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1. Computability, Complexity and Algorithms

Given an undirected graph G = (V,E) with n vertices, two vertices s, t ∈ V and an integer N ,
the #paths problem is to determine whether there exist at least N distinct s-t simple paths in G
(note we say distinct, not disjoint). Use the following steps to show the problem is NP-complete
by a reduction from the Hamitonian cycle problem.

1. Show that the number of simple cycles through a given edge of a given graph G can be
counted by a reduction to the #paths problem.

2. Given a simple undirected graph H = (U, F ), let H ′ be obtained by subdividing each edge
into ` edges and creating k parallel copies of each edge. Take a single Hamiltonian cycle in
H. How many distinct Hamiltonian cycles in H ′ does it map to?

3. Suppose H is Hamiltonian and H ′ is constructed with k = n, ` = n+c. Show that the total
number of non-Hamiltonian simple cycles in H ′ is smaller than the number of Hamiltonian
cycles in H ′ by a factor of nc.

4. Show that the problem of deciding whether a given graph has a Hamiltonian cycle can be
reduced to the #paths problem in polynomial time.

Solution:

1. For an edge (x, y), delete it from the graph, then count the number of paths from x to y
using a binary search. This is the number of cycles through (x, y) in G.

2. Each edge is replaced by k` paths between the endpoints of the edge. So a single Hamilto-
nian cycle becomes k`n cycles.

3. A crude bound on the total number of simple cycles in H ′ of length at most n − 1 is
k`(n−1) · n! · 2n. The required condition is given by

k`n ≥ nc · k`(n−1)n!2n

which is implied by k` ≥ nc+n and the statement follows.

4. Given a graph G = (V,E), to determine if it is Hamitonian, first apply the subdivision and
parallel copying of edges with k = n, ` = n+c to get a graph G′. Then apply the algorithm
from Part (1) to count the number of simple cycles through each edge of G′. The sum of
these counts is at most n` times the number of simple cycles in G′ (since each cycle can be
counted at most as many times as the number of vertices in G′). Declare G is Hamiltonian
iff this estimate of the number of cycles in G′ is at least k`n. If the original graph G is not
Hamiltonian, then the total number of cycles in G′ would smaller by a polynomial factor
smaller, so even an nc−2 approximation for the #paths problem would suffice.
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2. Theory of Linear Inequalities

Let x∗ be a fractional extreme point of a rational polytopte P := {x ∈ Rn |Ax ≤ b}. Prove that
there exists a Chvátal-Gomory cut for P that separates x∗.

Solution: Without loss of generality we may assume that A and b are integral. Since x∗ is an
extreme point of P , there exists constraints Ãx ≤ b̃, a subsystem of Ax ≤ b, such that

{x | Ãx = b̃} = {x∗}. (1)

Also, without loss of generality we may assume that Ã has full row rank. Therefore by Integer
Farkas Lemma, there exists a rational vector y such that

y>Ã ∈ Z1×n, y>b̃ 6∈ Z.

Let z be an non-negative integral vector such that z+ y ≥ 0. Let u = y+ z. Then by integrality
of A and b we obtain that

u ≥ 0

u>Ã ∈ Z1×n

u>b̃ 6∈ Z (2)

Thus
u>Ãx ≤ bu>b̃c

is a valid CG cut for P . Also (1) and (2) imply that this CG cut separates x∗.

3. Graph Theory

Let G be a 2-connected plane graph and let V (G), E(G), F (G) denote its set of vertices, set of
edges, set of faces, receptively. Let σ : V (G) ∪ F (G) → Z such that σ(x) = d(x) − 4 for all
x ∈ V (G) ∪ F (G), where d(x) is the number of edges incident with x. Show that

(1)
∑

x∈V (G)∪F (G) σ(x) = −8.

(2) If δ(G) ≥ 5 then G contains K−4 (obtained from K4 by removing an edge) as a subgraph.

Solution: Using
∑

v∈V (G) d(v) = 2|E(G)| and
∑

f∈F (G) d(f) = 2|E(G)|, (1) follows from Euler’s

formula. To prove (2), suppose δ(G) ≥ 5 and G contains no K−4 . Note that σ(x) < 0 iff x is

a face bounded by a triangle; in which case, σ(x) = −1. Modify σ as follows: For each vertex
v and each triangular face f incident with v, subtract 1/3 from σ(v) and add 1/3 to σ(f). Let
τ : V (G)∪F (G)→ Z denote the resulting function obtained from σ. Then

∑
x∈V (G)∪F (G) τ(x) =∑

x∈V (G)∪F (G) σ(x). For each triangular face f ∈ F (G), τ(f) = σ(f)+1/3+1/3+1/3 ≥ 0. Since
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G does not contain K−4 , each v ∈ V (G) is incident with at most d(v)/2 triangular faces; so

τ(v) ≥ d(v)− 4− d(v)/6 = (5d(v)− 24)/6 ≥ 1/6,

as δ(G) ≥ 5. Thus
∑

x∈V (G)∪F (G) τ(x) > 0, a contradiction as
∑

x∈V (G)∪F (G) σ(x) = −8.

4. Algebra

(a) Let R be an integral domain containing a field k as a subring. Suppose that R is a finite
dimensional vector space over k under the ring multiplication. Show that R is a field.

(b) Show that the conclusion does not hold without the assumption of being finite dimensional.
That is, give an example of a ring R containing a field k as a subring, such that R is an
integral domain but is not a field.

(c) Show that the conclusion does not hold without the assumption of being an integral domain.
That is, give an example of a ring R containing a field k as a subring, such that R is finite
dimensional over k but is not a field.

Solution:

(a) Let r be a nonzero element inR. SinceR is finite dimensional over k, the set {1, r, r2, . . . , rn}
is linearly dependent over k for some n. Therefore there are a0, a1, . . . , an ∈ k, not all of
them zero, such that a0 + a1r + a2r

2 + · · · + anr
n = 0. If a0 = 0, then we would have

r(a1 + a2r + · · · + anr
n−1) = 0. Since R is an integral domain, r is not a zero-divisor, so

we would have a1 + a2r+ · · ·+ anr
n−1 = 0. By renaming the ai’s if needed, we can assume

that a0 6= 0. Since a0 is a nonzero element of the field k, it is invertible, so we have

1 = −a−10 r(a1 + a2r + · · ·+ anr
n−1).

This shows that r has an inverse in R for every nonzero r ∈ R, so R is a field.

(b) Let R = Q[x]. Then R is an infinite dimensional vector space over Q and is an integral
domain because the product of two non-zero polynomials is non-zero, which can be seen
from the coefficients of highest degree terms. But R not a field since x does not have an
inverse in R.

(c) Let R = Q[x]/〈x2〉. Then R is a two-dimensional vector space over Q but is not an integral
domain because x is a zero-divisor.

4. Linear Algebra

Let A,B be n × n matrices. Show that σ(AB) = σ(BA). (Recall the spectrum of A, σ(A) =
{λ : A− λI is not invertible}.)
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Solution: Suppose λ ∈ σ(AB) and λ 6= 0. Let u 6= 0 and ABu = λu. Then BABu = λBu. If
Bu 6= 0, then λ ∈ σ(BA). If Bu = 0, then we must have 0 = ABu = λu, which is a contradiction
to λ 6= 0. By symmetry, we have shown that σ(AB) \ {0} = σ(BA) \ {0}.

Now suppose 0 ∈ σ(AB). If A is invertible, then B must be not invertible and so BA is not
invertible. If A is not invertible, then it follows immediately that BA is not invertible. In either
case we have 0 ∈ σ(BA). By symmetry, we have AB is not invertible if and only if BA is not
invertible.

Thus σ(AB) = σ(BA).

5. Analysis of Algorithms

Part a: Let f(x) be a real-valued function. You are given a randomized algorithm B that, given
input x and parameter ε > 0, outputs B(x) which approximates f(x) as follows:

∀x, Pr [(1− ε)f(x) ≤ B(x) ≤ (1 + ε)f(x)] ≥ 3/4. (3)

Give an algorithm C that, given input x and parameters ε, δ > 0, outputs C(x) satisfying:

∀x, Pr [(1− ε)f(x) ≤ C(x) ≤ (1 + ε)f(x)] ≥ 1− δ. (4)

Achieve the best dependence on δ in O(·) notation (i.e., ignore constant factors).
Part b: Explain if your approach in (a) still works if instead of (3) the probability of success is
weakened so that:

∀x, Pr [(1− ε)f(x) ≤ B(x) ≤ (1 + ε)f(x)] ≥ 1/4. (5)

Part c: Suppose that we have n polygons P1, . . . , Pn, all lying inside [0, 1] × [0, 1] which is the
square with side length 1 on the Euclidean plane. Every polygon has area at least α > 0. You are
not given the polygons explicitly but instead for each polygon Pi we have access to a membership
oracle: given a point x ∈ R2, the oracle returns YES if x ∈ Pi and NO if x /∈ Pi.

Give a randomized algorithm that approximately estimates the area of the union of these
polygons. Given 0 < ε < 1, the output Y of your algorithm should satisfy

Pr [(1− ε)|P | ≤ Y ≤ (1 + ε)|P |] ≥ 3

4

where |P | denotes the area of P = P1 ∪ · · · ∪ Pn.
(You may assume that sampling a real number uniformly at random from [0, 1] takes constant
time, and that each oracle call takes constant time.)
The running time of your algorithm should be polynomial in n, 1/ε, and 1/α.

Solution:
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Part a: Given desired accuracy ε > 0 and input x, let b1, . . . , bN be independent samples from
algorithm B(x). Let C(x) be the median of b1, . . . , bN . For each 1 ≤ i ≤ N , let

Zi =

{
1 if bi ∈ (1± ε)f(x)

0 otherwise.

Let Z =
∑N

i=1 Zi.
Note, E [Zi] = Pr [bi ∈ (1± ε)f(x)] ≥ 3/4, and hence

E [Z] ≥ 3

4
N.

Note if Z > N/2 then C(x) ∈ (1± ε)f(x). By Chernoff bounds,

Pr [Z ≤ N/2] ≤ Pr

[
|Z − E [Z] | ≤ 1

4
E [Z]

]
≤ 2 exp(−E [Z] /48) ≤ 2 exp(−N/64) ≤ δ,

for N ≥ 64 ln(2/δ), and hence N = O(log(1/δ)) suffices.
Part b: We cannot boost the success probability. Consider the constant functions f(x) = 1 and
g(x) = 5. Suppose for any input x the algorithm B(x) outputs:

B(x) =

{
1 with probability 1/2

5 with probability 1/2.

Then B satisfies (5) for both f and g. However, there is no algorithm C using B as a subroutine
that satisfies (4) for both f and g.
Part c: The algorithm is as follows: in the k’th round, we choose a point xk uniformly at random
from [0, 1]× [0, 1] and we then check if the point lies in Pj for some j. If xk /∈ Pj for all j, then
let Yk = 0; otherwise let Yk = 1. The output of the algorithm is

Y =
1

N

N∑
k=1

Yk

where N is the number of rounds.

E [Y ] = E [Yk] = Pr [Yk = 1] = Pr [xk ∈ P ] = |P |.

Then by Chernoff bounds,

Pr (|Y − |P || ≥ ε|P |) ≤ Pr (|NY −N |P || ≥ εN |P |)
≤ 2 exp

(
−N |P |ε2/3

)
≤ 2 exp

(
−Nαε2/3

)
≤ 1/4,

for N = c/αε2 for sufficiently large constant c. Hence, N = O(α−1ε−2) samples suffice, and the
running time is poly(n, 1/ε, 1/α).
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6. Combinatorial Optimization

Recall that a graph G is factor-critical if for all v ∈ V (G), G−v has a perfect matching. An open
odd ear decomposition of G is a sequence H0, H1, . . . , Hk of subgraphs of G such that, letting
Gj =

⋃j
i=0Hi for j = 0, 1, . . . , k, we have

(a) G0 is an odd cycle,

(b) for i = 1, 2, . . . , k the graph Hi is an odd length (i.e., odd number of edges) path with both
(distinct) end vertices in V (Gi−1) and no internal vertex or edge in V (Gi−1), and

(c) G = Gk.

Show that if a 2-connected graph G is factor-critical, then it admits an open odd ear decompo-
sition.

Solution. By Theorem 24.9 in [A. Schrijver, Combinatorial Optimization] the graph G has an
odd cycle H0 such that G−V (H0) has a perfect matching. Let us choose the maximum integer k
such that there exist graphs H0, H1, . . . , Hk satisfying (a) and (b) such that there exists a perfect
matching M in G−V (Gk). Such a choice is possible, because k = 0 satisfies those requirements.
If G has an edge e 6∈ E(Gk) with both ends in Gk, letting Hk+1 consist of e and its ends violates
the maximality of k. We may therefore assume that no such edge exists and that there exists a
vertex u ∈ V (G)− V (Gk), for otherwise (c) holds. Since G is 2-connected, there exist two paths
from u to Gk, vertex-disjoint, except for u. Thus there exists a path P of length at least two
with both ends in Gk and otherwise disjoint from it.

Let us say that an edge e ∈M−E(P ) is a side edge if at least one of its ends belongs to P . We
may assume that P is chosen so that the number of its side edges is minimum. We may assume
that there exists a side edge e, for otherwise letting Hk+1 := P contradicts the maximality of k.
Let e = uv, where u ∈ V (P ). Let M ′ be a perfect matching in G− u. The subgraph of G with
edge-set M4M ′ has a path Q with one end u. The other end of Q belongs to Gk.

By a tail of P we mean an M -alternating path with one end on P , the first edge a side edge
and the other end in Gk. The argument of the previous paragraph shows that a tail exists. We
may therefore choose a path P as above and a tail Q of minimum length. Let the ends of Q be
u ∈ V (P )− V (Gk) and w ∈ V (Gk). If no internal vertex of P belongs to Q then the union of Q
with one of the subpaths of P with end u (one that does not include w) contradicts the choice of
P . We may therefore assume that there exists a vertex x that is internal to both P and Q and
we may assume that x is chosen so that the subpath Q′ of Q with ends u and x is as short as
possible. The graph P ∪Q′ contains a unique cycle C. Let P ′ be obtained from P by replacing
the subpath with ends u and x by Q. If the edge of C ∩ P incident with x does not belong to
M , then P ′ contradicts the choice of P ; otherwise the subpath Q′′ of Q with ends x and w is a
tail of P ′ and the pair P ′, Q′′ contradicts the choice of P and Q.

Thus (c) holds, as desired.
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7. Probabilistic methods

Prove that there is some constant c > 0 so that for every integer k ≥ 1, given a graph and
a set of k acceptable colors for each vertex such that every color is acceptable for at most ck
neighbors of each vertex, there is always a proper coloring where every vertex is assigned one of
its acceptable colors. (Recall as usual that a proper coloring requires that the endpoints of every
edge get different colors.)

Solution: For each vertex, (independently) randomly assign it one of its acceptable colors. For
each edge e and color i that is acceptable for both endpoints, consider the event Be,i that both
endpoints of e are colored i.

Each bad event happens with probability at most p = 1/k2 . To construct the dependency
graph, it suffices to connect each event to all other events whose corresponding edges share an
endpoint. (Note that we only defined the events for edges whose endpoints have a common
acceptable color.) In this dependency graph, each vertex has degree at most O(ck2) =: d, since
each endpoint has k acceptable colors and each of these colors is acceptable for at most ck
neighbors.

If we ensure that e(d+1)(1/k2) < 1 , then we can apply the Local Lemma to deduce that with
positive probability, all edges are properly colored. This shows that there is a suitable choice
of c < 1 (less than 1/100 say), that guarantees the existence of such a coloring, since we may
clearly assume that k > 1.


