
ACO Comprehensive Exam, Part I January 7, 2019

1. Computability, Complexity and Algorithms

Given a simple, undirected graph G = (V,E) with n vertices and an integer k, the (k, n)-
CLIQUE problem is to determine whether G contains a clique of size k. The (k, n)-CLIQUE
problem is NP-complete.

1. For any integer ℓ ≥ 2, show that the problem of determining whether a graph of size ℓn
has a clique of size n is NP-complete, i.e., the (n, ℓn)-CLIQUE problem is NP-complete.

Given a graph G = (V,E), and integers k, t ≥ 0, the (k, t)-DENSE-SUBRAPH problem is to
determine whether G contains a subgraph with k vertices and at least t edges.

2. Show that there is a function e(k) = Θ(k3/2) such that the (k, e(k))-DENSE-SUBGRAPH
problem is NP-complete. [Hint: consider the disjoint union of a graph and one or more
complete graphs.]

Solution: For (1), we reduce from the clique problem: given a graph G = (V,E) on n vertices
and integer k ≥ 0, we construct a graph H with a copy of G and a clique on n− k vertices, with
every vertex of the n− k clique connected to all vertices of G as a complete bipartite graph. In
addition, create ℓn − n − (n − k) isolated vertices. So H has ℓn vertices in total, and if G has
a clique of size k, this induces a clique of size n in H. If H has a clique of size n, at least k of
these vertices must be in G and hence G contains a clique of size k.

For (2), we reduce from the problem shown to be NP-complete in (1), with ℓ = 2. Given an
instance G of (1), i.e., a graph on 2n vertices, we create a new graph H with a copy of G and n
disjoint cliques of size 2n+1. Then the size of the subgraph used will be k = n.(2n+1)+n and
the number of edges in it will be e(k) = n.(2n+ 1)(2n)/2 + n(n− 1)/2 = Θ(n3) = Θ(k3/2).

If H has a subgraph of size k with e(k) edges, then it must contain all n 2n + 1-cliques and
only n vertices from G. To see this, if the dense subgraph had more than n vertices from G, note
that we can replace them with the remaining (unpicked) vertices from the disjoint cliques, and
this only increases the number of edges of the subgraph, which cannot increase the number e(k)
above. Thus, the answer this instance of DENSE-SUBGRAPH is YES iff the original (n, 2n)-
CLIQUE instance has a YES answer. [Note: the same construction with more cliques can be
used to show hardness for e(k) = Θ(k1+ǫ).]

2. Theory of Linear Inequalities

Consider the problem:

max
∑

1≤i<j≤n

cijxixj −
n∑

i=1

dixi

s.t. x ∈ {0, 1}n

Assuming c is non-negative, show that the above problem can be solved in polynomial-time.
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Solution. Consider the following equivalent integer program:

max c⊤w − d⊤x

s.t. wij ≤ xi ∀i, j ∈ [n]

wij ≤ xj ∀i, j ∈ [n]

wij ≥ x1 + xj − 1 ∀i, j ∈ [n] (1)

wij ≥ 0 ∀i, j ∈ [n] (2)

0 ≤ xi ≤ 1 ∀i ∈ [n]

x ∈ Z
n, w ∈ Z

(n−1)n
2

Since cij ≥ 0 for all i, j ∈ [n], we do not need to lower bound wij. Thus we are able to drop
constraints (??) and (??) to obtain IP model with the same optimal objective function value:

max c⊤w − d⊤x

s.t. wij − xi ≤ 0 ∀i, j ∈ [n] (3)

wij − xj ≤ 0 ∀i, j ∈ [n] (4)

−xi ≤ 0 ∀i ∈ [n] (5)

xi ≤ 1 ∀i ∈ [n] (6)

x ∈ Z
n, w ∈ Z

(n−1)n
2

We will show that the constraint matrix of the above system, i.e. (??) - (??), is totally unimodular
(TU) and since the right-hand-side is integral, we obtain that the polyhedron defined by (??)
- (??) is integral. Therefore the above problem can be solved using a linear program, i.e., in
polynomial time.

By Theorem 19.3 (iv), we have to show that for any subset of columns J , there exists a
partition into J1 and J2, so that the sum of the columns over J1 minus the sum of the columns
in J2 is a vector of {−1, 0, 1}. Indeed, for the above system, set J1 = J and J2 = ∅. Then it
is straighforward to check that for this partition the condition is satisfied. Thus the constraint
matrix is TU.

2. Analysis of Algorithms

Consider a tree with n vertices, one of which, s, is special, but hidden from the algorithm. One
can repeatedly pick a vertex u, and ask whether u = s or for the first edge on the shortest path
from u to s. Give an algorithm that finds s in time O(n log n) using O(log n) queries.

Solution: We prove the following fact: every tree on n vertices has a vertex (known as a
separator vertex) whose removal partitions this tree into components of size at most n/2.

Given this fact, we can proceed by repeatedly querying at such separator vertices: each such
step narrows down the number of potential locations for s by a constant factor.
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To show the existence of this separator vertex, suppose for a contradiction that it does not
exist for some tree T on n vertices. Thus for every vertex u there exists an incident edge f(u) such
that the component of T\f(u) not containing u has strictly more than n/2 vertices. Since T has
n vertices, it has n− 1 edges, and hence there exist distinct vertices u, v such that f(u) = f(v).
It follows that both components of T\f(u) have strictly more than n/2 vertices, a contradiction.

3. Graph Theory

Let k be a positive integer and G be a (k+1)-color-critical graph, i.e., χ(G) = k+1 and χ(H) ≤ k
for any proper subgraph H of G. Show that G is k-edge-connected.

Solution: Suppose G is not k-edge-connected, and let X, Y be a partition of the vertex set of
the graph G such that e(X, Y ) < k.

Since G is (k+1)-color-critical, χ(G[X]) ≤ k and χ(G[Y ]) ≤ k. Thus, X has a partition into
independent sets X1, . . . , Xk and Y has a partition into independent sets Y1, . . . , Yk. (Here we
allow Xi and Yj to be empty.)

We derive a contradiction by showing that there is a permutation (i1 . . . ik) of [k] = {1, . . . , k}
such that Xj ∪ Yij , j ∈ [k], are independent sets in G.

Build an auxiliary bipartite graph H with partition sets {xi : i ∈ [k]} and {yj : j ∈ [k]} such
that xiyj ∈ E(H) iffXi∪Yj is an independent set in G. Since e(X, Y ) ≤ k−1, e(H) ≥ k2−(k−1).
So one needs to use at least k vertices to cover all edges of H. By König’s theorem, H has a
perfect matching. Hence there is a permutation (i1 . . . ik) of [k] such that Xj ∪ Yij , j ∈ [k], are
independent sets in G.

4. Algebra

Compute the degree of the splitting field of x90 − 1 over the following fields.

1. F2

2. F3

3. F5

4. F7

Solution:

1. F2: x
90− 1 = (x45− 1)2, so it is equivalent to find the splitting field of x45− 1. The degree

of this splitting field is the smallest d such that 2d ≡ 1 mod 45. This is the same as finding
the order of 2 in (Z/9)∗ × (Z/5)∗, which is the least common multiple of the order of 2 in
(Z/9)∗ and (Z/5)∗. This is the LCM of 6 and 4, which gives d = 12.
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2. F3: x
90− 1 = (x10− 1)9, so it is equivalent to find the splitting field of x10− 1. The degree

of this splitting field is the smallest d such that 3d ≡ 1 mod 10, so d = 4.

3. F5: x
90− 1 = (x18− 1)5, so it is equivalent to find the splitting field of x18− 1. The degree

of this splitting field is the smallest d such that 5d ≡ 1 mod 18, which is the order of 5 in
(Z/9)∗ × (Z/2)∗, which is d = 6.

4. F7: The degree of this splitting field is the smallest d such that 7d ≡ 1 mod 90, so we
must find the order of 7 in (Z/9)∗ × (Z/5)∗ × (Z/2)∗. This is the LCM of 3 (note 7 ≡ −2
mod 9), 4, and 1, so d = 12.

4. Linear Algebra

Let V be an n dimensional inner product space, A and B are linear transformations on V .
Suppose A and B are selfadjoint (or Hermitian, that is A = A∗ and B = B∗) and AB = BA.
Show that there exists an orthonormal basis of V such that with respect to this basis, both A
and B are diagonal.

Solution: Since A is selfadjoint, so there exists an orthonormal basis {v1, v2, . . . , vn} such that
Avi = λivi. Suppose A has p distinct eigenvalues, labeled as {µ1, µ2, . . . , µp}. Let Eµj

(A) =
ker(A−µjI) the eigenspace of A corresponding to the eigenvalue µj. Since A is selfadjoint, then
V = Eµ1(A)⊕Eµ2(A)⊕ · · · ⊕Eµp

(A). If x ∈ Eµj
(A) for some j, then ABx = BAx = B(µjx) =

µjBx, so Bx ∈ Eµj
(A). Thus Eµj

(A) is invariant for B. Let Bj = B|Eµj
(A), the restriction of

B on Eµj
(A). Then for any x, y ∈ Eµj

(A), 〈Bjx, y〉 = 〈Bx, y〉 = 〈x,B∗y〉 = 〈x,By〉 = 〈x,Bjy〉 =

〈B∗
jx, y〉, so Bj = B∗

j . Thus Bj is selfadjoint and there is an orthonormal basis {u
(j)
1 , . . . , u

(j)
mj}

where mj = dimEµj
(A) such that each u

(j)
i is an eigenvector for Bj, for 1 ≤ i ≤ mj. Since each

u
(j)
i is in Eµj

(A), each u
(j)
i is an eigenvector for both A and B, and {u

(j)
i : 1 ≤ i ≤ mj, 1 ≤ j ≤ p}

is an orthonormal basis for V . With respect to this basis, both A and B are diagonal.

4. Combinatorial Optimization

1. (4 points) Let G = (V,E) be a graph and let S ⊆ V . Let

I = {A ⊆ S : A can be covered by a matching in G}.

Show M = (S, I) is a matroid.

2. (6 points) Give a polynomial time algorithm that given a graph G = (V,E) and disjoint
sets S, T ⊂ V and non-negative integers s and t, decides whether there is a matching that
covers at least s vertices from S and at least t vertices from T .

Solution.
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1. Observe thatM is just the restriction of the matching matroid to S and thus is a matroid.
Alternatively, we verify the matroid axioms. Let A ⊆ S be set covered by a matching M .
For every B ⊆ A, clearly M also covers B and thus B ∈ I. Now, let A,B be two sets in
I such that |A| = |B| + 1. Let MA be a matching covering A and let MB be a matching
covering B. If MB covers a vertex of A \B, say v, then B ∪ {v} ∈ I as required. Consider
MA∆MB which is a collection of MA−MB alternating paths. Observe that each vertex of
A \ B is an endpoint of such a path since it is covered by A and not covered by B. But
since |B \ A| < |A \ B| there must be one such path P whose other endpoint is not in
B \ A. If the other endpoint is covered by MB, it is also not in A since every such vertex
is covered by MA. Thus MB∆P covers B ∪ {v} where v ∈ A \B as required.

2. Let M1 = (V, I1) be the matching matroid, i.e. a set U ⊆ V is in I1 if there exists a
matching covering U . Moreover, let M2 = (V, I2) be the partition matroid where U ∈ I2
if |U ∩ S| ≤ s and |U ∩ T | ≤ t and U ⊆ S ∪ T . Observe that the basis of M2 has size
s+ t and every independent set of M2 of this size must contain exactly s vertices from S
and t vertices from T . Now, if there exists a common independent set of the two matroids
of size s + t then we answer yes otherwise no. Consider when we answer yes and let X
be the common independent set of size s + t. Since X ∈ I2, we have |X ∩ S| = s and
|X ∩ T | = t and since X ∈ I1 there is a matching covering X. Moreover, suppose there
is such a matching. Pick any set X1 ⊆ S of size s that is covered by this matching and
X2 ⊆ T of size t that is covered by this matching. Then X1∪X2 is a common independent
set of the two matroids.


