1. Computability, Complexity and Algorithms

Given a simple, undirected graph G = (V, E) with *n* vertices and an integer *k*, the (k, n)-CLIQUE problem is to determine whether *G* contains a clique of size *k*. The (k, n)-CLIQUE problem is NP-complete.

1. For any integer $\ell \geq 2$, show that the problem of determining whether a graph of size ℓn has a clique of size n is NP-complete, i.e., the $(n, \ell n)$ -CLIQUE problem is NP-complete.

Given a graph G = (V, E), and integers $k, t \ge 0$, the (k, t)-DENSE-SUBRAPH problem is to determine whether G contains a subgraph with k vertices and at least t edges.

2. Show that there is a function $e(k) = \Theta(k^{3/2})$ such that the (k, e(k))-DENSE-SUBGRAPH problem is NP-complete. [Hint: consider the disjoint union of a graph and one or more complete graphs.]

2. Theory of Linear Inequalities

Consider the problem:

$$\max \sum_{1 \le i < j \le n} c_{ij} x_i x_j - \sum_{i=1}^n d_i x_i$$

s.t. $x \in \{0, 1\}^n$

Assuming c is non-negative, show that the above problem can be solved in polynomial-time.

2. Analysis of Algorithms

Consider a tree with n vertices, one of which, s, is special, but hidden from the algorithm. One can repeatedly pick a vertex u, and ask whether u = s or for the first edge on the shortest path from u to s. Give an algorithm that finds s in time $O(n \log n)$ using $O(\log n)$ queries.

3. Graph Theory

Let k be a positive integer and G be a (k+1)-color-critical graph, i.e., $\chi(G) = k+1$ and $\chi(H) \leq k$ for any proper subgraph H of G. Show that G is k-edge-connected.

4. Algebra

Compute the degree of the splitting field of $x^{90} - 1$ over the following fields.

- 1. \mathbb{F}_2
- 2. \mathbb{F}_3
- 3. \mathbb{F}_5
- 4. \mathbb{F}_7

4. Linear Algebra

Let V be an n dimensional inner product space, A and B are linear transformations on V. Suppose A and B are selfadjoint (or Hermitian, that is $A = A^*$ and $B = B^*$) and AB = BA. Show that there exists an orthonormal basis of V such that with respect to this basis, both A and B are diagonal.

4. Combinatorial Optimization

1. (4 points) Let G = (V, E) be a graph and let $S \subseteq V$. Let

 $\mathcal{I} = \{ A \subseteq S : A \text{ can be covered by a matching in } G \}.$

Show $\mathcal{M} = (S, \mathcal{I})$ is a matroid.

2. (6 points) Give a polynomial time algorithm that given a graph G = (V, E) and disjoint sets $S, T \subset V$ and non-negative integers s and t, decides whether there is a matching that covers at least s vertices from S and at least t vertices from T.