
ACO Comprehensive Exam March 19 and 20, 2018

1. Computability, Complexity and Algorithms

Bottleneck edges in a flow network:
Consider a flow network on a directed graph G = (V,E) with capacities ce > 0 for e ∈ E.

An edge e ∈ E is called a bottleneck edge if increasing the capacity ce increases the size of the
maximum flow.

Given a flow network G = (V,E) and a maximum flow f ∗, give an algorithm to identify all

bottleneck edges. Do as fast in O(·) as possible. Justify correctness of your algorithm. You can
assume basic operations (comparison, addition, subtraction, multiplication, and division) on two
numbers take constant time.

Solution: Here is the general algorithm for finding all of the bottleneck edges in the flow network
G.

We start with a maximum flow f ∗ for the flow network G. Consider an edge −→vw in the flow
network G. Increasing the capacity of −→vw results in an increase in maximum flow value if and
only if there exists a path from s to v and a path from w to t in Gf∗

. This is because if there
exists these two paths then more flow can be sent from s to v, then along the edge −→vw, and
finally from w to t.

Therefore, our algorithm for finding bottleneck edges is as follows:

1. Find a maximum flow f ∗ on G.

2. Run Explore/DFS from s in Gf∗

. Let S be the set of vertices reachable from s in Gf∗

.

3. Run Explore/DFS from t in the reverse graph of Gf∗

. Let T be the set of vertices reachable
from t in the reverse graph of Gf∗

; note the set T are those vertices which can reach t in
Gf∗

.

4. For each −→vw ∈ E(G), output −→vw as a bottleneck edge if v ∈ S and w ∈ T .

Since steps 2, 3, and 4 take O(|V |+ |E|) time, then since we are given a max flow f ∗ the running
time is linear time.

Note that this algorithm looks for a path s → v and w → t. What if these two paths share
one or more edges? Then, the joined path will have one or more cycles. So, we can drop that
cycle (or cycles) and get a shorter path from s→ t, but will this path still go through (v, w)? If
one of the cycles contains edge e = (v, w), then we have an augmenting path in Gf∗

not using e,
which would mean f ∗ is not a max flow. Hence, e cannot be in any of the cycles, so our algorithm
works.

2. Analysis of Algorithms

All-pairs shortest paths (APSP) and Min-Sum Products. Suppose W is the adjacency
matrix for G a simple undirected graph with no self-loops and no negative edge weights, and W ∗

is the reachability matrix (w∗
ij = 1 if there exists a path from i to j).

ACO Comprehensive Exam March 19 and 20, 2018

• Suppose operations are boolean (addition is OR, multiplication is AND). Suppose

W =

[

A B
C D

]

Then show that

W ∗ =

[

E F
G H

]

=

[

(A ∨ BD∗C)∗ EBD∗

D∗CE D∗ ∨GBD∗

]

Observe that F, G use E in their definition, etc., so the calculations have to be done in the
correct order. Hint: Consider G as partitioned into two subcomponents V = V1 ⊎ V2.

• Now suppose Wij is the weight of the edge (i, j). Moreover, now assume that matrix
products are min-sum products (that is, addition is replaced by min and product by sum),
and A ∨ B is the element-wise minimum of matrices A and B. If W ∗

ij now denotes the
shortest-path distance from i to j, show that W ∗ is computed by the same relation as in
the previous part. You may be brief, 2-3 sentences suffices if your previous answer was
thorough.

• Using this idea, show that

APSP(n) ≤ 2APSP(n/2) + 6MSP(n/2) +O(n2), (1)

where APSP(n) denotes the worst-case running time of computing APSP on an n-vertex
input graph, and MSP(n) denotes the worst-case running time of computing the min-sum
product of two n × n matrices. Assume that arithmetic operations can be carried out in
constant time.

In turn, show that APSP(n) = Õ(MSP(n) + n2). Hint: We know that MSP is superlinear,
even superquadratic, in its runtime, simply since it needs to read its two input matrices.

Solution:

• E = A ∨ BD∗C can be read as “take a single step in V1, or a step from V1 to V2, a walk
through V2, and then a step from V2 back to V1”, which are all the ways to move from
some vertex in V1 to another using at most one edge in V1 and at most 2 edges between V1

and V2. Taking the transitive closure of this gives all possible ways of moving between two
vertices in V1: take some number of steps in V1, followed by a step to V2 and a walk in V2,
followed by a step back to V1, and so on.
For F = EBD∗, we note that this component of the matrix is asking about reachability
from v1 ∈ V1 to v2 ∈ V2. Any such path starts in V1, takes a reachability walk through V1

(meaning it might go through V2, but ends up back in V1), and we argued that E contains
this reachability. After a reachability walk through V1, to make it to v2 ∈ V2, an edge from
V1 to V2 must be taken, all of which are included in B. Then, once in V2, one needs to

ACO Comprehensive Exam March 19 and 20, 2018

move from the node in which the walk entered V2 to v2 using a walk through V2, given to
us by D∗. Note one need not go back to V1, since the only reason to do so would be to get
different reachability into V2, but our initial reachability walk through V1 means that path
was already available.

For G = D∗CE, to walk from V2 to V1, one can take a walk through V2 (using D∗), then take a
single step into V1 (using C), then take a reachability walk through V1 (using E).

For F = D∗ ∨GBD∗, to walk between two vertices in V2, one can take a walk that stays within
V2 (D∗), or can take a reachability walk to V1 (G), followed by an edge from V1 to V2, followed
by a walk entirely within V2. Because one takes a reachability walk to V1, one need not revisit
V1 multiple times to change reachability.

• The “or” operation now takes the minimum, meaning that if each subcomponent of an “or”
refers to a path of a given length available from i to j, the “or” refers to the smaller length. The
previous argument said that all reachability paths are considered, so it remains to show that
min-sum product computes the length of a particular path. So, taking the min-sum product of
two vectors (one holding adjacency for i, the other for j) finds the two edges both adjacent to
the same intermediate vertex which has minimum sum of weights and goes from i to j. Thus,
a product finds the minimum-weight 1 or 2-hop path (since a 1 hop-path could be followed by
a zero-cost self-loop). Thus, this product preserves reachability and keeps track of the cheapest
current path between vertices.

• If we have W ∗, we’ve computed all pairs shortest paths. The equivalence we showed in the
previous two parts means it suffices to compute (Y)∗ for two submatrices, which we can choose
to have size n/2, plus computing 6 min-sum products where the matrices are also of size n/2.
The ors, of which there are a constant number, take O(n2) time to compute.

For the second part, by the recursion in the first part, we know that we will need O(log n) levels
of recursive calls, and the amount of work at level i of the recursive calls, not including their
recursive calls, will be 2i (6 ·MSP(n/2i)) +O (2i · (n/2i)2).

Summing up over i ∈ O(log n), we have

∑

1<i<c·logn

2iMSP(n/2i) + (n2/2i) ≤ MSP(n) · c · log(n) + c · n2 log n

since MSP is superlinear in n.

3. Theory of Linear Inequalities

Let P = {x ∈ R
n | Ax ≤ b} ⊆ [0, 1]n be a polytope with 0/1 vertices. It is well known that

the diameter of any 0/1 polytope is at most n. Here we consider a stronger notion of diameter
where the sequence of vertices has to be non-decreasing in value with respect to a given objective
c ∈ Z

n: For any two vertices x, y ∈ P with cy = maxz∈P cz find the shortest path of adjacent

ACO Comprehensive Exam March 19 and 20, 2018

vertices x1, . . . , xl with x = x1 and y = xl so that cx = cx1 ≤ · · · ≤ cxl = cy. The monotone

diameter for an objective c is the maximum length over all such vertex pairs.

Prove that the monotone diameter is at most O(n logC), where C = maxi |ci| (6 points). Can
you also show that in this case the monotone diameter is at most n irrespective of the objective
c? (4 points)

Solution. The first part follows from using geometric scaling with an augmentation oracle.
The augmentation oracle allows that we move between adjacent vertices only. The geometric
scaling algorithm generates a sequence of points (adjacent vertices) x1, . . . , xl with cx ≤ cx1 ≤
· · · ≤ cxl ≤ cy and moreover geometric scaling optimizes any linear integral objective over 0/1
polytopes with at most n logC augmentation calls.

For the second part observe that we can fix all coordinates where x and y coincide. Moreover,
we can then flip coordinates, so that without loss of generality we can assume that x = 0 and
y = 1. We can now show that the monotone diameter is at most n by induction. Let xt−1

be the current vertex. We claim that there exists an adjacent vertex xt with xt
i = 1 for some

i ∈ [n] so that cxt ≥ cxt−1. Suppose not, then consider the cone C spanned by the directions
d1, . . . , dk arising from moving to adjacent vertices and observe that cdj < 0 for all j ∈ [k].
Then P ⊆ xt−1 + C and in particular y − xt−1 =

∑

j αjdj for some αj ≥ 0 for j ∈ [k] and thus

cy = cxt−1 +
∑

j αjcdj < cxt−1, which is a contradiction. Therefore such a vertex xt with some
coordinate i ∈ [n], so that xt

i = 1 exists. We can fix the coordinate i to 1 and recurse. This can
happen at most n times before we reach the vertex y.

4. Combinatorial Optimization

Let M = (U, I) be a matroid and w : U → R be a weight function.

1. Given any two bases B and B′, show that there exists a sequence of bases B0, B1, . . . , Bk

with the following properties.

(a) B0 = B and Bk = B′.

(b) Bi ⊆ B ∪ B′ for each 0 ≤ i ≤ k.

(c) |Bi∆Bi+1| = 2 for each 0 ≤ i ≤ k − 1.

2. Suppose B′ is a maximum weight basis under weight function w. Show that we can addi-
tionally ensure that w(Bi+1) ≥ w(Bi) for each 0 ≤ i ≤ k − 1.

Solution.

1. We construct the sequence inductively satisfying properties (b) and (c). Additionally, we
ensure that |B′ \ Bi+1| < |B

′ \ Bi| which will ensure that the sequence ends with Bk = B′

for some integer k. We initialize with i = 0 and Bi = B. Consider any i ≥ 0 such that
Bi 6= B′. Let x ∈ Bi \ B

′. From basis exchange property (see Theorem 39.6 in Schrijver),
there exists y ∈ B′ \Bi such that Bi ∪ {y} \ {x} ∈ I. Let Bi+1 = Bi ∪ {y} \ {x}.

ACO Comprehensive Exam March 19 and 20, 2018

2. We now show how to ensure that the exchange done to construct Bi+1 in 1. always increases
the weight. From the strong base exchange property (Corollary 39.12a), there exists a
bijection π : Bi \B

′ → B′ \Bi such that for all x ∈ Bi \B
′ we have Bi ∪ {π(x)} \ {x} ∈ I.

Since, B′ is the maximum weight basis, w(Bi) ≤ w(B′). Thus there exists an x ∈ Bi \ B
′

such that w(x) ≤ w(π(x)). Defining Bi+1 = Bi∪{π(x)}\{x} gives us the desired sequence.

5. Graph Theory

Let G be a 2-connected graph and let s ∈ V (G). Prove that G has two spanning trees T1, T2

such that for every vertex v ∈ V (G) the two paths between v and s in T1 and T2 are internally
disjoint.

Solution: Let t be a neighbor of s. We first show that the vertices of G can be numbered
v1, v2, . . . , vn in such a way that v1 = s, vn = t and for all i = 2, 3, . . . , n the vertex vi has a
neighbor in {v1, v2, . . . , vi−1} and the vertex vi−1 has a neighbor in {vi, vi+1, . . . , vn}. To that end
we proceed by induction on the number of edges. If G is a cycle, then listing the vertices in the or-
der of appearance on the cycle, starting from s and ending in t, is as desired. Thus we may assume
that G is not a cycle, and hence by the ear-decomposition theorem it is of the form G = H ∪ P ,
whereH is a 2-connected proper subgraph of G containing s and t, and P is a path with both ends
inH and otherwise disjoint fromH. By the induction hypothesis the vertices ofH have a required
numbering u1, u2, . . . , uk. Let ui, uj be the ends of P , where i < j, and let ui, w1, w2, . . . , wl, uj

be the vertices of P in order. Then u1, u2, . . . , ui, w1, w2, . . . , wl, ui+1, ui+2, . . . , uk is a desired
ordering of the vertices of G.

Now given the order of the vertices as in the previous paragraph we select, for every i =
2, 3, . . . , n, a neighbor f(vi) of vi in {v1, v2, . . . , vi−1} and a neighbor g(vi−1) of vi−1 in {vi,
vi+1, . . . , vn}. We now define T1 to consist of all edges with ends v and f(v) for all v ∈ V (G)−{s}
and we define T2 to consist of the edge st and all edges with one end v and the other end g(v)
for all v ∈ V (G)− {s, t}. Then T1 and T2 are as desired.

6. Probabilistic methods

Suppose that we throw m balls into n bins independently and uniformly at random (initially all
bins are empty, of course).

(A) Prove that m∗(n) = n log n is a threshold function for the property ‘there exists an empty
bin’, i.e.,

Pr(there exists an empty bin)→

{

1 m≪ n log n,

0 m≫ n log n.

(B) Make an educated guess what the threshold function for the property ‘there exists a bin with
at most one ball’ is. Prove the corresponding 0-statement (no proof of the corresponding
1-statement expected).

ACO Comprehensive Exam March 19 and 20, 2018

Hint: Recall that 1− x = e−x+O(x2) as x→ 0.

Solution: For (A), let X denote the number of empty bins. Writing Xi for the indicator variable
for the event that the ith bin is empty, we have X =

∑

i∈[n] Xi and thus

EX =
∑

i∈[n]

EXi = n

(

1−
1

n

)m

.

Using 1− x ≤ e−x it is easy to see that EX → 0 for m≫ n log n, which proves the 0-statement
of (A) [using Markov’s inequality or the first moment method].
Turning to the 1-statement, note that for m≪ n log n the hint 1− x = e−x+O(x2) gives

EX = ne−m/n+o(1) →∞.

Furthermore, standard second-moment calculations and the hint similarly give

EX2 =
∑

i∈[n]

EXi +
∑

i,j∈[n]:i 6=j

EXiXj = EX + n(n− 1)

(

1−
2

n

)m

≤ EX + (EX)2 · eo(1).

Since EX →∞ implies EX = o((EX)2), using eo(1) = 1+ o(1) we infer EX2 ≤ (1 + o(1))(EX)2,
so that

varX = EX2 − (EX)2 = o((EX)2),

which implies the 1-statement of (A) [using Chebychev’s inequality or the second moment
method]

For (B), let Y denote the number of bins with at most one ball. Writing Yi for the indicator
variable for the event that the ith bin contains at most one ball, we have Y =

∑

i∈[n] Yi and thus

EY =
∑

i∈[n]

EYi.

Distinguishing the cases of one or zero balls in the ith bin, we see that

EYi =

(

1−
1

n

)m

+m ·
1

n
·

(

1−
1

n

)m−1

=

(

1−
1

n
+

m

n

)

·

(

1−
1

n

)m−1

.

Hence we obtain

EY = (n− 1 +m) ·

(

1−
1

n

)m−1

.

Trying out some possible functionsm = m(n), using 1−x ≤ e−x and the hint it is straightforward
to see that EY → 0 if m≫ n log n, and EY →∞ if m≪ n log n. This proves the 0-statement,
and justifies the educated guess that m∗(n) = n log n is again the threshold function [as can be
verified by calculating the variance/second moment, but this calculation was not expected due
to time-constraints], completing (B).

ACO Comprehensive Exam March 19 and 20, 2018

7. Algebra

Suppose p and q are odd primes and p < q. Let G be a finite group of order p3q. Prove that G
has a normal Sylow subgroup.

Solution: The number nq of q-Sylows divides p
3, whence nq = 1, p, p2, p3. If nq = 1, then G has

a normal q-Sylow. nq is congruent to 1 mod q, whence nq 6= p because p < q. If nq = p3, then
there are p3(q − 1) distinct elements of order q. This leaves p3 elements of G which are not of
order q. Thus np = 1, and G has a normal p-Sylow subgroup. So, we may assume that nq = p2.
Therefore nq−1 = (p+1)(p−1) is divisible by q. Since p < q, q does not divide p−1. Therefore
q divides p+ 1. It follows that q = p+ 1. This contradicts that q and p are odd primes.

