1. Computability, Complexity and Algorithms

(a): Count $s-t$ Paths in DAGs: Let $G(V, E)$ be a directed acyclic graph given in adjacency list representation, and let $s \in V$ and $t \in V$ be distinct vertices. Give an $O(|V|+|E|)$ algorithm that computes the number of distinct paths from s to t in G.
(b): Count $s-t$ Paths in General Directed Graphs: Let $G(V, E)$ be a general directed graph given in adjacency matrix representation, and let $s \in V$ and $t \in V$ be distinct vertices. Argue that, if there is a polynomial-time algorithm that computes the number of distinct paths from s to t in G, then there is a polynomial-time algorithm that decides Hamiltonicity in general directed graphs.

2. Analysis of Algorithms

Matrix Identity Testing

- Recall the Schwartz-Zippel lemma:

Lemma 1 (Schwartz-Zippel Lemma) Let $p\left(x_{1}, \ldots, x_{n}\right)$ be a nonzero polynomial of n variables with degree d. Let S be a finite subset of \mathbb{R}, with at least d elements in it. If we assign x_{1}, \ldots, x_{n} values from S independently and uniformly at random, then

$$
\mathbb{P}\left[p\left(x_{1}, \ldots, x_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

Using the aforementioned lemma, design a randomized algorithm to test whether $A B=C$, where A, B, C are three $n \times n$ matrices. Analyze the probability with which it will succeed, and analyze its runtime.

- Explain how to "boost" the above algorithm to succeed with probability $1-\delta$.

3. Theory of Linear Inequalities

Let $e^{k} \in \mathbb{R}^{n}$ for $k=0, \ldots, n-1$ denote the vector with the first k entries being 1 and the following $n-k$ entries being -1 . Let $S=\left\{e^{0}, e^{1}, \ldots, e^{n-1},-e^{0}, \ldots,-e^{n-1}\right\}$, i.e., S consists of all vectors consisting of +1 followed by -1 or vice versa.

1. Consider any vector $a \in\{-1,0,1\}^{n}$ such that
(a) $\sum_{i=1}^{n} a_{i}=1$, and
(b) for all $j=1, \ldots, n-1$, we have $0 \leq \sum_{i=1}^{j} a_{i} \leq 1$.

Show that $\sum_{i=1}^{n} a_{i} x_{i} \leq 1$ and $\sum_{i=1}^{n} a_{i} x_{i} \geq-1$ are valid inequalities for $\operatorname{conv}(S)$.
2. Show that any such inequality defines a facet of $\operatorname{conv}(S)$.

4. Combinatorial Optimization

Assume n is odd, and $G=(V, E)$ is a graph with $|V|=n,|E|=2 n-2$, such that G is the union of two edge-disjoint spanning trees. Assume furthermore that half of the edges are colored red, the other half blue (where the coloring of edges is unrelated to the spanning trees). Show that G contains a spanning tree where exactly half of the edges are red and half of them blue.

5. Graph Theory

Let d be a positive integer and let G be a graph with average degree at least $8 d$. Show that G contains a d-connected subgraph whose edges can be oriented so that the resulting digraph has no directed path on three vertices.

6. Probabilistic methods

Let S_{n} be a random string of length n, where each character is, independently, chosen uniformly at random from the alphabet $\mathcal{A}:=\{A, \ldots, Z\}$. For each n, let $H_{n} \in \mathcal{A}^{m}$ be a given string of length $m=m(n) \geq 0$. We say that S_{n} contains H_{n} if S_{n} it contains a consecutive substring of length m which equals H_{n}. Find a threshold function $m^{*}=m^{*}(n)$ such that

$$
\operatorname{Pr}\left(S_{n} \text { contains } H_{n}\right) \rightarrow \begin{cases}1 & m=o\left(m^{*}\right) \\ 0 & m=\omega\left(m^{*}\right)\end{cases}
$$

7. Algebra

Let p be a prime number. Show that if G is a finite p-group, and if $N \unlhd G$ is a normal subgroup of order p, then N is contained in the center of G.

7. Linear Algebra

Let A be a bistochastic matrix, that is a real $n \times n$ matrix such that

$$
A_{i, j} \geq 0 \quad \forall i, j \quad \sum_{i=1}^{n} A_{i, j}=1 \quad \forall j \quad \sum_{j=1}^{n} A_{i, j}=1 \quad \forall i
$$

ACO Comprehensive Exam

Let $a=\min _{i, j} A_{i, j}$ and let $v \in \mathbb{R}^{n}$ be such that $\sum_{i=1}^{n} v_{i}=0$.
(a) Show that

$$
\|A v\|_{1} \leq(1-n a)\|v\|_{1},
$$

where $\|v\|_{1}=\sum_{i=1}^{n}\left|v_{i}\right|$. Is the estimate sharp? That is, can you find A and v as above such that

$$
\|A v\|_{1}=(1-n a)\|v\|_{1} ?
$$

(b) Show that

$$
\|A v\|_{\infty} \leq(1-n a)\|v\|_{\infty},
$$

where $\|v\|_{\infty}=\max _{i}\left|v_{i}\right|$. Is the estimate sharp? That is, can you find A and v as above such that

$$
\|A v\|_{\infty}=(1-n a)\|v\|_{\infty} ?
$$

