1. Computability, Complexity and Algorithms

Bottleneck edges in a flow network:

Consider a flow network on a directed graph $G=(V, E)$ with capacities $c_{e}>0$ for $e \in E$. An edge $e \in E$ is called a bottleneck edge if increasing the capacity c_{e} increases the size of the maximum flow.

Given a flow network $G=(V, E)$ and a maximum flow f^{*}, give an algorithm to identify all bottleneck edges. Do as fast in $O(\cdot)$ as possible. Justify correctness of your algorithm. You can assume basic operations (comparison, addition, subtraction, multiplication, and division) on two numbers take constant time.

2. Analysis of Algorithms

All-pairs shortest paths (APSP) and Min-Sum Products. Suppose W is the adjacency matrix for G a simple undirected graph with no self-loops and no negative edge weights, and W^{*} is the reachability matrix $\left(w_{i j}^{*}=1\right.$ if there exists a path from i to $\left.j\right)$.

- Suppose operations are boolean (addition is OR, multiplication is AND). Suppose

$$
W=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

Then show that

$$
W^{*}=\left[\begin{array}{cc}
E & F \\
G & H
\end{array}\right]=\left[\begin{array}{cc}
\left(A \vee B D^{*} C\right)^{*} & E B D^{*} \\
D^{*} C E & D^{*} \vee G B D^{*}
\end{array}\right]
$$

Observe that F, G use E in their definition, etc., so the calculations have to be done in the correct order. Hint: Consider G as partitioned into two subcomponents $V=V_{1} \uplus V_{2}$.

- Now suppose $W_{i j}$ is the weight of the edge (i, j). Moreover, now assume that matrix products are min-sum products (that is, addition is replaced by min and product by sum), and $A \vee B$ is the element-wise minimum of matrices A and B. If $W_{i j}^{*}$ now denotes the shortest-path distance from i to j, show that W^{*} is computed by the same relation as in the previous part. You may be brief, 2-3 sentences suffices if your previous answer was thorough.
- Using this idea, show that

$$
\begin{equation*}
\operatorname{APSP}(n) \leq 2 \operatorname{APSP}(n / 2)+6 \operatorname{MSP}(n / 2)+O\left(n^{2}\right) \tag{1}
\end{equation*}
$$

where $\operatorname{APSP}(n)$ denotes the worst-case running time of computing APSP on an n-vertex input graph, and $\operatorname{MSP}(n)$ denotes the worst-case running time of computing the min-sum product of two $n \times n$ matrices. Assume that arithmetic operations can be carried out in constant time.
In turn, show that $\operatorname{APSP}(n)=\tilde{O}\left(\operatorname{MSP}(n)+n^{2}\right)$. Hint: We know that MSP is superlinear, even superquadratic, in its runtime, simply since it needs to read its two input matrices.

3. Theory of Linear Inequalities

Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\} \subseteq[0,1]^{n}$ be a polytope with $0 / 1$ vertices. It is well known that the diameter of any $0 / 1$ polytope is at most n. Here we consider a stronger notion of diameter where the sequence of vertices has to be non-decreasing in value with respect to a given objective $c \in \mathbb{Z}^{n}$: For any two vertices $x, y \in P$ with $c y=\max _{z \in P} c z$ find the shortest path of adjacent vertices x_{1}, \ldots, x_{l} with $x=x_{1}$ and $y=x_{l}$ so that $c x=c x_{1} \leq \cdots \leq c x_{l}=c y$. The monotone diameter for an objective c is the maximum length over all such vertex pairs.

Prove that the monotone diameter is at most $O(n \log C)$, where $C=\max _{i}\left|c_{i}\right|$ (6 points). Can you also show that in this case the monotone diameter is at most n irrespective of the objective c ? (4 points)

4. Combinatorial Optimization

Let $\mathcal{M}=(U, \mathcal{I})$ be a matroid and $w: U \rightarrow \mathbb{R}$ be a weight function.

1. Given any two bases B and B^{\prime}, show that there exists a sequence of bases $B_{0}, B_{1}, \ldots, B_{k}$ with the following properties.
(a) $B_{0}=B$ and $B_{k}=B^{\prime}$.
(b) $B_{i} \subseteq B \cup B^{\prime}$ for each $0 \leq i \leq k$.
(c) $\left|B_{i} \Delta B_{i+1}\right|=2$ for each $0 \leq i \leq k-1$.
2. Suppose B^{\prime} is a maximum weight basis under weight function w. Show that we can additionally ensure that $w\left(B_{i+1}\right) \geq w\left(B_{i}\right)$ for each $0 \leq i \leq k-1$.

5. Graph Theory

Let G be a 2-connected graph and let $s \in V(G)$. Prove that G has two spanning trees T_{1}, T_{2} such that for every vertex $v \in V(G)$ the two paths between v and s in T_{1} and T_{2} are internally disjoint.

6. Probabilistic methods

Suppose that we throw m balls into n bins independently and uniformly at random (initially all bins are empty, of course).
(A) Prove that $m^{*}(n)=n \log n$ is a threshold function for the property 'there exists an empty bin', i.e.,

$$
\operatorname{Pr}(\text { there exists an empty bin }) \rightarrow \begin{cases}1 & m \ll n \log n \\ 0 & m \gg n \log n\end{cases}
$$

(B) Make an educated guess what the threshold function for the property "there exists a bin with at most one ball' is. Prove the corresponding 0-statement (no proof of the corresponding 1 -statement expected).

Hint: Recall that $1-x=e^{-x+O\left(x^{2}\right)}$ as $x \rightarrow 0$.

7. Algebra

Suppose p and q are odd primes and $p<q$. Let G be a finite group of order $p^{3} q$. Prove that G has a normal Sylow subgroup.

