1. Computability, Complexity and Algorithms

(a): Count s - t Paths in DAGs: Let G(V, E) be a directed acyclic graph given in adjacency list representation, and let $s \in V$ and $t \in V$ be distinct vertices. Give an O(|V| + |E|) algorithm that computes the number of distinct paths from s to t in G.

(b): Count s - t Paths in General Directed Graphs: Let G(V, E) be a general directed graph given in adjacency matrix representation, and let $s \in V$ and $t \in V$ be distinct vertices. Argue that, if there is a polynomial-time algorithm that computes the number of distinct paths from s to t in G, then there is a polynomial-time algorithm that decides Hamiltonicity in general directed graphs.

2. Analysis of Algorithms

Matrix Identity Testing

• Recall the Schwartz-Zippel lemma:

Lemma 1 (Schwartz-Zippel Lemma) Let $p(x_1, \ldots, x_n)$ be a nonzero polynomial of n variables with degree d. Let S be a finite subset of \mathbb{R} , with at least d elements in it. If we assign x_1, \ldots, x_n values from S independently and uniformly at random, then

$$\mathbb{P}[p(x_1,\ldots,x_n)=0] \le \frac{d}{|S|}.$$

Using the aforementioned lemma, design a randomized algorithm to test whether AB = C, where A, B, C are three $n \times n$ matrices. Analyze the probability with which it will succeed, and analyze its runtime.

• Explain how to "boost" the above algorithm to succeed with probability $1 - \delta$.

3. Theory of Linear Inequalities

Let $e^k \in \mathbb{R}^n$ for k = 0, ..., n - 1 denote the vector with the first k entries being 1 and the following n - k entries being -1. Let $S = \{e^0, e^1, ..., e^{n-1}, -e^0, ..., -e^{n-1}\}$, i.e., S consists of all vectors consisting of +1 followed by -1 or vice versa.

- 1. Consider any vector $a \in \{-1, 0, 1\}^n$ such that
 - (a) $\sum_{i=1}^{n} a_i = 1$, and
 - (b) for all j = 1, ..., n 1, we have $0 \le \sum_{i=1}^{j} a_i \le 1$.

Show that $\sum_{i=1}^{n} a_i x_i \leq 1$ and $\sum_{i=1}^{n} a_i x_i \geq -1$ are valid inequalities for conv(S).

2. Show that any such inequality defines a facet of conv(S).

4. Combinatorial Optimization

Assume n is odd, and G = (V, E) is a graph with |V| = n, |E| = 2n - 2, such that G is the union of two edge-disjoint spanning trees. Assume furthermore that half of the edges are colored red, the other half blue (where the coloring of edges is unrelated to the spanning trees). Show that G contains a spanning tree where exactly half of the edges are red and half of them blue.

5. Graph Theory

Let d be a positive integer and let G be a graph with average degree at least 8d. Show that G contains a d-connected subgraph whose edges can be oriented so that the resulting digraph has no directed path on three vertices.

6. Probabilistic methods

Let S_n be a random string of length n, where each character is, independently, chosen uniformly at random from the alphabet $\mathcal{A} := \{A, \ldots, Z\}$. For each n, let $H_n \in \mathcal{A}^m$ be a given string of length $m = m(n) \ge 0$. We say that S_n contains H_n if S_n it contains a consecutive substring of length m which equals H_n . Find a threshold function $m^* = m^*(n)$ such that

$$\Pr(S_n \text{ contains } H_n) \to \begin{cases} 1 & m = o(m^*), \\ 0 & m = \omega(m^*). \end{cases}$$

7. Algebra

Let p be a prime number. Show that if G is a finite p-group, and if $N \leq G$ is a normal subgroup of order p, then N is contained in the center of G.

7. Linear Algebra

Let A be a bistochastic matrix, that is a real $n \times n$ matrix such that

$$A_{i,j} \ge 0 \quad \forall i,j \qquad \sum_{i=1}^n A_{i,j} = 1 \quad \forall j \qquad \sum_{j=1}^n A_{i,j} = 1 \quad \forall i \; .$$

Let $a = \min_{i,j} A_{i,j}$ and let $v \in \mathbb{R}^n$ be such that $\sum_{i=1}^n v_i = 0$. (a) Show that

 $||Av||_1 \le (1 - na)||v||_1,$

where $||v||_1 = \sum_{i=1}^n |v_i|$. Is the estimate sharp? That is, can you find A and v as above such that

$$||Av||_1 = (1 - na)||v||_1 ?$$

(b) Show that

 $||Av||_{\infty} \le (1 - na)||v||_{\infty},$

where $||v||_{\infty} = \max_{i} |v_i|$. Is the estimate sharp? That is, can you find A and v as above such that

$$||Av||_{\infty} = (1 - na)||v||_{\infty}$$
?