, e5, e6, e7) is

a 5-edge configuration contradicting the choice of P .

We may assume G has an edge e′7 from b7 to a′7 ∈ A(a∗, a2] and an edge e′3 from b3 to

a′3 ∈ A(a1, a∗). For otherwise, G has a separation (H1, H2) of order 5, such that V (H1 ∩

H2) = {a1, a∗, v, b′′2, b2}, v ∈ {b3, b7}, {a0, a1, a2, b1, b2} ⊆ V (H1), and V (A[a1, a
∗] ∪

B[b′′2, b2]) ⊆ V (H2), a contradiction.

Now,G has a separation (H1, H2) of order 6, such that V (H1∩H2) = {a1, a∗, b3, b′′2, b7, b2},

{a0, a1, a2, b1, b2} ⊆ V (H1), and V (A[a1, a
∗] ∪B[b′′2, b2]) ⊆ V (H2).

We see that any two edges from A[a1, a
∗] to B[b′′2, b2] are not parallel; or else, such

two edges together with e4, e8 form a doublecross. Moreover, by the choice of P , we can

further assume a′7 ∈ A(a5, a2].

Now, assume b∗ /∈ B(b′′2, b7). Then since any two edges from A[a1, a
∗] to B[b′′2, b2]

are not parallel, then, combined with the choice of e∗, we have (H2, a1, b3, a
∗, b7, b

′′
2, b2) is

planar, a contradiction to Lemma 2.0.3.

So b∗ ∈ B(b′′2, b7). But then (e′7, e, e
∗, e6, e

′
3) is a 5-edge configuration. Now, by Lemma

2.0.9 and 6.0.3, (i) or (ii) holds, or it contradicts the choice of b′′2. 2
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We choose e′, e′′ in (2.1.5) such that B[b3, b
′] is minimal and, subject to this, B[b′′, b′1]

is minimal.

SupposeG0−B(b1, b3]−B(b′1, b2] has disjoint paths P1, P2 from b1, a0 to b′, b′′, respec-

tively. Let A′ := P2 ∪ e′′ ∪ A[a′′, a2] and B′ := P1 ∪ e′ ∪ A[a′9, a′] ∪ e′9 ∪ B[b′9, b
′′
2] ∪ B0.

Now, since A,B is a good frame, then the existence of A′, B′, A[a1, a′′9] ∪ e′′9 ∪ B[b′′9, b2],

and A[a1, a3] ∪ e3 ∪B[b1, b3] shows α(A,B) = 2, a contradiction.

Thus, such P1, P2 do not exist. Then G0 has a separation (H1, H2) with V (H1 ∩H2) =

{b∗1, b∗2} such that b∗1 ∈ B(b1, b3], B[b∗1, b
′′] ⊆ H1, and {a0, b1, b2} ⊆ H2. We may assume

b∗2 ∈ B[b′′, b′1) as otherwise we have (i).

Now, suppose G has no edge from B(b∗2, b
′
1) to A, then, combined with (2.1.2), G has a

separation (K1, K2) of order 5, such that V (K1∩K2) = {b1, b∗1, b∗2, b′1, a0}, {a0, a1, a2, b1, b2} ⊆

V (K1), and V (B[b1, b
∗
1] ∪B[b∗2, b

′
1]) ⊆ V (K2), a contradiction.

So we may assume G has an edge e0 from b0 ∈ B(b∗2, b
′
1) to a0 ∈ A. By the choice

of e′, e′′, a0 ∈ A[a4, a′′). So (e3, e
′′, e0, e6, e7) is a 5-edge configuration. Now, by Lemma

2.0.9 and 6.0.3, and by the existence of {b∗1, b∗2}, (i) or (ii) holds, or it contradicts the choice

of b′1, b
′
2.

Subcase 2.2 a8 ∈ A[a1, a3].

Note that if b3 = b4 we have symmetry between e3 and e4, so by Subcase 2.1, we may

assume that

(2.2.1) if b3 = b4 then there exists e9 = a4b9 ∈ E(G) with b9 ∈ B(b4, b
′
1).

(2.2.2) The following holds: (a) G has no edge from B(b4, b7) to A(a4, a2] and so a6 /∈

A(a4, a2]; and (b) G has no edge from B(b3, b7) to A[a1, a3) and so a8 = a3.

We have (a) to avoid a doublecross formed by such an edge and e4, e7, e8. Now suppose

(b) fails, and let e′ be an edge from B(b3, b7) to A[a1, a3). If b3 6= b4, e3, e4, e′, e7 form a

doublecross. So b3 = b4. Then by (2.2.1), e3, e9, e′, e7 form a doublecross.
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(2.2.3) There exists v ∈ {a4, b4} such that all edges from B[b1, b
′
1) to A(a3, a2] must contain

v.

Since we have proved a8 ∈ A[a1, a3] ∪ A(a4, a2], then, combined with (2.2.2), all edges

from B(b4, b
′
1) to A must end in {a3, a4}.

Now, we claim that G has no edge from B[b1, b4) to A(a3, a2]. For, let e = ab ∈ E(G)

with b ∈ B[b1, b4) and a ∈ A(a3, a2]. Then a ∈ A[a4, a2], to avoid the doublecross

e, e4, e5, e8. So b = b1 by the choice of P . Then a 6= a2; so G has an edge e2 = a2b
′ with

b′ ∈ B(b1, b2). Then b′ ∈ B[b7, b2) to avoid the doublecross e2, e7, e8, e′. If b3 6= b4 then

(e2, e7, e4, e3, e) contradicts the choice of P . So b3 = b4. Then e9 is defined by (2.2.1).

Hence, (e2, e7, e9, e3, e) contradicts the choice of P .

Thus, if (2.2.3) fails, then there exist e′ = a4b
′, e′′ = a′′b4 with a′′ ∈ A(a3, a2]− a4 and

b′ ∈ B(b4, b
′
1). By the choice of P , a′′ ∈ A(a3, a4). So e8, e′, e′′, e7 form a doublecross, a

contradiction.

(2.2.4) a1 = a3.

For, suppose a1 6= a3. Then there exists e1 = a1b ∈ E(G) with b ∈ B(b1, b2). Indeed,

b /∈ B(b1, b4] by the choice of P; b /∈ B(b4, b7) by (2.2.2). So b ∈ B[b7, b2). Moreover,

b3 = b4, for, otherwise, (e1, e7, e8, e4, e3) contradicts the choice of P . Thus e9 in (2.2.1) is

defined.

We claim that G has no edge from B[b′1, b7) to A(a1, a7). For such an edge and

e1, e7, e9, e3 form a 5-edge configuration. Hence, by Lemma 2.0.9 and 6.0.3, (i) or (ii)

holds, or it contradicts the choice of b′1, b
′
2.

Thus, combined with (2.2.2), a6 ∈ A(a7, a4]. So (e6, e1, e5, e9, e3) is a 5-edge configu-

ration. Hence, b′2 = b2; or else, by Lemma 2.0.9 and 6.0.3, (i) or (ii) holds, or it contradicts

the choice of b′1, b
′
2.

Now, we claim that {b1, b2, b′1, a3, a4} is a cut in G separating {a1, a2} from {a0}, a

contradiction to that G∗ is 6-connected. In fact, since b′2 = b2, we just need to show that G
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has no edge from B(b1, b
′
1) to A[a1, a2]−{a3, a4}. Suppose there exists e∗ = a∗b∗ ∈ E(G)

with a∗ ∈ A[a1, a2] − {a3, a4} and b∗ ∈ B(b1, b
′
1). By (2.2.3) and by the existence of e9,

a∗ ∈ A[a1, a3). Then b∗ /∈ B(b1, b3]; otherwise, (e∗, e4, e5, e6, e7) contradicts the choice of

P . But then, b∗ ∈ B(b3, b
′
1), and e∗, e3, e6, e7 form a doublecross. Hence, our claim is true,

which finishes the proof of (2.2.4). 2

Let e2 = a′2b
′ ∈ E(G) with a′2 ∈ V (A) and b′ ∈ B(b′1, b

′
2), such that A[a2, a′2] is

minimal. We may assume that

(2.2.5) there exists e0 = a0b0 ∈ E(G) with a0 ∈ A(a1, a′2) and b0 ∈ B −B[b′1, b
′
2].

For otherwise, G has a separation (H1, H2) such that V (H1 ∩ H2) = {b′1, b′2, a1, a′2} with

a0, a1, a2, b1, b2 ∈ V (H1), and b6 ∈ V (H2), a contradiction. 2

(2.2.6) b0 ∈ B[b1, b
′
1) for every choice of e0.

For, otherwise, b0 ∈ B(b′2, b2]. Then a0 ∈ A(a1, a4), to avoid the doublecross e4, e8, e2, e0.

Also, a6 ∈ A[a5, a0]; otherwise (e3, e4, e5, e6, e0) contradicts the choice of P . Moreover,

a7 ∈ A[a6, a0]; or else (e3, e4, e6, e7, e0) contradicts the choice of P . But this shows that

a6 ∈ A[a5, a7], a contradiction. 2

Now, combined with (2.2.3), G has a separation (H1, H2) such that V (H1 ∩ H2) =

{a1, a′2, b′1, b′2, v}, {a0, a1, a2, b1, b2} ⊆ V (H1), and V (A[a1, a
′
2] ∪ B[b′1, b

′
2]) ⊆ V (H2), a

contradiction. 2

Lemma 6.0.6 Suppose γ is infeasible, and A′, B′ is a core a0-frame in γ. Suppose P =

(e3, e4, e5, e6, e7) is an ideal 5-edge configuration w.r.t. an ideal frame A,B in γ. Then

(i)–(iv) of Lemma 6.0.5 do not hold.

Proof. For notation convenience, we assume a1, a3, a4, a2 occur onA in order, and b1, b3, b4, b5,

b6, b7, b2 occur on B in order. And we choose b′1, b
′
2 satisfying the conclusions of Lemma
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6.0.5 so that b′1, b
′
2 are defined from (i) or (ii) whenever possible, subject to this, B[b1, b

′
1] is

minimal, and subject to this, B[b7, b
′
2] is minimal.

Moreover, we define t0, t1, t2 ∈ V (G), B(t1, t2), B[b1, t1), and B(t2, b2] according to

{b′1, b′2}.

(i) Suppose (i) of Lemma 6.0.5 occurs. We define t1 := b′1, t2 := b′2, t0 := a′0,

B(t1, t2) := B(b′1, b
′
2), B[b1, t1) := B[b1, b

′
1), and B(t2, b2] := B(b′2, b2].

(ii) Suppose (ii) of Lemma 6.0.5 occurs. We define t0 := t1 := b′1, t2 := b′2, t0 := a′0,

B(t1, t2) := B(b′1, b
′
2), B[b1, t1) := B[b1, b

′
1), and B(t2, b2] := B(b′2, b2].

(iii) Suppose (iii) of Lemma 6.0.5 occurs.

(a) If G has no edge from B(b′2, b7) to A, we define t1 := b′1, t2 := b7, t0 := b′2,

B(t1, t2) := B(b′1, b7), B[b1, t1) := B[b1, b
′
1), and B(t2, b2] := B(b7, b2].

(b) IfG has an edge f7 from b∗7 ∈ B(b′2, b7) to a7, we define t1 := b′1, t2 := a7, t0 :=

b′2, B(t1, t2) := B(b′1, b
′
2], B[b1, t1) := B[b1, b

′
1), and B(t2, b2] := B[b7, b2].

(iv) Suppose (iv) of Lemma 6.0.5 occurs.

(a) If G has no edge from B(b4, b
′
1) to A, we define t1 := b4, t2 := b′2, t0 := b′1,

B(t1, t2) := B(b4, b
′
2), B[b1, t1) := B[b1, b4), and B(t2, b2] := B(b′2, b2].

(b) IfG has an edge f4 from b∗4 ∈ B(b4, b
′
1) to a4, we define t1 := a4, t2 := b′2, t0 :=

b′1, B(t1, t2) := B[b′1, b
′
2), B[b1, t1) := B[b1, b4], and B(t2, b2] := B(b′2, b2].

Note that by Lemma 6.0.5, when (iii)(b) occurs, G has no edge from B(b′2, b7) to

A[a1, a2]− a7; when (iv)(b) occurs, G has no edge from B(b4, b
′
1) to A[a1, a2]− a4.

Let a∗1, a
∗
2 be vertices on A such that a1, a∗1, a

∗
2, a2 occur on A in that order, G has edges

fi, i = 1, 2, from a∗i to b∗i ∈ B(t1, t2), and subject to these, A[a∗1, a
∗
2] is maximal. Notice

that A[a5, a6] ⊆ A[a∗1, a
∗
2].

Case 1. G has no edge from B[b1, t1) to A(a∗1, a
∗
2), which is different from e4.
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Now, as G∗ is 6-connected, {t0, t1, t2, a∗1, a∗2} is not a cut in G separating V (A(a∗1, a
∗
2)∪

B(t1, t2)) from {a0, a1, a2, b1, b2}. Thus, combined with Lemma 6.0.5, G has an edge e8

from b8 ∈ B(t2, b2] to a8 ∈ A(a∗1, a
∗
2) (or a8 ∈ A(a∗1, a

∗
2) − a7 if (iii)(b) occurs). Then,

obviously, b8 ∈ B(b′2, b2] ∩B[b7, b2].

We first see that a8 ∈ A(a3, a4). For, suppose a8 /∈ A(a3, a4). Hence, a8 ∈ A(a1, a3] ∪

A[a4, a2). If a8 ∈ A(a1, a3], then a∗1 ∈ A[a1, a3), and so e3, f1, e5, e8 force a double-

cross, or (f1, e4, e5, e6, e7) contradicts the choice of P . Therefore, a8 ∈ A[a4, a2). Then

b∗2 ∈ B(b′1, b4]; otherwise e4, e5, f2, e8 force a doublecross. But now, (e3, f2, e5, e6, e7)

contradicts the choice of P .

We claim that b8 = b7, and so (iii)(b) occurs with a8 6= a7 and f7 existing. For, suppose

b8 ∈ B(b7, b2]. Then (e3, e4, e5, e6, e8) (when a6 /∈ A[a5, a8]) or (e3, e4, e6, e7, e8) (when

a6 ∈ A[a5, a8]) contradicts the choice of P .

Let e = a8b ∈ E(G) with b ∈ B[b1, b2] − {b4, b7}. We also claim that b ∈ B[b1, b4).

First, by b8 = b7, b /∈ B(b7, b2]. By (iii)(b), b /∈ B(b′2, b7). Moreover, b /∈ B(b4, b
′
2];

otherwise, (e3, e4, e, f7, e8) is a 5-edge configuration contradicting the choice of P . This

finishes our claim.

Now, we may assume a8 ∈ A(a3, a7); otherwise, e, e4, f7, e8 form a doublecross.

Then a7 ∈ A[a1, a5]; otherwise, (e3, e4, e5, f7, e8) is a 5-edge configuration contradict-

ing the choice of P .

We see that a6 ∈ A(a5, a2]. In fact, if a6 ∈ A[a1, a8), then e4, e6, e8, e form a double-

cross; if a6 ∈ A[a8, a7), then (e3, e4, e6, f7, e8) is a 5-edge configuration contradicting the

choice of P .

G has no edge from B(b4, b5] to A[a1, a5). For, otherwise, let e9 = a9b9 ∈ E(G)

with a9 ∈ A[a1, a5) and b9 ∈ B(b4, b5]. Now, a9 /∈ A[a1, a8) to avoid the doublecross

e, e4, e8, e9. Moreover, a9 /∈ A[a8, a7) and b9 /∈ B(b4, b5); or else, (e3, e4, e9, f7, e8) is a

5-edge configuration contradicting the choice of P . So a9 ∈ A[a7, a5) and b9 = b5, but

then (e3, e4, e9, e6, e7) is a 5-edge configuration, contradicting the choice of P .
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G has no edge from B[b7, b2] to A(a5, a2]. For, otherwise, let e9 = a9b9 ∈ E(G) with

a9 ∈ A(a5, a2] and b9 ∈ B[b7, b2]. Then (e9, e8, f7, e6, e5) forms a 5-edge configuration.

Now, by Lemma 6.0.3, G0 has a cut {b′′1, b′′2} or {b′′1, b′′2, a′′0} (w.r.t. (e9, e8, f7, e6, e5)) satis-

fying the conclusion of Lemma 6.0.3, such that b1, b′′1, b
′′
2, b2 occur on B in order. But then,

by Lemma 2.0.9, G0 has a cut, which contradicts the choice of {b′1, b′2}.

Now, the existence of {b′1, b′2} contradicts Lemma 6.0.4.

Case 2. G has an edge e8 from b8 ∈ B[b1, t1) to a8 ∈ A(a∗1, a∗2), such that e8 6= e4.

Note that b8 ∈ B[b1, b4] ∩ B[b1, b
′
1). Now, we distinguish two subcases, a8 ∈ A(a5, a∗2)

and a8 ∈ A(a∗1, a5].

Subcase 2.1. a8 ∈ A(a5, a∗2).

We choose e8 so that A[a8, a2] is maximal.

(2.1.1) b8 /∈ B(b1, b4).

For, otherwise, b8 ∈ B(b1, b4). Then a8 /∈ A(a5, a7] to avoid the doublecross e8, e4, e5, e7.

Now, b3 = b4 and a8 ∈ A[a1, a4); otherwise, (e3, e8, e5, e6, e7) contradicts the choice of P .

But then, e3, e4, e7, e8 form a doublecross. 2

(2.1.2) b8 6= b4.

For, otherwise, b8 = b4, and (iv)(b) occurs with f4 existing.

We see that a8 /∈ A(a4, a2]; otherwise, (e3, e8, e5, e6, e7) contradicts the choice of P .

So a8 ∈ A(a5, a4).

G has no edge from A(a5, a4) to B(b5, b2]; otherwise, such an edge together with

e5, e8, f4 forms a doublecross. Hence, a7 ∈ A[a1, a5] and a6 /∈ A(a5, a4). Moreover,

a6 /∈ A[a1, a7) to avoid the doublecross e6, e7, e8, f4. So a6 ∈ A[a4, a2].

Now, since a8 has degree at least 6 in G, then G has an edge e′8 from a8 to b′8 ∈

B[b1, b2] − {b1, b4, b5}. Since G has no edge from A(a5, a4) to B(b5, b2], then, combined
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with (2.1.1), b′8 ∈ B(b4, b5). But then, (e3, e4, e′8, e6, e7) is a 5-edge configuration contra-

dicting the choice of P . 2

Hence, b8 = b1 and b′1 6= b1. Now, a8 ∈ A[a4, a∗2) to avoid the doublecross e8, e4, e3, e7.

And b∗2 ∈ B[b7, b
′
2) to avoid the doublecross e8, f2, e3, e7. Moreover, b3 = b4; otherwise,

(f2, e7, e4, e3, e8) contradicts the choice of P .

Now, by no doublecross and by the choice of P , G has no edge from B(b1, b3) to A.

Also, a5 ∈ A[a1, a7], or else (f2, e7, e5, e3, e8) contradicts the choice of P .

Finally, a6 ∈ A[a1, a5), as, otherwise, e8, e6, e3, e7 (when a6 ∈ A(a8, a2]) would form a

doublecross , or (f2, e7, e6, e3, e8) (when a6 ∈ A[a5, a8]) contradicts the choice of P .

(2.1.3) G has no edge from B(b6, b2] to A[a1, a5) and no cross from B[b6, b2] to A[a5, a2].

For, let e = ab ∈ E(G) with b ∈ B(b6, b2] and a ∈ A[a1, a5). Then b = b2; or else,

(e3, e4, e5, e, e7) (when b /∈ B(b6, b7)) or (f2, e, e5, e3, e8) (when b ∈ B[b7, b2)) contradicts

the choice of P . But then a 6= a1, and e, e8 and two edges from a1, a2 to B(b1, b2) would

form a doublecross.

Moreover, supposeG has a cross fromB[b6, b2] toA[a5, a2], then such a cross and e5, e6

would form a doublecross, a contradiction. 2

(2.1.4) G has no edge from B(b1, b3) to A.

For, otherwise, let e = ab ∈ E(G) with a ∈ A and b ∈ B(b1, b3). Then a ∈ A[a4, a8];

or else, (f2, e7, e4, e, e8) contradicts the choice of P . But now, (e, e3, e5, e6, e7) contradicts

the choice of P . 2

(2.1.5) G has no edge from A(a4, a2] to B(b1, b7).

For, otherwise, let e = ab ∈ E(G) with a ∈ A(a4, a2] and b ∈ B(b1, b7). Then b /∈

B(b4, b7) to avoid the doublecross e4, e6, e7, e. But then b ∈ B(b1, b4], and (e, e3, e5, e6, e7)

is a 5-edge configuration contradicting the choice of P . 2
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Let e∗ = a2b
∗ ∈ E(G), such that b∗ ∈ B(b1, b2), and B[b∗, b2] is minimal. Then by

(2.1.3) and (2.1.5), b∗ ∈ B[b7, b2) and G has no edge from B(b∗, b2] to A.

Let e′ = a′b′ ∈ E(G) with a′ ∈ A(a8, a2] and b′ ∈ B(b6, b2], such that B[b′, b2] is

maximal. Note that e′ exists because of e∗. And b′ ∈ B[b7, b
∗] by (2.1.3).

Now, by (2.1.3), (2.1.5), and the choice of e∗, e′, we have

(2.1.6) G has no edge from B(b∗, b2] to A and no edge from B(b1, b
′) to A(a8, a2].

(2.1.7) G has no edge from b1 to A[a1, a8).

For, suppose there exists e = ab1 ∈ E(G) with a ∈ A[a1, a8). Then, obviously, by the

choice of e8, a /∈ A(a5, a8). Hence, a ∈ A[a1, a5]. Since a 6= a1, then let e0 = a1b0 ∈ E(G)

with b0 ∈ B(b1, b2). Now, b0 ∈ B[b7, b2) to avoid the doublecross e0, e4, e7, e. But then

(e0, e
∗, e5, e4, e) is a 5-edge configuration contradicting the choice of P . 2

(2.1.8) For any edge f ′8 = a′8b
′
8 ∈ E(G) with a′8 ∈ A[a5, a2] and b′8 ∈ B(b6, b2], G has no

edge from B(b4, b
′
8) to A(a′8, a2].

For, otherwise, let f ′9 = a′9b
′
9 ∈ E(G) with a′9 ∈ A(a′8, a2] and b′9 ∈ B(b4, b

′
8). Then

b′9 /∈ B(b5, b
′
8) to avoid the doublecross e5, e6, f ′8, f

′
9. So b′9 ∈ B(b4, b5]. Moreover, b′9 /∈

B(b3, b5); otherwise, (e3, e4, f ′9, e6, e7) is a 5-edge configuration contradicting the choice

of P . So b′9 = b5. Now, we see that a7 ∈ A[a5, a
′
9); or else, (e3, e4, f ′9, e6, e7) is a 5-

edge configuration contradicting the choice of P . But then (e∗, e7, f
′
9, e3, e8) is a 5-edge

configuration contradicting the choice of P . 2

(2.1.9) G0 does not have a cut {b3, b′′} or {b3, b′′, a′′} with b′′ ∈ B[b6, b
′] separating B[b3, b

′′]

from {a0, b1, b2}.

For, suppose G0 has such a cut {b3, b′′} or {b3, b′′, a′′} with b′′ ∈ B[b6, b
′]. Now, let a′9 ∈

A[a1, a2] such that G has an edge f ′9 from a′9 to b′9 ∈ B(b3, b
′′), and subject to this, A[a′9, a2]

is minimal. Obviously, by the existence of e5, a9 ∈ A[a5, a2].
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We claim that a′9 /∈ A(a8, a2], and so by (2.1.7), G has no edge from b1 toA[a1, a′9). For

otherwise, b′9 /∈ B(b3, b7) to avoid the doublecross e6, e7, e8, f ′9. But then b′9 ∈ B[b7, b
′),

and f ′9 contradicts the choice of e′.

By (2.1.3) and (2.1.8), G has no edge from B(b′′, b2] to A[a1, a9). Thus, {a1, b3, b′′, a9}

or {a1, b3, b′′, a′′, a9} is a cut inG separating V (A[a1, a9]∪B[b3, b
′′]) from {a0, a1, a2, b1, b2},

a contradiction. 2

Since (e′, e6, e5, e3, e8) is a 5-edge configuration, G0 has a cut {b′′1, b′′2} or {b′′1, b′′2, a′′0}

(w.r.t. (e′, e6, e5, e3, e8)) satisfying the conclusion of Lemma 6.0.3, such that b1, b′′1, b
′′
2, b2

occur on B in order.

Moreover, since (e3, e4, e5, e6, e7) is a 5-edge configuration, G0 has a cut {b#1 , b
#
2 } or

{b#1 , b
#
2 , a

#
0 } (w.r.t. (e3, e4, e5, e6, e7)) satisfying the conclusion of Lemma 6.0.3, such that

b1, b
#
1 , b

#
2 , b2 occur on B in order.

Subcase 2.1.a. Conclusions (i), or (ii), or (iii) of Lemma 6.0.3 holds for {b′′1, b′′2} or

{b′′1, b′′2, a′′0} w.r.t. (e′, e6, e5, e3, e8).

We may assume conclusion (iv) of Lemma 6.0.3 holds for {b#1 , b
#
2 }w.r.t. (e3, e4, e5, e6, e7),

and so b#1 ∈ B(b4, b5] and b#2 ∈ B[b7, b2]. For otherwise, assume conclusions (i), or (ii),

or (iii) of Lemma 6.0.3 holds for {b#1 , b
#
2 } or {b#1 , b

#
2 , a

#
0 } w.r.t. (e3, e4, e5, e6, e7). Then

by the choice of {b′1, b′2} with b′1 6= b1, and by Lemma 2.0.8 and 2.0.9, we could find a cut

{b3, b′′} or {b3, b′′, a′′}with b′′ ∈ B[b6, b
′] inG0, which separatesB[b3, b

′′] from {a0, b1, b2},

a contradiction to (2.1.9).

Now, suppose conclusion (i) of Lemma 6.0.3 holds for {b′′1, b′′2, a′′0}w.r.t. (e′, e6, e5, e3, e8).

Then b′′2 ∈ B[b6, b7) by b′1 6= b1 and the choice of {b′1, b′2}. Moreover, by Lemma 2.0.9,

b#2 = b2, and b#1 , b
′′
2, b2, a0 are on a common finite face of G0. Let a′8 ∈ A[a1, a2] such that

G has an edge f ′8 from B(b′′2, b2] to a′8, and A[a′8, a2] is maximal. Now, by (2.1.3), (2.1.4),

and (2.1.8), G has a separation (H1, H2), such that V (H1 ∩ H2) = {b1, b2, b4, b′′2, a′8},

{a0, a1, b1, b2} ⊆ V (H1), and V (A[a′8, a2] ∪B[b′′2, b2]) ⊆ V (H2), a contradiction.

Suppose conclusion (ii) of Lemma 6.0.3 holds for {b′′1, b′′2} w.r.t. (e′, e6, e5, e3, e8). So
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b′′1 = b1 and b′′2 ∈ B[b6, b
′]. Then by Lemma 2.0.9, {b1, b#2 } is a cut in G0 separating

B[b1, b
#
2 ] from {b1, b2, a0}, which contradicts the choice of {b′1, b′2} (by b′1 6= b1).

So we may assume conclusion (iii) of Lemma 6.0.3 holds for {b′′1, b′′2}w.r.t. (e′, e6, e5, e3, e8).

Now, b′′1 ∈ B(b1, b3] and b′′2 ∈ B[b6, b
′]. Then by Lemma 2.0.9, {b′′1, b

#
2 } is a cut in G0 sepa-

rating B[b′′1, b
#
2 ] from {b1, b2, a0}. Now, let a′9 ∈ A[a4, a2], such that G has an edge f ′9 from

a′9 to b′9 ∈ B[b4, b
#
2 ), and subject to this, A[a′9, a2] is minimal.

We see that G has no edge from B(b#2 , b2] to A[a1, a′9). For, otherwise, let f ′8 = a′8b
′
8 ∈

E(G) with a′8 ∈ A[a1, a
′
9) and b′8 ∈ B(b#2 , b2]. Since B(b#2 , b2] ⊆ B(b7, b2], then a′8 /∈

A[a5, a4); or else, (e3, e4, e5, e6, e′8) is a 5-edge configuration contradicting the choice of P .

By (2.1.3), a′8 ∈ A[a4, a2]. Now, by (2.1.8), b′9 = b4. But now, (e3, f ′9, e5, e6, e7) contradicts

the choice of P .

Thus, by (2.1.4), G has a separation (H1, H2), such that V (H1∩H2) = {b1, b′′1, b
#
2 , a

′
9},

{a0, a2, b1, b2} ⊆ V (H1), and V (A[a1, a
′
9] ∪B[b′′1, b

#
2 ]) ⊆ V (H2), a contradiction.

Subcase 2.1.b. Conclusion (iv) of Lemma 6.0.3 holds for {b′′1, b′′2}w.r.t. (e′, e6, e5, e3, e8).

Then b′′2 ∈ B[b5, b6), b′′1 = b1, and {b1, b′′2} is a cut in G0 separating B[b1, b
′′
2] from

{a0, b1, b2}. By Lemma 2.0.9, the choice of {b′1, b′2}, and b′1 6= b1, we have b′2 = b2, b′1 ∈

B(b1, b3], and b′1, b
′′
2 are cut vertices of G0 separating b1 from {a0, b2}. So α(A,B) ≤ 1.

We may assume b∗ = b7. For, suppose b∗ 6= b7, then b∗ ∈ B(b7, b2]. We first see that

there does not exist a vertex u ∈ B[b∗, b2), such that b′′2, u are incident with a common

finite face of G0; or else, {b′′1, b′′2, u} is a 3-cut in G0 separating B[b′′1, u] from {a0, b1, b2}, a

contradiction to the choice of {b′1, b′2}. Then we claim that G0 − B[b1, b
′′
2] − B[b∗, b2) has

disjoint paths B2, A0 from b2, a0 to b7, b6, respectively. For otherwise, since Subcase 2.1.a.

does not hold, then, combined with the planar structure of G0 and the choice of {b′1, b′2},

there exist u0 ∈ V (G0), u2 ∈ B[b∗, b2), and a separation (H1, H2) in G0, such that V (H1 ∩

H2) = {b′′2, u0, u2}, V (B[b′′1, b
′′
2)∪B(b′′2, u2)) ⊆ V (H1−H2), and {a0, b2} ⊆ V (H2−H1).

By (2.1.6), {b′′2, u′0, u2} is a cut in G separating {a0, b2} from {a1, a2, b1}, a contradiction.

Hence,B2, A0 exist. Now, letA′ := A[a1, a6]∪e6∪A0 andB′ := B[b1, b5]∪e5∪A[a5, a7]∪
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e7∪B2. Then the existence of A′, B′, e8∪A[a8, a2], and e∗∪B[b′, b2] implies α(A,B) = 2

(by Lemma 3.0.1), a contradiction.

Now, by (2.1.5) and (2.1.6), G has a separation (H1, H2), such that V (H1 ∩ H2) =

{b1, b7, a4}, {a0, a1, b1, b2} ⊆ V (H1), and V (A(a4, a2]) ⊆ V (H2 −H1), a contradiction.

Subcase 2.2. a8 ∈ A(a∗1, a5].

Now, we may assume G has no edge from B[b1, t1) to A(a5, a∗2). Choose e8 so that

A[a8, a5] is minimal, and subject to this, B[b8, b
′
1] is minimal. Then G has no edge from

B[b1, b4] ∩B[b1, b
′
1) to A(a8, a∗2).

(2.2.1) G has no cross from B[b1, b4] to A[a1, a5], and so b8 ∈ B[b3, b4].

For, suppose G has a cross from B[b1, b4] to A[a1, a5]. Then such a cross together with

e4, e5 forms a doublecross, a contradiction. Now, by the choice of e8, we may assume

b8 ∈ B[b3, b4]. 2

(2.2.2) G has no edge from B(b8, b7) to A[a1, a8) ∩ A[a1, a7), and so if a8 ∈ A[a1, a7], then

b∗1 ∈ B[b7, b2).

For otherwise, such an edge together with e4, e7, e8 (when b8 6= b4) or f4, e7, e8 (when

(iv)(b) occurs with b8 = b4) forms a doublecross, a contradiction. 2

(2.2.3) a7 ∈ A[a1, a5].

For, suppose a7 ∈ A(a5, a2]. Then b∗1 ∈ B[b7, b2) by (2.2.2). So b7 6= b2 (by b∗1 6= b2). Now,

we may assume (iv)(b) occurs with b8 = b4; otherwise, b8 ∈ B[b1, b4) and (f1, e7, e5, e4, e8)

contradicts the choice of P . But then (f1, e7, e5, f4, e8) is a 5-edge configuration, so by

Lemma 2.0.9 and 6.0.3, G0 has a cut contradicting the choice of {b′1, b′2}. 2

(2.2.4) G has no edge from B(b5, b7) to A[a1, a7), and so a6 ∈ A(a5, a2].
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For, otherwise, let e9 = a9b9 ∈ E(G) with a9 ∈ A[a1, a7) and b9 ∈ B(b5, b7). Then

a8 ∈ A[a1, a9] and b∗1 ∈ B[b7, b2) by (2.2.2). So b7 6= b2 (by b∗1 6= b2). Now, we may

assume (iv)(b) occurs with b8 = b4; otherwise, (f1, e7, e9, e4, e8) contradicts the choice of

P . But then, (f1, e7, e9, f4, e8) is a 5-edge configuration, so by Lemma 2.0.9 and 6.0.3, G0

has a cut contradicting the choice of {b′1, b′2}. 2

(2.2.5) G has no edge from B(b4, b5] to A[a1, a5).

For, otherwise, let e9 = a9b9 ∈ E(G) with a9 ∈ A[a1, a5) and b9 ∈ B(b4, b5]. Then a9 /∈

A[a7, a5); otherwise, (e3, e4, f9, e6, e7) is a 5-edge configuration contradicting the choice

of P . Moreover, a8 ∈ A[a1, a9] and b∗1 ∈ B[b7, b2) by (2.2.2). So b7 6= b2 (by b∗1 6= b2).

Now, we may assume (iv)(b) occurs with b8 = b4; otherwise, (f1, e7, e9, e4, e8) contradicts

the choice of P . But then, b9 = b5, and (f1, e7, e9, f4, e8) is a 5-edge configuration, so by

Lemma 2.0.9 and 6.0.3, G0 has a cut contradicting the choice of {b′1, b′2}. 2

(2.2.6) G has no edge from B(b6, b2] to A(a5, a2].

For, otherwise, let e9 = a9b9 ∈ E(G) with a9 ∈ A(a5, a2] and b9 ∈ B(b6, b2]. Then

b9 ∈ B[b7, b2]; or else, (e3, e4, e5, e9, e7) contradicts the choice of P .

We see that b9 6= b2. For otherwise, a9 6= a2. Let e = a2b ∈ E(G) with b ∈ B(b1, b2)

and b 6= b4. Then b /∈ B(b1, b4); otherwise, (e3, e, e5, f1, e9) contradicts the choice of P .

So b ∈ B(b4, b2). Now, e8, e9, f1, e form a doublecross, a contradiction.

So b9 ∈ B[b7, b2) and b7 6= b2. Now, we may assume (iv)(b) occurs with b8 = b4; other-

wise, combined with (2.2.2), (e9, e7, e5, e4, e8) (when a7 ∈ A[a1, a8)) or (e9, f1, e5, e4, e8)

(when a8 ∈ A[a1, a7]) contradicts the choice of P . But then, (e9, e7, e5, f4, e8) (when

a7 ∈ A[a1, a8)) or (e9, f1, e5, f4, e8) (when a8 ∈ A[a1, a7]) is a 5-edge configuration. By

Lemma 2.0.9 and 6.0.3, G0 has a cut contradicting the choice of {b′1, b′2}. 2

Now, by (2.2.3)–(2.2.6) and by Lemma 6.0.4,

(2.2.7) G0 does not contain a cut {b′′1, b′′2} separating B[b′′1, b
′′
2] from {a0, b1, b2} with b′′1 ∈

B[b1, b4] and b′′2 ∈ B[b6, b2].
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By (2.2.7), we have

(2.2.8) Conclusions (ii) and (iii) of Lemma 6.0.5 do not hold for {b′1, b′2}w.r.t. (e3, e4, e5, e6, e7).

(2.2.9) G has no edge from B[b1, b4) to A(a5, a2].

For, suppose G has an edge e from b ∈ B[b1, b4) to a ∈ A(a5, a2]. Then we may assume

b = b1. For otherwise, b ∈ B(b1, b4). Now, a ∈ A(a5, a4) and b ∈ B(b, b4]; or else,

(e3, e, e5, e6, e7) contradicts the choice of P . But then e3, e4, e, e5 form a doublecross.

So a 6= a2 (by b = b1). Now, let e0 = a2b0 ∈ E(G) with b0 ∈ B(b1, b2). If b0 ∈

B(b1, b7), then e0, e, e3, e7 form a doublecross. So, b0 ∈ B[b7, b2), contradicting (2.2.6). 2

(2.2.10) G has no parallel edges fromA[a1, a8] toB[b4, b2] and no parallel edges fromA[a1, a5]

to B[b6, b2].

For otherwise, such two parallel edges together with e4, e8 or e5, e6 form a doublecross, a

contradiction. 2

Let e′7 = a′7b
′
7 ∈ E(G) with a′7 ∈ A[a1, a7] and b′7 ∈ B[b7, b2], such that A[a1, a′7] ∪

B[b′7, b2] is minimal.

(2.2.11) a′7 ∈ A[a1, a8), and G has no edge from B(b′7, b2] to A.

For, suppose a′7 /∈ A[a1, a8). Since a∗1 ∈ A[a1, a8), then by the choice of e′7, b
∗
1 ∈ B(b8, b

′
7),

and so e8, e4, f1, e′7 form a doublecross.

By (2.2.6) and (2.2.10), and by the choice of e′7, G has no edge from B(b′7, b2] to A. 2

Let e′ = a′b′ ∈ E(G) with a′ ∈ A[a1, a5] and b′ ∈ B[b1, t1), such that A[a1, a′] ∪

B[b1, b
′] is minimal.

By (2.2.1) and (2.2.9), and by the choice of e′, we have

(2.2.12) e′, e8 do not form a cross, and G has no edge from B[b1, b
′) to A, and no edge from

B(b′, b8) to A[a1, a′) ∪ A(a8, a2].
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(2.2.13) If conclusion (iv) of Lemma 6.0.5 holds for {b′1, b′2} w.r.t. (e3, e4, e5, e6, e7), then

there does not exist a 3-cut {b′′1, b′′2, a′′0} in G0 with b′′1 ∈ B[b1, b4] and b′′2 ∈ B(b5, b2),

which separates B[b′′1, b
′′
2] from {a0, b1, b2}.

For, suppose conclusion (iv) of Lemma 6.0.5 holds for {b′1, b′2} w.r.t. (e3, e4, e5, e6, e7),

and (2.2.13) fails. Then b′1 ∈ B(b4, b5], b′2 ∈ B[b7, b2], and G has no edge from B(b4, b
′
1)

to A − a4. Now, by the choice of {b′1, b′2} and by Lemma 2.0.9, b′′1 = b1, b
′′
2 ∈ B(b5, b7),

a′′0 = a0, b′2 = b2, and α(A,B) ≤ 1.

By the choice of {b′1, b′2}, and by planar structure of G0, we may assume G0 − a0 −

B[b′7, b2) contains a path B2 from b2 to b′′2.

Let e′4 = a4b
′
4 ∈ E(G) with b′4 ∈ B[b4, b

′
1) such that B[b′4, b

′
1] is minimal. Since

b8 ∈ B[b1, t1), then b8 6= b′4.

We claim that if b′4 6= b4, then G has no edge from B[b1, b
′
4) to A(a5, a2] − a4. For,

suppose b′4 ∈ B(b4, b
′
1) and G has an edge e from b ∈ B[b1, b

′
4) to a ∈ A(a5, a2]−a4. Now,

by (2.2.9), b ∈ B[b4, b
′
4). By (iv) of Lemma 6.0.5, b /∈ B(b4, b

′
4). So b = b4. By the choice

of P , a ∈ A(a5, a4). Now, let e0 = ab0 ∈ E(G) with b0 ∈ B[b1, b2] and b0 /∈ {b4, b5}.

By (2.2.9), b0 /∈ B[b1, b4). Moreover, b0 /∈ B(b5, b2] to avoid the doublecross e, e0, e′4, e5.

So b0 ∈ B(b4, b5). But then e, e6, e
′
4, e5 form a doublecross (when a6 ∈ A(a5, a4)), or

(e3, e4, e0, e6, e7) contradicts the choice of P (when a6 ∈ A[a4, a2]).

By the choice of e8, (2.2.1), (2.2.9), (iv) of Lemma 6.0.5, and our previous claim, if

b′4 = b4, then G has no edge from B(b8, b
′
4) to A; if b′4 6= b4, then G has no edge from

B(b8, b
′
4) to A− a4.

Now, we see that e′ ∩ e8 = ∅. For, suppose there exists a vertex v ∈ e′ ∩ e8. Then, by

(2.2.12), (iv) of Lemma 6.0.5, and our previous analysis, {b1, v, b4, b′1, b2} (when b′4 = b4)

or {b1, v, a4, b′1, b2} (when b′4 6= b4) is a cut in G separating a0 from V (A), a contradiction.

We may assume G0−B(b1, b
′]−B[b′1, b2] contains disjoint paths B1, A0 from b1, a0 to

b8, b
′
4, respectively. For, suppose not. There exists a vertex v ∈ V (G0), such that v is a cut

vertex in G0 − B(b1, b
′]− B[b′1, b2] separating b1, a0 from b8, b

′
4. We see that v /∈ B[b′, b8];
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otherwise, v and b′1 are incident with a common finite face of G0, and so {v, b′1, b′2} is a

3-cut in G0 separating B[v, b′2] from {a0, b1, b2}, a contradiction to the choice of {b′1, b′2}.

Moreover, v /∈ B[b′4, b
′
1]. For otherwise, there exists a vertex v1 ∈ B(b1, b

′], such that v1, v

are incident with a common finite face of G0. By (2.2.12), (iv) of Lemma 6.0.5, and the

choice of e′4, {v1, v, b′1} is a cut in G separating {a0, b1} from {a1, a2, b2}, a contradiction.

Now, we may assume v /∈ V (B), and so there exists a vertex v1 ∈ B(b1, b
′], such that

v1, v are incident with a common finite face of G0, and v, b′1 are incident with a common

finite face of G0. But then, combined with (2.2.12), {v1, v, b′1} is still a cut in G separating

{a0, b1} from {a1, a2, b2}, a contradiction.

Now, combined with Lemma 3.0.1, the path B1 ∪ e8 ∪ A[a8, a5] ∪ e5 ∪ B[b5, b
′′
2] ∪ B2

from b1 to b2, the path A[a4, a2] ∪ e′4 ∪ A0 from a2 to a0, the path A[a1, a′] ∪ e′ ∪ B[b1, b
′]

from a1 to b1, and the path A[a1, a′7] ∪ e′7 ∪ B[b′7, b2] from a1 to b2 show that α(A,B) = 2,

a contradiction. 2

(2.2.14) Conclusion (i) of Lemma 6.0.5 holds for {b′1, b′2} w.r.t. (e3, e4, e5, e6, e7), b8 6= b4,

and G has no edge from B[b1, b
′
1) to A(a8, a2].

For, suppose conclusion (i) of Lemma 6.0.5 does not hold for {b′1, b′2}. By (2.2.8), con-

clusion (iv) of Lemma 6.0.5 holds for {b′1, b′2} w.r.t. (e3, e4, e5, e6, e7). So b′1 ∈ B(b4, b5]

and b′2 ∈ B[b7, b2]. By (2.2.1) and (2.2.5), b∗1 ∈ B(b5, b2). Hence, (f1, e6, e5, e4, e8) (when

(iv)(a) occurs) or (f1, e6, e5, f4, e8) (when (iv)(b) occurs) is a 5-edge configuration. How-

ever, by Lemma 2.0.9 and 6.0.3,G0 has a cut contradicting (2.2.13) or the choice of {b′1, b′2}.

Hence, conclusion (i) of Lemma 6.0.5 holds for {b′1, b′2} w.r.t. (e3, e4, e5, e6, e7), which

implies that b′1 ∈ B[b1, b4]. Since b8 ∈ B[b1, b
′
1), then b8 6= b4. By (2.2.9), G has no edge

from B[b1, b
′
1) to A(a5, a2]. Now, by the choice of e8, G has no edge from B[b1, b

′
1) to

A(a8, a2]. 2

(2.2.15) G has no edge from B(b8, b6) to A[a1, a8), and so (f1, e6, e5, e4, e8) is a 5-edge con-

figuration with b∗1 ∈ B[b6, b2).
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We first claim that G has no edge from B(b8, b6) to A[a1, a8). For, suppose there exists

e = ab ∈ E(G) with b ∈ B(b8, b6) and a ∈ A[a1, a8). We may assume a7 ∈ A(a1, a]

to avoid the doublecross e4, e7, e8, e. But now, since a3 ∈ A[a1, a7), then, combined with

(2.2.1), b3 ∈ B(b1, b8], and so (e3, e8, e, e6, e7) contradicts the choice of P .

Now, by our claim, b∗1 /∈ B(b8, b6), and so (f1, e6, e5, e4, e8) is a 5-edge configuration

with b∗1 ∈ B[b6, b2). 2

We choose f1 so that B[b6, b
∗
1] is minimal. Moreover, we let e′5 = a′5b

′
5 ∈ E(G) with

a′5 ∈ A(a∗1, a6) and b′5 ∈ B[b5, b6) so thatB[b′5, b6] is minimal. Now, since (f1, e6, e′5, e4, e8)

is a 5-edge configuration, G0 has a cut {b#1 , b
#
2 } or {b#1 , b

#
2 , a

#
0 } (w.r.t. (f1, e6, e′5, e4, e8))

satisfying the conclusion of Lemma 6.0.3, such that b1, b
#
1 , b

#
2 , b2 occur on B in order.

By (2.2.7), we have

(2.2.16) Conclusions (ii) and (iii) of Lemma 6.0.3 do not hold for {b#1 , b
#
2 }w.r.t. (f1, e6, e′5, e4, e8).

(2.2.17) Conclusion (i) of Lemma 6.0.3 holds for {a#0 , b
#
1 , b

#
2 } w.r.t. (f1, e6, e′5, e4, e8).

For, otherwise, by (2.2.16), conclusion (iv) of Lemma 6.0.3 holds for {b#1 , b
#
2 } w.r.t.

(f1, e6, e
′
5, e4, e8). So b#1 ∈ B[b1, b8] and b#2 ∈ B[b′5, b6). Then by Lemma 2.0.9, and

by the choice of {b′1, b′2}, we have b#1 = b1, b
′
2 = b2, a0 = a′0, and α(A,B) ≤ 1. We further

choose {b#1 , b
#
2 } so that B[b#2 , b2] is minimal.

By the choice of {b′1, b′2}, and by planar structure of G0, we may assume G0 − a0 −

B(b1, b
′
1) contains a path B1 from b1 to b′1.

We let e′6 = a′6b
′
6 ∈ E(G) with a′6 ∈ A(a5, a2] and b′6 ∈ B(b#2 , b6], such that A[b′6, b2] is

maximal.

G has no edge from B(b′5, b
′
6) to A. For, suppose G has an edge e from b ∈ B(b′5, b

′
6)

to a ∈ A. Then by the choice of e′6, a ∈ A[a1, a5]. By the choice of e′5, a /∈ A(a∗1, a6). So

a ∈ A[a1, a∗1], which contradicts (2.2.15).

Let A0 be the path from a0 to b′6 on the boundary of G0 − B[b1, b
#
2 ] without going

through b2. Since (2.2.17) fails, then combined with the choice of {b#1 , b
#
2 }, we may assume
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A0 ∩B(b6, b2] = ∅.

We claim that G has an edge e′′7 from a′′7 ∈ A(a′7, a8) to b′′7 ∈ B(b6, b
′
7). In fact,

we see that G has an edge e from a ∈ A[a1, a8) to b ∈ B[b′1, b2] − {b6}, such that

e ∩ e′7 = ∅; otherwise, by (2.2.1) and (2.2.10), G has a separation (G1, G2), such that

V (G1 ∩G2) = {b1, b′1, a8, b6, u, a1} with u ∈ {a′7, b′7}, V (A[a1, a8] ∪ B[b1, b
′
1]) ⊆ V (G1),

{a0, a1, a2, b1, b2} ⊆ V (G2), and (G1, b1, b
′
1, a8, b6, u, a1) is planar, a contradiction to Lemma 2.0.3.

Now, by (2.2.15), b /∈ B(b8, b6), and so b ∈ B(b6, b2]. Finally, by (2.2.10) and the choice

of e′7, a ∈ A(a′7, a8) and b ∈ B(b6, b
′
7), which finishes our claim.

We further choose e′′7 with a′′7 ∈ A(a′7, a8) and b′′7 ∈ B(b6, b
′
7) so that A[a1, a′′7] is max-

imal. Now, we may assume a′′7 ∈ A(a′, a8). For otherwise, a′′7 ∈ A[a1, a
′]. By (2.2.10),

(2.2.15), and the choice of e′′7, {b1, b′1, a′, a8, b6} is a cut in G separating V (A[a′, a8] ∪

B[b1, b
′
1]) from {a0, a1, a2, b1, b2}, a contradiction.

We may also assumeG0−A0−B[b′7, b2) contains a pathB2 from b2 to b′′7. For otherwise,

b′7 6= b2, and there exist a vertex v1 ∈ A0 and a vertex v2 ∈ B[b′7, b2), such that v1, v2 are

incident with a common finite face in G0. If v1 = a0, then {v1, v2, b2} is a cut in G

separating NG(b2) from {a0, a1, a2, b1, b2}, a contradiction; if v1 6= a, then combined with

(2.2.11), {b1, b#2 , v1, v2, b2} is a cut in G separating a0 from {a1, a2}, a contradiction.

Now, combined with Lemma 3.0.1, the path B1 ∪ B[b′1, b5] ∪ e5 ∪ A[a′′7, a5] ∪ e′′7 ∪ B2

from b1 to b2, the path A[a′6, a2] ∪ e′6 ∪ A0 from a2 to a0, the path A[a1, a′] ∪ e′ ∪ B[b1, b
′]

from a1 to b1, and the path A[a1, a′7] ∪ e′7 ∪ B[b′7, b2] from a1 to b2 show that α(A,B) = 2,

a contradiction. 2

Now, by (2.2.17), b#1 ∈ B[b1, b8] and b#2 ∈ B[b6, b
∗
1]. Moreover, we choose {b#1 , b

#
2 } so

that B[b#1 , b
#
2 ] is maximal. By (2.2.7), G0 contains a path from a0 to B(b4, b6), internally

disjoint from B. Then by Lemma 2.0.8, and by the choice of {b′1, b′2}, we have b#1 =

b1, b
′
2 = b2, and one of the following holds:

(N1) a0 = a′0 = a#0 , and so c(A,B) ≥ 2;
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(N2) a#0 = a0, b#2 is a cut vertex of G0 separating b2 from {a0, b1}, a′0, a
#
0 , b

#
2 , b

′
2 are

incident with a common finite face of G0, and so α(A,B) ≤ 1;

(N3) a′0 = a0, b′1 is a cut vertex ofG0 separating b1 from {a0, b2}, a′0, a
#
0 , b

#
1 , b

′
1 are incident

with a common finite face of G0, and so α(A,B) ≤ 1.

Obviously, by (N1)–(N3), there exists a vertex a∗0 ∈ {a′0, a
#
0 }, such that {b′1, b

#
2 , a

∗
0}

is a 3-cut in G0 separating B[b′1, b
#
2 ] from {a0, b1, b2}. We let e9 = a9b9 ∈ E(G) with

b9 ∈ B(b′1, b
#
2 ) and a9 ∈ A[a1, a2], such that A[a1, a9] is minimal.

(2.2.18) There exists e′9 = a′9b
′
9 ∈ E(G) with a′9 ∈ A(a9, a2] and b′9 ∈ B[b1, b

′
1) ∪B(b#2 , b2].

For otherwise, {a∗0, b′1, b
#
2 , a9, a2} is a cut inG separatingA[a9, a2]∪B[b′1, b

#
2 ] from {a0, a1, a2, b1, b2},

a contradiction. 2

(2.2.19) b9 ∈ B(b′1, b4], a9 ∈ A[a8, a5), a′9 ∈ A(a9, a5], and b′9 ∈ B(b#2 , b7].

We first prove that a9 /∈ A[a1, a8). For, suppose a9 ∈ A[a1, a8). Then by (2.2.15), b9 /∈

B(b8, b6), and so b9 ∈ B[b6, b
#
2 ), a contradiction to the choice of f1.

We claim that b′9 ∈ B(b#2 , b2]. For, suppose, b′9 ∈ B[b1, b
′
1). By (2.2.9), a′9 /∈ A(a5, a2],

and so a′9 ∈ A(a9, a5], a contradiction to the choice of e8.

By (2.2.6), a′9 /∈ A(a5, a2], and so a′9 ∈ A(a9, a5]. Furthermore, we have b′9 ∈ B(b#2 , b7];

or else, (e3, e4, e5, e6, e′9) contradicts the choice of P .

Now, since a′9 ∈ A(a9, a5], then a9 6= a5, which implies that a9 ∈ A[a8, a5).

Finally, b9 ∈ B(b′1, b4]. First, b9 /∈ B(b5, b
#
2 ) to avoid the doublecross e′9, e5, e6, e9. By

(2.2.5), b9 /∈ B(b4, b5]. So b9 ∈ B(b′1, b4]. 2

Now, we choose e′9 so that B[b#2 , b
′
9] is minimal. Since a′9 ∈ A(a9, a5], then a5 6= a9.

(2.2.20) (N1) does not hold.
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For, suppose (N1) holds. By the choice of {b′1, b′2}, and by planar structure of G0, G0 −

B(b1, b
′
1) − a0 contains a path B1 from b1 to b′1. Moreover, by the choice of {b#1 , b

#
2 }, and

by planar structure of G0, G0 −B(b#2 , b2)− a0 contains a path B2 from b#2 to b2.

We may assume G has two disjoint edges f8, f9 from a∗8, a
∗
9 ∈ A(a1, a8) to b∗8, b

∗
9 ∈

B(b′1, b2], respectively. For otherwise, there exist a vertex v ∈ V (G) and a separation

(G1, G2) in G, such that V (G1 ∩G2) = {b′1, a0, b1, a1, v, a8}, {a0, a1, a2, b1, b2} ⊆ V (G1),

V (A(a1, a8) ∪ B(b1, b
′
1)) ⊆ V (G2), and (G2, b

′
1, a0, b1, a1, v, a8) is planar, a contradiction

to Lemma 2.0.3.

By (2.2.15), b∗8, b
∗
9 ∈ B[b6, b2]. Moreover, by (2.2.10), f8, f9 form a cross. So we may

assume a1, a∗8, a
∗
9, a2 occur on A in order, and b1, b∗9, b

∗
8, b2 occur on B in order. We further

choose f8, f9 with a∗8, a
∗
9 ∈ A(a1, a8) and b∗8, b

∗
9 ∈ B[b6, b2] so that A[a∗8, a

∗
9] is maximal.

By the existence of e′9 and (2.2.10), we may assume b∗8 ∈ B(b#2 , b2].

We claim thatG has an edge f5 from b∗5 ∈ B[b1, b
′
1) to a∗5 ∈ A(a1, a∗9). For otherwise, all

edges fromB[b1, b
′
1) will end in {a1}∪V (A[a∗9, a8]). By the choice of f8, f9,G has no edge

from A(a∗9, a8) to B(b8, b2]. Hence, G has a separation (G1, G2), such that V (G1 ∩G2) =

{b′1, a0, b1, a1, a∗9, a8}, {a0, a1, a2, b1, b2} ⊆ V (G1), V (A(a∗9, a8)∪B(b1, b
′
1)) ⊆ V (G2), and

(G2, b
′
1, a0, b1, a1, a

∗
9, a8) is planar. By Lemma 2.0.3, |V (G2−G1)| = 1. So V (G2−G1) =

{b8}, and G has edges from b8 to b′1, a0, b1, a1, a
∗
9, a8, respectively. But then, b1 has degree

1 in G, a contradiction.

By (2.2.7), there exists a path A0 from a0 to B(b4, b6) in G0, internally disjoint from B.

Now, combined with Lemma 3.0.1, the path B1 ∪ B[b′1, b9] ∪ e9 ∪ A[a∗9, a9] ∪ f9 ∪

B[b∗9, b
#
2 ] ∪ B2 from b1 to b2, the path B[b1, b

∗
5] ∪ f5 ∪ A[a∗5, a∗8] ∪ f8 ∪ B[b∗8, b2] from b1 to

b2, and the path A0 ∪ B(b4, b6) ∪ e5 ∪ A[a5, a2] from a0 to a2 show that α(A,B) = 2 and

c(A,B) = 0, a contradiction. 2

(2.2.21) (N2) does not hold.

For, suppose (N2) holds. We may assume G has an edge e′′7 from a′′7 ∈ A[a1, a8) to b′′7 ∈

B(b′1, b2], such that e′′7 ∩ e′7 = ∅. For otherwise, by (2.2.1), (2.2.10) and (2.2.15), G has a
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separation (G1, G2), such that V (G1 ∩G2) = {v, a8, b′1, a′0} with v ∈ {a′7, b′7}, a0, a1, b1 ∈

V (G2), |V (G2−G1)| ≥ 4, a2, b2 ∈ V (G1), and (G2, a0, b1, a1, v, a8, b
′
1, a
′
0) is planar. Now,

it contradicts Lemma 2.0.3 (when v = a′7 = a1) or Lemma 2.0.4 (when v 6= a1).

By (2.2.10) and (2.2.15), a′′7 ∈ A(a′7, a8) and b′′7 ∈ B[b6, b
′
7). Now, we choose e′′7 so that

A[a1, a
′′
7] is maximal. Then we may assume a′′7 ∈ A(a′, a8). For otherwise, a′′7 ∈ A[a1, a′],

and so G has no edge from A(a′, a8) to B(b′1, b2] by the choice of e′′7. But then, G has a

separation (G1, G2), such that V (G1 ∩ G2) = {a′, a8, b′1, a′0, a0, b1}, {a0, a1, a2, b1, b2} ⊆

V (G1), and (G2, a
′, a8, b

′
1, a
′
0, a0, b1) is planar, a contradiction to Lemma 2.0.3.

By the choice of {a#0 , b
#
1 , b

#
2 }, and by planar structure of G0, we may assume G0 −

B[b′7, b2) contains a path B2 from b2 to b#2 .

Now, let A0 be the path from a0 to B(b4, b6) in G0, internally disjoint from B. More-

over, we further choose A0 such that A0[a0, a
′
0] is on the boundary of G0 without going

through b1.

We claim that G0 − B(b1, b
′] − A0 contains a path B1 from b1 to b′1. For otherwise,

b′1 6= b1, and there exist a vertex v1 ∈ A0[a0, a
′
0] and a vertex v2 ∈ B(b1, b

′], such that v1, v2

are incident with a common finite face of G0. Now, combined with (2.2.12), if v1 6= a0,

then {b1, v1, v2, b2} is a cut in G separating a0 from {a1, a2}, a contradiction; if v1 = a0,

then {v1, v2, b1} is a cut in G separating NG(b1) from {a0, a1, a2, b1, b2}, a contradiction.

Now, combined with Lemma 3.0.1, the path B1 ∪ B[b′1, b9] ∪ e9 ∪ A[a′′7, a9] ∪ e′′7 ∪

B[b′′7, b
#
2 ] ∪ B2 from b1 to b2, the path A0 ∪ B(b4, b6) ∪ e5 ∪ A[a5, a2] from a0 to a2, the

path A[a1, a′]∪ e′ ∪B[b1, b
′] from a1 to b1, and the path A[a1, a′7]∪ e′7 ∪B[b′7, b2] show that

α(A,B) = 2, a contradiction. 2

Hence, (N3) holds. We may assume G has an edge e′′7 from a′′7 ∈ A(a′, a8) to b′′7 ∈

B(b′1, b2], such that e′′7 ∩ e′7 = ∅. For otherwise, by (2.2.10) and (2.2.15), G has a separation

(G1, G2), such that V (G1 ∩ G2) = {v, a′, a8, b1, b′1} with v ∈ {a′7, b′7}, V (A[a′, a8] ∪

B[b1, b
′
1]) ⊆ V (G1), and {a0, a1, a2, b1, b2} ⊆ V (G2), a contradiction.

By (2.2.10) and (2.2.15), we may also assume a′′7 ∈ A(a′7, a8) and b′′7 ∈ B[b6, b
′
7). By
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the choice of {a′0, b′1, b′2}, and by planar structure of G0, we may assume G0 − B(b1, b
′]

contains a path B1 from b1 to b′1.

Now, let A0 be the path from a0 to B(b4, b6) in G0, internally disjoint from B. More-

over, we further choose A0 such that A0[a0, a
#
0 ] is on the boundary of G0 without going

through b2.

We claim that G0 − B[b′7, b2) − A0 contains a path B2 from b2 to b#2 . For otherwise,

b′7 6= b2, and there exist a vertex v1 ∈ A0[a0, a
#
0 ] and a vertex v2 ∈ B[b′7, b2), such that v1, v2

are incident with a common finite face of G0. Now, combined with (2.2.11), if v1 6= a0,

then {b1, v1, v2, b2} is a cut in G separating a0 from {a1, a2}, a contradiction; if v1 = a0,

then {v1, v2, b2} is a cut in G separating NG(b2) from {a0, a1, a2, b1, b2}, a contradiction.

Now, combined with Lemma 3.0.1, the path B1 ∪ B[b′1, b9] ∪ e9 ∪ A[a′′7, a9] ∪ e′′7 ∪

B[b′′7, b
#
2 ] ∪ B2 from b1 to b2, the path A0 ∪ B(b4, b6) ∪ e5 ∪ A[a5, a2] from a0 to a2, the

path A[a1, a′]∪ e′ ∪B[b1, b
′] from a1 to b1, and the path A[a1, a′7]∪ e′7 ∪B[b′7, b2] show that

α(A,B) = 2, a contradiction. 2
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CHAPTER 7

FUTURE WORK

7.0.1 A characterization of two-three linked graphs

In fact, Robertson and Seymour asked for a characterization of two-three linked graphs.

Here, we believe we have such a characterization, although it is quite complicated (even to

state) and its proof is longer.

We say that (G, a0, a1, a2, b1, b2) is reducible, if one of the following holds:

(R1) G has an edge e with one end in {a0, a1, a2} and one end in {b1, b2}.

(R2) There exists a separation (G1, G2) in G of order at most 1.

(R3) There exists a separation (G1, G2) in G of order 2, satisfying one of the following

properties:

(a) {a0, a1, a2, b1, b2} ⊆ V (G1) and V (G2 −G1) 6= ∅; or

(b) |V (G2 −G1) ∩ {a0, a1, a2, b1, b2}| = 1 and |E(G2)| ≥ 3; or

(c) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩ G2) = {c1, c2}, ai, bj ∈

V (G2 − G1), {a0, a1, a2, b1, b2} − {ai, bj} ⊆ V (G1), and (G2, ai, bj, c2, c1) is

planar; or

(d) for some j ∈ {1, 2} and some permutation π of {0, 1, 2}, V (G1 ∩ G2) =

{c1, c2}, aπ(0), aπ(1), bj ∈ V (G2−G1), aπ(2), b3−j ∈ V (G1), and (G2, aπ(0), bj, aπ(1), c2, c1)

is planar; or

(e) for some i ∈ {0, 1, 2}, V (G1 ∩ G2) = {c1, c2}, ai, b1, b2 ∈ V (G2 − G1),

{a0, a1, a2, b1, b2} − {ai, b1, b2} ⊆ V (G1), and (G2, b1, ai, b2, c2, c1) is planar.
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(R4) There exists a separation (G1, G2) in G of order 3, satisfying one of the following

properties:

(a) {a0, a1, a2, b1, b2} ⊆ V (G1) and V (G2 −G1) 6= ∅; or

(b) V (G1∩G2) = {c1, c2, c3}, {d} = {a0, a1, a2, b1, b2}∩V (G2−G1), (G2, d, c3, c2, c1)

is planar, and |V (G2 −G1)| ≥ 2; or

(c) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩G2) = {c1, c2, c3}, ai, bj ∈

V (G2 − G1), {a0, a1, a2, b1, b2} − {ai, bj} ⊆ V (G1), (G2, ai, bj, c1, c2, c3) is

planar, and |V (G2 −G1)| ≥ 3; or

(d) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, c3}, aπ(0), aπ(1), bj ∈

V (G2 − G1), aπ(2), b3−j ∈ V (G1), and (G2, aπ(0), bj, aπ(1), c3, c2, c1) is planar;

or

(e) for some i ∈ {0, 1, 2}, V (G1 ∩ G2) = {c1, c2, c3}, b1, ai, b2 ∈ V (G2 − G1),

{a0, a1, a2} − {ai} ⊆ V (G1), and (G2, b1, ai, b2, c3, c2, c1) is planar.

(R5) There exists a separation (G1, G2) in G of order 4, satisfying one of the following

properties:

(a) let W be a graph with V (W ) = {w0, w1, w2, w3, w4}, E(W ) = {w0wi; i =

1, 2, 3, 4} ∪ {w1w2, w1w3}, then a0, a1, a2, b1, b2 ∈ V (G1), V (G2 − G1) 6= ∅,

and G2 is not a subgraph of W ; or

(b) V (G1 ∩ G2) = {c1, c2, c3, c4}, a0, a1, a2, b1, b2 ∈ V (G1), V (G2 − G1) = {c},

G has edges from c to c1, c2, c3, c4, G has edges from c1 to c2, c3, and for some

i ∈ {0, 1, 2} and some j ∈ {1, 2}, ai, bj ∈ V (G1 ∩G2); or

(c) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩ G2) = {c1, c2, ai, bj},

a0, a1, a2, b1, b2 ∈ V (G1), V (G2−G1) = {c},G has edges from c to c1, c2, ai, bj ,

and G has an edge from c1 to c2; or
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(d) V (G1 ∩ G2) = {c1, c2, c3, c4}, a0, a1, a2, b1, b2 ∈ V (G1), V (G2 − G1) = {c},

G has edges from c to c1, c2, c3, c4, G has an edge from c1 to c2, and for some

permutation π of {0, 1, 2}, {aπ(0), aπ(1)} ⊆ V (G1 ∩ G2) and {aπ(0), aπ(1)} ∩

{c1, c2} 6= ∅; or

(e) for some i ∈ {0, 1, 2}, {ai} = V (G2−G1)∩{a0, a1, a2, b1, b2}, V (G1∩G2) =

{b1, b2, c1, c2}, (G2, ai, b1, c1, c2, b2) is planar, and |V (G2 −G1)| ≥ 2; or

(f) for some permutation π of {0, 1, 2} and some j ∈ {1, 2}, {bj} = V (G2−G1)∩

{a0, a1, a2, b1, b2}, V (G1∩G2) = {aπ(1), aπ(2), c1, c2}, (G2, bj, aπ(1), c1, c2, aπ(2))

is planar, and |V (G2 −G1)| ≥ 2; or

(g) for some permutation π of {0, 1, 2} and some j ∈ {1, 2}, {aπ(0)} = V (G2 −

G1)∩{a0, a1, a2, b1, b2}, V (G1∩G2) = {bj, aπ(1), c1, c2}, (G2, aπ(0), bj, c1, aπ(1), c2)

is planar, and |V (G2 −G1)| ≥ 2; or

(h) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, c3, aπ(0)}, aπ(1), bj ∈

V (G2 − G1), aπ(2), b3−j ∈ V (G1), (G2, c1, c2, aπ(0), c3, aπ(1), bj) is planar, and

|V (G2 −G1)| ≥ 3; or

(i) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, c3, aπ(0)}, aπ(1), bj ∈

V (G2 − G1), aπ(2), b3−j ∈ V (G1), (G2, aπ(0), bj, aπ(1), c3, c2, c1) is planar, and

|V (G2 −G1)| ≥ 3; or

(j) for some i ∈ {0, 1, 2} and some j ∈ {1, 2}, V (G1 ∩ G2) = {c1, c2, c3, bj},

ai, b3−j ∈ V (G2 − G1), {a1, a2, a3} − ai ⊆ V (G1), (G2, b3−j, ai, bj, c3, c2, c1)

is planar, and |V (G2 −G1)| ≥ 3; or

(k) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, c3, c4}, aπ(0), aπ(1), bj ∈

V (G2 − G1), aπ(2), b3−j ∈ V (G1), (G2, aπ(0), bj, aπ(1), c4, c3, c2, c1) is planar,

and |V (G2 −G1)| ≥ 4; or

(l) V (G1 ∩ G2) = {c1, c2, c3, c4}, ai, b1, b2 ∈ V (G2 − G1), {a1, a2, a3} − ai ⊆

V (G1), (G2, b1, ai, b2, c4, c3, c2, c1) is planar, and |V (G2 −G1)| ≥ 4; or
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(m) for some permutation π of {0, 1, 2}, aπ(0), aπ(1), b1, b2 ∈ V (G1), {aπ(0), aπ(1), b1, b2}∩

V (G2) 6= ∅, aπ(2) ∈ V (G2)−V (G1), andG1 has a disk representation in which

aπ(0), b1, aπ(1), b2 occur on the boundary of the disk in the order listed and the

vertices in V (G1) ∩ V (G2) are incident with a common finite face.

(R6) There exists a separation (G1, G2) in G of order 5, satisfying one of the following

properties:

(a) V (G1∩G2) = {c1, c2, c3, c4, c5}, {a0, a1, a2, b1, b2} ⊆ V (G1),E(G[{c1, c2, c3, c4, c5}]) ⊆

E(G1), (G2, c1, c2, c3, c4, c5) is planar, and |V (G2 −G1)| ≥ 2; or

(b) V (G1 ∩ G2) = {c1, c2, c3, c4, c5}, {a0, a1, a2, b1, b2} ⊆ V (G1), and for some

permutation π of {0, 1, 2},G1 has a disk representation with the vertices aπ(0), b1,

aπ(1), b2, aπ(2), c1, c2, c3, c4, c5 drawn on the boundary of the disk in the order

listed; or

(c) for some permutation π of {0, 1, 2}, V (G1∩G2) = {c1, c2, b1, b2, aπ(1)}, aπ(2) ∈

V (G1 −G2), aπ(0) ∈ V (G2 −G1), (G2, b1, c1, aπ(1), c2, b2, aπ(0)) is planar, and

|V (G2 −G1)| ≥ 4; or

(d) for some j ∈ {1, 2} and some permutation π of {0, 1, 2}, V (G1 ∩ G2) =

{c1, c2, c3, aπ(1), bj}, aπ(2) ∈ V (G1−G2), aπ(0), b3−j ∈ V (G2−G1), (G2, aπ(1),

c1, c2, c3, bj, aπ(0), b3−j) is planar, and |V (G2 −G1)| ≥ 3.

Actually, we can prove that if (G, a0, a1, a2, b1, b2) is reducible, then we could either

easily determine whether or not (G, a0, a1, a2, b1, b2) is feasible, or reduce (G, a0, a1, a2, b1, b2)

to (G′, a′0, a
′
1, a
′
2, b
′
1, b
′
2) with (|V (G)|, |E(G)|) > (|V (G′)|, |E(G′)|) in lexicographic or-

der, such that (G, a0, a1, a2, b1, b2) is feasible iff (G′, a′0, a
′
1, a
′
2, b
′
1, b
′
2) is feasible.

With all these, we can state our main result.

Theorem 7.0.1 Let (G, a0, a1, a2, b1, b2) be a rooted graph. Then one of the following

conclusions holds:
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(C1) There exists a cluster {X1, X2} in G such that {a0, a1, a2} ⊆ X1 and {b1, b2} ⊆ X2.

(C2) (G, a0, a1, a2, b1, b2) is reducible.

(C3) For some i ∈ {0, 1, 2},G−ai has no cluster {X1, X2} such that {a0, a1, a2}−{ai} ⊆

X1 and {b1, b2} ⊆ X2.

(C4) There exist a permutation π of {0, 1, 2}, a graph H and vertices s, t, s′, t′ ∈ V (H)

such thatG is obtained fromH by identifying s with s′ and t with t′, respectively, and

H has a disk representation with the vertices aπ(0), b1, aπ(1), b2, aπ(2), s, t, s′, t′ drawn

on the boundary of the disk in the order listed.

(C5) G has a separation (G1, G2) inG of order 4, such that V (G1∩G2) = {c1, c2, c3, c4},

a0, a1, a2, b1, b2 ∈ V (G1), and there exist a permutation π of {0, 1, 2}, a graph H

and vertices c′2, c
′′
2 ∈ V (H), where G1 is obtained from H by identifying c′2 with c′′2,

(H, aπ(1), b1, aπ(0), b2, aπ(2), c
′′
2, c4, c3, c

′
2, c1) is planar, and c2 ∈ V (G1) is the vertex

obtained by identifying c′2 with c′′2.

7.0.2 Clarifying (C3)

Note that if (C4) or (C5) holds, then (C1) will not hold. However, if (C3) holds,

(G, a0, a1, a2, b1, b2) may be feasible or may be infeasible. Although by using 2-linkage

algorithms, it is easy to judge whether (G, a0, a1, a2, b1, b2) admits (C3), we want to give a

more precise characterization of feasible rooted graphs when (C3) holds.

We will still assume G is not reducible. So by applying Seymour’s version of 2-

linkage theorem in [37], when (C3) holds, there exists i ∈ {0, 1, 2}, such that (G −

ai, ai+1, b1, ai−1, b2) is planar. So G actually is an apex graph.

7.0.3 A faster algorithm

Another possible future work is to develop a faster polynomial time algorithm for the

Two-Three Linkage Problem.
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Note that the existence of such an algorithm with polynomial running time is guaranteed

by the work of Robertson and Seymour in [40]: Given a graph G and k ≥ 1 pairs of

vertices {si, ti}, i = 1, · · · , k of G with k fixed, there exists a polynomial time algorithm

for deciding if there are k mutually internally vertex-disjoint paths in G joining si and ti,

i = 1, · · · , k. In fact, to resolve the Two-Three Linkage Problem, we just need to check:

(i) whether for some i ∈ {0, 1, 2},G contains 3 mutually internally vertex-disjoint paths

joining the pairs {b1, b2}, {ai−1, ai} and {ai, ai+1}; or

(ii) whether for some vertex v ∈ V (G) − {a0, a1, a2, b1, b2}, G contains 4 mutually

vertex-disjoint paths to join the pairs {b1, b2}, {v, a0}, {v, a1} and {v, a2}.

Clearly, the answer is yes iff (G, a0, a1, a2, b1, b2) is feasible. The disjoint paths algo-

rithm of Robertson and Seymour has running time O(|V (G)|3). So the above algorithm

runs O(|V (G)|4) time.

However, the disjoint paths algorithm of Robertson and Seymour is not practical, since

it involves an enormous constant. Hence, it is meaningful to come up with a faster algo-

rithm for the two-three linkage problem. In fact, to the best of our knowledge, Tholey [41]

found the O(m + nα(n, n))-time algorithm, the currently best known nearly linear time

bound, of 2-linkage problem, where α denotes the inverse of the Ackermann function. By

repeatedly using 2-linkage algorithm, we expect to obtain a O(|V (G)|3)-time two-three

linkage algorithm.

7.0.4 Related conjecture

A graph G is apex if G − v is planar for some vertex v ∈ V (G). Jørgensen [34]

conjectured that every 6-connected graph with no K6-minor is apex.

In the two-three linkage problem, we only consider finding disjoint connected sub-

graphs G1, G2 such that {a0, a1, a2} ⊆ V (G1) and {b1, b2} ⊆ V (G2). However, it is also

natural to ask whether we can find such disjoint connected subgraphs G1, G2 satisfying
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additional properties. For example, we have

Conjecture 7.0.2 Any 6-connected non-apex graphGwith distinct vertices a0, a1, a2, b1, b2 ∈

V (G) contains disjoint connected subgraphs G1, G2 such that {a0, a1, a2} ⊆ V (G1),

{b1, b2} ⊆ V (G2), and the following properties hold:

(P1) there exists a vertex v ∈ G1 − {a0, a1, a2} such that G1 has three disjoint paths from

v to a0, a1, a2, respectively;

(P2) for each vertex v ∈ G1, the vertices a0, a1, a2 are contained in one component of

G1 − v.

One observation is that if there exists v ∈ V (G) such that (G−v, a1, b1, a2, b2) is planar,

then there do not exist disjoint connected subgraphs G1, G2 in G such that {a0, a1, a2} ⊆

V (G1), {b1, b2} ⊆ V (G2), and G1 satisfies (P1) and (P2). Note that such G is apex, and G

can be 6-connected.

If Conjecture 7.0.2 is true, we may prove that given a 6-connected graphG and triangles

aib1b2ai for i = 0, 1, 2, G − b1b2 − {aibj : i = 0, 1, 2 and j = 1, 2} contains disjoint

connected subgraphs G1, G2 such that {a0, a1, a2} ⊆ V (G1), {b1, b2} ⊆ V (G2), and G1

satisfies (P1) and (P2). Such properties could be useful in resolving Jørgensen’s conjecture

for 6-connected graph in which some edge is contained in three triangles.
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