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SUMMARY

The bin packing problem has been the corner stone of approximation algo-

rithms and has been extensively studied starting from the early seventies. In the

classical bin packing problem, we are given a list of real numbers in the range (0, 1],

the goal is to place them in a minimum number of bins so that no bin holds num-

bers summing to more than 1. In this thesis we study approximation algorithms for

three generalizations of bin packing: geometric bin packing, vector bin packing and

weighted bipartite edge coloring.

In two-dimensional (2-D) geometric bin packing, we are given a collection of rectan-

gular items to be packed into a minimum number of unit size square bins. Geometric

packing has vast applications in cutting stock, vehicle loading, pallet packing, mem-

ory allocation and several other logistics and robotics related problems. We consider

the widely studied orthogonal packing case, where the items must be placed in the

bin such that their sides are parallel to the sides of the bin. Here two variants are

usually studied, (i) where the items cannot be rotated, and (ii) they can be rotated by

90 degrees. We give a polynomial time algorithm with an asymptotic approximation

ratio of ln(1.5) + 1 ≈ 1.405 for the versions with and without rotations. We have

also shown the limitations of rounding based algorithms, ubiquitous in bin packing

algorithms. We have shown that any algorithm that rounds at least one side of each

large item to some number in a constant size collection values chosen independent of

the problem instance, cannot achieve an asymptotic approximation ratio better than

3/2.

In d-dimensional vector bin packing (VBP), each item is a d-dimensional vector

that needs to be packed into unit vector bins. The problem is of great significance
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in resource constrained scheduling and also appears in recent virtual machine place-

ment in cloud computing. Even in two dimensions, it has novel applications in layout

design, logistics, loading and scheduling problems. We obtain a polynomial time al-

gorithm with an asymptotic approximation ratio of ln(1.5) + 1 ≈ 1.405 for 2-D VBP.

We also obtain a polynomial time algorithm with almost tight (absolute) approxima-

tion ratio of 1 + ln(1.5) for 2-D VBP. For d dimensions, we give a polynomial time

algorithm with an asymptotic approximation ratio of ln(d/2) + 1.5 ≈ ln d+ 0.81. We

also consider vector bin packing under resource augmentation. We give a polynomial

time algorithm that packs vectors into (1 + ε)Opt bins when we allow augmentation

in (d − 1) dimensions and Opt is the minimum number of bins needed to pack the

vectors into (1, 1) bins.

In weighted bipartite edge coloring problem, we are given an edge-weighted bipar-

tite graph G = (V,E) with weights w : E → [0, 1]. The task is to find a proper

weighted coloring of the edges with as few colors as possible. An edge coloring of the

weighted graph is called a proper weighted coloring if the sum of the weights of the

edges incident to a vertex of any color is at most one. This problem is motivated by

rearrangeability of 3-stage Clos networks which is very useful in various applications

in interconnected networks and routing. We show a polynomial time approximation

algorithm that returns a proper weighted coloring with at most d2.2223me colors

where m is the minimum number of unit sized bins needed to pack the weight of all

edges incident at any vertex. We also show that if all edge weights are > 1/4 then

d2.2me colors are sufficient.
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Chapter I

INTRODUCTION

The bin packing problem has been the corner stone of approximation algorithms and

has been extensively studied starting from the early seventies. In the classical bin

packing problem, we are given a list I = {i1, i2, . . . , in} of real numbers in the range

(0, 1], the goal is to place them in a minimum number of bins so that no bin holds

numbers summing to more than 1.

Bin packing is a special case of the one-dimensional cutting stock problem [88],

loading problem [66] and several scheduling related problems [44]. In theoretical

computer science, the bin packing problem was probably first studied by Garey, Gra-

ham and Ullman in 1972 [84], from the standpoint of memory allocation problems

such as table formatting, prepaging and file allocation. They noticed that finding a

general placement algorithm for attaining the minimum number of bins appears to

be impractical, and thus provided four heuristics: first fit (FF), best fit (BF), first

fit decreasing height (FFDH) and best fit decreasing heights (BFDH). Soon Johnson,

Demers, Ullman, Garey and Graham [128] published the first definitive analysis of the

worst case guarantees of several bin packing approximation algorithms. The problem

is well-known to be NP-hard [86] and the seminal work of Johnson et al. initiated

an extremely rich research area in approximation algorithms [107]. In fact the term

approximation algorithm was coined by David S. Johnson [127] in an influential and

prescient paper in 1974 where he studied algorithms for bin packing and other packing

and covering related optimization problems.

Bin packing is extremely useful in practice and has a lot of applications in vari-

ous fields. Skiena [191] has presented market research for the field of combinatorial
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optimization and algorithms, attempting to determine which algorithmic problems

are most in demand for applications, by studying WWW traffic. Both bin packing

and related knapsack problem were among top five most popular NP-hard problems.

The implementations of bin packing and knapsack were the most needed among all

NP-hard problems, even more than problems such as set-cover, traveling salesman

and graph-coloring.

Garey and Johnson [87], followed by Coffman et al. [43], gave comprehensive

surveys on bin packing algorithms. Coffman and Lueker also covered probabilistic

analyses of packing algorithms in detail [41]. Galambos and Woeginger [82] gave an

overview restricted mainly to online variants of bin packing problems. There had

been many surveys on bin packing problems thereafter [93, 40, 52]. The most recent,

extensive coverage on 1-D bin packing was given by Coffman et al. [42].

In this thesis, we primarily focus on packing in higher dimensions due to its

prominence in many real world applications. These generalizations of bin packing also

help us to understand the power and limitations of existing algorithmic techniques.

An ambitious goal is to translate insights from these classical problems to general

results for other related combinatorial optimization problems.

We primarily consider three generalizations of bin packing: geometric bin

packing, vector bin packing and weighted bipartite edge coloring.

In two-dimensional (2-D) geometric bin packing (GBP), we are given a collection

of rectangular items to be packed into a minimum number of unit-size square bins.

This variant and other higher dimensional GBP variants have vast applications in

cutting stock, vehicle loading, pallet packing, memory allocation and several other

logistics and robotics related problems [88, 175]. In two dimensions, packing objects

into containers have many important applications, e.g., in the context of cutting

out a given set of patterns from a given large piece of material minimizing waste,

typically in sheet metal processing and apparel fabrication. In three dimensions, these
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problems are frequently encountered in minimizing storage space or container space

for transportation. In this thesis we consider the widely studied orthogonal packing

case, where the items must be placed in the bin such that their sides are parallel to

the sides of the bin. In any feasible solution, items are not allowed to overlap. Here

two variants are usually studied, (i) where the items cannot be rotated (packing by

translations), and (ii) they can be rotated by 90 degrees (packing by restricted rigid

motions). These variants are also recurrent in practice, e.g., in apparel production

usually there are patterns of weaving or texture on the material so that the position

where a piece should be cut cannot be rotated arbitrarily.

In d-dimensional vector bin packing (VBP), each item is a d-dimensional vector

that needs to be packed into unit vector bins. The problem is of great significance in

resource constrained scheduling and appeared also recently in virtual machine place-

ment in cloud computing [169]. For example, consider each job (item) has multiple

resource requirements (dimensions) such as CPU, memory, I/O, disk, network etc.

and each server (bin) has a bounded amount of these resources. The goal to assign

all jobs to minimum number of servers, without violating the resource constraints,

translates to the vector packing problem. Even in two dimensions, vector packing has

many novel applications in layout design, logistics, loading and scheduling problems

[180, 193].

In the weighted bipartite edge coloring problem, we are given an edge-weighted

bipartite graph G = (V,E) with weights w : E → [0, 1]. The task is to find a proper

weighted coloring of the edges with as few colors as possible. An edge coloring of the

weighted graph is called a proper weighted coloring if the sum of the weights of the

edges incident to a vertex of any color is at most one. This problem is motivated by

rearrangeability of 3-stage Clos networks which is very useful in various applications

in interconnected networks and routing [126, 113]. This problem is a generalization of

two classical optimization problems: bin packing and bipartite edge coloring problem.

3



These generalizations have been well studied since the 1970s. Baker, Coffman,

and Rivest first considered orthogonal packings in two dimensions [9]. At the same

time Coffman et al. [129] gave performance bounds for level-oriented two-dimensional

packing algorithms such as Next Fit Decreasing Height and First Fit Decreasing

Height. Lodi, Martello and Monaci first gave a survey on two-dimensional packing

problems [152]. Epstein and van Stee gave a survey in [93] on multi-dimensional bin

packing. There has been consistent progress in the area since then. We will provide

a detailed survey of prior works in the later corresponding chapters.

1.1 Contribution of the Thesis

The dissertation obtains improved approximation algorithms for the three general-

izations of bin packing problems, mentioned above. We summarize the contributions

below.

Geometric Bin Packing: We give a polynomial time algorithm with an asymptotic

approximation ratio of ln(1.5) + 1 ≈ 1.405 for 2-D GBP. This holds both for the

versions with and without rotations.

The main idea behind this result is to show that the Round and Approx (R&A)

framework introduced by Bansal, Caprara and Sviridenko [13] (See section 2.6.3) can

be applied to a recent (1.5 + ε)-approximation result of Jansen and Prädel [116].

Roughly speaking, this framework states that, given a packing problem, if (i) the

configuration LP for the problem (with the original item sizes) can be solved up to

error 1 + ε for any ε > 0, and (ii) there is a ρ-approximation for the problem that

is subset-oblivious (See section 2.6.3 for a formal description); then one can obtain a

(1 + ln ρ)-asymptotic approximation for the problem.

In [13], it was shown that the APTAS for 1-D BP due to [55] and the 2-D BP

algorithm of [27] are subset-oblivious. However, the notion of subset-obliviousness as

defined in [13], is based on various properties of dual-weighting functions, making it

4



somewhat tedious to apply and also limited in scope (e.g. it is not clear to us how to

apply this method directly to the algorithm of [116]).

We give a more general argument to apply the R&A framework directly to a

wide class of algorithms1, and without any reference to dual-weighting functions. In

particular, we show that any algorithm based on rounding the (large) items into O(1)

types, is subset-oblivious. The main observation is that any ρ-approximation based

on rounding the item sizes, can be related to another configuration LP (on rounded

item sizes) whose solution is no worse than ρ times the optimum solution. As the

item sizes are rounded, there are only O(1) constraints in this LP and it can be easily

shown to be subset-oblivious.

For the particular case of 2-D BP, we present the algorithm of Jansen and Prädel

that directly fits in the above framework. As most algorithms for bin-packing prob-

lems are based on rounding into O(1) types, this also makes the framework widely

applicable. For example, this gives much simpler proofs of all the results in [13].

Finally, we give some results to show the limitations of rounding based algorithms

in obtaining better approximation ratios. Rounding of items to O(1) types has been

used either implicitly [18] or explicitly [55, 133, 27, 116, 132], in almost all bin packing

algorithms. There are typically two types of rounding: either the size of an item in

some coordinate (such as width or height) is rounded up in an instance-oblivious way

(e.g. Harmonic rounding [147, 27], or Geometric rounding [133]), or it is rounded up

in an input sensitive way (e.g. linear grouping [55]). We show that any rounding

based algorithm that rounds at least one side of each large item to some number in

a constant-size collection values chosen independent of problem instance (let us call

such rounding input-agnostic), can not have an approximation ratio better than 3/2.

These results are based on joint work with Nikhil Bansal.

1This includes all known algorithms that we know of for bin-packing type problems, except the
ones based on R&A method.
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Vector Bin Packing: Our main result is improved approximation for multidimen-

sional vector packing. We first give a polynomial time algorithm with an asymptotic

approximation ratio of (1 + ln(1.5) + ε) ≈ (1.405 + ε) for 2-D vector packing and a

ln d+ 0.807 + od(1) + ε-approximation for d-dimensional vector packing. For 2-D this

already gives significant improvement over the current best (1+ln(2)+ε) ≈ (1.693+ε)

result [13], but more importantly, it overcomes a natural barrier of (1 + ln d) of R&A

framework due to the fact that one can not obtain better than d-approximation using

rounding based algorithms. We circumvent this problem based on two ideas.

First, we show a structural property of vector packing that any optimal packing

of m bins can be transformed into nearly d3m
2
e bins of two types:

1. Either a bin contains at most two big items, or

2. The bin has slack in one dimension (i.e., the sum of all vectors in the bin is at most

1 − δ for some constant δ). We then search (approximately) over the space of such

“well-structured” 1.5-approximate solutions. However, as this structured solution

(necessarily) uses unrounded item sizes, it is unclear how to search over the space of

such solutions efficiently. So a key idea is to define this structure carefully based on

matchings, and use an elegant recent algorithm for the multiobjective-multibudget

matching problem by Chekuri, Vondrák, and Zenklusen [35]. As we show, this allows

us to both use unrounded sizes and yet enumerate the space of solutions like in

rounding-based algorithms.

The second step is to apply the subset oblivious framework to the above algorithm.

There are two problems. First, the algorithm is not rounding-based. Second, even

proving subset obliviousness for rounding based algorithms for vector packing is more

involved than for geometric bin-packing. To get around these issues, we use additional

technical observations about the structure of d-dimensional VBP.

6



Another consequence of the these techniques is the following tight (absolute) ap-

proximation guarantee. We show that for any small constant ε > 0, there is a polyno-

mial time algorithm with an absolute approximation ratio of (1.5 + ε) for 2-D vector

packing, improving upon the guarantee of 2 by Kellerer and Kotov [136].

We extend the approach for d = 2 to give a (d+1)/2 approximation (for d = 2, this

is precisely the 3/2 bound mentioned above) and then show how to incorporate it into

R&A. However, applying the R&A framework is more challenging here and instead of

the ideal 1+ln((d+1)/2), we get a (1.5+ln(d/2)+od(1)+ε) ≈ (ln d+0.807+od(1)+ε)-

approximation.

Along the way, we also prove several additional results which could be of indepen-

dent interest. For example, in Section 4.5 we obtain several results related to resource

augmented packing which has been studied for other variants of bin packing [122, 19].

These results are based on joint work with Nikhil Bansal and Marek Elias.

Weighted Bipartite Edge Coloring: We show a polynomial time approximation

algorithm that returns a proper weighted coloring with at most d2.2223me colors

where m is the minimum number of unit-sized bins needed to pack the weight of all

edges incident at any vertex.

This makes progress towards the resolution of the conjecture [38] that there is

always a proper weighted coloring using at most 2m− 1 colors. In our algorithm and

analysis, we exploit that weighted bipartite edge coloring problem displays

features of the classical edge coloring problem as well as the bin packing problem. Our

algorithm starts by decomposing the heavy weight edges into matchings by applying

König’s theorem [143] to find an edge coloring of the subgraph induced by these

edges. For the light weight edges, we employ the first-fit decreasing heuristic where

we consider the remaining edges in decreasing order of weight and give them the first

available color.
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Our work diverges from previous results on this problem in the analysis of this

simple combinatorial algorithm. We employ strong mathematical formulations for

the bin packing problem; in particular, we use the configuration linear program (LP)

for the bin packing problem. This linear program has been used to design the best

approximation algorithm for the bin packing problem [178, 106]. In our work, we use

it as follows. We show that if the algorithm is not able to a color an edge (u, v),

then the edges incident at u or v cannot be packed in m bins as promised. To show

this, we formulate the configuration linear program for the two bin packing problems,

one induced by edges incident at u and the other induced by edges incident at v.

We then construct feasible dual solutions to these linear programs showing that the

optimal primal value, and therefore the optimal bin packing number, is more than

m for at least one of the programs, giving us the desired contradiction. While the

weights on the edges incident at u (or v) can be arbitrary reals between 0 and 1, we

group the items according to weight classes and how our algorithm colors these edges.

This allows us to reduce the number of item types, reducing the complexity of the

configuration LP and makes it easier to analyze. While the grouping according to

weight classes is natural in bin packing algorithms; the grouping based on the output

of our algorithm helps us relate the fact that the edge (u, v) could not be colored by

our algorithm to the bin packing bound at u and v. Our analysis can also be extended

to show d2.2me colors are sufficient when all edge weights are > 1/4. We also give

an alternate proof of König’s Theorem using the skew-supermodular theorem (See

Section 5.2), which might be of independent interest. Our techniques might be useful

in the analysis of other algorithms related to Clos networks.

These results are based on joint work with Mohit Singh.
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1.2 Organization of the Thesis

In Chapter 2 we discuss related definitions and techniques for approximation algo-

rithms and bin packing. In Chapter 3 we discuss geometric bin packing. In Chapter 4

we cover vector bin packing. In Chapter 5 we cover weighted bipartite edge coloring.

We conclude in Chapter 6 with a list of open problems.

9



Chapter II

PRELIMINARIES

In this chapter we introduce relevant notation and definitions required to define,

analyze and classify bin packing related problems. Additional definitions will be

introduced later on as required.

2.1 Combinatorial Optimization and Complexity

Combinatorial optimization problems are ubiquitous in theory and practice. In a

combinatorial optimization problem, the goal is to find a solution that maximizes or

minimizes a certain objective value amidst a discrete set of feasible solutions. Ed-

monds in his seminal paper [65], advocated that an algorithm is efficient if the number

of atomic operations the algorithm takes to return a solution is polynomial in the size

of the problem instance. In many cases, a brute force search might take exponential

or superpolynomial time in the problem size, and hence, is not considered efficient.

Depending on this time complexity, the problems are naturally classified into simple

and hard problems. Cook [45] formalized this classification defining the complexity

classes P (the set of languages that can be recognized by Turing machines in determin-

istic polynomial time) and NP (the set of languages that can be recognized by Turing

machines in nondeterministic polynomial time), and the notion of NP-completeness

(A decision problem Π is NP-complete or in NPC, if Π ∈ NP and every problem

in NP is reducible to Π in polynomial time). Karp’s seminal work [134] established

the pervasive nature of NP-completeness by showing a vast majority of problems in

combinatorial optimization are NP-complete. These NP-complete problems do not

admit a polynomial time algorithm unless P = NP. For a detailed introduction to

complexity classes, we refer the readers to the book by Arora and Barak [5].
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Notion of NP and NP-completeness is defined in terms of decision problems. In

this thesis we deal with NP optimization problems.

Definition 2.1.1. An NP optimization problem Π is a four-tuple (I,S, obj, optimize)

such that:

• I is the set of input instances of Π and is recognizable in polynomial time.

• For any instance I ∈ I, S(I) is the set of feasible solutions for I. Solutions for an

instance I are constrained to be polynomially bounded in |I|, the size of I; i.e.,

there exists a polynomial poly such that j ∈ S(I) implies that |j| ≤ poly(|I|).

Further, there should exist a polynomial time computable boolean function f

such that f(I, j) is true if and only if j ∈ S(I).

• For each instance I, the objective function obj assigns a positive value to each

solution j ∈ S(I) and this function is polynomial time computable.

• The parameter optimize ∈ {max,min} specifies whether the objective function

should be minimized or maximized.

An NP optimization problem P is NP-hard if there is a polynomial time algorithm

A for a problem Q ∈ NPC, given A has an oracle access to problem P. In general,

completeness and hardness are natural notions associated with complexity classes. A

problem is complete for a class if it is a member of the class and all other problems

in the class reduce to it under an appropriate notion of reducibility. A problem is

hard for a complexity class if all problems in the class reduce to it (it need not be a

member of the class). Now let us define some other closely related terms.
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Definition 2.1.2. Pseudo-polynomial time algorithm : An algorithm runs in

pseudo-polynomial time if its running time is polynomial in the numeric value of the

input (i.e., polynomial in the size of input if the numeric data are encoded in unary),

but is exponential in the length of the input if the numeric data are encoded in binary.

Definition 2.1.3. Weakly NP-complete : An NP-complete problem F called

weakly NP-complete or binary NP-complete if it has a pseudo-polynomial time al-

gorithm.

Definition 2.1.4. Strongly NP-complete : An NP-complete problem F is called

strongly NP-complete or unary NP-complete if it is proven that it cannot be solved by

a pseudo-polynomial time algorithm unless P = NP. These problems are NP-complete

even when their numeric data are encoded in unary.

The strong/weak kinds of NP-hardness are defined analogously.

Definition 2.1.5. Quasi-polynomial time algorithm : Quasi-polynomial time

algorithms are algorithms which run slower than polynomial time, yet not so slow

as to be exponential time. The worst case running time of a quasi-polynomial time

algorithm is 2O((logn)c) for some fixed c > 1.

The complexity class QP consists of all problems which have quasi-polynomial time

algorithms. It can be defined in terms of DTIME as follows. QP =
⋃
c∈N DTIME(2O(logn)c).

Exponential time hypothesis implies that NP-complete problems do not have quasi-

polynomial time algorithms.

We have already seen in the previous section that several variants of bin pack-

ing problem are indispensable in many practical applications. These problems are

strongly NP-hard [85] and do not even admit a pseudo-polynomial time algorithm

unless P = NP. Thus it is imperative to develop heuristics to cope with their in-

tractability. A large body of work has emerged to deal with intractability by exploit-

ing additional structures:
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• Parameterized Complexity: Here the goal is to design algorithms that are effi-

cient on inputs where the associated parameter is small (For details, see [62]).

• Efficient algorithms for problems over special classes of problem instances such

as problems restricted to bipartite, planar or bounded tree-width graphs (for

graph problems) or constant number of item types (for packing problems).

• Algorithms that are guaranteed to perform well with very high probability when

the input data is coming from a certain distribution.

However in many real-life scenarios, the inputs are generated from complex processes

that make discovering additional structure in them a formidable task. In this the-

sis we restrict ourselves to approximation algorithms that have provable worst-case

guarantees even when there is no or little additional information available about the

inputs. We will mention few other related practical heuristics in the relevant chapters.

2.2 Approximation Algorithms and Inapproximability

Approximation Algorithm is an attempt to systematically measure, analyze, compare

and improve the performance of heuristics for intractable problems. It gives theoreti-

cal insight on how to find fast solutions for practical problems, provides mathematical

rigor to study and analyze heuristics, and also gives a metric for the difficulty of dif-

ferent discrete optimization problems.

Definition 2.2.1. Approximation ratio : Given an algorithm A for a minimiza-

tion problem Π, the (multiplicative) approximation ratio is:

ρA = supI∈I

{
A(I)

Opt(I)

}
,

where A(I) is the value of the solution returned by algorithm A on instance I ∈ I

and Opt(I) is the value of the corresponding optimal solution.
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In other words, an algorithm A for a minimization problem Π is called a ρ-

approximation algorithm if A(I) ≤ ρ · Opt(I) holds for every instance I of Π. An

algorithm A for a maximization problem Π is called a ρ-approximation algorithm if

A(I) ≥ 1
ρ
·Opt(I) holds for every instance I of Π. This asymmetry ensures that ρ ≥ 1

for all approximation algorithms.

In some cases, quality of the heuristic is measured in terms of additive approx-

imation. In other words, an algorithm A for a minimization problem Π is called a

σ-additive approximation algorithm if A(I) ≤ Opt(I) + σ holds for every instance

I of Π. Additive approximation algorithms are relatively rare. Karmarkar-Karp’s

algorithm [133] for one-dimensional bin packing is one such example.

For detailed introduction to approximation algorithms, we refer the readers to the

books on approximation algorithms [201, 204].

Definition 2.2.2. Polynomial time approximation scheme (PTAS) : A problem

is said to admit a polynomial time approximation scheme (PTAS) if for every constant

ε > 0, there is a poly(n)-time algorithm with approximation ratio (1 + ε) where n is

the size of the input. Here running time can be as bad as O(nf(1/ε) for any function

f that depends only on ε.

If the running time of PTAS is O(f(1/ε) · nc) for some function f and a constant

c that is independent of ε, we call it to be an efficient polynomial time approximation

scheme (EPTAS).

On the other hand, if the running time of PTAS is polynomial in both n and 1/ε,

it is said to be a fully polynomial time approximation scheme (FPTAS).

Assuming P 6= NP, a PTAS is the best result we can obtain for a strongly NP-hard

problem. Already in the 1D case, a simple reduction from the Partition problem

shows that it is NP-hard to determine whether a set of items can be packed into two

bins or not, implying that no approximation better than 3/2 is possible. However, this
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does not rule out the possibility of an Opt + 1 guarantee where Opt is the number of

bins required in the optimal packing. Hence it is insightful to consider the asymptotic

approximation ratio.

Definition 2.2.3. Asymptotic approximation ratio (AAR) : The asymptotic

approximation ratio of an algorithm A is ρ if the output of the algorithm has value

at most ρ · Opt(I) + δ for some constant δ, for each instance I.

In this context the approximation ratio defined as in Definition 2.2.1, is also

called to be the (absolute) approximation ratio. If δ = 0, then A has (absolute)

approximation guarantee ρ.

Definition 2.2.4. Asymptotic PTAS (APTAS) : A problem is said to admit an

asymptotic polynomial time approximation scheme (APTAS) if for every ε > 0, there

is a poly-time algorithm with asymptotic approximation ratio of (1 + ε).

If the running time of APTAS is polynomial in both n and 1/ε, it is said to be an

asymptotic fully polynomial time approximation scheme (AFPTAS).

Note that NP optimization problems whose decision versions are all polynomial

time reducible to each other (due to NP-completeness), behave very differently in

their approximability. For example classical bin packing problem admits an APTAS,

whereas no polynomial factor approximation is known for the traveling salesman

problem. This anomaly is due to the fact that reductions between NP-complete prob-

lems preserve polynomial time computability, but not the quality of the approximate

solution.

PTAS is the class of problems that admit polynomial time approximation scheme.

On the other hand, APX is the class of problems that have a constant-factor approx-

imation. Clearly PTAS ⊆ APX. In fact the containment is strict unless P = NP.

Theorem 2.2.5. [48] If a problem F is APX-hard then it does not admit PTAS

unless P = NP.
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Online Algorithms: Bin packing is also one of the key problems in online algo-

rithms. Let us define the notion of a competitive ratio which will be useful when we

discuss some related results in online algorithms in later chapters.

Definition 2.2.6. Competitive Ratio : Competitive ratio of an online algorithm

A is the worst case ratio of the solution returned by A and the best offline algorithm.

Asymptotic competitive ratio is defined analogously.

There are few others metrics to measure the quality of a packing, such as random-

order ratio [137], accommodation function [25], relative worst-order ratio [24], differ-

ential approximation measure [56] etc.

2.3 Relaxation and Rounding

A plethora of approximation algorithms follow a two-step approach. It considers a

relaxation of the original problem, followed by a rounding of the solution of the relax-

ation. Especially, linear program (LP) and semidefinite program (SDP) relaxations

have been instrumental in the design of approximation algorithms and have led to

the development of several algorithmic techniques such as deterministic rounding,

randomized rounding, primal-dual methods, dual-fitting, iterative methods, entropy-

based rounding etc.

2.3.1 Relaxation

The space of feasible solutions of a combinatorial problem is discrete and hence, every

combinatorial problem can be reformulated as an optimization problem with integral

variables, i.e., an integer program (IP). Therefore, given an instance I of a combinato-

rial optimization problem Π, we can encode it as maximizing or minimizing a function

of a set of variables (say {z1, z2, · · · , zn}) that take certain integer values (say {0, 1} or

{+1,−1}) and are required to satisfy a set of constraints specific to the problem. As

a polynomial time reformulation, the resulting integer program is also NP-hard. By a
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suitable relaxation, intractable IP is converted to a convex optimization problem that

can be solved in polynomial time. Specifically, the relaxation allows the variables to

be assigned real numbers or even vectors, instead of just integer values. This is called

a relaxation as the relaxation permits more solutions than the original program does.

Thus if Opt(I) is the optimal value of the problem with instance I and Conv(I) is the

optimal value of the relaxation, then Conv(I) ≤ Opt(I). However it is not clear, how

good an estimate Conv(I) is. Integrality gap is a coarse measure of this quality.

Definition 2.3.1. Integrality Gap: The integrality gap is the worst case ratio

between Opt(I) and Conv(I) over all instances I.

The hard instances for a relaxation, where worst-case ratio is obtained, are called

integrality gap instances.

2.3.2 Relaxation techniques: LP and SDP

Linear Programs: A vast majority of approximation algorithms use a specific type

of convex relaxation - linear programming (LP). A linear program consists of op-

timizing a linear function over real-valued variables while satisfying certain linear

constraints among them. Simplex method and its variants [53] are extensively used

to solve linear programs in practice, whereas interior point methods [164] are provably

efficient. In this thesis we will use linear programs and their duals extensively.

First let us define primal and dual linear programs. Consider the following mini-

mization problem. We call this to be the primal problem.

minimize
n∑
j=1

cjxj

subject to :
n∑
j=1

aijxj ≥ bi, i ∈ [m]

xj ≥ 0, j ∈ [n].
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We get the corresponding dual problem by introducing variable yi for the i’th

inequality.

maximize
m∑
i=1

biyi

subject to :
m∑
i=1

aijyi ≤ cj, j ∈ [n]

yi ≥ 0, i ∈ [m].

Theorem 2.3.2. LP-Duality Theorem : The primal program has finite optimum

if and only if its dual has finite optimum. Moreover if x∗ := (x∗1, x
∗
2, · · · , x∗n) and

y∗ := (y∗1, y
∗
2, · · · , y∗m) are optimal solutions for the primal and dual programs respec-

tively, then

n∑
j=1

cjx
∗
j =

m∑
i=1

biy
∗
i .

Linear programs can be solved in polynomial time even if it has exponentially

many constraints provided a polynomial time separation oracle can be constructed,

i.e., a polynomial time algorithm that given a point in Rn (where n is the number of

variables in the relaxation) either confirms the point is a feasible solution satisfying

all constraints or produces a violated constraint. See [96, 95] for more details on the

algorithms to find a solution to an LP, given a separation oracle.

Semidefinite Programs: Now we briefly mention semidefinite program (SDP) re-

laxations where we allow the variables to be vectors with linear constraints on their

inner products. SDPs can be optimized within an error ε in time polynomial in ln 1
ε

and the size of the program. Seminal work of Goemans and Williamson [91] obtained

0.878 approximation for MAX-CUT whereas linear programs can not yield better

than factor 1/2 [31]. SDPs have been helpful in obtaining improved approxima-

tions for constraint satisfaction problems (CSP), vertex ordering, sparsest cut, graph

decomposition etc. We refer readers to [174] for more related references. Several in-

creasingly stronger relaxations such as Lovász-Schrijver, Lasserre and Sherali-Adams
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hierarchies [146] are also used to strengthen a convex relaxation. However it is not

clear if we can use SDPs or hierarchies to get better approximation for variants of bin

packing problems.

2.3.3 Rounding of solution of relaxation

For some relaxations, the optimal solution is always integral. Total Dual Integrality

and Total unimodularity [182] were developed as general techniques to show the

integrality of linear programming formulations. However in general, the optimal

solution to the relaxation might not be integral. Thus rounding scheme is devised to

round the real (for LP) or vector (for SDP) valued solution to an integral solution

incurring little loss in the objective value, say at most losing an α-factor in the value.

As Conv(I) ≤ Opt(I), the value of the rounded solution is at most α-times the value

of the optimal solution.

2.4 One Dimensional Bin Packing

Before going to multidimensional bin packing, we give a brief description of the results

in 1-D bin packing. We also focus primarily on very recent results. For a detailed

survey and earlier results we refer the interested reader to [42].

2.4.1 Offline 1-D Bin Packing

The earliest algorithms for one dimensional (1-D) bin packing were simple greedy al-

gorithms such as First Fit (FF), Next Fit (NF), First Fit Decreasing Heights (FFDH),

Next Fit Decreasing Heights (NFDH) etc. In their celebrated work, de la Vega

and Lueker [55] gave the first APTAS by introducing linear grouping that reduces

the number of different item types. Algorithms based on other item grouping or

rounding based techniques have been used in many related problems. The result

was substantially improved by Karmarkar and Karp [133] who gave a guarantee of
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Table 1: Approximation algorithms for one dimensional bin packing

Algorithm Performance Guarantee Techniques
Next Fit [128] 2 · Opt Greedy, Online,
Next Fit Decreasing [128] T∞ · Opt +O(1) [8] Presorting
First Fit [128] b1.7Optc [61] Greedy, Online
First Fit Decreasing[128] 11

9
Opt + 6

9
[60] Presorting

de la Vega and Lueker [55] (1 + ε)Opt +O( 1
ε2

) Linear grouping
Karp and Karmarkar [133] Opt +O(log2 Opt) Iterative rounding
Rothvoß [178] Opt +O(logOpt · log logOpt) Discrepancy methods
Hoberg and Rothvoß [106] Opt +O(logOpt) Discrepancy methods

Opt+O(log2 Opt) by providing an iterative rounding for a linear programming formu-

lation. It was then improved by Rothvoß [178] to Opt+O(logOpt · log logOpt) using

ideas from discrepancy theory. Very recently, Hoberg and Rothvoß [106] achieved

approximation ratio of Opt + O(logOpt) using discrepancy method coupled with a

novel 2-stage packing approach. On the other hand, the possibility of an algorithm

with an Opt + 1 guarantee is still open. This is one of the top ten open problems in

the field of approximation algorithms mentioned in [204].

Table 1 summarizes different algorithms and their performance guarantees. Here

T∞ ≈ 1.69 is the well-known harmonic constant that appears ubiquitously in the

context of bin packing.

The Gilmore-Gomory LP relaxation [88] is used in [55, 133, 178] to obtain better

approximation. This LP is of the following form:

min
{
1Tx|Ax = 1, x ≥ 0

}
(1)

Here A is the pattern matrix that consists of all column vectors {p ∈ Nn|pT s ≤ 1}

where s := (s1, s2, . . . , sn) is the size vector for the items. Each such column p is

called a pattern and corresponds to a feasible multiset of items that can be assigned

to a single bin. Now if we only consider patterns p ∈ {0, 1}n, LP (1) can be inter-

preted as an LP relaxation of a set cover problem, in which a set I of items has to be
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covered by configurations from the collection C ⊆ 2I , where each configuration C ∈ C

corresponds to a set of items that can be packed into a bin:

min

{∑
C∈C

xC :
∑
C3i

xC ≥ 1 (i ∈ I), xC ∈ {0, 1} (C ∈ C)

}
. (2)

This configuration LP is also used in other algorithms for multidimensional bin pack-

ing and we will discuss more on configuration LPs in later sections.

Let Opt and Optf be the value of the optimal integer solution and fractional solu-

tion for LP (1) respectively. Although LP (1) has an exponential number of variables,

one can compute a basic solution x with 1Tx ≤ Optf + δ in time polynomial in n

and 1/δ using the Grötschel -Lovász-Schrijver variant of the Ellipsoid method [96]

or the Plotkin-Shmoys-Tardos framework [172, 6]. In fact the analysis of [106], only

shows an upper bound of O(logOpt) on the additive integrality gap of LP (1). It has

been conjectured in [181] that the LP has the Modified Integer Roundup Property,

i.e., Opt ≤ dOptfe + 1. The conjecture has been proved true for the case when the

instance contains at most 7 different item sizes [184]. Recently, Eisenbrand et al.

[67] found a connection between coloring permutations and bin packing, that shows

that Beck’s Three Permutation Conjecture (any three permutations can be bi-colored

with O(1) discrepancy) would imply a O(1) integrality gap for instances with all

items sizes bigger than 1/4. However, Newman, Neiman and Nikolov [165] found

a counterexample to Beck’s conjecture. Using these insights Eisenbrand et al. [67]

showed that a broad class of algorithms can not give an o(log n) gap. Rothvoß [177]

further explored this connection with discrepancy theory and gave a rounding using

Beck’s entropy method achieving O(log2 Opt) gap alternatively. The later improve-

ment to O(logOpt) in [178, 106] arose from the constructive partial coloring lemma

[154] and gluing techniques. Recently Goemans and Rothvoß [90] also have shown

polynomiality for bin packing when there are O(1) number of item types.

Bin packing problem is also well-studied when the number of bins is some fixed
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constant k. If the sizes of the items are polynomially bounded integers, then the

problem can be solved exactly using dynamic programming in nO(k) time, for an input

of length n. Along with APTAS for bin packing, this implies a pseudo-polynomial

time PTAS for bin packing, significantly better than 3/2, the hardness of (absolute)

approximation for the problem. However, Jansen et al. [115] showed unary bin packing

(where item sizes are given in unary encoding) is W[1]-hard and thus the running time

for fixed number of bins k, can not be improved to f(k) · nO(1) for any function of k,

under the standard complexity assumptions.

2.4.2 Online 1-D Bin Packing

An online bin packing algorithm uses k-bounded space if, for each item, the choice

of where to pack it, is restricted to a set of at most k open bins. Lee and Lee [147]

gave a O(1)-bounded space algorithm that achieve asymptotic competitive ratio of

T∞ ≈ 1.69. They also showed it to be tight. Seiden [185] gave a new algorithm,

HARMONIC++, whose asymptotic performance ratio is at most 1.58889, the cur-

rent best among online algorithms that are not bounded space. Ramanan et al. [176]

showed that Harmonic-type algorithms can not achieve better than 1.58333 asymp-

totic competitive ratio. In general the best known lower bound for asymptotic com-

petitive ratio is 1.54014 [200]. Very recently, Balogh et al. [11] presented an online

bin packing algorithm with an absolute competitive ratio of 5/3 which is optimal.

Online bin packing has also been studied under probabilistic setting. Shor [190]

gave tight-bounds for average-case online bin packing. Other related algorithms for

online stochastic bin packing are Sum of Squares algorithm by Csirik et al. [49] and

primal-dual based algorithms in [98].
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2.5 Multidimensional Bin Packing

In this section we discuss the preliminaries related to multidimensional bin packing.

We will consider the offline version, when all items are known a priori. We also briefly

survey results in the online version, when the items appear one at a time and we need

to decide packing an item without knowing the future items.

2.5.1 Geometric Packing

Definition 2.5.1. Two-Dimensional Geometric Bin Packing (2-D GBP) :

In two-dimensional geometric bin packing (2-D GBP), we are given a collection of

n rectangular items I := {r1, r2, . . . , rn} where each rectangle rk is specified by its

width and height (wk, hk) such that wk, hk are rational numbers in [0, 1]. The goal is

to pack all rectangles into a minimum number of unit square bins.

We consider the widely studied orthogonal packing case, where the items must

be placed in the bin such that their sides are parallel to the sides of the bin. In

any feasible solution, items are not allowed to overlap. Here two variants are usually

studied, (i) where the items cannot be rotated, and (ii) they can be rotated by 90

degrees.

We will also mention some results related to strip packing and geometric knapsack

problems, two other geometric generalizations of bin packing, in Section 3.

Definition 2.5.2. Strip Packing (2-D SP) : In two-dimensional strip packing

(2-D SP), we are given a strip of unit width and infinite height, and a collection of

n rectangular items I := {r1, r2, . . . , rn} where each rectangle rk is specified by its

width and height (wk, hk) such that wk, hk are rational numbers in [0, 1]. The goal is

to pack all rectangles into the strip minimizing the height.

This is a variant of cutting stock problem, well studied in optimization.

23



Definition 2.5.3. Geometric Knapsack (2-D GK) : In two-dimensional geo-

metric knapsack (2-D GK), we are given a unit square bin and a collection of two

dimensional rectangles I := {r1, r2, . . . , rn} where each rectangle rk is specified by its

width and height (wk, hk) and profit pk such that wk, hk, pk are rational numbers in

[0, 1]. The goal is to find the maximum profit subset that can be feasibly packed into

the bin.

Multidimensional variants of above three geometric problems are defined analo-

gously using d-dimensional rectangular parallelepipeds (also known as d-orthotope,

the generalization of rectangles in higher dimensions) and d-dimensional cuboids (also

known as d-cube, the generalization of squares in higher dimensions ). We will discuss

some more on 3-dimensional variants in Section 3.

2.5.2 Vector Packing

Now we define vector bin packing, the nongeometric generalization of bin packing.

Definition 2.5.4. Vector Bin Packing (d-D VBP) : In d-dimensional vector

packing (d-D VBP), we are given a set of n rational vectors I := {v1, v2, . . . , vn}

from [0, 1]d. The goal is to partition them into sets (bins) B1, B2, . . . , Bm such that

||σBj ||∞ ≤ 1 for 1 ≤ j ≤ m where σBj =
∑

vi∈Bj vi is the sum of vectors in Bj, and

we want to minimize m, the number of bins.

In other words, the goal is to pack all the vectors into minimum number of bins so

that for every bin the sum of packed vectors in the bin should not exceed the vector

of the bin in each dimension.

We now define related vector scheduling and vector bin covering problems.

Definition 2.5.5. Vector Scheduling (d-D VS) : In d-dimensional vector schedul-

ing (d-D VS), we are given a set of n rational vectors I := {v1, v2, . . . , vn} from [0, 1]d

and an integer m. The goal is to partition I into m sets B1, B2, . . . , Bm such that

max1≤i≤m||σBi ||∞ is minimized, where σBi =
∑

vi∈Bi vi is the sum of vectors in Bi.
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For d = 1, this just reduces the classical multiprocessor scheduling.

Definition 2.5.6. Vector Bin Covering (d-D VBC) : In d-dimensional vector

bin covering (d-D VBC), we are given a set of n rational vectors I := {v1, v2, . . . , vn}

from [0, 1]d. The goal is to partition them into sets (bins) B1, B2, . . . , Bm such that

σBj ≥ 1 in all dimensions for all j ∈ [m], where σBj =
∑

vi∈Bj vi is the sum of vectors

in B1, and we want to maximize m, the number of bins.

For d = 1, classical bin covering problem admits APTAS [119].

2.5.3 Weighted Bipartite Edge Coloring

Now we discuss the weighted bipartite edge coloring problem.

Definition 2.5.7. Weighted Bipartite Edge Coloring (WBEC) : In weighted

bipartite edge coloring problem, we are given an edge-weighted bipartite graph G =

(V,E) with weights w : E → [0, 1]. The task is to find a proper weighted coloring of

the edges with as few colors as possible.

Here proper weighted coloring is defined as follows.

Definition 2.5.8. Proper Weighted Coloring : An edge coloring of the weighted

graph is called a proper weighted coloring if the sum of the weights of the edges

incident to a vertex of any color is at most one.

Thus when all edge weights are one, the problem reduces to classical edge coloring

problem. Whereas, if there are only two vertices, the problem reduces to classical bin

packing problem. On the other hand if the graph has n vertices, it becomes a special

case of O(n)-dimensional vector packing.
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2.5.4 Relation between the problems

Figure 1: Two rectangles of size 1
2
× 3

4
and

1
2
× 3

4
can be packed into one bin

Figure 2: Two vectors (1
2
, 3

4
) and (1

4
, 3

4
)

can not be packed into one vector bin as
their sum exceeds one in the second di-
mension

Figure 1 and 2 show the difference between geometric packing and vector packing.

Given a set of vectors, one can easily determine whether they can be packed into one

unit bin by just checking whether the sum along each coordinate is at most one or

not. However for geometric bin packing, it is NP-hard to determine whether a set of

rectangles can be packed into one unit square bin or not, implying that no (absolute)

approximation better than 2 is possible even for 2-D GBP.

Note that both geometric knapsack and strip packing are closely related to ge-

ometric bin packing. Results and techniques related to strip packing and knapsack

have played a major role in improving the approximation for geometric bin packing.

If all items have same height then d-dimensional strip packing reduces to (d − 1)-

dimensional geometric bin packing. On the other hand to decide whether a set of

rectangles (wi, hi) for i ∈ [n] can be packed into m bins, one can define a 3-D geomet-

ric knapsack instance with n items (wi, hi, 1/m) and profit (wi ·hi ·1/m) and decide if

there is a feasible packing with profit
∑

i∈n(wi ·hi · 1/m). Figure 3 shows the relation

between different generalizations of bin packing.
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Figure 3: Generalizations of bin packing problems

2.6 Techniques:

Now we describe some techniques, heavily encountered in multidimensional packing.

2.6.1 Next Fit Decreasing Height (NFDH)

Next Fit Decreasing Height (NFDH) procedure was introduced by Coffman et al. [129].

NFDH considers items in a non-increasing order of height and greedily assigns items

in this order into shelves, where a shelf is a row of items having their bases on a line

that is either the base of the bin or the line drawn at the top of the highest item

packed in the shelf below. More specifically, items are packed left-justified starting

from bottom-left corner of the bin, until the next item can not be included. Then the

shelf is closed and the next item is used to define a new shelf whose base touches the

tallest (left most) item of the previous shelf. If the shelf does not fit into the bin, the

bin is closed and a new bin is opened. The procedure continues till all the items are

packed. This simple heuristic works quite good for small items. Some key properties

of NFDH are following:

Lemma 2.6.1. [158] Let B be a rectangular region with width w and height h. We

can pack small rectangles (with both width and height less than ε) with total area A

using NFDH into B if w ≥ ε and w · h ≥ 2A+ w2/8.
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Lemma 2.6.2. [28] Given a set of items of total area of V (each having height at

most one), they can be packed in at most 4V + 3 bins by NFDH.

Lemma 2.6.3. [129] Let B be a rectangular region with width w and height h. If

we pack small rectangles (with both width and height less than ε) using NFDH into

B, total w · h− (w + h) · ε area can be packed, i.e., the total wasted volume in B is

at most (w + h) · ε.

In fact it can be generalized to d-dimensions.

Lemma 2.6.4. [14] Let C be a set of d-dimensional cubes (where d ≥ 2) of sides

smaller than ε. Consider NFDH heuristic applied to C. If NFDH cannot place any

other cube in a rectangle R of size r1 × r2 × · · · rd (with ri ≤ 1), the total wasted

(unfilled) volume in that bin is at most: ε
∑d

i=1 ri.

2.6.2 Configuration LP

The best known approximations for most bin packing type problems are based on

strong LP formulations called configuration LPs. Here, there is a variable for each

possible way of feasibly packing a bin (called a configuration). This allows the packing

problem to be cast as a set covering problem, where each item in the instance I must

be covered by some configuration. Let C denote the set of all valid configurations for

the instance I. The configuration LP is defined as:

min

{∑
C∈C

xC :
∑
C3i

xC ≥ 1 ∀i ∈ I, xC ≥ 0 ∀C ∈ C

}
. (3)

As the size of C can possibly be exponential in the size of I, one typically considers

the dual of the LP given by:

max

{∑
i∈I

vi :
∑
i∈C

vi ≤ 1 ∀C ∈ C, vi ≥ 0 ∀i ∈ I

}
. (4)
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The separation problem for the dual is the following knapsack problem. Given set

of weights vi, is there a feasible configuration with total weight of items more than 1.

From the well-known connection between separation and optimization [94, 172, 96],

solving the dual separation problem to within a (1 + ε) accuracy suffices to solve

the configuration LP within (1 + ε) accuracy. We refer the readers to [177] for an

explicit proof that, for any set family S ⊆ 2[n], if the dual separation problem can be

approximated to (1+ε)-factor in time T (n, ε) then the corresponding column-based LP

can be solved within an arbitrarily small additive error δ in time poly(n, 1
δ
)·T (n,Ω( δ

n
)).

This error term can not be avoided as otherwise we can decide the PARTITION

problem in polynomial time. For 1-D BP, dual separation problem admits FPTAS, i.e.,

can be solved in time T (n, ε) = poly(n, 1
ε
). Thus the configuration LP can be solved

within arbitrarily small additive constant error δ in time poly(n, 1
δ
) · poly(n,O(n

δ
)).

For multidimensional bin packing, dual separation problem admits PTAS, i.e., can be

solved in time T (n, ε) = O(nf( 1
ε
)). Thus the configuration LP can be solved within

(1 + δ) multiplicative factor in time poly(n, 1
δ
) · T (n,Ω( δn

n
)), i.e., in time O(nO(f( 1

δ
))).

Note that the configurations in (3) are defined based on the original item sizes

(without any rounding). However, for more complex problems (say 3-D GBP) one

cannot hope to solve such an LP to within 1 + ε accuracy, as the dual separation

problem becomes at least as hard as 2-D GBP. In general, given a problem instance

I, one can define a configuration LP in multiple ways (say where the configurations are

based on rounded sizes of items in I, which might be necessary if the LP with original

sizes is intractable). For the special case of 2-D GBP, the separation problem for the

dual (4) is the 2-D geometric knapsack problem for which the best known result is

only a 2-approximation. However, Bansal et al. [12] showed that the configuration LP

(3) with original sizes can still be solved to within 1 + ε accuracy (this is a non-trivial

result and requires various ideas).

29



Similarly for the case of vector bin packing, the separation problem for the dual

(4) is the vector knapsack problem which could be solved to within 1 + ε accuracy

[80]. However, there is no EPTAS even for 2-D vector knapsack [145].

The fact that solving the configuration LP does not incur any loss for 2-D GBP

or VBP plays a key role in the present best approximation algorithms.

2.6.3 Round and Approx (R&A) Framework

Now we describe the R&A Framework as described in [13]. It is the key frame-

work used to obtain present best approximation algorithms for the 2-D geometric bin

packing and vector bin packing.

1. Solve the LP relaxation of (3) using the APTAS([12] for 2-D GBP, [80] for VBP).

Let x∗ be the (near)-optimal solution of the LP relaxation and let z∗ =
∑

C∈C x
∗
C .

Let r the number of configurations in the support of x∗.

2. Initialize a |C|-dimensional binary vector xr to be a all-0 vector. For d(ln ρ)z∗e

iterations repeat the following: select a configuration C ′ ∈ C at random with

probability x∗C′/z
∗ and let xrC′ := 1.

3. Let S be the remaining set of items not covered by xr, i.e., i ∈ S if and only if∑
C3i x

r
C = 0. On set S, apply the ρ-approximation algorithm A that rounds

the items to O(1) types and then pack. Let xa be the solution returned by A

for the residual instance S.

4. Return x = xr + xa.

Let Opt(S) and A(S) denote the value of the optimal solution and the approxima-

tion algorithm used to solve the residual instance, respectively. Since the algorithm

uses randomized rounding in step 2, the residual instance S is not known in advance.

However, the algorithm should perform “well” independent of S. For this purpose,

Bansal, Caprara and Sviridenko [13] defined the notion of subset-obliviousness where
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quality of approximation algorithm to solve the residual instance is expressed using

a small collection of vectors in R|I|.

Definition 2.6.5. An asymptotic ρ-approximation for the set covering problem de-

fined in (1), is called subset-oblivious if, for any fixed ε > 0, there exist constants

k,Λ, β (possibly dependent on ε), such that for every instance I of (1), there exist

vectors v1, v2, · · · , vk ∈ R|I| that satisfy the following properties:

1.
∑

i∈C v
j
i ≤ Λ, for each configuration C ∈ C and j = 1, 2, · · · , k;

2. Opt(I) ≥
∑

i∈I v
j
i for j = 1, 2, · · · , k ;

3. A(S) ≤ ρ
∑

i∈S v
j
i + εOpt(I) + β, for each S ⊆ I and j = 1, 2, · · · , k.

Roughly speaking, the vectors are analogues to the sizes of items and are intro-

duced to use the properties of dual of (1). Property 1 says that the vectors divided

by constant Λ must be feasible for (2). Property 2 provides lower bound for OPT (I)

and Property 3 guarantees that the A(S) is not significantly larger than ρ times the

lower bound in Property 2 associated with S.

The main result about the R&A is the following.

Theorem 2.6.6. (simplified) If a problem has a ρ-asymptotic approximation algo-

rithm that is subset oblivious, and the configuration LP with original item sizes can

be solved to within (1 + ε) accuracy in polynomial time for any ε > 0, then the R&A

framework gives a (1 + ln ρ)-asymptotic approximation.

One can derandomize the above procedure and get a deterministic version of R&A

method in which Step 2 is replaced by a greedy procedure that defines xr guided by

a suitable potential function. See [13] for the details of derandomization.
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2.6.4 Algorithms based on rounding items to constant number of types:

Rounding of items to O(1) types has been used either implicitly [18] or explicitly

[55, 133, 27, 116, 132], in almost all bin packing algorithms to reduce the problem

complexity and make it tractable. One of the key properties of rounding items is as

follows:

Lemma 2.6.7. [133] Let I be a given set of items and sx be the size of item x ∈ I.

Define a partial order on bin packing instances as follows: I ≤ J if there exists a

bijective function f : I → J such that sx ≤ sf(x) for each item s ∈ I. J is then called

a rounded up instance of I and I ≤ J implies Opt(I) ≤ Opt(J).

There are typically two types of rounding: either the size of an item in some

coordinate (such as width or height) is rounded in an instance-oblivious way (e.g. in

harmonic rounding [147, 27], or rounding sizes to geometric powers[133]), or it is

rounded in an input sensitive way (e.g. in linear grouping [55]).

Linear grouping: Linear grouping was introduced by Fernandez de la Vega and

Lueker [55] in the first approximation scheme for 1-D bin packing problem. It is a

technique to reduce the number of distinct item sizes. The scheme works as follows,

and is based on a parameter k, to be fixed later. Sort the n items by nonincreasing

size and partition them into d1/ke groups such that the first group consists of the

largest dnke pieces, next group consists of the next dnke largest items and so on, until

all items have been placed in a group. Apart from the last group all other groups

contain dnke items and the last group contains ≤ nk items. The rounded instance Ĩ

is created by discarding the first group, and for each other group, the size of an item

is rounded up to the size of the largest item in that group. Following lemma shows

that the optimal packing of these rounded items is very close to the optimal packing

of the original items.
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Lemma 2.6.8. [55] Let Ĩ be the set of items obtained from an input I by applying

linear grouping with group size dnke, then

Opt(Ĩ) ≤ Opt(I) ≤ Opt(Ĩ) + dnke

and furthermore, any packing of Ĩ can be used to generate a packing of I with at

most dnke additional bins.

If all items are > ε, then nε < Opt. So, for k = ε2 we get that any packing of Ĩ can

be used to generate a packing of I with at most dnε2e ≤ nε2 +1 < ε·Opt+1 additional

bins. In Chapter 4, we will use a slightly modified version of linear grouping that

does not loose the additive constant of 1.

Geometric grouping: Karmarkar and Karp [133] introduced a refinement of linear

grouping called geometric grouping with parameter k. Let α(I) be the smallest item

size of an instance I. For r = 0, 1, . . . , blog2
1

α(I)
c, let Ir be the instance consisting of

items i ∈ I such that si ∈ (2−(r+1), 2−r]. Let Jr be the instances obtained by applying

linear grouping with parameter k · 2r to Ir. If J = ∪rJr then:

Lemma 2.6.9. [133] Opt(J) ≤ Opt(I) ≤ Opt(J) + kdlog2
1

α(I)
e.

Harmonic rounding: Lee and Lee [147] introduced harmonic algorithm (harmonick)

for online 1-D bin packing, where each item j with sj ∈ ( 1
q+1

, 1
q
] for q ∈ {1, 2, · · · , (k−

1)}, is rounded to 1/q. Then q items of type 1/q can be packed together in a bin. So

for each type q, only items of the same type are packed into the same bin and new bins

are opened when the current bin is full. Let t1 = 1, tq+1 := tq(tq + 1) for q ≥ 1. Let

m(k) be the integer with tm(k) < k < tm(k)+1. It is shown in [147] that the asymptotic

approximation ratio of harmonick is Tk =
∑m(k)

q=1
1
tq

+ 1
tm(k)+1

· k
k−1

. When k → ∞,

T∞ = 1.691.., this is the harmonic constant, ubiquitous in bin packing. Caprara [27]
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introduced harmonic decreasing height algorithm for 2-D GBP with asymptotic ap-

proximation ratio of T∞, where widths are rounded according to harmonic rounding

and then same width items are packed using NFDH. We refer the readers to [71] for

more related applications of the Harmonic algorithm in online and bounded space

algorithms.
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Chapter III

GEOMETRIC BIN PACKING

In this chapter we discuss our results related to geometric bin packing (GBP) and

its variants. First let us briefly mention our results and techniques and then we give

a detailed survey of previous work and technical details of our results in the later

chapters. Our main result is an improved algorithm for the 2-D bin packing problem

stated as follows:

Theorem 3.0.10. For any ε > 0, there is a polynomial time algorithm with an

asymptotic approximation ratio of ln(1.5) + 1 + ε ≈ 1.405 + ε for 2-D geometric bin

packing. This holds both for the versions with and without rotations.

The main idea behind Theorem 3.0.10 is to show that the Round and Approx

(R&A) framework introduced by Bansal, Caprara and Sviridenko [13] (See section

2.6.3) can be applied to a 1.5-approximation algorithm of Jansen and Prädel [116].

Roughly speaking, this framework states that given a packing problem, if (i) the

configuration LP for the problem (with the original item sizes) can be solved up to

error 1 + ε for any ε > 0, and (ii) there is a ρ-approximation for the problem that is

subset-oblivious; then one can obtain a (1 + ln ρ)-asymptotic approximation for the

problem.

In [13], it was shown that the APTAS for 1-D BP due to [55] and the 2-D BP

algorithm of [27] are subset-oblivious. However, the notion of subset-obliviousness as

defined in [13] is based on various properties of dual-weighting functions, making it

somewhat tedious to apply and also limited in scope (e.g. it is unclear to us how to

apply this method directly to the algorithm of [116]).

In this chapter we give a more general argument to apply the R&A framework
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directly to a wide class of algorithms1, and without any reference to dual-weighting

functions. In particular, we show that any algorithm based on rounding the (large)

items into O(1) types, is subset-oblivious.

The main observation is that any ρ-approximation based on rounding the item

sizes can be related to another configuration LP (on rounded item sizes) whose solu-

tion is no worse than ρ times the optimum solution. As the item sizes are rounded,

there are only O(1) constraints in this LP and it can easily be shown to be subset-

oblivious.

For the particular case of 2-D BP, we present the algorithm of Jansen and Prädel

that directly fits in the above framework. As most algorithms for bin-packing prob-

lems are based on rounding into O(1) types, this also makes the framework widely

applicable. For example, this gives much simpler proofs of all the results in [13].

Finally, we give some results to show the limitations of rounding based algorithms

in obtaining better approximation ratios. Rounding of items to O(1) types has been

used implicitly [18] or explicitly [55, 133, 27, 116, 132], in almost all bin packing

algorithms. There are typically two types of rounding: either the size of an item in

some coordinate (such as width or height) is rounded up in an instance-oblivious way

(e.g. in Harmonic rounding [147, 27], or rounding sizes to geometric powers [133]), or

it is rounded up in an input sensitive way (e.g. in linear grouping [55]). We also show

limitations of rounding based algorithms as follows.

Theorem 3.0.11. Any rounding algorithm that rounds at least one side of each

large item to some number in a constant-size collection of numbers, independent

of the problem instance (let us call such rounding input-agnostic), cannot have an

approximation ratio better than 3/2.

1This includes all known algorithms that we know of for bin-packing type problems, except the
ones based on the R&A method.
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Organization of the chapter : In Section 3.1, we survey previous works in

geometric bin packing and its variants. In Section 3.2, we describe how the Round

and Approx framework can be applied to rounding based algorithms. In Section 3.3,

we present the 1.5 approximation algorithm of [116] and show how the Round and

Approx framework applies to it. Then in Section 3.4, we show our lower bounds for

rounding based algorithms. Finally, in Section 3.5 we make some final remarks.

3.1 Prior Works

In this section we give an extensive survey of the literature related to geometric

packing and other related problems.

3.1.1 Geometric Bin Packing

Two-dimensional geometric bin packing (GBP) is substantially different from the 1-D

case. Bansal et al. [14] showed that 2-D bin packing in general does not admit an

APTAS unless P = NP.

On the positive side, there has also been a long sequence of works giving improved

approximation algorithms. We refer readers to [152] for a review of several greedy

heuristics such as Next Fit Decreasing, First Fit Decreasing, Best Fit Decreasing,

Finite Best Strip, Floor-Ceiling algorithm, Finite First Fit, Knapsack Packing algo-

rithm, Finite Bottom-Left, Alternate Directions etc. For the case when we do not

allow rotation, until the mid 90’s the best known bound was a 2.125 approximation

[37], which was improved by Kenyon and Rémila [138] to a 2 + ε approximation (this

comes as a corollary of their APTAS for 2-D strip packing) for any ε > 0. Caprara

in his break-through paper [27] gave an algorithm for 2-D bin packing attaining an

asymptotic approximation ratio of T∞(≈ 1.69103).

For the case when rotations are allowed, Miyazawa and Wakabayashi [161] gave

an algorithm with an asymptotic performance guarantee of 2.64. Epstein and Stee

[73] improved it to 2.25 by giving a packing where, in almost all bins, an area of 4/9
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is occupied. Finally an asymptotic approximation guarantee arbitrarily close to 2

followed from the result of [124].

This was later improved by Bansal et al. [13] to (ln(T∞) + 1) ≈ 1.52, for both

the cases with and without rotation, introducing a novel randomized rounding based

framework: Round and Approx (R & A) framework. Jansen and Prädel [116] im-

proved this guarantee further to give a 1.5-approximation algorithm. Their algorithm

is based on exploiting several non-trivial structural properties of how items can be

packed in a bin. This is the best algorithm known so far, and holds both for the case

with and without rotations.

We remark that there is still a huge gap between these upper bounds and known

lower bounds. In particular, the best known explicit lower bound on the asymptotic

approximation for 2-D BP is currently 1 + 1/3792 and 1 + 1/2196, for the versions

with and without rotations, respectively [36]. The best asymptotic worst-case ratio

that is achievable in polynomial time for d-dimensional GBP for d > 2 is T d−1
∞ [27],

and in fact it can be achieved by an online algorithm using bounded space. There

are no known explicit better lower bounds for higher dimensions.

In non-asymptotic setting, without rotations there are a 3-approximation algo-

rithms by Zhang [207] and also by Harren and van Stee [105]. Harren and van Stee

[103] gave a non-asymptotic 2-approximation with rotations. Independently this ap-

proximation guarantee is also achieved for the version without rotations by Harren

and van Stee [104] and Jansen et al. [118]. These 2-approximation results match the

non-asymptotic lower bound for this problem, unless P = NP.

3.1.2 Square Packing

Leung et al. [148] have shown that even the special case of packing squares into square

is still NP-hard. Kohayakawa et al. [142] gave a (2 − (2/3)d + ε) approximation for

packing d-dimensional cubes into unit cubes. Later Bansal et al. [14] have given an
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APTAS for the problem of packing d-dimensional cubes into d-dimensional unit cubes.

3.1.3 Online Packing:

Coppersmith and Raghavan [46] first studied online 2-D GBP and gave algorithms

with asymptotic performance ratio of 3.25 and 6.35 for d = 2 and 3 respectively. Csirik

and van Vliet [50] gave an algorithm with performance ratio T d∞ (This gives 2.859 for

2-D) for arbitrary dimension d. Epstein and van Stee [73] achieved the same ratio of

T d∞ only using bounded space and showed it to be the optimal among all bounded

space algorithms. In 2002, Seiden and van Stee [186] proposed an elegant algorithm

called H ⊗ C, comprised of the Harmonic algorithm H and the Improved Harmonic

algorithm C, for the 2-D online bin packing problem and proved that the algorithm

has an asymptotic competitive ratio of at most 2.66013. Since the best known online

algorithm for one-dimensional bin packing is the Super Harmonic algorithm [185],

a natural question was whether a better upper bound could be achieved by using

the Super Harmonic algorithm instead of the Improved Harmonic algorithm? Han et

al. [100] gave a positive answer for this question and a new upper bound of 2.5545 is

obtained for the two-dimensional online bin packing. The main idea is to develop new

weighting functions for the Super Harmonic algorithm and propose new techniques

to bound the total weight in a rectangular bin. The best known lower bound is 1.907

by Blitz, van Vliet and Woeginger [21]. We refer the readers to [199] for a survey of

online algorithms for geometric bin packing in multiple dimensions.

When we allow rotation, Epstein [70] gave an algorithm with asymptotic per-

formance ratio of 2.45. Later Epstein and van Stee [74] gave an algorithm with

asymptotic performance ratio of 2.25.

For the special case where items are squares, there are also a large number of

results. Coppersmith and Raghavan [46] showed their algorithm gives asymptotic

performance ratio of 2.6875 in this case. They also gave a lower bound of 4/3. Seiden
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and van Stee [186] gave an algorithm with asymptotic performance ratio of 2.24437.

Epstein and van Stee [72] have shown an upper bound of 2.2697 and a lower bound of

1.6406 for online square packing, and an upper bound of 2.9421 and a lower bound of

1.6680 for online cube packing. The upper bound for squares can be further reduced

to 2.24437 using a computer-aided proof. Later Han et al. [101] get an upper bound

of 2.1187 for square packing and 2.6161 for cube packing. For bounded space online

algorithms, Epstein and van Stee [75] showed lower and upper bounds for optimal

online bounded space hypercube packing till dimensions 7. In particular, for 2-D it

lies in (2.3634, 2.3692) and for 3-D it lies in (2.956, 3.0672).

Table 2: Present state of the art for geometric bin packing

Problem Dim. Subcase Best algorithm Best lower bound

Geometric

Bin

Packing

2

OFF-REC-WR
asymp2: 1.5 [116] 1 + 1/3792 [36]

abs3: 2 [103] 2 (folklore)

OFF-REC-NR
asymp: 1.5 [116] 1 + 1/2196 [36]

abs: 2 [104] 2 (folklore)

d

OFF-REC-NR asymp: T d−1
∞ for d > 2 [27] 1 + 1/2196 [36]

OFF-CUB
asymp: PTAS[14] NP-hard

abs: 2 [14] 2 [78]

2

ON-REC-NR asymp: 2.5545 [100] 1.907 [21]

ON-REC-WR asymp: 2.25 [74] 1.6406 [72]

ON-CUB asymp: 2.1187[101] 1.6406 [72]

3
ON-REC-NR asymp: 4.3198 [100] 1.907 [21]

ON-CUB asymp: 2.6161[101] 1.6680 [72]

2Here asymp. means asymptotic approximation guarantee
3Here abs. means absolute approximation guarantee
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Table 2 summarizes present best approximation/inapproximability results for ge-

ometric bin packing. Here OFF denotes offline, ON denotes online, REC denotes

rectangles, CUB denotes cubes, WR denotes with rotation and NR denotes without

rotation.

3.1.4 Heuristics

Lodi et al. have reviewed several exact algorithms based on enumerative approach

or branch-and-bound in [152]. They have also studied several integer programming

models for 2-D GBP and other related problems. Pisinger and Sigurd [171] gave an

algorithm based on Dantzig-Wolfe decomposition. Here the master problem is a set

covering problem, solved by delayed column generation. The subproblem deals with

the packing of rectangles into a single bin and is solved as a constraint-satisfaction

problem (CSP). Martello and Vigo [156] had considered exact solutions for 2-D GBP

for instance sizes upto 120.

Jylanki [130] reviewed several greedy heuristics in detail and did empirical study.

Primarily he considered five broad classes of algorithms: shelf algorithms, fit-based

guillotine algorithms, split-based guillotine algorithms, maximal rectangle algorithms

and skyline algorithms. Lodi [151] also has surveyed several one-phase, two-phase

and non-shelf algorithms.

In the past two decades, many local search and meta-heuristic algorithms for

rectangle packing problems have been proposed. We refer interested readers to Aarts

and Lenstra [1] and Glover and Laguna [89] for a detailed survey. Dowsland [63]

proposed a meta-heuristic approach to strip packing using simulated annealing. Dur-

ing the search, the objective is to minimize pair-wise overlapping area of rectangles

and the neighborhood contains all solutions representing vertical or horizontal items

shifting. Jakobs [114] presented a genetic algorithm, based on the representation of

packing pattern by an order given by some permutation, and packing positions are
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determined by a Bottom-Left strategy. There are many similar algorithms based

on a permutation coding scheme. These algorithms consist of two phases: (1) first,

find a good permutation using some meta-heuristic, (2) then the decoding algorithm

puts items following the permutation order. Several interesting coding schemes have

been proposed such as n-leaf binary tree [123], sequence pair [162], bounded sliceline

grid (BCG) [163], O-tree [97], B∗-tree [33], quarter-state sequence [179] etc. Pasha

[170] has studied geometric bin packing algorithms for arbitrary shapes and presented

several genetic algorithms and simulated annealing based approach. Kroger [144] in-

troduced a sequential and a parallel genetic algorithm based on guillotine cuts.

Lodi et al. [153] introduced a Tabu Search framework exploiting a new construc-

tive heuristic for the evaluation of the neighborhood for 3-D GBP. Kell and Hoeve

[135] investigated the application of multivalued decision diagrams (MDDs) to multi-

dimensional bin packing problems. Faroe et al. [76] have given a guided local search

based algorithm for 3-D GBP. For other heuristics for cutting and packing related

problems, see the application-oriented research bibliography by Sweeney and Pater-

noster [197]. For further details on meta-heuristics for rectangle packing we refer the

readers to [112, 110, 23].

For practical problems such as pallet packing in warehouses, several other factors

are needed to be considered such as the stability of packing (under gravity), elasticity,

interlocking etc. Several heuristics are considered in [183, 57] for the stable pallet

packing problem. In VLSI design, simulated annealing algorithms are used in practice

to solve 3-D Bin Packing problem. Though these algorithms do not have a good worst-

case guarantee, they still sometimes work well in practice. There are multiple ways

e.g., sequence triple, transitive closure, 3D-CBL [155] to map each solution of bin

packing to a list of 0-1 integers to apply simulated annealing along with different

ways to move in the solution space.
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3.1.5 Resource Augmentation

Due to pathological worst-case examples, bin packing has been well-studied under

resource augmentation, i.e., the side length of the bin is augmented to (1 + ε) instead

of one. This is also known as bin stretching. Though 2-D GBP does not admit an

APTAS, Bansal et al. [14] gave a polynomial time algorithm to pack rectangles into

at most m number of bins of size (1 + ε) × (1 + ε) where m is the optimal number

of unit bins needed to pack all items. Later Bansal and Sviridenko [19] showed that

this is possible even when we relax the size of the bin in only one dimension.

3.1.6 Strip Packing

A closely related problem is the Strip Packing problem. It is another generalization of

one dimensional bin packing problem and closely tied with the geometric bin packing

problem. As we had stated earlier, the best approximation algorithm for 2-D GBP

used to be factor 2 + ε and was a corollary from the APTAS for 2-D strip packing

due to Kenyon and Rémila [138]. The 2-D variant, where we are given a strip with

width one and unlimited height and the goal is to pack 2-D rectangular items into

the strip so as to minimize the height of the packing, is also known as the Cutting

Stock Problem. In three dimensions, we are given 3-D rectangular items each of whose

dimensions is at most one and they need to be packed into a single 3-D box of unit

depth, unit width and unlimited height so as to minimize the height of the packing.

First let us discuss offline algorithms for 2-D strip packing. Baker et al. [9] intro-

duced the problem in 1980 and gave an algorithm with absolute approximation ratio

of 3. Later Coffman et al. [129] introduced Next-Fit Decreasing Height (NFDH),

First-Fit Decreasing Height (FFDH) [129] for 2-D strip packing without rotations,

achieving asymptotic approxiamtion ratio as 2 and 1.7 respectively. The upper bound

of 2 for NFDH remains valid even for the case with rotations, since the proofs use

only area arguments. Epstein and Stee [73] gave a 3/2 approximation algorithm for
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the problem with rotation. Finally APTAS was given for 2-D strip packing without

rotations [138] and with rotations in [124] using a nice interplay of techniques like

fractional strip packing, linear grouping and a variant of NFDH. For the absolute

approximation, Harren et al. [102] have given a (5/3 + ε)-approximation whereas the

lower bound is 3/2 which follows from one dimensional bin packing.

Now we discuss online algorithms for 2-D strip packing. Baker and Schwartz [10]

showed that First-Fit Shelf has asymptotic performance ratio 1.7. Csirik and Woeg-

inger [51] improved it to T∞ ≈ 1.691 using the Harmonic algorithm as a subroutine.

They also mention a lower bound of 1.5401. For the absolute performance ratio,

Brown et al. [26] have given a lower bound of 2.

3-D strip packing is a common generalization of both the 2-D bin packing problem

(when each item has height exactly one) and the 2-D strip packing problem (when

each item has width exactly one). Li and Cheng [150] were among the first people

who considered the problem. They showed 3-D versions of FFDH and NFDH have

unbounded worst-case ratio. They gave a 3.25 approximation algorithm, and later

gave an online algorithm with upper bound of T 2
∞ ≈ 2.89 [149] using the Harmonic

algorithm as a subroutine. Bansal et al. [16] gave a 1.69 approximation for the offline

case. Recently Jansen and Prädel [117] further improved it to 1.5. Both these two

algorithms extend techniques from 2-D bin packing.

3.1.7 Shelf and Guillotine Packing

For d = 2, many special structures of packings have been considered in the litera-

ture, because they are both easy to deal with and important in practical applica-

tions. Among these, very famous are the two-stage packing structures, leading to

two-dimensional shelf bin packing (2SBP) and two-dimensional shelf strip packing

(2SSP). Two-stage packing problems were originally introduced by Gilmore and Go-

mory [20] and, thinking in terms of cutting instead of packing, requires that each
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item be obtained from the associated bin by at most two stages of cutting.

Figure 4: Example of two-stage packing

Figure 5: Example of guillotine packing

In two-stage packing, in the first stage, the bins are horizontally cut into shelves.

The second stage produces slices, which contain a single item by cutting the shelves

vertically. Finally, an additional stage (called trimming) is allowed in order to separate

an item from a waste area. See Figure 4 for an example of two-stage packing. Two-

stage packing is equivalent to packing the items into the bins in shelves, where a shelf

is a row of items having their bases on a line that is either the base of the bin or

the line drawn at the top of the highest item packed in the shelf below. Formally,

a shelf is a set S of items such that total width
∑

j∈S wj ≤ 1; its height h(S) is
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Figure 6: Example of non-guillotine packing

given by maxj∈Shj. Many classical heuristics for 2-D strip packing ([129], [10], [51])

and 2-D GBP ([37]), including NFDH and FFDH, construct solutions that are in fact

feasible for the two-stage versions. Moreover, Caprara et al. [28] presented an APTAS,

each for 2SBP and 2SSP. Given this situation, it is natural to ask for the asymptotic

worst-case ratio of general packing versus two-stage packing. Csirik and Woeginger

[51] showed ratio of 2SSP versus 2-D strip packing is equal to T∞. Caprara [27]

showed the ratio of 2SBP versus 2-D GBP is also equal to T∞. Both their algorithms

are online and based on Harmonic Decreasing Height (HDH) heuristic. Now consider

the optimal 2SBP solution in which the shelves are horizontal as well as the optimal

2SBP solution in which they are vertical. (Recall that near-optimal 2SBP solutions

can be found in polynomial time [28].) There is no evidence that the asymptotic

worst-case ratio between the best of these two solutions and the optimal 2-D GBP

can be as bad as T∞, and in fact Caprara conjectured that this ratio is 3/2. On the

other hand, he also mentions that there are examples where we cannot do better than

T∞, if both solutions are formed by the HDH algorithm in [27].

Seiden and Woeginger [187] observed that the APTAS of Kenyon and Rémila [138]

can easily be adapted to produce a near-optimal packing in three stages for 2-D strip
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packing, showing that the asymptotic worst-case ratio of 2-D strip packing versus its

k-stage version is 1 for any k > 2, and leading to an APTAS for the latter.

Bansal et al. [18] provided an APTAS for the guillotine case, i.e., the case in which

the items have to be packed in alternate horizontal and vertical stages but there is

no limit on the number of stages that can be used. In the guillotine case, there is a

sequence of edge-to-edge cuts parallel to one of the edges of the bin. See Figure 5

for an example of guillotine packing and Figure 6 for an example that is not a guillo-

tine packing. Recently Abed et al. [2] studied other related packing problems under

guillotine cuts. They also made a conjecture that, for any set of n non-overlapping

axis-parallel rectangles, there is a guillotine cutting sequence separating Ω(n) of them.

A proof of this conjecture will imply a O(1)-approximation for Maximum Independent

Set Rectangles, a related NP-hard problem.

3.1.8 Geometric Knapsack

For 2-D Geometric Knapsack (GK), a result of Steinberg [194] for strip packing trans-

lates into a (3 + ε) approximation [29]. Present best known approximation algorithm

is due to Jansen and Zhang [125] and has an approximation guarantee of (2 + ε). On

the other hand, no explicit inapproximability results are known. PTAS are known for

special cases when resource augmentation is allowed in one dimension [120], all items

are square [121] or all items are small [79]. Bansal et al. [12] gave a PTAS for the

special case when the range of the profit-to-area ratio of the rectangles is bounded by

a constant. Recently Adamaszek and Wiese [3] gave a quasi-PTAS for the problem.

This implies that the problem is not APX-hard (thus we can still hope for a PTAS)

unless NP ⊆ QP. Very recently, Abed et al. [2] obtained another quasi-PTAS using

only sequence of guillotine cuts.

For 3-D, Diedrich et al. [58] have given 7 + ε and 5 + ε approximation, for the

cases without and with rotations, respectively.
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Table 3: Present state of the art for strip packing and geometric knapsack

Problem Dim. Subcase Best algorithm Best lower bound

Strip

Packing

2
OFF-REC-WR

asymp: PTAS[124] NP-hard

abs: 5
3

+ ε [102] 3/2

OFF-REC-NR asymp: PTAS[138] NP-hard

3
OFF-REC-NR asymp: 1.5 [117] 1 + 1/2196 [36]

OFF-CUB asymp: PTAS[16] NP-hard

2 ON-REC-NR asymp: T∞ [51] 1.5401 [51]

3 ON-REC-NR asymp: 2.5545 [100] 4 1.907 [21]

d > 3 ON-REC-NR asymp: T d∞ [50] → 3 (for d→∞) [199]

Geometric

Knapsack

2
OFF-REC-NR 2 + ε [125] NP-hard

OFF-CUB PTAS[121] NP-hard

3

OFF-REC-NR 7 + ε [58] NP-hard

OFF-REC-WR 5 + ε [58] NP-hard

Table 3 summarizes present best results for strip packing and geometric knapsack.

As previously, OFF denotes offline, ON denotes online, REC denotes rectangles, CUB

denotes cubes, WR denotes with rotation and NR denotes without rotation.

3.2 R&A Framework for Rounding Based Algorithms

We describe here a general approach to show that a wide class of algorithms for bin-

packing type problems, in particular those based on rounding the item sizes to O(1)

types, is subset-oblivious. While such algorithms are hard to define formally, we state

their general approach below, which subsumes all the known algorithms that we are

aware of.

4See [199] for the modified algorithm
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General form of a rounding based algorithm. Now let us intuitively present the

general form of a rounding based algorithm, which appears frequently in the literature

[173, 28]. A typical rounding based algorithm for a two-dimensional problem has the

following form. Given some accuracy parameter ε > 0, one first defines two functions

f(ε) and g(ε) (that only depend on ε) with g(ε)� f(ε).

Now items are divided into three types based on their sizes:

• Big : if all its coordinates are at least f(ε),

• Small: if all its coordinates are at most g(ε),

• Medium: if at least one coordinate lies in the range (g(ε), f(ε)).

A standard argument [28, 173] shows that the functions g and f can be chosen

such that their ratio is as large as desired, while ensuring that the volume (area in

2-D) of medium items is at most ε
8

times Vol(I), the total volume of items in the

input instance I. We refer readers to Lemma 3.21 in [173] for a detailed proof. Now

these medium items can be ignored as they can be packed in ( ε
2
·Opt+O(1)) separate

bins using NFDH from Lemma 2.6.2.

Now, all items have each coordinate either small (in [0, g(ε)]) or big (in [f(ε), 1]).

Call an item skewed if it is neither big nor small (i.e., some coordinates are less than

g(ε) and some more than f(ε)). Skewed items can be classified into at most 2d−2 = 2

types based on which subset of coordinates is large, where d = 2 is the total number

of coordinates.

Now, the algorithm rounds the large dimensions of big and skewed items to Oε(1)

values (a constant depending on only ε). This rounding can possibly be in a very

complex way, including the guessing of sizes.

Now consider function h(ε) that only depends on ε with g(ε) << h(ε) ·f(ε) ≤ f(ε).

In a rounding based algorithm, one argues that in any packing almost all skewed and

small items are placed (possibly fractionally) in large regions called containers, where
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each container has large size in each dimension. Specifically one dimension has size

≥ f(ε) and the other dimension has size ≥ f(ε) · h(ε) and these containers have O(1)

types of sizes. Thus these containers can be viewed as big items and the algorithm

focuses on packing of constant (say q) types of large items and containers. Now

there are only O(1) number of possible configurations as there are O(1) types of

items (large items or containers). So there are only polynomial number of possible

packings of these large items. One can simply use brute-force method to enumerate

all possible packings and select the best. The running time can be improved using

integer programming techniques, for fast mixed linear integer programs with few

integer variables from [68]. Later almost all skewed items are packed integrally into

containers using an assignment LP. Afterwards the small items and the remaining

skewed items are filled using NFDH in the empty spaces in the packing of big and

skewed items. The large separation between g and f ensures that this incurs negligible

loss in volume. Then one defines some algorithm A that finds an almost optimal (say

within a factor (1 + εa)) packing of these rounded big items and containers.

It can be easily verified that the (1.5 + ε)-approximation algorithm of Jansen

and Prädel [116], as stated in Section 3.3, falls directly in this framework. In their

algorithm they choose f(ε) = δ, g(ε) = δ4, h(ε) = δ/2, all big items are rounded to

O( 1
δ2
· 1
δ2

) types and there areO( 1
δ6

) types of containers where δ = ε/48. We will explain

the properties of this algorithm in [116] in more detail in the later section. We remark

that the rounding of sizes in their algorithm is non-trivial and actually depends on

the bin patterns that are used in the optimum solution (which the algorithm will

guess).
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Relating the algorithm to the configuration LP with rounded item sizes.

For concreteness, let us consider the case of 2-D GBP. Suppose A is a rounding based

ρ-approximation algorithm for it. Then, A(I) ≤ ρ · Opt(I) for any instance I of the

problem. The items are classified into big and small. There are two types of skewed

items: long (with height ≥ f(ε) and width ≤ g(ε)) and wide (with width ≥ f(ε),

height ≤ g(ε)). Upon rounding, the big items are rounded to O(1) types and long

(and wide) items are assigned to O(1) groups of different heights (or widths). Let Ĩ

denote instance obtained from I by rounding the large dimensions according to the

rounding performed by A. Clearly, A(I) ≥ Opt(Ĩ) and hence

Opt(Ĩ) ≤ ρ · Opt(I). (5)

Now, let us define the configuration LP on the instance Ĩ, where the configurations

correspond to feasible packing of items in Ĩ. As there are only a constant number (say

t) of such item types, this LP has only a constant number t of non-trivial constraints,

one for each item type.

For i ∈ {1, . . . , p1}, let Bi denote the group of big items rounded to type i and crBj

be the number of items of type j (i.e., from the set Bj) in the r’th configuration. Long

items are rounded to p2 types of heights and assigned to groups L1, · · · , Lp2 . Similarly

wide items are rounded to p3 types of widths and assigned to groups W1, · · · ,Wp3 .

Let w(Lk) denote the total width of items in Lk, and h(W`) denote the total height

of items in W`. Similarly, let crLk (resp. crW`
) denote the total width of items in Lk

(resp. total height of items in W`) in the configuration r. Let T be the set of small

items and crT be the total volume (area in 2-D) of small items in configuration r. Let

volT (Ĩ) be the total volume of small items (i.e., total area of small items in 2-D) in Ĩ.
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Consider the following configuration LP: LP(Ĩ)

Min
∑
r

xr

s.t.
∑
r

crBjxr ≥ |Bj| ∀j ∈ [p1],∑
r

crLkxr ≥ w(Lk) ∀k ∈ [p2],∑
r

crW`
xr ≥ h(W`) ∀` ∈ [p3],∑

r

crTxr ≥ volT (Ĩ),

xr ≥ 0 ∀r ∈ [m].

Let t = p1 + p2 + p3 + 1. As the LP has only t constraints,

IP∗(Ĩ) ≤ LP∗(Ĩ) + t. (6)

where IP∗(Ĩ) and LP∗(Ĩ) are the optimal integral and fractional solutions for LP(Ĩ)

respectively.

Intuitively, the integral solution of LP gives a fractional packing of items. Big

items are packed integrally. For long items it preserves the total width in each class

of same height. Similarly for wide items it preserves the total height in each class of

same width. However individual long (resp. wide) items may be needed to be sliced

vertically (resp. horizontally) and packed fractionally in their small dimension. For

small items it preserves the total volume, but the items might be needed to pack

fractionally (may be sliced vertically and/or horizontally).

Now any packing of such sliced rectangles can be transformed into a feasible

packing using the following lemma, implicit in Section 3.3.2 in [173].

Lemma 3.2.1. [173] For any εb > 0, if there is a packing of Ĩ into m bins, where

skewed items are allowed to be sliced along their smaller dimension and small items are

allowed to be sliced along horizontally and/or vertically to be packed into containers,

then one can get a packing into (1 + εb) ·m + O(1) bins where all items are packed

integrally.
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Hence, we get,

A(Ĩ) ≤ (1 + εa) · Opt(Ĩ) +O(1) (7)

≤ (1 + εa)(1 + εb) · IP∗(Ĩ) +O(1) (8)

≤ (1 + εa)(1 + εb) · (LP∗(Ĩ) + t) +O(1) (9)

≤ (1 + εa)(1 + εb) · LP∗(Ĩ) +O(1). (10)

Here inequality (7) follows from the fact that A finds optimal solution within

factor (1 + εa). Inequality (8) follows from Lemma 3.2.1 and inequality (9) follows

from (6).

R&A framework for rounding based algorithms.

We can now show the following.

Theorem 3.2.2. For any ε > 0, if there is a ρ approximation algorithm A that

rounds the large coordinates of items to O(1) types before packing (these sizes could

depend on the instance I), then the R&A method gives a (1 + ln ρ + ε) asymptotic

approximation bin packing for I.

Proof. First, we consider the configuration LP on original items in Step 1 of the

R&A framework (see Section 2.6.3) and apply the randomized rounding step to it.

The probability that an item i ∈ I is not covered by any configurations selected in

some iteration, is at most (1 −
∑

C3i x
∗
C/z

∗). Let S be the set of residual items not

covered by any of the bins selected in d(ln ρ)z∗e iterations. Thus the probability that

i is not covered in any of the d(ln ρ)z∗e independent iterations is at most:

P(i ∈ S) ≤ (1−
∑
C3i

x∗C/z
∗)d(ln ρ)z∗e

≤ (1−
∑
C3i

x∗C/z
∗)(ln ρ)z∗

≤ (1− 1/z∗)(ln ρ)z∗ (11)

≤ e(− ln ρ) (12)

=
1

ρ
, (13)
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where inequality (11) follows as
∑

C3i x
∗
C ≥ 1 for all i ∈ I and inequality (12) follows

from (1− x−1)αx ≤ e−α for x > 0.

Let Opt(I) be the number of bins used in the optimal packing of I. Now in Step 2

of R & A framework at most d(ln ρ)z∗e ≤ 1+(ln ρ) ·Opt bins were used. Let S denote

the set of items that are still unpacked. It remains to bound the number of bins used

for packing S using A.

To this end, consider the rounding that A would apply to the items when given

instance I, and consider the instance obtained by applying this rounding to items in

S. Let us denote this instance as Ĩ ∩S. Now consider the following configuration LP

for Ĩ ∩ S: LP(Ĩ ∩ S)

Min
∑
r

xr

s.t.
∑
r

crBjxr ≥ |Bj ∩ S| ∀j ∈ [p1],∑
r

crLkxr ≥ w(Lk ∩ S) ∀k ∈ [p2],∑
r

crWl
xr ≥ h(W` ∩ S) ∀` ∈ [p3],∑

r

crTxr ≥ volT (Ĩ ∩ S),

xr ≥ 0 ∀r ∈ [m].

Now by (13), we get the following expected values:

E[|Bj ∩ S|] ≤ |Bj|/ρ,

E[w(Lk ∩ S)] ≤ w(Lk)/ρ,

E[h(W` ∩ S)] ≤ h(W`)/ρ,

E[volT (Ĩ ∩ S)] = volT (Ĩ)/ρ.

Now we will show that these values are in fact not very far from the expectations

using a concentration inequality.

We will need the following concentration inequality [157] in the analysis.
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Lemma 3.2.3. (Independent Bounded Difference Inequality) [157]

Let X = (X1, . . . , Xn) be a family of independent random variables, with Xj ∈ Aj

for j = 1, . . . , n, and φ :
∏n

j=1Aj → R be a function such that

φ(x)− φ(x′) ≤ cj,

whenever the vectors x and x′ differ only in the j-th coordinate. Let E[φ(X)] be the

expected value of the random variable φ(X). Then for any t ≥ 0,

P[φ(X)− E(φ(X)) ≥ t] ≤ e−2t2/
∑n
i=1 c

2
j .

Consider the function φBi (x) = Bi ∩ S, i.e., the number of items of type Bi in

S. This is a function of X = (X1, . . . , Xd(ln ρ)z∗e), i.e., d(ln ρ)z∗e independent random

variables (selected configurations in randomized rounding phase of R & A framework)

where Xi corresponds to the random variable for the configuration selected in the ith

iteration. Now changing value of any of these random variables may lead to the selec-

tion of a different configuration C ′ in place of configuration C in the corresponding

iteration. Let vectors x and x′ differ only in j’th coordinate, i.e., a different configu-

ration C ′ is selected in place of configuration C in j th iteration. This might lead to

a different set of residual items S ′. Then

φBi (x)− φBi (x′) ≤ (|Bi ∩ S| − |Bi ∩ S ′|)

≤ max{|Bi ∩ C|, |Bi ∩ C ′|}

≤ 1/f(ε). (14)

Here inequality (14) follows from the fact that there can be at most 1/f(ε) items

of type Bi in a bin, as big items are ≥ f(ε) in at least one of the dimensions.

Therefore, from the above-mentioned independent bounded difference inequality,

we get,

P[|Bi ∩ S| − E(Bi ∩ S) ≥ γz∗] ≤ e
−2(γz∗)2/( d(ln ρ)z

∗e
(f(ε))2

)
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where z∗ = LP ∗(Ĩ).

Similarly consider the function φwk (x) = w(Lk ∩ S). We get,

φwk (x)− φwk (x′) ≤ (w(Lk ∩ S)− w(Lk ∩ S))

≤ max{w(Lk ∩ C), w(Lk ∩ C ′)}

≤ 1/f(ε). (15)

Therefore, once again from independent bounded difference inequality, we get,

P[w(Lk ∩ S)− E(w(Lk ∩ S)) ≥ γz∗] ≤ e
−2(γz∗)2/( d(ln ρ)z

∗e
(f(ε))2

)
.

Similarly for wide items we get,

P[h(W` ∩ S)− E(h(W` ∩ S))) ≥ γz∗] ≤ e
−2(γz∗)2/( d(ln ρ)z

∗e
(f(ε))2

)
.

For small items, we take φT (x) = vol(T ∩ S) and we get φT (x) − φT (x′) ≤ 1 as

the total volume of small items in a bin is at most 1. Thus,

P[volT (Ĩ ∩ S)− E(volT (Ĩ ∩ S))) ≥ γz∗] ≤ e
−2(γz∗)2/( d(ln ρ)z

∗e
(f(ε))2

)
.

Thus in the asymptotic case (when z∗ is sufficiently large, i.e., >> t·ln ρ
γ2(f(ε))2

) we

can take the union bound over all t cases and with high probability for all large item

classes, φBi (X) − E(φBi (X)) < γz∗, w(Lk ∩ S) − E(w(Lk ∩ S)) < γz∗, h(W` ∩ S) −

E(h(W` ∩ S)) < γz∗, and volT (Ĩ ∩ S)− E(volT (Ĩ ∩ S)) < γz∗.

Let εx be a suitable small constant that we will choose later. Now take γ = εx
5tρ

,

then from each of t classes, items of volume at most γz∗ can be removed and packed

into a total of εxz∗

ρ
bins. Let us call J to be these removed elements. Then after

removing these items with high probability, the right hand side for each constraint

in LP((Ĩ ∩ S) \ J) is at most 1/ρ times the right hand side of the corresponding

constraint in LP(Ĩ).

Thus,

LP(Ĩ ∩ S) ≤ LP((Ĩ ∩ S) \ J) +
εxz
∗

ρ
≤ (1 + εx)

ρ
LP∗(Ĩ). (16)
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This gives us that,

A(Ĩ ∩ S) ≤ (1 + εa)(1 + εb) · LP∗(Ĩ ∩ S) (17)

≤ (1 + εa)(1 + εb) ·
(1 + εx)

ρ
LP∗(Ĩ) +O(1) (18)

≤
(1 + ε

2
)

ρ
Opt(Ĩ) +O(1) (19)

≤ (1 +
ε

2
)Opt(I) +O(1). (20)

Here, inequality (17) follows from (10). Inequality (18) follows from (16), inequal-

ity (19) follows by choosing εx such that (1 + ε
2
) = (1 + εa)(1 + εb)(1 + εx) and the

last inequality follows by (5).

Thus in Step 2 at most d(ln ρ)z∗e ≤ 1 + (ln ρ) · Opt(I) bins were used. Medium

items are packed into at most ( ε
2
· Opt(I) + O(1)) additional bins and at most (1 +

ε
2
)Opt(I) + O(1) bins were used to pack the remaining items. This gives the desired

(1 + ln ρ+ ε) asymptotic approximation.

The above algorithm can be derandomized using standard techniques as in [13].

3.3 A rounding based 1.5-approximation algorithm

In this section we present the Jansen-Prädel algorithm [116] that rounds the large

dimensions of items into O(1) types of sizes before packing them into bins.

3.3.1 Technique

The algorithm works in two stages. In the first stage, the large dimensions of items

in the input instance are rounded to O(1) (specifically O( 1
ε2

)) types. By guessing

structures of the rounded items, one guesses the rounded values and how many items

are rounded to each such value. In the second stage rounded rectangles are packed

into bins. The algorithm uses the following structural theorem.

Theorem 3.3.1. [116] For any εc > 0, and for any solution that fits into m bins,

the widths and the heights of the rectangles can be rounded up so that they fit into
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(3/2+5εc)m+O(1) bins, while the packing of each of the bins satisfies either Property

1.1 (The width of each rectangle in bin Bi of width at least εc is a multiple of ε2c
2

) or

Property 1.2 (The height of each rectangle in bin Bi of height at least εc is a multiple

of ε2c
2

).

Using the above structural theorem they show that, given any optimal packing,

one can remove all items intersected with a thin strip in the bin and round one side of

all remaining items to some multiple of ε2c/2. Then they pack the cut items separately

to get a packing into at most (3/2+ε)·Opt+O(1) bins that satisfy either Property 1.1

or Property 1.2. After rounding one side of the rectangle, the other side is rounded

using techniques similar to those used by [138]. In this version of the algorithm after

items are rounded to O(1) types, we can find the optimal packing of these rounded

items by brute-force. The algorithm is actually guessing the structure of optimal

packing, i.e., rounded values for each item, to use the structural theorem to get a

feasible packing in ≤ (3
2

+ ε)Opt + O(1) bins. The main structure of their algorithm

is described below:

Input: A set of items I := {r1, r2, · · · , rn} where rj ∈ (0, 1]× (0, 1] for all j ∈ [n] and

set of bins of size 1× 1.

Output: An orthogonal packing of I.

Algorithm:

1. Guess Opt: Guess Opt by trying all values between 1 and n.

2. For each guessed values of Opt do

(a) Classification of rectangles: Compute δ using methods similar to [122] to

classify rectangles and pack medium rectangles using Next Fit Decreasing Height

(NFDH).

(b) Guessing structures: Enumerate suitably over all structures (sizes to which
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items are rounded to, and for each size the number of items that are rounded to

that size) of the set of big, long, wide rectangles and the set of wide and long

containers.

(c) For each guess do Packing:

• Assign big rectangles by solving a flow-network with the algorithm of Dinic

[59];

• Do greedy Assignment of long and wide rectangles into O(1) groups;

• Pack O(1) number of groups of long and wide rectangles into O(1) types of

containers using a linear program;

• Pack the small rectangles using Next Fit Decreasing Height;

• Pack O(1) types of containers and O(1) types of big rectangles into bins

using brute force or mixed integer linear programs [131];

3. Return a feasible packing;

3.3.2 Details of the Jansen-Prädel Algorithm:

In this section we describe the algorithm in [116], to fit in our framework. For more

details on the algorithm, we refer the readers to [173].

3.3.2.1 Binary Search for Opt:

Using binary search between the number of rectangles (an upper bound) and total

area of the rectangles (a natural lower bound), the algorithm finds the minimum m

such that there exists a feasible solution with (3/2 + ε) · m + O(1) bins. For each

guess of Opt, we first guess the rounding in the following way and then we pack the

rounded items into the bins.
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3.3.2.2 Classification of Rectangles:

A value δ (≤ ε′ = ε/48) is selected similar to [122], such that 1
δ

is a multiple of 24 and

rectangles with at least one of the side lengths between δ and δ4 have a small area

(≤ ε′ · Opt). Now we classify the rectangles into five types:

• Big: both width and height is at least δ.

• Wide: width is at least δ, height is smaller than δ4.

• Long: height is at least δ, width is smaller than δ4.

• Small: both width and height is less than δ4.

• Medium: either width or height is in [δ4, δ). As medium rectangles are of total

size ≤ ε′ ·Opt, they can be packed using NFDH into at most additional O(ε′ ·Opt)

bins. Choose εc = δ.

3.3.2.3 Further Classification:

First let us show that given any optimal packing, we can get a packing in at most

(3
2

+ ε)Opt+O(1) bins where all large dimensions of items are rounded to O(1) types.

Then we will guess the structure of optimal packing to assign items to its rounded

type.

Assuming we are given the optimal packing, we can get rounding of one side by

using Theorem 3.3.1. Now we will find the rounding of the other side using linear

grouping. Let Opt = m and out of these m bins, m1 bins B1,B2, . . . ,Bm1 are of type

1 (that satisfy Property 1.1, i.e., the width and the x-coordinate of each rectangle in

Bi of width at least εc is a multiple of ε2c
2

) and the remaining m2 (= m − m1) bins

Bm1+1,Bm1+2, . . . ,Bm are of type 2 (that satisfy Property 1.2, i.e., the height and the

y-coordinate of each rectangle in Bi of height at least εc is a multiple of ε2c
2

). Thus the

widths of big and wide rectangles in bins of type 1 and the heights of big and long
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rectangles in bins of type 2 are rounded to some multiples of δ2/2. Let Bw
i and Ww

i

be the set of big and wide rectangles, respectively, that are packed in type 1 bin with

widths rounded to i · δ2/2 for i ∈ {2/δ, 2/δ + 1, . . . , 2/δ2}. Similarly, let Bh
i and Lhi

be the set of big and long rectangles, respectively, that are packed in type 2 bin with

heights rounded to i · δ2/2. Let Lw and W h be the set of long rectangles in type 1 bin

and the set of wide rectangles in type 2 bins, respectively. Set of small and medium

rectangles are denoted by M and S respectively.

3.3.2.4 Rounding of big, long and wide rectangles:

The rounded widths of rectangles in Bw
i and Ww

i and rounded heights of rectangles

in Bh
i and Lhi are known. In this step we find the rounding of heights of rectangles in

Bw
i and Lw and rounding of widths of rectangles in Bh

i and W h using linear grouping

techniques similar to Kenyon-Rémila [138] and introduced by Fernandez de la Vega

and Lueker [55] .

For any set Bw
i , we sort the items r1

i , r
2
i · · · r

|Bwi |
i according to non-increasing height,

i.e., h(rei ) ≥ h(rfi ) for e ≤ f . Now define at most 1
δ2

subsetsBw
i,j, each of which contains

dδ2 · |Bw
i |e rectangles except possibly for the last subset. For any two rectangles

rA ∈ Bw
i,j1

and rB ∈ Bw
i,j2

and j2 ≥ j1, h(rA) ≥ h(rB). We round the heights of

all rectangles in each set Bw
i,j to the height of the tallest rectangle in the subset (we

call it to be the round rectangle of the subset). Set apart the set Bw
i,1 and for other

rectangles in Bw
i,j place them in the position of rectangles of Bw

i,j−1. This is possible

as all subsets (except possibly the last) have the same cardinality and all rectangles

have same width.

Similarly, sort long rectangles in Lw according to non-increasing height. We divide

the set Lw into at most 1
δ2

subsets Lw1 , . . . , L
w
1/δ2 such that every subset has total

width δ2 ·w(Lw). If needed, items are sliced vertically to create subsets. For any two

rectangles rA ∈ Lwj1 and rB ∈ Lwj2 and j2 ≥ j1, h(rA) ≥ h(rB). We round the height of
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each rectangle to the height of the tallest rectangle in it. Apart from Lw1 , rectangles

of Lwj are packed in the position of rectangles of Lwj−1.

The rectangles in Lw1 , B
w
2/δ,1, · · · , Bw

2/δ2,1 are packed separately into additional bins

using NFDH. Note that the width of all rectangles in Lw, Bw
2/δ, · · · , Bw

2/δ2 is at most

1
δ
·m1 as each rectangle has height at least δ. So, w(Lw1 ) +w(Bw

2/δ,1), . . . , w(Bw
2/δ2,1) ≤

δ2.w(Lw) + w(Bw
2/δ), · · · , w(Bw

2/δ2) ≤ δ2 · 1
δ
· m1 = δ · m1. Thus the total area of

the rectangles in Lw1 ∪ Bw
2/δ,1 ∪ · · · ∪ Bw

2/δ2,1 is O(δ ·m1) and thus can be packed into

additional O(δ ·m1) bins using NFDH.

Widths of rectangles in Bh
i ,W

h are rounded in a similar manner.

3.3.2.5 Rounding of containers:

We have not so far rounded the width of long rectangles and heights of wide rectan-

gles. Now we construct rectangular containers for the wide and long rectangles for

that purpose. We only show the rounding of containers for type 1 bins. Rounding

containers for type 2 bins can be done analogously. Let Cw
L be the set of containers

for long rectangles and Cw
W be the set of containers for wide rectangles in type 1 bins.

Define 2/δ2 vertical slots of width δ2/2 in each type 1 bin Bi. A long container is

part of a slot that contains at least one long rectangle, and the container is bounded

at the top and bottom by a wide or big rectangle, or the boundary (ceiling or floor)

of the bin. There can be at most (1/δ − 1) long containers in a slot. Thus there are

at most O(δ3) long containers per bin.

Next, construct wide containers by extending upper and lower edges of big rect-

angles and long containers in both directions till they hit another big rectangle, a

long container or the boundary (left or right side of bin). Wide and small rectangles

are horizontally cut by these lines. As there are O(δ3) big rectangles and long con-

tainers, there are O(δ3) wide containers in Bi. This way any packing in optimal bin

is transformed into a packing of big rectangles and long and wide containers. Note
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that skewed and small rectangles might be packed fractionally in the long and wide

containers.

Now we do the rounding of containers. Heights of all containers in Cw
W are rounded

down to the nearest multiple of δ4, cutting the uppermost wide and short rectangles.

There are O(1/δ3) ·m1 wide containers and note that the small rectangles have height

less than δ4. Thus the cut wide and short rectangles are packed using NFDH in

additional O(δ · m1) bins. For long containers we remove the short rectangles and

push all long rectangles vertically down till they touch the top of another rectangle or

the boundary. Then we round down the heights to either the nearest multiple of δ4

or a combination of rounded heights of the long rectangles. Note that these heights

are rounded down, although large, but still to O(1) number of types. Total area loss

for each container is O(δ4 · δ2/2) and the number of long containers is O(1/δ3). So

in the reduced container we pack the small items till we can and the remaining small

rectangles are packed into additional O(δ3 ·m1) bins using NFDH.

Similarly long containers can be constructed for the additional bins that are used

to pack items of Lw1 . These bins will have at most (2δ ·m1 +1) ·2/δ2 long containers of

width δ2/2 and height 1. Note that there are O(1/δ2)1/δ possible heights of containers,

which can be reduced to O(1/δ2) heights using linear grouping and losing only a small

constant.

Thus at the end of the rounding of containers, the containers have the following

properties:

2.1. There are at most O(1/δ3) ·m1 wide containers in Cw
W with width of a multiple

of δ2 and height of a multiple of δ4.

2.2. There are at most O(1/δ3) ·m2 long containers in Ch
L with height of a multiple

of δ2 and width of a multiple of δ4.

2.3. There are at most O(1/δ3) · m2 wide containers in Ch
W with O(1/δ2) different

widths (either a multiple of δ4 or a combination of rounded width of wide rectangles
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in W h) and height δ2/2.

2.4. There are at most O(1/δ3) · m2 long containers in Cw
L with O(1/δ2) different

heights (either a multiple of δ4 or a combination of rounded height of long rectangles

in Lw) and width δ2/2.

At the end of the rounding step we get the following theorem.

Theorem 3.3.2. [116] Given an optimal packing I into m bins, it is possible to

round the widths and heights of the long, wide and big rectangle to O(1) types

such that it fits in at most (3/2 + O(f1(δ)))m + O(f2(δ)) bins for some functions f1

and f2 and these bins satisfy either Property 1.1 or Property 1.2. Furthermore the

heights of long and big rectangles in Lw and Bw, widths of wide and big rectangles

in W h and Bh are rounded up to O(1/δ2) values. The wide and long rectangles are

sliced horizontally and vertically, respectively, and packed into containers satisfying

Properties 2.1-2.4 and small rectangles are packed fractionally into the wide and long

containers. Medium rectangles are packed separately into O(δ) bins.

3.3.2.6 Transformation of rectangles:

Now we guess the structure of the optimal packing for the assignment of rectangles

to the rounded rectangles.

First we have to determine whether width or height of a big rectangle is rounded

to a multiple of δ2/2. We guess the cardinality of sets Bw
i and Bh

i for i ∈ {2/δ, 2/δ +

1, · · · , 2/δ2}. This can be done by choosing less than 2 · (2/δ2) values out of n; note

that this is polynomial in n. For each such guess we also guess 2 · (2/δ2) · (1/δ2)

round rectangles out of n rectangles. These values give us the structure of subsets

as discussed in the rounding of big rectangles. Now to find the assignment of big

rectangles to these subsets, we create a directed flow network G = (V,E). First we

create source(s) and target node(t). For each rectangle r ∈ I, we create a node and

add an edge from s to r with capacity one. Next we create nodes for all subsets Bw
i,j
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and Bh
i,j and add an edge from r to By

i,j of capacity one, if r might belong to By
i,j

where y ∈ {w, h}. Next add edges between nodes corresponding to subsets and the

target node of infinite capacity. Now apply Dinic’s algorithm [59] or any other flow

algorithm to find if there is an s − t flow of value the same as the number of big

rectangles. If there exists such a flow, we get a valid assignment of big rectangles

into subsets. On the other hand, if there is no such flow then continue with the other

guesses.

Next we need to transform the wide and long rectangles. First we need to decide

whether a wide rectangle belongs to type 1 or type 2 bins. The case for long rectangle

is analogous. Note that in the linear grouping of wide rectangles in W h, 1/δ2 subsets

were created. The total height of all rectangles in W h is bounded by n · δ4. So we

approximately guess the total height of W h, by choosing some t ∈ {1, 2, · · · , n}, so

that t · δ4 ≤ h(W h) ≤ (t + 1) · δ4. As all subsets W h
1 ,W

h
2 , · · · ,W h

1/δ2 have the same

height, each subset will have height h(W h) ·δ2. We also guess the height of rectangles

to which all rectangles in each subset are rounded. This can be done by choosing

1/δ2 rectangles out of n rectangles. Thus we can approximately guess the structure

of the rectangles in W h. Remaining wide rectangles are in Ww i.e., their width are

rounded to the next multiple of δ2/2. We guess approximately the total height of

the rectangles in Ww
2/δ, · · · ,Ww

2/δ2 by choosing (2/δ2− 2/δ+ 1) integral values tk such

that tk · δ4 ≤ h(Ww
j ) < (tk + 1) · δ4. Thus we can guess the structure of all subsets

of wide rectangles and we need to assign the wide rectangles into these subsets. For

the assignment we sort the wide rectangles in non-increasing order. We assign wide

rectangles greedily into all sets Ww
k ∈ Ww, starting from Ww

2/δ2 and continue until

the total height exceeds (tk + 1) · δ4 for each set Ww
k . The remaining rectangles are

similarly greedily assigned into sets W h
1 , · · · ,W h

1/δ2 . It is easy to show that for the

right guesses of tk values, all rectangles will have a valid assignment. Afterwards we

remove the shortest rectangles in each subset to reduce the height to at most tk · δ4.
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It can be shown that the total height of these removed wide rectangles is O(δ2) and

thus can be packed into O(1) additional bins.

3.3.2.7 Construction of containers:

Here we describe the construction of long and wide containers that are placed in

type-1 bins. The construction of long and wide containers that are placed in type-2

bins, is analogous.

Each wide container in Cw
W has height of a multiple of δ4 and width of multiple of

δ2/2. Hence we can guess nwi,j, number of wide containers that has width iδ2/2 and

height j · δ4 by choosing 1/δ4 · 2/δ2 values out of n.

Similarly long containers in Cw
L have the same width and O(1/δ2) types of heights

(either a combination of rounded heights of long rectangles or a multiple of δ4) which

we can guess.

3.3.2.8 Packing long and wide rectangles into containers

There are four cases: packing of long rectangles into long containers in type 1 bins,

packing of long rectangles into long containers in type 2 bins, packing of wide rect-

angles into wide containers in type 1 bin and packing of wide rectangles into wide

containers in type 2 bins. Here let us only consider the wide containers in type 1 bins,

other cases can be handled similarly. There are O(δ3) types of wide containers and

O(δ2) types of wide rectangles. Wide rectangles are packed into containers using a

linear programs as in Kenyon-Rémilla [138]. Then we add back the small rectangles

using NFDH in the empty regions of the O(δ3) types of containers to the extent we

can.

3.3.2.9 Complete packing

Now we have big rectangles and containers of O(1) type, thus there are O(1) number

of possible configurations of packing of big rectangles and containers into bins. We
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try out all configurations by brute force to find the optimal packing of big rectangles

and containers. Then we add back the remaining rectangles using NFDH in the

empty regions of the bin till we can and then we pack the remaining rectangles into

additional bins.

3.3.3 Analysis

In the rounding step, separate packing of rectangles in Lw1 , B
w
2/δ,1, · · · , Bw

2/δ2,1,W
h
1 ,

Bh
2/δ,1, · · · , Bh

2/δ2,1 need at most O(δ · Opt) additional bins. In rounding containers

the cut wide, long and small rectangles are packed into additional O(δ · Opt) bins.

Packing of medium and remaining small rectangles take O(δ · Opt) bins. Removed

wide rectangles in the step of transformation of wide rectangles require O(1) extra

bins. So using the structural theorem, total (3/2+O(δ))Opt+O(δ) bins are sufficient.

The running time of the steps are given as follows. The binary search requires

O(log n) time. Computing δ in a method similar to [122] takes O(n/ε) time. For the

structure of the set of big rectangles, we guess O(1/δ2) values out of n to guess the

cardinality of the sets and for such a guess, O(1/δ4) round rectangles are guessed.

Similarly, we get the structure of wide and long rectangles, we guess O(1/δ3) values

out of n. Structure of long and wide containers require guessing O(1/δ6) values out

of n and guessing O(1/δ2) values out of O(1/δ4 + (1/δ2)1/δ) respectively. Solving

the flow network takes O(n3) time. Assignment of wide and long rectangles into

groups will take O(n log n) time. The running time for packing containers and big

rectangles using the brute force method, is a large constant, triple exponential in δ.

It can be reduced using integer programs of Kannan et al. [131]. Packing medium

and small rectangles using NFDH require O(n log n/δ3) time. In total the running

time is bounded by O(nh1(1/ε) · h2(1/ε)), where h1, h2 are polynomial functions. Thus

the total running time is polynomial for a fixed ε > 0.
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3.3.4 Bin packing with rotations

Bin packing with rotation is almost similar to the packing without rotation. When

rotation is allowed we only have bins with a packing that satisfy Property 1.1. Re-

maining rounding steps are analogous to the versions without rotations. The step of

transformation of rectangles, however, is slightly different when we allow rotations.

For big rectangles, in the flow network we connect a big rectangle with all subsets

that can contain the rectangle before and after rotating by 90◦. On the other hand,

for transformation of wide and long rectangles, we approximately guess w(Lw) and

the heights of the sets Ww
2/δ, · · · ,Ww

2/δ2 and the height of the round rectangles in Lw.

Now we can rotate all long rectangles to have only wide rectangles and greedily as-

sign them to the wide rectangles in Ww
2/δ, · · · ,Ww

2/δ2 . The remaining wide rectangles

are rotated back and assigned to the sets Lw1 · · · , Lw1/δ2 . The analysis is also similar,

however, gives slightly better additive constants in the approximation.

3.4 Lower bound for rounding based algorithms

In this section, we describe some limitations of rounding based algorithms.

Theorem 3.0.11. (restated) Any rounding algorithm that rounds at least one

side of each large item to some fixed constant independent of the problem instance

(let us call such rounding input-agnostic), cannot have an approximation ratio better

than 3/2.

Proof. Consider an input-agnostic algorithm A that rounds at least one side of each

large item to one of the values c1, c2 . . . , cz, that are chosen independent of the input

instance. Let i and j be such that ci < 0.5 ≤ ci+1 and cj−1 ≤ 0.5 < cj. Let

f = min{0.5 − ci, cj − 0.5}. Here we assume the algorithm rounds identical items

with the same height and width to the same types.
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Figure 7: Lower bound example for rounding
based algorithms

Figure 8: The case when Ci+1 > 1/2

Now consider an optimum packing using m = 2k bins where each bin is packed as

in Figure 7, for some fixed x ∈ (0, f). Under the rounding, an item (1/2+x)×(1/2−x)

is rounded to either (1/2 + x)× (ci+1) (let us call such items of type P) or to (cj)×

(1/2−x) (let us call such items of type Q). Similarly, each item (1/2−x)× (1/2 +x)

is rounded to either (ci+1) × (1/2 + x) (call these of type R) or to (1/2 − x) × (cj)

(call these of type S).

Let us first consider the easy case when ci+1 > 1/2. It is easily checked that in

this case, any bin can contain at most 2 rounded items: (i) either a P-item and a
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S-item or (ii) a Q-item and a R-item. See, for example Figure 8. This implies that

a 2-approximation is the best one can hope for, if 1/2 is not included among the

c1, c2 . . . , cz.

Figure 9: Configurations {P, P, S} and {S, S}

Figure 10: Configurations {R,R,Q} and {Q,Q}

We now consider the case when ci+1 = 1/2. We claim that the possible bin con-

figurations are:

a) [{ P,P,S } and { S,S }], which happens when the items are rounded to types P

and S (see Figure 9). Or,

b) [{ R,R,Q } and { Q,Q }], which happens when items are rounded to types R and

Q (see Figure 10).

Furthermore, the remaining two cases can be ignored. That is, when items are
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rounded to type P and R or when items are rounded to type Q and S, as in these

cases at most two items can be packed into a bin.

So, let us consider case (a). The proof for case (b) is analogous. Let x1 and x2

denote the number of configurations of type { P,P,S } and { S,S } respectively. Then

we get the following configuration LP:

Min x1 + x2

s.t. 2x1 ≥ 4k

x1 + 2x2 ≥ 4k

x1, x2 ≥ 0

The dual is:

Max 4k(v1 + v2)

s.t. 2v1 + v2 ≤ 1

2v2 ≤ 1

v1, v2 ≥ 0

A feasible dual solution is v1 = 0.25, v2 = 0.5. This gives the dual optimal as

≥ 3k. Thus the number of bins needed is ≥ 3k = 3m/2.

This in particular implies that to beat 3/2 one would need a rounding that is not

input-agnostic, or which rounds identical items with the same height and width to

different types — sometimes rounded by width and sometimes by height.

We also note that 4/3 is the lower bound for any rounding algorithm that rounds

items to O(1) types. This seems to be a folklore observation, but we state it here for

completeness.

Theorem 3.4.1. Any algorithm that rounds items to O(1) types cannot achieve

better than 4/3 approximation.
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Proof. Consider the packing in Figure 7. Assume there is an optimal packing of

m = 3k bins where each bin is having similar packing as in Figure 7 for m different

values of x ∈ (0.001, 0.01]. Note that the sum of the height and width is exactly 1

for each rectangle. If we use rounding to O(1) items, then for all but O(1) items i,

w(i) + h(i) exceed 1. Without loss of generality, we assume each item touches the

boundary. Otherwise for these items, we can extend sides vertically and horizontally

so that they touch the boundary or another item. As the total sum of the side lengths

of a bin is 4 and each item has an intersection with the boundary of length > 1 , we

can only pack 3 rounded items to a bin. Thus 4m = 12k items can be packed into at

least 4k−O(1) = 4/3m−O(1) bins. This example packing is particularly interesting

as it also achieves the best known lower bound of 4/3 for guillotine packing.

3.5 Conclusion

The approach for the R&A framework described here applies directly to a wide variety

of algorithms and gives much simpler proofs for previously considered problems (e.g.,

vector bin packing, one dimensional bin packing) [13]. As rounding large coordinates

to O(1) number of types is by far the most widely used technique in bin-packing type

problems, we expect wider applicability of this method. In fact in the next chapter

we will extend this method to further improve the approximation for vector packing.

Moreover, improving our guarantee for 2-D BP will require an algorithm that is

not input-agnostic. In particular, this implies that it should have the property that it

can round two identical items (i.e., with identical height and width) differently. One

such candidate is the guillotine packing approach [18]. It has been conjectured that

this approach can give an approximation ratio of 4/3. One way to show this would be

to prove a structural result bounding the gap between guillotine and non-guillotine

packings. At present the best known upper bound on this gap is T∞ ≈ 1.69 [28].
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Chapter IV

VECTOR BIN PACKING

In this chapter, we consider the d-dimensional (d-D) vector bin packing (VBP) prob-

lem. First, let us briefly mention our results and then give a detailed survey of

previous work, followed by technical details of our results in the later sections.

We give several improved results for d-dimensional VBP. The first of our main

results is as follows:

Theorem 4.0.1. For any small constant ε > 0, there is a polynomial time algorithm

with an asymptotic approximation ratio of (1 + ln(1.5) + ε) ≈ (1.405 + ε) for 2-D

vector packing.

Our techniques for R&A framework from Chapter 3 can be extended to get a sim-

pler proof of previous best (1 + ln d) approximation [13] for vector packing. However

we will show that this (1+ln d) is a natural barrier, as rounding based algorithms can

not beat d. Thus Theorem 4.6.8 gives a substantial improvement upon the current

(1 + ln 2 + ε) ≈ 1.693 + ε bound [13] for 2-D vector packing, but, more importantly,

it overcomes the barrier of (1 + ln d) of the R&A framework.

Theorem 4.6.8 is based on two (perhaps surprising) ideas. First we give a (1.5+ ε)

asymptotic approximation for any ε > 0, without the R&A framework. To do this, we

show that there exists a “well-structured” 1.5-approximate solution, and then search

(approximately) over the space of such solutions. However, as this structured solution

(necessarily) uses unrounded item sizes, it is unclear how to search over the space of

such solutions efficiently. So the key idea is to define this structure carefully based

on matchings, and use a recent elegant algorithm for the multiobjective-multibudget

matching problem by Chekuri, Vondrák, and Zenklusen [35]. As we show, this allows
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us to both use unrounded sizes and yet enumerate the space of solutions like in

rounding-based algorithms. A more detailed overview can be found in Section 4.3.

The second step is to apply the subset oblivious framework to the above algo-

rithm. There are two problems. First, the algorithm is not rounding-based. Second,

even proving subset obliviousness for any rounding based algorithm for d-dimensional

vector packing is more involved than for geometric bin-packing. Roughly, in the ge-

ometric version, items with even a single small coordinate have small area, which

makes it easier to handle, while in the d-dimensional VBP such skewed items can

cause problems. To get around these issues, we use additional technical observations

about the structure of the d-dimensional VBP.

Another consequence of these techniques is the following tight (absolute) approx-

imation guarantee1, improving upon the guarantee of 2 by Kellerer and Kotov [136].

This also shows that 2-D VBP is strictly easier in absolute approximability than 2-D

GBP.

Theorem 4.0.2. For any small constant ε > 0, there is a polynomial time algorithm

with an absolute approximation ratio of (1.5 + ε) for 2-D vector packing.

We extend the approach for d = 2 to give a (d + 1)/2 approximation (for d = 2,

this is precisely the 3/2 bound mentioned above) and then show how to incorporate

it into R&A. However, applying the R&A framework is more challenging here and

instead of the ideal 1 + ln((d + 1)/2) ≈ 0.307 + ln d + od(1), we get the following

(ln d+ 0.807)-approximation:

Theorem 4.0.3. For any small constant ε > 0, there is a polynomial time algorithm

with an asymptotic approximation ratio of (1.5 + ln(d/2) + od(1) + ε) ≈ ln d+ 0.807 +

od(1) + ε for d-dimensional VBP.

1Recall that 3/2 is tight even for one dimensional vector packing via the Partition problem,
and hence for the 2-D VBP. So even though 1-D VBP and 2-D VBP have very different asymptotic
approximability, they have very similar absolute approximability.
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Along the way, we also prove several additional results which could be of indepen-

dent interest. For example, in Section 4.5 we obtain several results related to resource

augmented packing which has been studied for other variants of bin packing [122, 19].

We specifically show the following.

Theorem 4.0.4. There is a polynomial time algorithm for packing vectors into at

most (1 + 2ε)Opt + 1 bins with ε resource augmentation in (d − 1) dimensions (i.e.,

bins have length (1 + ε) in (d − 1) dimensions and 1 in the other dimension), where

Opt denotes the minimum number of unit vector bins to pack these vectors.

Organization. The organization of the chapter is as follows. In Section 4.1, we

discuss related previous works. Then in Section 4.2, we describe some preliminaries

for this chapter. Thereafter in Section 4.3, we give an overview of our algorithm be-

fore going to the technical details. In Section 4.4, we consider packing when resource

augmentation is allowed in (d−1) dimensions. In Section 4.5, we present the (d+1)/2

approximation algorithm for d-D vector packing and some related structural proper-

ties of vector packing. Also we present the algorithm with absolute approximation

guarantee of 3/2. In Section 4.6 and Section 4.7, we present the improved algorithms

using R & A framework for 2-D and d-dimensions respectively.

4.1 Prior Works

In this section we survey the previous work on vector packing and its variants.

4.1.1 Offline Vector Packing:

The first paper to obtain an APTAS for 1-D bin packing by Fernandez de la Vega and

Lueker [55], implies a (d + ε) approximation for vector packing problem. Woeginger

[205] showed that there exists no APTAS even for d = 2 unless P = NP. However

some restricted class of vectors may still admit an APTAS. For example, consider the

usual partial order on d dimensional vectors, where (x1, x2, . . . , xd) ≺ (y1, y2, . . . , yd)
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if and only if xi ≤ yi for all i ∈ [d]. In Woeginger’s gadget for the lower bound, the

items are pairwise incompatible. The opposite extreme case, when there is a total

order on all items, is easy to approximate. In fact, a slight modification of de la

Vega and Lueker [55] algorithm yields an APTAS for subproblems of d-dimensional

VBP with constant Dilworth number. After nearly twenty years, offline results for

the general case was improved by Chekuri and Khanna [34]. They gave an algorithm

with asymptotic approximation ratio of (1+εd+H1/ε) where Hk = 1+1/2+ · · ·+1/k,

is the k’th Harmonic number. Considering ε = 1/d, they show that for fixed d, vector

bin packing can be approximated to within O(ln d) in polynomial time. Bansal,

Caprara and Sviridenko [13] then introduced the Round and Approx framework and

the notion of subset oblivious algorithm and improved it further to (1 + ln d). Both

these algorithms run in time that is exponential in d (or worse). Yao [206] showed

that no algorithm running in time o(n log n) can give better than a d-approximation.

For arbitrary d, Chekuri-Khanna [34] showed vector bin packing is hard to ap-

proximate to within a d1/2−ε factor for all fixed ε > 0 using a reduction from graph

coloring problem. This can be improved to d1−ε by using the following simple reduc-

tion. Let G be a graph on n vertices. In the d-dimensional VBP instance, there will

be d = n dimensions and n items, one for each vertex. For each vertex i, we create an

item i that has size 1 in coordinate i and size 1/n in coordinate j for each neighbor

j of i, and size 0 in every other coordinate. It is easily verified that a set of items S

can be packed into a bin if and only if S is an independent set in G. Thus we mainly

focus on the case when d is a fixed constant and not part of the input.

The two dimensional case has received special attention. Kellerer and Kotov [136]

designed an algorithm for 2-D vector packing with worst case absolute approximation

ratio as 2. On the other hand there is a hardness of 3/2 for absolute approximation

ratio that comes from the hardness of 1-D bin packing.
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4.1.2 Online Vector Packing

A generalization of the First Fit algorithm by Garey et al. [83] gives d+ 7
10

competitive

ratio for the online version. Galamobos et al. [81] showed a lower bound on the

performance ratio of online algorithms that tends to 2 as d grows. The gap persisted

for a long time, and in fact it was conjectured in [69] that the lower bound is super

constant, but sublinear.

Recently Azar et al. [7] settled the status by giving Ω(d1−ε) information theoretic

lower bound using stochastic packing integer programs and online graph coloring. In

fact their result holds for arbitrary bin size B ∈ Z+ if the bin is allowed to grow. In

particular, they show that for any integer B ≥ 1, any deterministic online algorithm

for VBP has a competitive ratio of Ω(d
1
B
−ε). For {0, 1}-VBP the lower bound is

Ω(d
1

B+1
−ε). They also provided an improved upper bound for B ≥ 2 with a polynomial

time algorithm for the online VBP with competitive ratio: O(d1/(B−1) log dB/(B+1)),

for [0, 1]d vectors and O(d1/B log d(B+1)/B), for {0, 1}d vectors.

4.1.3 Vector Scheduling

For d-dimensional vector scheduling, the first major result was obtained by Chekuri

and Khanna [34]. They obtained a PTAS when d is a fixed constant, generalizing

the classical result of Hochbaum and Shmoys [108] for multiprocessor scheduling. For

arbitrary d, they obtained O(ln2 d)-approximation using approximation algorithms

for packing integer programs (PIPs) as a subroutine. They also showed that, when

m is the number of bins in the optimal solution, a simple random assignment gives

O(ln dm/ ln ln dm)-approximation algorithm which works well when m is small. Fur-

thermore, they showed that it is hard to approximate within any constant factor when

d is arbitrary. This ω(1) lower bound is still the present best lower bound for the

offline case.

In the online setting, Meyerson et al. [160] gave deterministic online algorithms
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with O(log d) competitive ratio. Im et al. [111] recently gave an algorithm with

O(log d/ log log d)-competitive ratio. They also show tight information theoretic lower

bound of Ω(log d/ log log d). Surprisingly this is also the present best offline algorithm!

4.1.4 Vector Bin Covering

For d-dimensional vector bin covering problem Alon et al. [4] gave an online algorithm

with competitive ratio 1
2d

, for d ≥ 2, and they showed an information theoretic lower

bound of 2
2d+1

. For the offline version they give an algorithm with an approximation

guarantee of Θ( 1
log d

).

Table 4: Present state of the art for vector packing and related variants

Problem Subcase Best algorithm Best lower bound

Vector Bin

Packing

Offline (constant d) 1 + ln d (asymp.2) [13] APX-hard [205]

d = 2
1 + ln 2 ≈ 1.69 (asymp.) [13] APX-hard [205]

2 (abs.3) [136] 3/2 4

Offline (arbitrary d) 1 + εd+O(ln 1
ε
) [34] d1−ε 5

Online d+ 7
10

[83] Ω(d1−ε) [7]

Vector

Scheduling

Offline (constant d) PTAS[34] NP-hard

Offline (arbitrary d) O(log d/ log log d) [111] ω(1) [34]

Online O(log d/ log log d) [111] Ω(log d/ log log d) [111]

2Here asymp. means asymptotic approximation guarantee
3Here abs. means absolute approximation guarantee
4Follows from the fact that even 1-D bin packing can not be approximated better than 3/2
5See the reduction in Section 4.1.1
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4.1.5 Heuristics

Heuristics for 2-D VBP were studied in detail by Spieksma [193], who mentions ap-

plications in loading, scheduling, and layout design, considers lower bounding and

heuristic procedures using a branch-and-bound scheme. Here, upper bounds are

derived from a heuristic, adapted from the first fit decreasing (FFD)-rule for bin-

packing. To find better lower bounds, properties of pairs of items are investigated.

Han et al. [99] present heuristic and exact algorithms for a variant of 2-D VBP, where

the bins are not identical. Caprara and Toth [30] also studied 2-D VBP. They ana-

lyze several lower bounds for the 2-D VBP. In particular, they determine an upper

bound on the worst-case performance of a class of lower bounding procedures derived

from the classical 1-D BP. They also prove that the lower bound associated with

the huge LP relaxation dominates all the other lower bounds. They then introduce

heuristic and exact algorithms, and report extensive computational results on sev-

eral instance classes, showing that in some cases the combinatorial approach allows

for a fast solution of the problem, while in other cases one has to resort to a large

formulation for finding optimal solutions. Chang et al. [32] had proposed a greedy

heuristic named hedging. Otoo et al. [167] studied the 2-D VBP, where each item

has 2 distinct weights and each bin has 2 corresponding capacities, and have given

linear-time greedy heuristics. An interesting application of the 2-D VBP problem is

studied by Vercruyssen and Muller [202]. The application arises in a factory where

coils of steel plates (items), each having a certain physical weight and height, have

to be distributed over identical furnaces (bins) with a limited capacity for height and

weight. Another application of the problem is described by Sarin and Wilhelm [180],

in the context of layout design. Here, a number of machines (items) have to be as-

signed to a number of robots (bins), with each robot having a limited capacity for

space, as well as a limited capacity for serving a machine. Many of these heuristics

are tailor-made for 2-D.
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For the general case, Stillwell et al. [196] studied variants of FFD concluding that

the algorithm FFDAvgSum is best in practice. They also show that genetic algorithms

do not perform well. Panigrahy et al. [169] systematically studied variants of the First

Fit Decreasing (FFD) algorithm. Inspired by bad instances for FFD-type algorithms,

they propose new geometric heuristics that run nearly as fast as FFD for reasonable

values of n and d.

4.2 Preliminaries

Let I := {v1, v2, . . . , vn} be a set of d-dimensional vectors where vi = (v1
i , v

2
i , . . . , v

d
i )

and vji ∈ [0, 1] for j ∈ [d]. Here [d] denotes the set {1, 2, . . . , d}, for d ∈ N. We will

use the terms dimension and coordinate interchangeably. If α is a vector, we call a

bin Bi to be α-packed, if
∑

vj∈Bi v
`
j ≤ α` for all ` ∈ [d]. For any bin Bi, it has slack

δ in dimension k if
∑

v∈Bi v
k ≤ (1 − δ). For a set S of vectors, let σS be the vector

denoting the coordinate-wise sum of all vectors in S, i.e., σS =
∑

vj∈S vj. We denote

σS ≤ v if σlS ≤ vl for all dimensions l ∈ [d]. Thus S is a feasible configuration, if

σS ≤ 1, where 1 = (1, . . . , 1) is the unit vector.

We now classify the items into the following two classes based on their sizes. Here

β is a parameter depending on ε and d and will be fixed later.

• Large or big items (L ) : at least one coordinate has size ≥ β, i.e., v ∈ L iff

||v||∞ ≥ β.

• Small items (S ) : all coordinates have size < β, i.e., v ∈ S iff ||v||∞ < β.

Let LB be the set of big items and SB be the set of small items in a bin B. We call

a configuration of big items in B to be the vector
∑

vi∈LB
vi. We call a configuration

of small items to be the remaining space in the bin, i.e., vector 1−
∑

vi∈LB
vi.

Let (c1, c2, . . . , cd) be a d-tuple of integers such that ci ∈ [0, d1
ε
e]. Each such

distinct tuple is called to be a capacity configuration and approximately describes
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how a bin is filled. A packing of a set of vectors V is said to be viable for a capacity

configuration (c1, . . . , cd) if σV ≤ ε · (c1, . . . , cd). There are rc := (1 + d1
ε
e)d possible

types of capacity configurations.

Now we define a bin configuration to be an rc-tuple of integers (m1,m2, . . . ,mrc)

where mi ∈ [m] and
∑

imi = m. Bin configuration approximately describes the

structure of all packed bins, i.e., there are mi bins with capacity configuration ci for

i ∈ [rc]. Total number of bin configurations is O(mrc). A packing of a set of vectors

V is said to be viable to a bin configuration M = (m1,m2, . . . ,mrc), if there is a

packing of items in V into m bins such that the bins can be partitioned into sets

B1,B2, . . . ,Brc and there are mi bins in Bi that are viable to capacity configuration

ci.

4.2.1 Rounding specification and realizability

Consider a partition R1 ∪ · · · ∪ Rk of I into k classes, and a function R : I → [0, 1]d

which maps all items v ∈ Ri to some item ṽi. We call the instance Ĩ := {R(v) | v ∈ I}

a rounding of I to k item types. Sometimes, in our algorithms we will not know

which items will be rounded in what way. We will have classes W1, . . . ,Wk ⊆ I, not

necessarily disjoint, and for each class Wi, there will be a specified item ṽi and a

number wi, meaning that exactly wi items from Wi are supposed to be rounded to

item ṽi. We call this a rounding specification. We say, that a rounding specification is

realizable for instance I, if there is a rounding Ĩ and a function R : I → Ĩ that satisfies

the requirements of the rounding specification. This can be checked, for example, by

solving a flow problem. Being able to guess the right rounding specification and test

its realizability will be crucial in Section 4.5.
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4.2.2 Limitations of Round and Approx Framework

Theorem 4.2.1. Any algorithm that rounds large dimensions (with value more than

ε, where ε > 0 is a given accuracy parameter) of items to O(1) types can not achieve

better than d approximation for d-D vector packing.

Proof. Let A be an algorithm that rounds large dimensions of items to r (a constant)

types. Let t ∈ N be another large constant. Consider following n = dtrk items that

can be packed into m = n/d = trk bins B1, . . . ,Bm in the optimal packing. There are

tr types of bin in the optimal packing and each type contains m/tr = k bins. Each

i’th type bin contains d items vi1 , vi2 , . . . , vid such that vhih = 1−εi and vlih = εi/(d−1)

for h = 1, 2, . . . , d and l ∈ [d] \ {h} where εi = ξ
di−1 and ξ is a small constant, i.e.,

in each bin of type i, for each coordinate h there is exactly one item vih with value

(1− εi) in that coordinate ( vih has length εi
(d−1)

in all other coordinates), and (d− 1)

other items with value εi
(d−1)

in coordinate h.

Now let the rounding algorithm round the large coordinates of items to constant

types 1− δ1, 1− δ2, . . . , 1− δr such that 1− ε`h ≤ 1− δh < 1− ε`h+1
for h ∈ [r− 1] and

1− εtr ≤ 1− δr. Then apart from possibly the items in bins of type `h for h ∈ [r− 1]

and of type tr, for all other items large coordinates (1 − ε′) are rounded to some

other value (1− ε̃) such that ε′ ≥ dε̃. Let us call the bins that are not of type `h for

h ∈ [r − 1] and of type tr to be complex bins. We claim the following.

Claim 4.2.2. No two rounded items from two complex bins, can be packed into one

bin.

Proof. Let vix and vjy be two items from complex bins of type i and j where i ≤ j.

From definition of εi,

εi = dj−iεj (21)
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Let vix and vjy be the rounded vector, then

vyjy + vyix ≥ (1− εj) +
εi

d− 1

≥ (1− εj
d

) +
εi

d− 1

[
Since, εj ≥ dεj

]
≥ (1− εj

d
) +

εj
d− 1

> 1
[
Since, i ≤ j and d > 1

]
.

Thus two rounded items can not be packed together in a bin.

Hence, we need at least (md − rkd) bins to pack all items. This implies a lower

bound of approximation for these class of algorithms as md−rkd
m

= d(1− rk
trk

) = d(1− 1
t
).

Thus it gives asymptotic approximation hardness for rounding-based algorithms as

d.

Therefore, improving 1 + ln d for d-dimensions is not possible by just using R &

A framework with a O(1) rounding based algorithm to pack the residual items.

4.2.3 Multi-objective/multi-budget Matching

In Multi-objective/multi-budget matching problem (MOMB), we are given a graph

G := (V,E), k linear functions (called demands) f1, f2, . . . , fk : 2E → R+, ` linear

functions (called budgets) g1, g2, . . . , g` : 2E → R+, and the goal is to find a matching

M satisfying fi(M) ≥ Di for all i ∈ [k] and gi(M) ≤ Bi for all i ∈ `.

Chekuri et al. [35] gave an algorithm that solves the problem nearly optimally.

Theorem 4.2.3. [35] For any constant γ > 0 and any constant number of demands

and budgets k+`, there is a polynomial time algorithm which for any feasible instance

of multi-objective matching finds a feasible solution S such that

• Each linear budget constraint is satisfied: gi(S) ≤ Bi.

• Each linear demand is nearly satisfied: fi(S) ≥ (1− γ)Di.

If such a solution is not found, the algorithm returns a certificate that the instance

is not feasible with demands Di and budget Bi.
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4.3 Overview and Roadmap

Before proving our results, we first give some intuition behind the main ideas and

techniques. For the sake of simplicity, we mostly focus on the case of d = 2.

The starting point is the following simple observation. Suppose there is an optimal

packing P of I where each bin in B ∈ P has some fixed slack δ in each dimension.

Then one can get optimal packing easily by the following resource augmentation result

[34].

Theorem 4.3.1. [34] If a d-dimensional VBP instance can be packed in m bins, then

for any δ > 0, a packing in m bins of size (1 + δ, . . . , 1 + δ) can be found in time

poly(n, f(δ)) for some function f .

However this is too good to hope for, and there can be a large gap between packings

with and without slack. For example, if all items are (0.5, 0.5), then Opt(I) = m/2,

while any packing with slack needs m bins. However, note that this instance, or

any instance where each bin has at most 2 items, can be easily solved by matching.

Similarly an example can be constructed, showing that in d-dimensional case Opt(1−δ)

can be d-times larger than Opt. Consider the set of md vectors that can be packed

into m bins in an optimal packing such that in each bin Bi there are d vectors vj for

j ∈ [d] having coordinate j equal to 1− δ and the rest equal to δ
d−1

. Then Opt = m,

while Opt(1−δ) = md.

However we can show a related structural result.

Lemma 4.3.2. [Structural lemma for 2-D VBP] Fix any δ < 1/5. For any packing

P using m bins, there exists a packing P ′ into at most d3m/2e bins, such that for

each bin B in P ′: (i) either B contains at most 2 items, or (ii) at least one of the

dimensions in B has slack at least δ.

We call such a packing P ′ a structured packing, and a generalized version of this

lemma is proved in Lemma 4.5.9 in Section 4.5.
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Finding structured-packings: Our goal then is to find such a packing P ′ efficiently.

To handle bins of type (ii), we first show a variant of Theorem 4.3.1 that only needs

resource augmentation in d− 1 dimensions (instead of d). This is shown in Theorem

4.0.4 in Section 4.4. Now, if we knew which items were packed in the matching bins

(of type (i) above, i.e., bins that contain at most two items), then an APTAS for

P ′ would follow by applying Theorem 4.0.4 on the remaining items. However, it is

unclear how to guess the items in the matching bins efficiently, as their sizes are not

rounded.

To get around this, we flip the idea on its head. We observe that Theorem 4.0.4

for packing of bins with slack is based on rounding item sizes, and hence only requires

knowledge of how many items of each size type (according to its internal rounding)

are present in the instance. So we guess the thresholds used by the algorithm to

define the size classes, and guess how many items of each type are packed in the slack

bins. Now, the remaining items must be the ones packed in matching bins (we do not

know which are these items, but we know how many items of each type there are).

This leads precisely to the multi-objective budgeted matching problem [35].

In particular, we consider a graph with a vertex for each item and an edge between

two items if they can be packed together. We then classify the items into O(1)

classes, based on the guessed size classification, and then apply Theorem 4.2.3 to

find a matching with the guessed quota of items from each class. This gives the 3/2-

asymptotic approximation for d = 2, and an analogous (d + 1)/2 approximation for

general d. This is described in Section 4.5.

Applying the R&A framework: We apply the R&A framework in different ways

depending on whether d = 2 or d > 2. For d = 2, we first find a packing in matching

bins, and then apply R&A on remaining items. Roughly speaking, this works because

the remaining items are packed using the APTAS which is rounding based. The proof

has some additional technical difficulties compared to a similar previous result on
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2-dimensional geometric bin-packing [17], due to skewed items that are large in one

dimension and small in another. This is described in Section 4.6.

For d > 2, it is unclear how to make the above idea work as there are no analogous

results to Theorem 4.2.3 for multi-objective budgeted d-dimensional matching. So we

adopt a different approach. We apply random sampling directly to P ′ first and then

use multi-objective budgeted matching for the remaining items. Roughly, the reason

is that after sampling many bins are left with one or two remaining items, and we

can apply Theorem 4.2.3. But the details are more technical and we refer the reader

to Section 4.7.

4.4 Vector Packing with Resource Augmentation

In this section we consider packing when resource augmentation is allowed in (d− 1)-

dimensions. We call these dimensions to be augmentable dimensions. The only other

dimension where we are not allowed to augment, is called non-augmentable dimension.

Without loss of generality, we assume the last dimension to be the non-augmentable

dimension. Now let us prove Theorem 4.0.4, the main result in this section.

Theorem 4.4.1. (Restatement of Theorem 4.0.4) Let ε > 0 be a constant and I be

an instance of d-dimensional vector packing for which m unit vector bins are required

in the optimal packing, then there is a polynomial time algorithm for packing vectors

in I into at most (1 + ε + ε2

2d
)m + 1 bins with ε resource augmentation in (d − 1)

dimensions (i.e., bins have length (1 + ε) in (d − 1) dimensions and length 1 in the

other dimension).

Given ε and a guess for the optimal value m, we describe a procedure that either

returns a feasible packing into (1 + ε+ ε2

2d
)m+ 1 bins with ε resource augmentation in

(d − 1) dimensions, or proves that the guess is incorrect. First we classify the items

into big and small based on β = ε/2d. Then we round the big items into a constant

number of classes. We set aside few vectors and pack them separately. Thereafter,
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for each bin configuration C, the algorithm first decides if remaining rounded vectors

in L can be packed viable to C. This is done using dynamic programming and

contributes a major slice of the overall time complexity. Afterwards we replace the

rounded items by the original ones. In the final step we pack the small items using

linear programming into the residual space of the bins as well as in some additional

bins as needed.

4.4.1 Rounding of big items

Now let us describe the procedure to round the big items into constant number of

item types. We apply different roundings on augmentable and non-augmentable coor-

dinates. Coordinates 1, . . . , d− 1 (those with the resource augmentation allowed) are

rounded to the multiples of α, where α = ε2

2d2
, and the d-th coordinate is rounded us-

ing linear grouping. Note that the small items are not rounded and will be considered

separately later.

4.4.1.1 Rounding of augmentable coordinates by preprocessing:

We create an instance Q̂ rounded in the first d− 1 coordinates by replacing each big

item pi of I with an item q̂i as follows:

q̂`i :=


dp`i/αeα if ` ∈ {1, . . . , (d− 1)},

p`i if ` = d.

We split Q̂ into classes {W u|u ∈ {1, . . . , d 1
α
e}d−1} where W u := {q̂ | q̂` = u` ·

α} for each ` ∈ [d− 1], creating rA := (d 1
α
e)d−1 classes altogether.

4.4.1.2 Rounding of the non-augmentable coordinate:

We apply rounding of the last coordinate using linear grouping on each W u sepa-

rately. Let λ be a very small constant dependent just on ε and d which will be fixed

in the proof of Lemma 4.4.2. We sort the items in W u according to nonincreasing
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size in the last coordinate. Let ku be the number of vectors in W u, denoted by

q̂u,1, . . . , q̂u,ku in sorted order according to nonincreasing size in the last coordinate.

We define at most d1/λe subsets W u,j each of which consists of dλ|W u|e vectors ex-

cept the last subset that might contain less than dλ|W u|e vectors. This is done in

the following way. We select the first vector q̂u,1 (call it the first round vector), then

assign that vector and next dλ|W u|e − 1 vectors into one subset W u,1. Then again

we select the next vector (second round vector) and assign it and next dλ|W u|e − 1

vectors into the set W u,2 and so on. Thus, the jth subset W u,j contains dλ|W u|e vec-

tors {q̂u,((j−1)·dλ|Wu|e+1), . . . , q̂u,(j·dλ|Wu|e)} and the jth round vector is q̂u,((j−1)·dλ|Wu|e+1).

The last subset can possibly contain less than dλ|W u|e vectors.

To get the final rounded instance Q̃ we replace each vector q̂i ∈ W u,j by q̃i, where

q̃`i := q̂`i for ` ∈ [d− 1],

q̃di := max{q̂d | q̂ ∈ W u,j}.

Thus we round-up the dth dimension to the dth coordinate of the round vector of the

group. Note that the number of groups in each W u is≤ d( |Wu|
dλ|Wu|e)e ≤ d(

|Wu|
λ|Wu|)e ≤ d

1
λ
e.

Thus the rounded vectors in Q̃ can be classified into one of rL := d1/λe · rA =

d 1
λ
e · (d 1

α
e)(d−1) distinct classes. Any configuration of vectors into one bin can be

described as tuple (k1, k2, . . . , krL) where ki indicates the number of vectors of the

i’th class. As at most d/β vectors from Q̃ can be there in any bin, there are at most

(d/β)rL configurations.

Now we prove that the described rounding procedure fulfills the requirements of

the following lemma:

Lemma 4.4.2. Let I be an instance of d-dimensional vector packing and I1, . . . , Im

be a packing of I into m unit bins. Then there exists a packing of Q̃, rounding of the

big vectors in I using the described rounding procedure, such that:

1. Except for εm
2

items, all other big items in Q̃ can be packed into m bins

Q̃1, . . . , Q̃m of type (1 + ε, 1 + ε, . . . , 1 + ε, 1).
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2. For i ∈ [m], the configuration of small items in Q̃i is the same or larger than

the configuration of small items in Ii in all coordinates.

Proof. Given a packing of I into m bins, we can construct a packing of Q̃ in the

following way. We set λ := εβ
2d

. We keep the round vectors in their same positions.

For all u ∈ [d 1
α
e]d−1 and i ∈

[
d 1
λ
e − 1

]
, we remove the other vectors (i.e., except

the ith round vector) from the packing of I corresponding to items in W u,i and put

rounded items (except the (i + 1)th round vector) from W u,i+1 in their places to

construct packing Q̃. This will give a feasible packing as items in W u,i+1 are the

same or smaller than the items in W u,i for each u ∈ {1, . . . , d 1
α
e}d−1 and i ∈

[
d 1
λ
e−1

]
and all subsets of W u have the same cardinality of dλ|W u|e (except probably the

last). Let Q̃′′ := ∪u∈{1,...,d 1
α
e}d−1(W u,1 \ {q̂u,1}) and Q̃′ = Q̃ \ Q̃′′. By now, all items

in Q̃′ are packed in a feasible way and we are left with items in Q̃′′ (i.e., the set of

all items in W u,1 for each u ∈ {1, . . . , d 1
α
e}d−1 except the round vectors) which we

will pack separately. It is clear that in any bin, we did not use more space in the

last dimension to pack all items in Q̃′, than what the big items used in the original

packing in the last dimension. Let Q̃i be a bin in the packing of Q̃′, that we obtained

from a packing of Ii using the above procedure. Let us consider the sum of sizes in

any coordinate ` ∈ [d− 1]:

∑
q̃∈Q̃i

q̃` ≤
∑
p∈Ii

(dp`/αe · α)

≤
∑
p∈Ii

(p` + α)

=
∑
p∈Ii

p` +
d

β
α

[
Since, |Ii| ≤

d

β

]
=

∑
p∈Ii

p` + ε
[
Since, α =

ε2

2d2
=
βε

d

]
.

Hence,

(1 + ε)−
∑
q̃∈Q̃i

q̃` ≤ 1−
∑
p∈Ii

p`.
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Therefore, the augmentation of the bin in coordinate ` ∈ [d− 1] by ε is sufficient

and for i ∈ [m], the configuration of small items (remaining space in the bin) in Q̃i is

the same or larger than the configuration of small items in Ii in all coordinates.

Now to conclude the proof we need to show, |Q̃′′| ≤ εm
2

. Each big item has size at

least β in at least one of the coordinates. In each bin there can be at most 1/β items

for each coordinate which are big when restricted to this coordinate, having at most

d
β

big items in a bin in total. Therefore, we have d
β
m ≥

∑
|W u|. Now,

|Q̃′′| =
∑
u

(|W u,1| − 1) ≤
∑
u

(dλ|W u|e − 1)

≤
∑
u

λ|W u|

≤ λ
d

β
m

≤ εβ

2d
· d
β
m

≤ εm

2
.

So, we are left with at most b εm
2
c many items. Note that we can always pack these

extra items greedily into b εm
2
c additional bins.

4.4.2 Packing of big items

From Lemma 4.4.2, it follows that if I is packable intom bins then there is a structured

rounding Q̃ of big items in I. There is a constant number of item types rL in Q̃. Thus

there are only r ≤ ( d
β
)
rL , number of configurations. Since m ≤ n, this gives us O(mr),

a polynomial number of configurations of big items for m bins and allows us to guess

it, more precisely, to try each configuration until we find the right one.

Lemma 4.4.3. Let m := Opt(I), then the rounded instance Q̃ can be packed in

polynomial time into m′ := m+ b εm
2
c unit bins.
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Proof. We guess the configuration of the m′ bins which would correspond to the

configuration of big items in some packing of I into m bins in the sense of Lemma

4.4.2. We guess the round vectors and pack them separately into b εm
2
c bins. If there

is a feasible packing of Q̃′ corresponding to the guessed configuration, we can find it

using dynamic programming in time O
(
(dn
β

)rL ·m
)

according to the following lemma

in [34, Lemma 2.3].

Lemma 4.4.4. [34]. Let M = (m1, . . .mrc) be a bin configuration. There exists an

algorithm with running time O
(
(dn
β

)rL ·m
)

to decide if there is a packing of the items

in Q̃′ that is viable to M .

If we can not find one, we have guessed a wrong configuration and we should

try again. If we tried all the configurations and none of them worked, this is a

contradiction to the Lemma 4.4.2 and we know that I is not packable into m bins.

4.4.3 Packing of small items

Lemma 4.4.5. Let (Q̃1, . . . , Q̃m) be a packing of large vectors in I into m bins of

type (1 + ε, . . . , 1 + ε, 1) such that there is an optimal packing (I1, . . . , Im) into m

unit vector bins, so that for each k ∈ [m], configuration of small items in Q̃i is the

same or larger than the configuration of small items in Ii in all coordinates. Then we

can pack all the small items of I into residual space of bins Q̃1, . . . , Q̃m and at most⌈
m
2
· (ε+ ε2

d
)
⌉

additional bins.

Proof. To pack the small vectors, we use the idea of Chekuri and Khanna [34]. How-

ever in [34], as resource augmentation was allowed in all dimensions, small vectors

could have been packed without using any additional bins. In our case we need extra

bins. We formulate the following assignment LP:
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m∑
j=1

xij = 1 for each small item vi ∈ S ,

|S |∑
i=1

xijv
`
i ≤ (1 + ε)− b`j for each bin j ∈ [m] and dimension ` ∈ [d− 1],

|S |∑
i=1

xijv
`
i ≤ 1− b`j for each bin j ∈ [m] and dimension ` = d,

xij ≥ 0 for each item i ∈ S and each bin j ∈ [m],

where bj :=
∑

q̃∈Q̃j q̃, i.e., sum of rounded large vectors in bin j.

Since there is an optimum packing of I that for each bin j uses a smaller or equal

space for small items, the assignment LP is feasible. Let x be a basic feasible solution

to this LP. The integrally assigned items can be packed directly. We denote F to

be the set of items assigned fractionally in x. The number of variables in the LP is

m · |S | and thus from standard polyhedral theory any basic solution to the LP has

m · |S | tight constraints. However there are dm+ |S | non-trivial constraints. Thus

at most dm+ |S | variables can be strictly positive. As each vector is assigned to at

least one bin, the number of vectors that are fractionally assigned to more than one

bin is at most dm. Hence, |F | ≤ dm. We pack the items in F in separate bins. Now,

for any constant ψ < 1/2, we have the following inequality:

1

ψ
− (b 1

ψ
c) · (1 + 2ψ) ≤ 1

ψ
− (

1

ψ
− 1) · (1 + 2ψ)

≤ 2ψ − 1 < 0.

Hence,

1

(b 1
ψ
c)
<

(1 + 2ψ)

( 1
ψ

)
. (22)
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Since the size of each item is less than β in both dimensions, the number of

additional bins are at most

⌈ dm
b 1
β
c

⌉
≤

⌈ dm
b2d
ε
c

⌉
≤

⌈
dm · (1 + ε/d)

(2d
ε

)

⌉ [
From (22), using ψ = ε/2d

]
≤

⌈m
2
· (ε+

ε2

d
)
⌉
.

4.4.4 Algorithm and proof of Theorem 4.0.4

In Algorithm 1, a summary of an algorithm giving a proof of the main theorem of

this section can be found.

A. Guessing phase1:

A1. Guess m := Opt(I), // O(log n) guesses

A2. Create Q̃, the rounded instance of large vectors of I, // O(n log n)

A3. Guess large configuration M of m+ d εm
2
e bins of size

(1 + ε, . . . , 1 + ε, 1), // O(mt)

B. Packing of large items.

B1. Pack items in Q̃ into configuration M , or // O
(
(dn
β

)rL ·m
)

return to Guessing phase,

B2. Replace rounded items of Q̃ by original items, // O(n)

C. Packing of small items.

Pack small items using assignment LP, or

return to Guessing phase.

Algorithm 1: d-dim. VBP with resource augmentation in (d− 1) dim.
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Proof of Theorem 4.0.4. If there is a packing of I into m unit bins, from Lemma

4.4.2 we know that there is a packing of rounded instance Q̃ of big vectors of I into

m′ := m+ b εm
2
c unit bins. Moreover, Lemma 4.4.2 assures, that there is still enough

space to pack all the small vectors except at most dm small items. Thus if we can

guess the bin configuration of the optimal packing, we can pack the small items of I

using Lemma 4.4.5, getting a packing of I into m′′ := m+ b εm
2
c+ dm

2
· (ε+ ε2/d)e ≤

m+m · (ε+ ε2

2d
) + 1 bins.

Since items in Q are rounded to a constant number of classes, there is a polynomial

number of configurations of m bins for Q and we can, in the worst case, enumerate

them all. If we fail in the following steps in packing I into m′′ := m+m · (ε+ ε2

2d
) + 1

bins for every choice of bin configurations, due to Lemma 4.4.2, and 4.4.5, we can

claim that Opt(I) > m. Otherwise Opt(I) ≤ m′′.

This enables us to guess the value of m using a binary search between ||
∑

v∈I v||∞

and n. We find the smallest m such that we are able to pack I into m′′ bins using

Algorithm 1. Then from Lemma 4.4.2 and 4.4.5 we know that m ≤ Opt(I) ≤ m′′ =

m+m · (ε+ ε2

2d
) + 1 and the statement of the theorem follows.

4.5 Finding a well-structured approximation solution for
vector packing

Our goal in this section is to prove the following theorem:

Theorem 4.5.1. Given any constant ε, such that 0 < ε < 1
56d2

, and a d-dimensional

VBP instance I, there is a polynomial time algorithm to pack I into at most d(d+1
2

)Opt(I)e·

(1 + 2ε) + 1 unit bins.

This already gives (1.5 + ε) and (2 + ε) asymptotic approximations for 2-D and

3-D VBP improving upon the current best guarantees of (1.693 + ε) and (2.099 + ε)

respectively.

To prove Theorem 4.5.1, we first show the existence of a structured packing using
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d(d+1
2

)me bins (Lemma 4.5.9), and then use the APTAS in Section 4.4 to find such a

structured packing.

Let δ be a suitably small constant whose value will be specified later.

Definition 4.5.2. A packing P is structured if each bin B ∈ P satisfies one of the

following:

• B consists of precisely one single large item v. We call this collection of bins

BS.

• B consists of precisely two large items vi, vj. We call this collection of bins BT .

• B has δ-slack in at least d − 1 dimensions. The collection of bins with δ-slack

in dimensions [d] \ {`} is denoted by B`. If B has δ-slack in all dimensions we

assign it (arbitrarily) to B1.

Let us fix δ := ε
1+ε

. We claim the following:

Lemma 4.5.3. Let ε > 0 be a constant and I be an instance of d-dimensional vector

packing having a structured packing into m′ bins, then there is a polynomial time

algorithm that pack items in I into at most (1 + ε+ ε2

2d
)m′ + 1 bins.

An algorithm proving Lemma 4.5.3 is given at the end of this section. Together

with Lemma 4.5.9 (proving existence of relatively small structured packings) it already

implies Theorem 4.5.1.

4.5.1 Existence of small structured packing

In the following part of this section we prove that there indeed exist small structured

packings. First we consider d = 2, which is rather simple. Then we will consider the

proof of general d, which is more involved.

Lemma 4.5.4. Let δ < 1/5, and let B be a bin of 2-D VBP that is not structured.

Then at least one of the following holds:
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1. There is a large item p ∈ B such that p ≤ (1/2, 1/2) and p is > δ in at least

one coordinate.

2. There is a subset S of items in B such that
∑

p∈S p ≤ (2δ, 2δ) and either:

(i) B \ S has δ-slack in some dimension, or

(ii) |B \ S| ≤ 2 with (
∑

v∈B\S v) ≥ (1− δ, 1− δ).

Proof. Let T denote the set of items v ∈ B such that v ≤ (δ, δ). As there can be

at most two items in a bin with some coordinate strictly > 1/2 (at most one item

for each coordinate), if there is no p satisfying the first requirement, we know that

|B \ T | ≤ 2.

If (
∑

v∈T v) ≤ (δ, δ), we set S := T . Then |B \ S| ≤ 2 with (
∑

v∈B\S v) ≥

(1 − δ, 1 − δ), as desired. Otherwise, (
∑

v∈T v) is greater than δ in at least one

dimension. So we greedily add items of T to S until B \S contains δ slack in at least

one dimension. Since T only contains items < (δ, δ), the items of S can not sum to

more than δ + δ ≤ 2δ in any coordinate.

We now show that Lemma 4.5.4 implies the following lemma. This immediately

implies Lemma 4.5.9 (for d = 2), by applying it repeatedly to the unstructured bins

in I

Lemma 4.5.5. For any two unstructured bins B1 and B2 in I, their items can be

repacked into three structured bins.

Proof. As δ < 1/5, we have 4δ < (1 − δ) and 1/2 + δ < (1 − δ). From each B1 and

B2, let us remove either the large item p or set S (as in Lemma 4.5.4), and pack them

into a new bin B′.

We first note that if either p or S is removed from some bin B, then B becomes

structured (it either has δ-slack in some dimension, or at most 2 items). Second,

if the repacked items are both of type p, then B′ is structured as it has exactly 2
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large items. Otherwise, if at least one item is of type S, then B′ has δ-slack in both

dimensions as both 1/2 + 2δ ≤ 1− δ and 2δ + 2δ ≤ 1− δ.

Thus we get the existence for 2-D.

Lemma 4.5.6. Let I be an instance of 2-dimensional vector packing. Any optimal

packing of I into m bins can be transformed into a packing into d3
2
me bins of types

BS,BT ,B1,B2.

Before proving the d-dimensional structural lemma, we make the following obser-

vation.

Lemma 4.5.7. Let B be a set of d-dimensional vectors that can be feasibly packed

into one unit vector bin. Then there is a subset V of big items and another subset S

of items of B such that the bin packed with all the items in B := B \ (V ∪S) contains

slack of ≥ δ in at least d− 1 dimensions, and one of the following holds.

1. |V | ≤ (d− 1), S = ∅,

2. |V | ≤ (d − 2), S 6= ∅, such that
∑

p∈S p ≤ κδ in all coordinates for a small

constant κ.

Furthermore, removal of each item in V from B, creates a slack of ≥ δ in at least one

distinct coordinate.

Proof. We start with C = [d], V = ∅ and then we update C after removal of items

in the following steps by considering the dimensions one by one. In each iteration we

select a coordinate k ∈ C that we have not considered already. Let v be the vector

with highest coordinate along k, i.e., vk ≥ pk for all p ∈ B. If removal of v from B

creates δ slack along dimension k, then remove v from B and update B = B \ {v},

C = C \{k}, V = V ∪{v}. We continue this while |C | > 1 and while such a removable

item v exists. Thus by definition of V , removal of each item in V from B, creates

slack in at least one distinct coordinate in B and |V | ≤ d− 1.
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As element in V creates slack in at least one distinct coordinate, if |V | = d − 1,

B \ V already has slack in (d− 1) dimensions and we are done by taking S = ∅.

Otherwise let |C | ≥ 2, where C denotes the set of coordinates where B does not

contain δ slack. So, |V | ≤ (d− 2). Hence after removing the items in V , all items in

(B \ V ) are < δ in all coordinates of C . Note that they can still be relatively big in

coordinates of C := [d] \ C . Now we make the following general claim.

Claim 4.5.8. Let B′ be the set of d-dimensional vectors that can be feasibly packed

into a unit vector bin and C be the set of coordinates where the sum of vectors in the

bin is ≥ (θ − δ) for some constant θ ≤ 1. If all items in a set B′ are smaller than δ

in all coordinates of C and δ < θ
6
, then there exists a subset S such that |S| ≥ 2 and∑

p∈S p ≤ κδ in all coordinates for some constant κ and
∑

p∈S p ≥ δ in all coordinates

in C .

Proof of Claim: Let B′′ be set of all items of B′ which are < 3δd
θ

in all coordinates

of C . We formulate the following LP:

min
∑
pi∈B′′

xi

δ ≤
∑
pi∈B′′

xip
`
i ≤

2δ

θ
∀ ` ∈ C ,

∑
pi∈B′′

xip
`
i ≤

2δ

θ
∀ ` ∈ C ,

0 ≤ x`i ≤ 1 ∀ i ∈ B′′, ` ∈ [d].

(23)

To show the feasibility of this LP, let us consider x′ = (2δ
θ
, . . . , 2δ

θ
). Let B̊ = B′ \ B′′.

There could be at most dθ
3δd

items in B′ bigger than 3δd
θ

in some coordinate in C . As

these items are ≤ δ in all coordinates in C ,
∑

pi∈B̊ pi ≤ δ · dθ
3δd
≤ θ/3 in all coordinates

in C . Now
∑

pi∈B′′∪B̊ pi ≥ (θ− δ) in all coordinates in C . Thus the sum
∑

pi∈B′′ pi is

at least (θ− δ − θ/3) ≥ θ/2 in all coordinates of C by taking δ < θ/6. Therefore, we

have
∑

pi∈B′′ xipi >
2δ
θ
· θ

2
≥ δ in coordinates of C . Since the items of B′′ were packed
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into a single bin, we know that
∑

pi∈B′′ pi ≤ 1 and therefore
∑

pi∈B′′ xipi ≤
2δ
θ

in all

coordinates and thereby x′ is a feasible solution of (23).

Let us fix a basic optimal solution x to (23) and set S = {pi|xi > 0}. We

claim that the sum
∑

pi∈S pi is at most κδ in each dimension for some constant κ

dependent just on δ and d. Let F denote the set of fractional variables xi. We

know that each basic solution to the LP (23) fulfils at least |B′′| constraints with

equality. Apart from constraints 0 ≤ x`i ≤ 1, which would make the variable integral

if fulfilled with equality, there are at most (2|C | + |C |) ≤ 2d nontrivial constraints

and they allow us |F | ≤ 2d. Since each item is at most 3δd/θ in all dimensions we

get
∑

pi∈S pi ≤ 2δ + 2d · 3δd
θ
≤ 7δd2/θ as d ≥ 2. Hence, the claim follows by taking

κ = 7d2/θ.

This completes the proof.

If we consider ε < θ
28d2

, then δ < θ
28d2

. Thus 2 ·κδ < (1−δ) and 1/2+κδ < (1−δ).

Thus from each bin we remove S and for any two bins, the removed elements can be

packed into bins that have slack ≥ δ in at least d− 1 coordinates or contains at most

two items.

Lemma 4.5.9. Let I be an instance of d-dimensional vector packing where d > 2.

Any optimal packing of I into m bins can be transformed to a packing into dd+1
2
me

bins of types BS,BT ,B1, . . . ,Bd.

Proof. For each bin Bi in the optimal packing, let Vi and Si denote the sets guaran-

teed by Lemma 4.5.7. So, the bin with items in Bi \ (Vi ∪Si) is already of type B` for

some ` ∈ [d]. We have to pack items in Vi ∪ Si into bins of types BS,BT ,B1, . . . ,Bd.

Now there are two cases.

Case A. If d is odd, i.e., d− 1 is even. If |Vi| ≤ d− 3 we can pack all items in |Vi|

in pairs into at most d−3
2

bins. Otherwise if |Vi| ≥ d− 2, there is an item v ∈ Vi such
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that v is < 1/2 in all coordinates except one (say dy). Pack v with Si (if Si 6= ∅) or

an arbitrary another element from Vi (if S = ∅) separately in another bin B′. Note

that B′ either has at most two items (if Si = ∅) or has slack in all dimensions except

dy, satisfying condition of B` bins. We can pack all remaining items in |Vi| in pairs

into at most d−3
2

bins. Total bins needed ≤ ( (d−3)
2

+ 1 + 1)m ≤ dd+1
2
me.

Case B. If d is even, i.e., d− 1 is odd.

If |Vi| ≤ (d − 2) and Si 6= ∅, then for any two bins Bi and Bj we can pack cor-

responding sets Si and Sj together and we get a bin with at least δ slack in all

dimensions. We pack items in Vi into pairs so that the total number of bins is at

most ≤ d−2
2
·m+m+ dm

2
e ≤ dd+1

2
me bins.

Only remaining case is when |Vi| = (d − 1) and Si = ∅. Now if there is a set

Ri ⊆ Bi such that either Ri = {pi} with pi ≤ 1/2 in all coordinates or Ri is a set S ′i

with σS′i ≤
1
2
− δ in all dimensions except one, then we will show that all sets of type

Ri from different bins can be paired together into bins of type BT or B`. So, all Ri

items from m bins can be packed into at most dm
2
e bins of type BS,BT ,B`. For each

bin we need to show existence of such Ri and the remaining items are packable in d
2

bins. Note that as each element in Vi creates slack in at least one distinct coordinate,

Bi \ Vi has slack in all coordinates except at most one, thus already in one of the

structured types. Now there are two cases.

Case B1. There is an element pi ∈ Vi with pi ≤ 1/2. We can set Ri = {pi}, pack

(d− 2) other elements in Vi \ {pi} in pairs, Bi \ Vi into a bin of type B`.

Case B2. There is no element pi ∈ Vi with pi ≤ 1/2. Thus all elements in Vi are

> 1/2 in at least one distinct coordinate. Then there exists at least one vector vx
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that is > 1/2 in only one coordinate and ≤ 1/2 in all other coordinates as d > 2.

Without loss of generality, assume Vi = {vV,1, . . . , vV,d−1} and vV,i > 1/2 in dimension

i. Now consider the vector vV,d in Bi \ Vi with highest value on d-dimension. There

are three cases:

Case B1a. vdV,d > 1/2.

In this case the sum of all vectors in Bi \ (Vi ∪ {vV,d}) is < 1/2 in all dimensions.

Let Qi := {q1, · · · , q|Qi|} be the set of dimensions where σBi\(Vi∪{vV,d}) is > 1
2
− δ.

If Qi ≤ 1, take S ′i = Bi \ (Vi ∪ {vV,d)} and pack remaining d vectors in pairs in

d/2 bins. Otherwise if Qi ≥ 2, pack Pi := {vV,q1 , · · · , vV,q|Qi| , vV,l1} in one bin where

l1 /∈ Qi. For dimensions in Qi, Pi has slack ≥ 1
2
− δ and in all other dimensions

except possibly l1, Pi has slack > 1/2. Thus this set has slack in all dimensions

except possibly in dimension l1. Pack elements in Bi \ (Vi ∪ {vV,d)} with another

remaining vector vV,l2 . Clearly this set has slack in all dimensions except dimension

l2. Remaining (d − 1 − |Q| − 1) vectors are packed in pairs. Total number of bins

needed ≤ d (d−1−|Q|−1)
2

e + 1 + 1 ≤ dd
2
e as |Qi| ≥ 2 and d ≥ 4 (Since, d > 2 and d is

even).

Case B1b. 1/2 ≥ vdV,d ≥ δ.

Simply take pi = {vV,d}. Pack vx with Bi \ (Vi ∪ {pi}) in a bin that will have slack in

all dimensions except possibly in dimension x. Remaining (d − 2) vectors in Vi can

be packed in pairs.

Case B1c. vdV,d < δ.

If Bi \ Vi ≤ 1
2
− δ in dimension d, pack vx with Bi \ Vi in a bin that will have slack

in all dimensions except possibly in dimension x. Pack remaining vectors in pairs.

Last case is when Bi \ Vi > 1
2
− δ in dimension d. Let Hi be the set of coordinates

where Bi \ Vi > 1
2
− δ. Apply the Claim in the proof of Lemma 4.5.7 restricted to

coordinates in Hi and take C = {d}, θ = 1
2

to get a set S ′i that is > δ in C and < κδ

in all coordinates in Hi. Thus, vx can be packed with Bi \ (Vi ∪ S ′i) that have slack
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in all dimensions except possibly dimension x. Remaining vectors can be packed in

pairs.

4.5.2 Finding the best structured packing

As a corollary of the result on resource augmentation we get,

Theorem 4.5.10. Let I` be an instance having a packing into m` bins of type B`.

There is a poly-time algorithm which finds packing of I` into (1 + 2ε)m` unit bins.

We note the following implication for future reference.

Observation 4.5.11. To pack large items of I`, we only need to know the rounding

specification, i.e., the sizes defining the groups W u,j
` and the number of items wu,j` in

these groups, and not the precise items themselves.

4.5.2.1 The Overall Algorithm:

Now we describe the overall algorithm. From Lemma 4.5.9, we know that any opti-

mal packing of I can be transformed into a packing of m′ := dd+1
2
me bins of types

BS,BT ,B1, . . . ,Bd. Let mS,mT ,m` be the number of bins of types BS,BT ,B` respec-

tively for ` ∈ [d]. So,
∑

`m`+mS+mT ≤ dd+1
2
·me. Assume we can partition instance

I into d+2 sets IS, IT , I1, . . . , Id such that they correspond to elements of bins of type

BS,BT ,B1, . . . ,Bd respectively in some structured packing of at most dd+1
2
me bins.

Now let us consider a graph G with vertices as items in BT , and there is an edge

between two items vi, vj if they can be packed together in a bin, i.e., σ{vi,vj} ≤ 1.

Thus if we find the maximum matching in G, we get an optimal packing of items in

BT . Then we can pack each item in IS separately in mS bins, pack items in IT into

mT bins using the matching and pack items in I` into (1 + ε+ ε2

2d
)m` + 1 unit vector

bins using Algorithm 1 with resouce augmentation in all coordinates except `, since

we have δ slack in all dimensions which could be overpacked by factor (1 + ε) and

(1− δ)(1 + ε) = 1.
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However in general there are exponentially many such partitions of I, thus we will

try to get a good approximate partition. If we simply guess the number of items in

bins of type BS and BT bins and rounding size classes used in Algorithm 1 for each

` ∈ [d], then the above approach might not work. For example, if we separate IS and

sub-instances I` first, since Algorithm 1 recognizes the items just up to the rounding,

it can happen that the 2mT items which are leftover for the matching type bins are not

matchable together. On the other hand, if we try to pack the matching bins first, the

standard matching can possibly select too small items which would result in moving

a smaller item from the bins packed using Algorithm 1 and putting a larger one back.

This way we loose guarantee for the performance of Algorithm 1, since we are in

fact packing different items. Therefore, to get a better control over the items which

will be matched, we guess for each rounding class how many items with similar or

slightly smaller sizes will be placed in bins of type BT or BS, and we find a matching

respecting these requirements. Though matching will be found on the items with

original sizes, this will ensure that even though we might not pack the same items

into the matching bins as the structured packing did, we packed items from the same

rounding class and therefore we do not affect the performance of Algorithm 1. We

will also show polynomially many guesses are sufficient in this approach.

To describe the algorithm, we will use similar notations and results as in Section

4.4. Remember, rA is the number of rounding classes of augmentable coordinates and

there are d 1
λ
e number of linear grouping classes inside each of them.

4.5.2.2 Preprocessing phase:

First, we separate the small items S of I, this can be done in linear time. We just put

the small items aside for now, they will be packed later. Let us denote I ′ := I \ S.
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4.5.2.3 Guessing phase:

Our algorithm is trying to find m′, the minimum number of bins in a structured

packing for I. It is clear that m′ is at most n and at least d||σI ||∞e. So we can

guess m′ by binary search between n and d||σI ||∞e in the following way. If the

Packing phase of the algorithm finds a structured packing into m′ bins, we decrease

its value. Otherwise we increase it. After guessing of m′, we have to guess the

partition of m′ bins to bins of types BS,BT and B1, . . . ,Bd. It is clear that there is

a polynomial number of choices of m′ and mS,mT ,m1, . . . ,md and in the worst case

we can enumerate them all in O((m′)(d+2)). As m′ = O(md) from Lemma 4.5.9, the

next lemma follows.

Lemma 4.5.12. Let I be an instance having a structured packing into m′ bins. The

guessing phase will guess mS,mT ,m1, . . . ,md in O((md)(d+2)) time.

For each ` ∈ [d], we define the rounding classes W u
` for u ∈ [d 1

α
e][d]\{`} according

to the first part of the rounding procedure in Section 4.4. For each ` ∈ [d] we have rA

(constant) number of classes, none of them clearly containing more than n items, and

inside of each class the items are to be rounded to size of one of d 1
λ
e round vectors

(again a constant), so there are at most rA · n(d 1
λ
e) possible choices of round vectors.

This way we can classify d · rL rounding classes W u,j
` .

For each W u
` , we guess numbers wu,1` = · · · = w

u,d 1
λ
e−1

` — the sizes of the regular

linear grouping classes and w
u,d 1

λ
e

` ≤ wu,1` the size of the last possibly smaller group.

Note, that by now we have prepared rounding instances for the resource augmented

packing as in Algorithm 1. We also guess numbers su,j` and tu,j` — the numbers of

items of size corresponding to the class W u,j
` but contained in the bins of type BS and

BT , respectively. Note that any item v in IS or IT are actually not rounded. They are

just assigned to a rounded class with size ≥ v and they are packed using matching

with their original sizes.

104



As we are guessing 4 numbers for each of drL number of W u,j
` classes and there

are n possibilities for each of these numbers, there are n4drL , a polynomial number of

possibilities to enumerate in total. Thus we get the next lemma.

Lemma 4.5.13. We can guess rounding W u,i
` (sizes of rounding classes) and the

number of items wu,j` , tu,j` , su,j` for u ∈ [d 1
α
e][d]\{`}, ` ∈ [d], j ∈ d 1

λ
e] in polynomial time.

4.5.2.4 Assignment of items into rounded size:

We have generated some rounded instances by specifying rounding and number of

items belonging to each class. However, it is not clear for an item v, which dimension

should be the nonaugmentable dimension in rounding. To find out whether there

exists an assignment of items in I into the rounding classes such that it will satisfy

the requirements on the number of items we use a technique from [173]. We specify

the following flow network G := (V,E):

• we have vertices s and t for source and sink,

• create a vertex for each item and for each class W u,i
` ,

• add edge of capacity 1 from s to each item,

• for each item add an edge of capacity 1 from the item to all d possible rounding

classes to which the item could belong,

• we add an edge of capacity tu,j` + su,j` + wu,j` from each class W u,j
` to t.

Using the algorithm of Dinic [59] we find a maximum integral flow from s to t in time

O(|E| · |V |2) ≤ O(n + nd + drL).(n + drL)2 = Od,ε(n
3). If it does not saturate some

edge outgoing from s or incoming to t, this means that we either cannot assign some

item to any class or some class cannot have the required number of items assigned.

In this case we know that no valid assignment exists and the rounding is not feasible.

We need to go back to the guessing phase and make another guess. Otherwise, we
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get a legal assignment of items into the rounding classes. Then we first separate and

pack IT . We pack IS and I` afterwards.

4.5.2.5 Packing of IT :

To find a packing of IT into bins of type BT , we construct a graph (I ′, E), where

(pi, pj) ∈ E if pi and pj fit together into a bin i.e., σ{pi,pj} ≤ 1. Here we use vectors

with original sizes and they are just assigned to some class W ij
` with size greater or

equal to the size of the vector. We want to find a matching such that from each class

W ij
` , tij` vectors are saturated by the matching. We formulate the following LP:∑

xuv ≤ 1 for all vertices v ∈ V ,∑
u∈W ij

`

xuv = tij` for all classes W ij
` ,

0 ≤ xe ≤ 1 for all edge e ∈ E.

Note that this is a matching LP with a constant number of additional linear con-

straints, since the number of classes depends only on the value of ε. To solve this LP

we use an algorithm of Chekuri, Vondrák, and Zenklusen [35] which either returns

a matching which covers between tij` and (1 − ν)tij` items from each class W ij
` or it

returns a certificate that this LP is infeasible (See Theorem 4.2.3). If the LP is in-

feasible, then either the rounding classes or the numbers tij` are incorrect and we try

another guess.

The residual νtij` vectors from each class can be selected arbitrarily and we pack

these ≤ 2νmT items into 2νmT number of additional bins using (1− ν)mT + 2νmT ≤

(1 + ν)mT bins in total. We choose ν = ε.

4.5.2.6 Packing of IS:

From each class W u,j
` we select arbitrary su,j` items not belonging to IT and pack them

into separate mS bins.
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4.5.2.7 Packing of I1, . . . , Id:

For each ` ∈ [d] we take the leftover instances of W u,j
` which do not belong to IT nor

IS. We denote I` the union of all classes W u,j
` . Thus we get the following lemma.

Lemma 4.5.14. For a correct guess, we can pack I` into (1 + ε)m bins in polynomial

time. Moreover, the free space configuration will satisfy requirements of Lemma 4.4.5.

Proof. For a correct guess we can pack rounded items of type I` into m` + b εm`
2
c bins

using Lemma 4.4.3 with ` to be the nonaugmentable dimension. Hence, total number

of bins needed to pack all items in ∪`I` is ≤
∑

`(m` + b εm`
2
c).

4.5.2.8 Packing of small vectors:

Finally we pack the small vectors. From Lemma 4.5.14,
∑

`m` bins obtained in the

previous step have at least the same small configuration as was the small configuration

in corresponding bins of structured packing. So there is a feasible fractional packing of

all small vectors into the space in
∑

`m` bins. We use another assignment LP similar

to Lemma 4.4.5 to get the packing in at most another additional
⌈∑

`m`
2
· (ε + ε2

d
)
⌉

bins.

Proof of Theorem 4.5.3. From Lemma 4.5.12 and 4.5.13, the guessing stage takes

polynomial time. For a correct guess, IT items are packed into (1 + ε)mT bins, IS

items are packed into mS bins. Remaining I` type items are packed in
∑

`(m`+b εm`2
c)

bins and small items are packed into additional
∑

`
m`
2
· (ε+ ε2

d
) + 1 bins. Hence, total

number of bins

≤ (1 + ε)mT +mS +
∑
`

(m` + bεm`

2
c) + +

∑
`

m`

2
· (ε+

ε2

d
) + 1

≤ (1 + ε+
ε2

2d
)(mS +mT +

∑
`

m`) + 1

≤ (1 + ε+
ε2

2d
)(m′) + 1.

107



1. Separate set S of small items

Guessing stage:

2. Guess m′,mS,mT ,m1, . . . ,md.

3. For each ` ∈ [d]: create classes W u,j
` and guess numbers wu,j` , tu,j` , su,j` .

Packing stage:

4. Find assignment of items into rounding classes using flow-net,

5. Find multiobjective matching and pack IT into bins BT ,

6. Select IS arbitrarily according to numbers su,j` and pack it into bins BS,

7. For each ` ∈ [d]: Pack I` into B` using Algorithm 1,

8. Pack S using assignment LP as in Lemma 4.4.5,

9. If any step fails, then go to the next guess in Guessing stage.

10. return packing BS,BT ,B1, . . . ,Bd.

Algorithm 2: d-Dim. VBP with ( (d+1)
2

+ ε)-asymptotic approximation

Proof of Theorem 4.5.1. From Lemma 4.5.9, there is a packing into dd+1
2
me bins of

type BS,BT ,B1, . . .Bd. Then using Lemma 4.5.3, we get the number of required bins

is at most ≤ dd+1
2
me · (1 + ε+ ε2

2d
) + 1.

4.5.3 Tight absolute approximation of (3/2 + γ) for 2-D VBP

Now we will give an algorithm with absolute approximation ratio of (1.5 + γ) for

2-D vector packing. Note that even for 1-D bin packing the lower bound of absolute

approximation is 3/2.

Theorem 4.5.15. (Restatement of Theorem 4.0.2)

For any constant γ with 0 < γ < 1/4, there is a polynomial time algorithm with an

absolute approximation ratio of (1.5 + γ) for 2-D vector packing.

Proof. Take γ′ = γ/2. We give the algorithm in Algorithm 3. From Theorem 4.5.1,

we can get a packing into 3m/2+γ′m+c2 bins in polynomial time if m is the number
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of bins in the optimal packing. There are two cases.

Case A. γ′Opt ≤ c2 : As there are at most c1 = c2/γ
′ (a constant) number of bins

in the optimal solution, there are at most c1d/β big items. Thus there are only a

constant number of big configurations. So in polynomial time, we can find the big

configurations in optimal packing and small vectors can be added using assignment LP

except dc1 number of small items. We can pack these small items into one additional

bin by taking small β such that βdc1 ≤ 1.

Case B. γ′Opt > c2 : From Theorem 4.5.1, we can get a packing into 3m/2 + γ′m+

c2 ≤ 3m/2 + (2γ′)m ≤ (1.5 + γ)m.

Algorithm:

A. Find if there is a feasible packing into at most m+ 1 bins for all m ∈ [c2/γ
′],

A1. Find the large configurations in optimal packing,

A2. Small vectors (except possibly at most dc1 number of small items) are

then added using assignment LP in the remaining space,

A3. Pack remaining small items into one additional bin,

Otherwise try the next value of m;

B. Run Algorithm 2 to find a feasible packing into 3m/2 + γ′m+ c2 bins,

return any feasible packing found by the algorithm for minimim m.

Algorithm 3: 2-D VBP with (3
2

+ γ)- absolute approximation

This is interesting as it shows vector packing is much easier to approximate than

geometric packing in terms of absolute approximability. On the other hand, though

1-D BP and 2-D VBP are quite distinct in asymptotic approximability, they are

arbitrarily close for the absolute approximability setting.
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4.6 Improved Approximation using R&A Framework

In this section, we combine the ideas from the previous section with the R&A frame-

work. We describe the 2-dimensional case first and then consider the d-dimensional

case.

We first show the following key result. We will use this property in the analysis

of algorithms for 2-D and d-D vector packing. For a d-dimensional VBP instance I,

suppose there is a ρ approximate rounded-packing P , where big items are rounded to

a constant number of types. Then the R&A framework gives a (1 + ln ρ) asymptotic

approximation. We will again need the following concentration inequality [157] in the

analysis.

Lemma 4.6.1. (Independent Bounded Difference Inequality) [157] LetX = (X1, . . . , Xn)

be a family of independent random variables, with Xj ∈ Aj for j = 1, . . . , n, and

f :
∏n

j=1Aj → R be a function such that

f(x)− f(x′) ≤ cj,

whenever the vectors x and x′ differ only in the j-th coordinate. Let E[f(X)] be the

expected value of the random variable f(X). Then for any t ≥ 0,

P[f(X)− E(f(X)) ≥ t] ≤ e−2t2/
∑n
i=1 c

2
j .

In particular, we show the following:

Theorem 4.6.2. Let I be a set of items and Ĩ is a rounding of items in I such that

all big items are rounded to t1 (constant) types. Assume that there exists an optimal

packing P of Ĩ into m bins. If for d(ln ρ)z∗e iterations we select a configuration C ′ ∈ C

at random with probability x∗C′/z
∗ as in R & A framework applied to I and J is the

residual set of elements at the end of these iterations, then with high probability, for

any small constant ε′ > 0, there is a rounded packing PJ of J into (1+ε′)m
ρ

+ cm bins
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where all big items are rounded to t1 types (thus there are also only constant types

of small configurations) and cm is a constant.

Proof. As there are t1 (constant) types of big items and there can be at most d/β

big items in a configuration, there are (d/β)t1 types of big configurations and thus

(d/β)t1 types of small configurations. Let t2 (≤ (d/β)t1) be the number of types of

small configurations in P . Let Rj1 be the set of big items of j1’th type and Sj2 be

the set of small items belonging to j2’th type of small configurations in P for j1 ∈ [t1]

and j2 ∈ [t2]. Let |Rj1| = rj1 for j1 ∈ [t1], i.e., rj1 is the number of items in the

class of big items Rj1 . Also let sj2 be the number of bins with small configuration of

type j2. Let hCj1 be the number of items of type Rj1 in configuration C and gCj2 = 1

if configuration C has small configuration of type j2. Consider the following LP (Ĩ)

where C is the set of configurations of Ĩ:

min
∑
C∈C

xC

∑
C∈C

hCj1xC ≥ rj1 ∀ j1 ∈ [t1],

∑
C∈C

gCj2xC ≥ sj2 ∀ j2 ∈ [t2],

xC ≥ 0 ∀ C ∈ C.

(24)

Let t = t1 + t2. As the LP has t (which is a constant) number of constraints and the

optimal integral solution of LP (Ĩ) has value m,

m ≤ LP (Ĩ) + t. (25)

Intuitively in LP (Ĩ) we consider small configurations of each bin as a single item.

Let ε1 > 0 be a small constant that we will choose later. Now define another instance

J ′ such that it contains
rj1 (1+ε1)

ρ
big items of type j1 ∈ [t1] and

sj2 (1+ε1)

ρ
items of type

j2 ∈ [t2] such that the size of each item in type j2 is equal to the size of j2’th type

of small configuration. Intuitively J ′ is a shrunk down version of Ĩ where each small
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configuration is replaced by a single item of that same size.

Now consider the following LP (J ′):

min
∑
C∈C

xC

∑
C∈C

hCj xC ≥
rj(1 + ε1)

ρ
∀ j ∈ [t1],

∑
C∈C

gCj xC ≥
sj(1 + ε1)

ρ
∀ j ∈ [t2],

xC ≥ 0 ∀ C ∈ C.

(26)

As the right hand side of constraints in LP (Ĩ) and LP (J ′) differ by a factor of (1+ε1)
ρ

,

we get:

(1 + ε1)

ρ
LP (Ĩ) = LP (J ′). (27)

Let Opt(J ′) be the optimal integral solution for the above LP.

Now consider applying the same rounding as in Ĩ to the items in J . Let us denote

this instance to be (Ĩ ∩ J). To conclude the proof we will show that the items in

(Ĩ ∩ J) can be packed in (1 + ε2)Opt(J ′) bins, for a small positive constant ε2 that we

will choose later..

Lemma 4.6.3. Opt(Ĩ ∩ J) ≤ (1 + ε2)Opt(J ′).

Proof. As J is the set of residual items that are not covered by any bins selected in

d(ln ρ)z∗e iterations in packing using randomized rounding. thus for any item i ∈ I,

P(i ∈ J) = (1−
∑
C3i

x∗C/z
∗)d(ln ρ)z∗e

≤ (1−
∑
C3i

x∗C/z
∗)(ln ρ)z∗

≤ (1− 1/z∗)(ln ρ)z∗ (28)

≤ e(− ln ρ) (29)

=
1

ρ
. (30)
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Here inequality (28) follows from the fact that
∑

C3i x
∗
C ≥ 1 for all i ∈ I and inequality

(29) follows from the fact that (1− 1
x
)αx ≤ e−α for x > 0.

Hence from (30), E[|Ri∩J |] ≤ |Ri|/ρ for all i ∈ [t1]. Now we will the concentration

around the mean using independent bounded difference inequality.

Consider the function fBi (x) = Ri ∩ J , i.e., the number of items of type Ri in

J . This is a function of X = (X1, . . . , Xd(ln ρ)z∗e), i.e., d(ln ρ)z∗e independent random

variables (selected configurations in randomized rounding phase of R & A framework)

where Xi corresponds to the random variable for the configuration selected in ith it-

eration. Now changing value of any of these random variables may lead to selection of

a different configuration C ′ in place of configuration C in the corresponding iteration.

Let vectors x and x′ differ only in j’th coordinate, i.e., a different configuration C ′

is selected in place of configuration C. This might lead to a different set of residual

items J ′. Then

fBi (x)− fBi (x′) ≤ (|Ri ∩ J | − |Ri ∩ J ′|)

≤ max{|Ri ∩ C|, |Ri ∩ C ′|}

≤ 1/β. (31)

Here inequality (31) follows from the fact that there can be at most β items of

type Ri in a bin as big items are ≥ β in at least one of the dimensions.

Therefore, from independent bounded difference inequality, we get,

P[fBi (X)− E(fBi (X)) ≥ γz∗] ≤ e
−2(γz∗)2/( d(ln ρ)z

∗e
β2

)
.

Thus in the asymptotic case (when z∗ is sufficiently large, i.e., >> ln ρ·t1t2
γ2β2 ) we can

take union bound over all t1 cases and with high probability for all large item classes,

fBi (X)−E(fBi (X)) < γz∗. We can take γ =
ε23

t1t2ρ
, for some small positive constant ε3

that we will choose later. As in the packing of J ′, we have (1+ε1)
ρ
|Ri| big items of type

Ri, we can pack E(fBi (X)) ≤ |Ri|/ρ items in Ĩ ∩ J in the slots of same type items
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in J ′. Then we can pack all remaining big items in at most t1γz
∗ ≤ ε23z

∗

t2ρ
≤ ε23LP (Ĩ)

t2ρ
≤

ε23LP (J ′)

t2
≤ ε23Opt(J ′)

t2
extra bins.

Now let us consider the small items. Consider a small configuration Sj = (h1, . . . , hd).

Let Sj be the set of items in all small configurations of type Sj and sj be the number

of small configurations of type Sj. Let function fkSj be
∑

v∈Sj∩J v
k. 1
hk

, i.e., the length

of items in Sj ∩ J in k’th dimension scaled by a factor 1
hk

. Intuitively the scaling

makes each dimension of Sj to be one. This is again function of d(ln ρ)z∗e indepen-

dent random variables (selected configurations). Thus as above, whenever the vectors

x and x′ differ only in one coordinate, we get:

fkSj(x)− fkSj(x
′) ≤

∑
v∈Sj∩J

vk.
1

hk
−

∑
v∈Sj∩J ′

vk.
1

hk

≤ max{
∑

v∈Sj∩C

vk.
1

hk
,
∑

v∈Sj∩C′
vk.

1

hk
}

≤ 1

hk
· hk ≤ 1. (32)

Thus, from independent bounded difference inequality, we get,

P[fkSj(X)− E(fkSj(X)) ≥ γz∗] ≤ e−2(γz∗)2/(d(ln ρ)z∗e).

Now if sj <
ε3z∗

t1t2
, one can pack these small items in all t2 classes of small config-

urations into at most ε3z
∗/t1 additional bins. Otherwise if sj ≥ ε3z∗

t1t2
, then with high

probability, fkSj(X) ≤ (
sj
ρ

+ γz∗) ≤ (1 + ε3) · sj
ρ

. Thus, all small items in Sj ∩J can be

packed into the corresponding small configurations of (1+ε3)
ρ

sj bins in J ′ fractionally

by assigning each item to each bin with ρ
(1+ε3)sj

fraction.

So using assignment LP we can get an integral packing of all items into corre-

sponding small configurations of (1+ε3)
ρ

sj bins except dd · (1+ε3)
ρ

sje items. However the

original sizes of these dd · (1+ε3)
ρ

sje items are ≤ β in all dimensions. So, we can pack

them in extra ≤ d dd
(1+ε3)
ρ

sje
b1/βc e ≤ d(dβ + β2d) (1+ε3)

ρ
sje number of bins.

Therefore in the asymptotic case, Opt(Ĩ ∩ J), the total number of bins in the
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optimal packing of (Ĩ ∩ J) is:

(1 + ε3)Opt(J ′)+
ε3Opt(J

′)

t1
+d(dβ+β2d)

(1 + ε3)

ρ
Opt(J ′)e+ε

2
3Opt(J

′)

t2
≤ (1+ε2)Opt(J ′),

by choosing ε2 > ε3 + ε3/t1 + ε3
2/t2 + (dβ + β2d)(1 + ε3)/ρ.

Therefore, in the asymptotic case when z∗ is sufficiently large,

Opt(J) ≤ Opt(Ĩ ∩ J) ≤ (1 + ε2)Opt(J ′) (33)

≤ (1 + ε2)(LP (J ′) + t) (34)

≤ (1 + ε1)(1 + ε2)

ρ
LP (Ĩ) +O(1) (35)

≤ (1 + ε′)

ρ
LP (Ĩ) +O(1) (36)

≤ (1 + ε′)

ρ
Opt(Ĩ) + cm. (37)

Inequality (33) follows from Lemma 4.6.3. Inequality (34) follows from the fact that

there are t number of constraints in LP (26). Inequality (35) follows from inequality

(27). Inequality (36) is obtained by chossing ε1, ε2, ε3 such that ε′ = (1+ε1)(1+ε2)−1

and cm is the additive constant.

This completes the proof.

Note that one can find such a (near)-optimal rounded packing in polynomial time

by guessing the round vectors as we discussed in the previous section. So we need to

show existence of structural packing with better guarantees.

4.6.1 Approximation Algorithm for 2-D vector packing:

Now we show a (1+ln(3/2))-asymptotic approximation algorithm for any set of items

I. First let us briefly mention the main idea for the algorithm. Note that Theorem

4.6.2 applies only to packings where all items are rounded. However, as we already

know from Section 4.3, if we round all the items of I to the constant number of types,

the optimum of the rounded instance can become as large as 2Opt(I). To overcome
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this difficulty, we identify problematic items which we do not want to round, pack

them into separate bins, and apply R&A to the rest of the instance. This leads us to

the following definitions:

Definition 4.6.4. A bin B is compact, if it has a subset of items K with |K| ≤ 2

and (
∑

v∈K v) ≥ (1− δ, 1− δ).

Definition 4.6.5. A bin B is non-compact, if it has no subset of items K with |K| ≤ 2

and (
∑

v∈K v) ≥ (1− δ, 1− δ).

We claim, that it is just the compact bins what cause troubles, and R&A can

be applied to non-compact bins successfully. Let mC and mN denote the number of

compact and non-compact bins respectively in the optimum packing of I.

Separating compact bins: We separate pairs of large items belonging to the

compact bins using an idea similar to the preceding section. First, we guess rounding

classes W u,j
` for rounding of the non-compact bins together with the numbers cu,j` , wu,j`

of items from each class which are to be packed into compact bins and noncompact

bins, respectively. The graph G = (I, E) is a little bit different: we add edge between

v and v′, if they form a compact bin together. Then we find a MOMB matching in

G satisfying guessed requirements cu,j` , and pack the matched items into roughly mC

separate bins.

Single large items bigger than (1− δ) in both coordinates can be separated easily

in linear time. Since the volume of the small items in compact bins is negligible,

they cause no harm to the R&A part (they can be packed into at most 2δmC ≤ 2δm

additional bins). Therefore, we do not need to separate them.

Packing non-compact bins using R&A: We apply R&A to the rest of the

instance: we solve the configuration LP and perform the randomized rounding (B2

in Algorithm 4). Note, that we use at most dm · ln ρe bins in this step. Let us denote
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S the set of residual items. Now, we use an important property of non-compact bins:

By the arguments in Lemma 4.5.4 and Lemma 4.5.5, it can be shown that items from

mN non-compact bins can be rounded to constant number of types and repacked

into 3
2
mN bins6. Therefore, we can apply Theorem 4.6.2 which roughly says, that

Opt(S) ≤ 2
3
mN . Then we pack S using 3

2
-approximation algorithm into roughly mN

bins. Altogether, we used roughly mC + dln ρem+mN bins.

First, we prove the following two lemmas regarding packing of compact and non-

compact bins.

Lemma 4.6.6. All items in mN non-compact bins can be packed into d3mN/2e(1+2ε)

rounded bins, i.e., bins where large items are rounded to constant types.

Proof. From structural properties in Lemma 4.5.4, for non-compact bins either there

is a large item p ∈ B such that p ≤ (1/2, 1/2) and p is > δ in at least one coordinate,

or there is a subset S of items in B such that
∑

p∈S p ≤ (2δ, 2δ) and B \S has δ-slack

in some dimension. Thus the removal of item(s) p or S from such bin B creates δ

slack in B in at least one dimension. So from the proof of Lemma 4.5.5, any two such

bins can be repacked into 3 bins such that either it has slack δ in one dimension or it

contains two p type items. Now if bins have δ-slack in at least one dimension, using

Algorithm 1 we can get a rounded packing loosing only a factor (1+ε+ε2/d) ≤ (1+2ε)

for small ε. On the other hand, for bins containing two p type items, one can just

round p type items into (1/2,1/2). So for mN non-compact bins we can produce a

rounded-packing in d3mN/2e(1 + 2ε) rounded bins.

Lemma 4.6.7. All items in mC compact bins can be packed into (1+2δ)mC +1 bins

where mC bins contain single or two items and remaining 2δmC + 1 bins contain only

small items.

6Precisely, can be repacked into bins which either have δ-slack in some dimension, or can be
viewed as having two items of size at most (1/2, 1/2). In both cases, the items can be rounded to a
constant number of types.
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Proof. Given mC compact bins, we can remove the items ≤ (δ, δ) in the compact bins

and greedily pack them into additional d mCb1/δce ≤ (δ + 2δ2)mC + 1 ≤ 2δmC + 1 extra

bins for small values of δ. After removing these items remaining compact bins are of

type BS or BT .

Thus there is a packing into (1 + 2δ)mC + 3
2
(1 + 2ε)mN + 2 bins such that mC bins

are of type BS or BT , where as large items in 3
2
(1 + 2ε)mN + 1 bins are rounded, and

other 2δmC + 1 bins contain small items. We use this observation in our algorithm

given below.

A. Guessing stage:

A1. Guess Opt(I),mC , and mN , and take ε = ε′

6
,

A2. For each ` ∈ [d]:

Create classes W u,j
` and guess corresponding round vectors and wu,j` , cu,j` , the

number of items in compact and noncompact bins in each size classes,

B. Packing stage:

B1. Use MOMB matching on the original item sizes to pack cu,j` items from

class W u,j
` into (1 + δ)mC bins,

B2. Solve configuration LP restricted to remaining items and apply

randomized rounding with parameter ρ = 3/2 for dz∗ · ln(ρ)e iterations,

B3. Let S be set of remained items, pack it using algorithm 2 into

mN + 4εm+ cm + 3 bins, where cm is the additive constant from Theorem

4.6.2.

B4. If packing in Step B1 or B3 fails, go to next guess.

Algorithm 4: (1.405 + ε′)-approximation for 2-D VBP
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4.6.1.1 Analysis of the Algorithm

Theorem 4.6.8. (Restatement of Theorem ) For any small constant ε′ > 0, there is

a polynomial time algorithm (Algorithm 4) with an asymptotic approximation ratio

of (1 + ln(1.5) + ε′) ≈ (1.405 + ε′) for 2-D vector packing.

Proof. The binary search to find m (:= Opt(I)) takes O(log n) time. For each guess

there are O(n2) guesses for mC ,mN . Also as there are total tL (constant) number of

round vectors, they can be guessed in O(ntL) time. Thus in polynomial time we can

guess the suitable values for the guessing stage in the algorithm.

Now there are three steps in the packing stage of the algorithm. In the first

step we pack (1 + δ)mC number of bins using multi-objective multi-budget matching

on the original item sizes. In the second step we pack using randomized rounding

of configurations and we use at most d(ln ρ)z∗e ≤ ln ρ · m + 1 bins. We choose

ρ = 3/2. In the last step we pack the remaining items in S into mN + 4εm+ cm + 3

number of bins. So, for any feasible solution the total number of bins needed =

(1+δ)mC+(ln ρ)m+mN+4εm+O(1) ≤ (1+ε)mC+(ln ρ+4ε)(mC+mN)+mN+O(1) ≤

(1+ε′+ln ρ)(mC+mN)+O(1) bins, where ε′ = 6ε. This gives (1+ln(3
2
)+ε′) asymptotic

approximation if the algorithm returns a feasible solution.

To complete the proof we need to show that the algorithm always returns a feasible

packing for a correct guess.

In the packing using matching step, we create an edge between two nodes vi and

vj only if they form a compact bin together, i.e., vi+vj ≥ (1− δ, 1− δ). Note that we

can always separate very large items vi ≥ (1− δ, 1− δ) and pack them separately. In

this step the items we pack in mC bins might not be the same items in the compact

bins in the optimal solution. However the packed items in these mC bins are very

similar to those items in the compact bins. We pack cij` items from W ij
` using MOMB

matching into (1 + δ)mC bins as in Section 4.5 with ν = δ. So, for a correct guess at

the end of packing using matching, each class W ij
` has only ≈ (cij` + wij` )− cij` = wij`
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items left.

So after packing using matching, from Lemma 4.6.6 and 4.6.7 remaining items

have a rounded packing in 3mN
2

(1 + 2ε) + 2δmC + 2 bins. Then we use randomized

rounding. Now S is the set of residual items that are not covered by any bins selected

in d(ln ρ)z∗e iterations in packing using randomized rounding. Thus from Theorem

4.6.2, the large items in S can be rounded to O(1) types and packed into at most

(3mN
2

(1 + 2ε) + 2δmC + 2)(1 + ε)/ρ+ cm ≤ mN + 4ε(mN +mC) + cm + 3 bins, where

cm is the additive constant from Theorem 4.6.2.

This concludes the proof.

4.7 Improved Approximation Algorithm for d-Dimensional
Vector Packing

For d-dimensional VBP, the approach for 2-D can not be directly applied as there

are no analogous results for multiobjective d-dimensional matching. So we adopt a

somewhat different approach. We first note the following two structural properties

for d-dimensional VBP.

Theorem 4.7.1. For any ε′′ > 0, if there exists a feasible packing of a d-dimensional

VBP instance I into m bins, there is a packing into at most (2 + ε′′)m+ 1 bins such

that m bins contain at most (d − 1) items in each of them and all other bins have

O(1) types of large items and small configurations.

Proof. Choose δ such that ε′′ = κδ · (1 + 2κδ). Let Vi, Si be the sets from Lemma

4.5.7, for bin Bi for i ∈ [m]. Then after removal of (Vi ∪ Si), remaining items in Bi

bin have slack in d−1 dimensions and can be rounded using Algorithm 1. If |Si| ≤ 1,

pack Si and Vi together in one bin B′. Note that |B′| ≤ (d− 1). Otherwise, pack Vi

in one bin. As elements in Si are ≤ κδ in all dimensions, we pack them separately in

additional dm/(b 1
κδ
c)e ≤ κδ(1 + 2κδ) ·m+ 1 bins.
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Lemma 4.7.2. If there exists a feasible packing of µn1 items into a packing P1 of n1

bins, one can pack them into a packing P2 of (µ+1)
2
· n1 bins in polynomial time.

Proof. We will show there exists (µ+1)
2
·n1 bins such that each bin contains one or two

items. Then we can find a packing of µn1 items into (µ+1)
2
· n1 bins using maximum

matching. Assume x be number of bins in P1 that contain odd number of items. Pack

one item from each bin with odd number of items, separately into x bins. Remaining

bins contain even number of items. So, they can be packed in (µn1− x)/2 bins using

matching. Hence, total x+ (µn1−x)
2
≤ µn1+x

2
≤ µn1+n1

2
bins are sufficient.

Consider the packing in (2 + ε′′)m+ 1 bins as mentioned in Theorem 4.7.1 where

m := Opt(I). Let ID be the set of items in those m bins containing at most (d − 1)

items. Let IN = I \ ID, are the items in the remaining rounded bins. Note that

if either ID or IN is small, we can pack them separately into an additional additive

constant number of bins. Therefore, without loss of generality in the asymptotic case,

let us assume ID and IN to be sufficiently large.

We use randomized rounding affront with ρ = (d+ 1)/2 and let J be the residual

set of items. We show that we are left with nearly 2m items from ID, which we pack

using Lemma 4.7.2 and MOMB matching into (1+3ε)(d−1)m
2ρ

+ (1+ε)m
2

+ cm(1 + ε) bins,

where cm is the additive constant from Theorem 4.6.2. Using Theorem 4.6.2, we show

that remaining items have a rounded packing in to (1+10ε)m
ρ

+ cm(1 + 2ε) + 1 bins. As

before, let W ij
` ’s correspond to the classes of the rounded vectors. We can arbitrarily

assign vectors in ID to any class with size dominating the size of the vector.

4.7.0.2 Analysis

Theorem 4.7.3. (Restatement of Theorem 4.0.3)

For any constant εc, such that 0 < εc <
1

3d2
, there is a poly-time algorithm (Algo-

rithm 5) with an asymptotic approximation ratio of (1.5 + ln(d/2) + od(1) + εc) ≈

ln d+ 0.807 + od(1) + εc for d-dimensional VBP.
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A. Guessing stage:

A1. Guess m := Opt(I) and create rounding classes W u,j
` , and take ε = εc

20
,

B. Packing stage:

B1. Choose ρ = (d+1)
2

and solve configuration LP and apply randomized

rounding for dLP (I) · ln(ρ)e iterations,

B2. Let J be the set of items left at the end of randomized rounding. Guess

numbers µij` = |(ID ∩ J) ∩W ij
` |, ν

ij
` = |(IN ∩ J) ∩W ij

` |,

B3. Use MOMB matching to pack µu,j` items from classes W u,j
` into

(1+3ε)(d−1)m
2ρ

+ (1+ε)m
2

+ cm(1 + ε) bins,

B4. Pack remaining items using Algorithm 2 in (1+10ε)m
ρ

+ cm(1 + 2ε) + 1 bins,

B5. If packing in Step B3 or B4 fails, go to next guess.

Algorithm 5: (ln(d/2) + 1.5 + od(1) + εc)-approximation for d-Dim. VBP.

Proof. In packing using randomized rounding we use at most ln(d+1
2

) · m + 1 bins

where m = Opt(I). If there is a feasible solution, packing with matching takes

(1+3ε)(d−1)m
2ρ

+ (1+ε)m
2

+ cm(1 + ε) and packing using O(1) rounding based algorithm

takes (1+10ε)m
ρ

+ cm(1 + 2ε) + 1 bins. In total, the number of bins is at most (ln(d/2) +

1.5 + o(1) + εc)m+O(1) as εc = 20ε.

To complete the proof, we show the algorithm always returns a feasible packing.

From (30), for any item i ∈ I, P(i ∈ S) = 1/ρ. So, E[|ID∩S|] = (d−1)m/ρ. One can

use independent bounded difference inequality as in Theorem 4.6.2, to show concentra-

tion around the expectation. Thus with high probability, |ID ∩S| ≤ (1+ε)(d−1)m
ρ

+ cm,

where cm is the additive constant from Theorem 4.6.2. Note that it is not nec-

essary that each of the m bins in the optimal solution contains exactly two items

from (ID ∩ S). Some of those bins can contain 1, 3 or other number of items from

(ID∩S). Thus though these items in ID∩S are packable in m bins, we may not pack

them into m bins in polynomial time using matching. That is where we use Lemma
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4.7.2. Using Lemma 4.7.2 we can pack these (1+ε)(d−1)m
ρ

+ cm items from ID ∩ S into(
( (1+ε)(d−1)m

ρ
+m)/2

)
(1 + ε) + cm(1 + ε) ≤ (1+3ε)(d−1)m

2ρ
+ (1+ε)m

2
+ cm(1 + ε) bins using

multi-objective multi-budget matching as in Section 4.5. Here the inequality followed

from the fact (1 + ε)2 ≤ (1 + 3ε). Note that in this case the graph is created on items

left after randomized rounding and an edge is created between two items if and only

if they are packable together in a bin.

There is a rounded-packing of items in IN into m(1+ε′′) bins. Thus from Theorem

4.6.2, large items in J can be rounded to O(1) types and be packed in m(1+ε′′)(1+ε)
ρ

+cm

bins. So using Algorithm 1 we can get a packing into (1 + 2ε)m(1+ε)(1+ε)
ρ

+ cm(1 +

2ε) + 1 ≤ (1+10ε)m
ρ

+ cm(1 + 2ε) + 1 bins by taking ε′′ < ε and from the fact that

(1 + ε)2(1 + 2ε) ≤ (1 + 10ε).

Thus in the asymptotic case, the number of bins needed is at most

≤ m · ln(ρ) +
(1 + ε)m

2
+
m(d− 1)(1 + 3ε)

2ρ
+
m(1 + 10ε)

ρ
+ (2 + cm(2 + 3ε))

≤ m · ln(ρ) +
m

2
+
m(d+ 1)

2ρ
+ εm(

1

2
+

3(d− 1)

2ρ
+

10

ρ
) + (2 + cm(2 + 3ε)) (38)

≤ m · ln(
d+ 1

2
) +

m

2
+m+ εcm+ (2 + cm(2 + εc)) (39)

≤ m(
3

2
+ ln(

(d+ 1)

2
) + εc) +O(1). (40)

Inequality (39) follows by taking ρ = d+1
2

and εc = 20ε.

One can derandomize the algorithm using potential function based standard ar-

guments in [13].

Note that the above algorithm obtains the present best approximation for all

d > 4. For d = 2 and 3, our previous algorithms obtain the present best asymptotic

approximation of (1.405 + ε) and (2 + ε) respectively.
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4.8 Conclusion

Our bounds for small values of d can probably be improved by proving and using

multi-objective multi-budget variant of d-dimensional matching for d > 2. However,

this approach will not give an (1−δ) ln d approximation for large d as there is already

an Ω(d/ ln d) lower bound for d-dimensional matching.

As there is still no known explicit hardness for d-D VBP as function of d, it

will be interesting to show a f(d) hardness using some reduction from d-dimensional

matching or other related problems.
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Chapter V

WEIGHTED BIPARTITE EDGE COLORING

In this chapter we discuss our results on the weighted bipartite edge coloring which

were motivated by the study of Clos networks [39]; this coloring problem also gener-

alizes both bin packing and the classical edge coloring problem.

Clos Networks. Clos networks were introduced by Clos [39] in the context of

designing interconnection networks with a small number of links to route multiple

simultaneous connection requests such as telephone calls. Since then it has found

various applications in data communications and parallel computing systems [126,

113]. The symmetric 3-stage Clos network is generally considered to be the most

basic multistage interconnection network. Let C(m,µ, r) denote a symmetric 3-stage

Clos network, where the input (first) stage consists of r crossbars of size m× µ, the

center (second) stage consists of µ crossbars of size r× r and the output (third) stage

consists of r crossbars of size µ ×m. Moreover, there exists one link between every

center switch and each of the r input or output switches. No link exists between other

pair of switches. An example C(2, 3, 4) network is shown in Figure 11.

A request frame is a collection of connection requests between inlets and outlets

in the network such that each inlet or outlet is associated with at most one request.

A request frame is routable if all requests are routed through a middle switch such

that no two requests share the same link. An interconnection network is said to be

rearrangeably nonblocking if all request frames are routable. In the classic switching

environment all connection requests fully use a link and all have the same bandwidth.

However in present networks, different requests might have different bandwidths (due
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Figure 11: A Clos network with m = 2, µ = 3, r = 4 [64]

to wide range of traffic such as voice, video, facsimile etc.) and may be combined in

a given link if the combined request does not exceed the link capacity. In this mul-

tirate setting, a connection request is a triple (i, j, w), where i, j, w are inlet, outlet

and demand of the connection, respectively, and all links have capacity one. Here

a request frame is a collection of connection requests between inlets and outlets in

the network such that the total weight of all requests in the frame for any particular

inlet or outlet is at most one. The central question in 3-stage Clos networks is finding

the minimum number of switches (crossbars) µ (= µ(m, r)) in the middle stage such

that all request frames are routable. It is particularly interesting to obtain bounds

independent of r.

Weighted Bipartite Edge Coloring. Nonblocking rearrangeable properties of a

3-stage Clos network C(m,µ, r) can be translated to the following graph theoretic
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problem. Formally, in a weighted bipartite edge coloring problem, we are

given an edge-weighted bipartite (multi)-graph G := (V,E) with bipartitions A,B

(|A| = |B| = r) and edge weights w : E → [0, 1]. Let we denote the weight of edge

e ∈ E. The goal is to obtain a proper weighted coloring of all the edges with a mini-

mum number of colors. An edge coloring of the weighted bipartite graph is called a

proper weighted coloring if the sum of (the weights of) the edges of the same color

incident to a vertex is at most one for any color and any vertex. Here the sets A and

B correspond to the input and output switches, edge (u, v) corresponds to a request

between input switch u and output switch v. A routable request frame translates

into the condition that weights of all incident edges to any vertex can be assigned a

proper weighted coloring using m colors (or packed into m unit-sized bins) and the

switches in the middle stage correspond to the colors (or bins). We refer the reader

to Correa and Goemans [47] for a detailed discussion of this reduction.

Now let us introduce some notation. Let χ′w(G) denote the minimum number

of colors needed to obtain a proper weighted coloring of G. Let m, r ∈ Z+, and

µ(m, r) = maxGχ
′
w(G) where the maximum is taken over all bipartite graphs, G =

(A ∪B,E) with |A| = |B| = r, and where m is the maximum over all the vertices of

the number of unit-sized bins needed to pack the weights of incident edges. Chung

and Ross [38] made the following conjecture:

Conjecture 5.0.1. Given an instance of the weighted bipartite edge coloring

problem, there is a proper weighted coloring using at most 2m − 1 colors where m

denotes the maximum over all the vertices of the number of unit-sized bins needed to

pack the weights of edges incident at the vertex. In other words, µ(m, r) ≤ 2m− 1.

There has been a series of results achieving weaker bounds on µ(m, r) (see related

works for details), and the current best bound (due to Feige and Singh [77]) shows

that µ(m, r) ≤ 2.25m.
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Our results. Our main result is to make progress towards a resolution of Conjecture

5.0.1 by showing µ(m, r) ≤ 20m
9

+ o(m).

Theorem 5.0.2. There is a polynomial time algorithm for the weighted bipartite

edge coloring problem which returns a proper weighted coloring using at most

d2.2223me colors where m denotes the maximum over all the vertices of the number

of unit-sized bins needed to pack the weights of incident edges.

In our algorithm and analysis, we exploit the fact that the weighted bipartite

edge coloring problem displays features of the classical edge coloring problem as

well as the bin packing problem. We will use classical König’s Theorem [143] as a

subroutine in our algorithm. We will give an alternate proof of König’s Theorem from

skew-supermodularity in Section 5.2. Though these skew-supermodularity results are

not used in our algorithm, they might be useful in other related problems and are of

independent interest.

Our algorithm starts by decomposing the heavy weight edges into matchings by

applying König’s theorem to find an edge coloring of the subgraph induced by these

edges. For the light weight edges, we employ the first-fit decreasing heuristic where

we consider the remaining edges in decreasing order of weight and give them the

first available color. The detailed algorithm is given in Figure 12 and builds on the

algorithm by Feige and Singh [77].

Our work diverges from the previous results on this problem in the analysis of this

simple combinatorial algorithm. We employ strong mathematical formulations for the

bin packing problem; in particular, we use the configuration linear program (LP) for

the bin packing problem. This linear program has been used to design the best ap-

proximation algorithm for the bin packing problem [133, 178, 106]. In our work, we

use it as follows. We show that if the algorithm is not able to color an edge (u, v),

then the edges incident at u or v cannot be packed into m bins as promised. To show

this, we formulate the configuration linear program for the two bin packing problems
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– one induced by edges incident at u and the other induced by edges incident at v.

We then construct feasible dual solutions to these linear programs showing that the

optimal primal value, and therefore the optimal bin packing number, is more than

m for at least one of the programs, giving us the desired contradiction. While the

weights on the edges incident at u (or v) can be arbitrary reals between 0 and 1, we

group the items based on their weight classes and on how our algorithm colors these

edges. This allows us to reduce the number of item types, reducing the complexity

of the configuration LP, making it easier to analyze. While the grouping according

to weight classes is natural in bin packing algorithms, the grouping based on the

output of our algorithm helps us relate the fact that the edge (u, v) could not be col-

ored by our algorithm to the bin packing bound at u and v. Our analysis can also be

extended to show that d2.2me colors are sufficient when all the edge weights are > 1/4.

Overview of the chapter. In Section 5.1, we survey related works. In Section 5.2,

we present an alternate proof of König’s Theorem using skew-supermodularity. Fi-

nally in Section 5.3, we present our edge-coloring algorithm and the related analysis.

5.1 Related Works

Edge-coloring problem has been one of the central problems in graph theory and

discrete mathematics since its appearance in 1880 [198] in relation with the four-

color problem. Three classical results on edge coloring are König’s theorem [143] for

coloring a bipartite graph with ∆ colors, Vizing’s theorem [203] for coloring any simple

graph with ∆+1 colors and Shannon’s theorem [189] for coloring any multigraph with

at most 3∆/2 colors where ∆ is the maximum degree of the graph . The chromatic

index of a graph is the number of colors required to color the edges of the graph such

that no two adjacent edges have the same color. Though one can find optimal edge

coloring for a bipartite graph in polynomial time using König’s theorem, Holyer [109]
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showed that it is even NP-hard to decide whether the chromatic index of a cubic

graph is 3 or 4. We refer the readers to [195] for a survey on edge coloring.

Now let us review the literature related to weighted bipartite edge coloring. First

let us introduce some more notation. When the weight function w : E → I is

restricted to a subinterval I ⊆ [0, 1], then we denote the minimum number of col-

ors by µI(m, r). Slepian [192] showed that µ[1,1](m, r) = m using König’s theorem.

Melen and Turner [159] showed that µ[0,B](m, r) ≤ m
1−B for B ≤ 1. In particular

µ[0,1/2](m, r) ≤ 2m − 1. There has been a series of works improving the bounds for

µ(m, r) [38, 64, 166, 47]. The best known lower bound for µ(m, r) is 5/4 due to Ngo

and Vu [166]. Correa and Goemans introduced a novel graph decomposition result

and perfect packing of an associated continuous one-dimensional bin packing instance

to show µ(m, r) ≤ 2.5480m + o(m). The present best algorithm is due to Feige and

Singh [77] who showed µ(m, r) ≤ 9/4. Their result holds even if m is the maximum

over all the vertices of the total weight of edges incident at the vertex. For related

results in general graphs we refer the readers to [77].

5.2 König’s Edge-coloring Theorem

First we state the König’s Theorem since we use it as a subroutine in our algorithm

to ensure a decomposition of the set of edges into matchings.

Theorem 5.2.1. [143] Given a bipartite graph G = (V,E), there exists a coloring

of edges with ∆ = maxv∈V degE(v) colors such that all edges incident at a common

vertex receive distinct colors. Moreover, such a coloring can be found in polynomial

time.

Now we give an alternate proof of König’s Theorem. First let us define some

preliminaries.
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Definition 5.2.2. Intersecting family: A family C is called an intersecting family

if for all T, U ∈ C with T ∩ U 6= ∅, both T ∩ U and T ∪ U are in C.

Definition 5.2.3. Intersecting supermodular: Given an intersecting family C,

a function f : C → R is called intersecting supermodular, if for all T, U ∈ C with

T ∩ U 6= ∅, we have:

f(T ) + f(U) ≤ f(T ∪ U) + f(T ∩ U)

Definition 5.2.4. Skew-supermodular functions: Given a finite ground set V ,

a set function g : 2V → Z ∪ {∞} is called skew-supermodular, if at least one of the

following two inequalities holds for every X, Y ⊆ V :

g(X) + g(Y ) ≤ g(X ∩ Y ) + g(X ∪ Y ) (41)

g(X) + g(Y ) ≤ g(X \ Y ) + g(Y \X) (42)

5.2.1 Supermodular coloring and an extension

Schrijver [182] showed the following theorem on supermodular coloring:

Theorem 5.2.5. [182] Let C1 and C2 be intersecting families of subsets of a set S,

let g1 : C → Z and g2 : C → Z be intersecting supermodular, and let k ∈ Z+. Then S

can be partitioned into classes L1, L2, . . . , Lk such that

gi(U) ≤ |{j ∈ [k] : Lj ∩ U 6= ∅}| (43)

for each i = 1, 2 and each U ∈ Ci if and only if

gi(U) ≤ min{k, |U |} . (44)

König’s edge-coloring theorem for bipartite graphs is a special case of above theo-

rem. Let V1 and V2 be the color classes for bipartite graph G. Let Ci := {δ(v)|v ∈ Vi}

for i = 1, 2. If we define gi(δ(v)) := |δ(v)| for all v ∈ Vi for i = 1, 2, then we get that

any bipartite graph can be colored by ∆(V ) := maxv∈V δ(V ) colors.

131



Bernáth and Király showed the following skew-supermodular coloring theorem

which is an extension of Schrijver’s supermodular coloring theorem.

Theorem 5.2.6. Skew-supermodular coloring theorem. [20] Let p1, p2 : 2V →

Z∪{∞} be two skew-supermodular functions and k ∈ Z+. Then V can be partitioned

into classes L1, L2, . . . , Lk such that

pi(U) ≤ |{j ∈ [k] : Lj ∩ U 6= ∅}| (45)

for each i = 1, 2 and each U ⊆ V if and only if

pi(U) ≤ min{k, |U |} (46)

However this theorem is not a direct generalization of supermodular coloring as

intersecting supermodular functions are not necessarily skew-supermodular. For ex-

ample, the above defined function gi is not skew-supermodular.

5.2.2 König’s theorem from skew-supermodular coloring

In this section we prove König’s edge-coloring theorem from Theorem 5.2.6. Let

G := (V,E) be a bipartite graph such that V1, V2 are the two partitions. Let X ⊆ E

and Ii(X) := {v ∈ Vi | δ(v) ∩X 6= ∅}, i.e., Ii(X) is the set of vertices in Vi that are

incident on X. Let d(v) be the degree of vertex v in G. Let S ⊆ Vi and ð(S) := v ∈ S

| d(v) ≤ d(u) ∀u ∈ S, i.e., the vertex in S with the minimum degree. If there

are multiple vertices with the same minimum degree then we arbitrarily choose one

vertex. First let us show that the function fi(X) = |X| −
∑

v∈{Ii(X)\{ð(Ii(X))}} d(v) is

skew-supermodular.

Lemma 5.2.7. fi(X) = |X| −
∑

v∈{Ii(X)\{ð(Ii(X))}} d(v) is skew-supermodular for

i = 1, 2.

Proof. Let us show that f1 is skew-supermodular. Proof for skew-supermodularity of

f2 follows similarly. Let X, Y ⊆ E, if X∩Y = ∅, Condition (42) of skew-supermodular
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functions hold trivially. So, assume X ∩ Y 6= ∅ and we will show that in this case

condition (41) of skew-supermodular functions is true. Let g(X) = |X| and h(X) =∑
v∈{I1(X)\{ð(I1(X))}} d(v). Then, f1(X) = g(X) − h(X). Clearly g(X) is modular,

i.e., g(X) + g(Y ) = g(X ∪ Y ) + g(X ∩ Y ). So we need to show h(X) + h(Y ) ≥

h(X ∪ Y ) + h(X ∩ Y ) if X ∩ Y 6= ∅. W.l.o.g. assume d(ð(I1(X))) ≥ d(ð(I1(Y ))).

Now,

h(X ∪ Y ) + h(X ∩ Y )

≤
∑

v∈I1(X∪Y )

d(v) +
∑

v∈I1(X∩Y )

d(v)− d(ð(I1(X ∪ Y )))− d(ð(I1(X ∩ Y )))

≤
∑

v∈I1(X)

d(v) +
∑

v∈I1(Y )

d(v)− d(ð(I1(X ∪ Y )))− d(ð(I1(X ∩ Y ))) (47)

≤
∑

v∈I1(X)

d(v) +
∑

v∈I1(Y )

d(v)− d(ð(I1(X)))− d(ð(I1(Y ))) (48)

≤ h(X) + h(Y ) (49)

This is what we needed to prove. Here inequality (47) follows from the submodularity

property of cut function. Inequality (48) follows from the fact that d(ð(I1(X∩Y ))) ≥

d(ð(I1(X))) and d(ð(I1(X ∪ Y ))) = min{d(ð(I1(X))), d(ð(I1(Y )))} = d(ð(I1(Y ))).

Now we are ready to prove the edge-coloring theorem.

Proof of Theorem 5.2.1. Let us we define pi(X) := |X|−
∑

v∈{Ii(X)\{ð(Ii(X))}} d(v) for

i = 1, 2. From Lemma 5.2.7, pi is skew-submodular. Also from the definition it is

clear that pi(U) = |U | − h(U) ≤ |U | as h(U) ≥ 0. Now let Xv = {e | e ∈ δ(v) ∩X} ,

for any vertex v ∈ I(X). Note that

|Xv| ≤ d(v) ≤ ∆ . (50)
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Then

pi(X) = |X| −
∑

v∈{Ii(X)\{ð(Ii(X))}}

d(v)

= |Xð(Ii(X)| −
∑

v∈{Ii(X)\{ð(Ii(X))}}

(d(v)− |Xv|)

≤ |Xð(Ii(X)|

≤ ∆
[
From (50)

]
.

Thus pi(U) ≤ min{∆, |U |} for any U ⊆ E. Therefore, using Theorem 5.2.6, we get a

proper edge coloring with ∆ colors.

It will be interesting if one can extend Theorem 5.2.6 to get a better bound for

weighted bipartite edge coloring.

5.3 Edge-coloring Weighted Bipartite Graphs

In this section we present our main result and prove Theorem 5.0.2.

Theorem 5.3.1. [Restatement of Theorem 5.0.2] There is a polynomial time algo-

rithm for the weighted bipartite edge coloring problem which returns a proper

weighted coloring using at most d2.2223me colors, where m denotes the maximum

over all the vertices of the number of unit-sized bins needed to pack the weights of

incident edges.

The Algorithm:

Our complete algorithm for edge-coloring weighted bipartite graphs is given in Fig-

ure 12. In the algorithm, we set a threshold γ = 1
10

and consider the subgraph induced

by edges with weights more than γ and apply a combination of König’s Theorem and

a greedy algorithm with dtme colors where t = 2.2223 > 20/9. The remaining edges

of weights at most γ are then added greedily.
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1. F ← ∅, t← 2.2223.

2. Include edges with weight > γ = 1
10

in F in nonincreasing order of weight
maintaining the property that degF (v) ≤ dtme for all v ∈ V .

3. Decompose F into r = dtme matchings M1, . . . ,Mr and color them using colors
1, . . . , r. Let Fi ←Mi for each 1 ≤ i ≤ r.

4. Add remaining edges with weight > γ in nonincreasing order of weight to any
of the Fi’s maintaining that weighted degree of each color at each vertex is at
most one, i.e.,

∑
e∈δ(v)∩Fi we ≤ 1 for each v ∈ V and 1 ≤ i ≤ r.

5. Add remaining edges with weight ≤ γ in nonincreasing order of weight to any
of the Fi’s maintaining that weighted degree of each color at each vertex is at
most one, i.e.,

∑
e∈δ(v)∩Fi we ≤ 1 for each v ∈ V and 1 ≤ i ≤ r.

Figure 12: Algorithm for Edge Coloring Weighted Bipartite Graphs

Analysis:

Now we prove Theorem 5.0.2. Though the algorithm is purely combinatorial, the

analysis uses configuration LP and other techniques from bin packing to prove the

correctness of the algorithm.

The following lemma from Correa and Goemans [47] (which was also implicit in

[64]) ensures that if the algorithm succeeds in coloring all edges of weight at least γ,

the greedy coloring will be able to color the remaining edges of weight at most γ.

Lemma 5.3.2. [47, 64] Consider a bipartite weighted graph G = (V,E) with a

coloring of all edges of weight > γ using at least 2m
1−γ colors for some γ > 0. Then the

greedy coloring will succeed in coloring the edges with weight at most γ without any

additional colors.

In our setting, we have γ = 1
10

and the number of colors is at least 20
9
m = 2m

1− 1
10

and thus Lemma 5.3.2 applies. Hence, it suffices to show that the algorithm is able

to color all edges with weights > 1
10

using dtme colors, as the remaining smaller edges

can be colored greedily. Thus, without loss of generality, we assume that the graph
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has no edges of weight ≤ 1
10

and prove the following lemma.

Lemma 5.3.3. If all edges have weight more than 1
10

and t = 2.2223 (> 20/9) then

the algorithm in Figure 12 returns a coloring of all edges using dtme colors such that

the weighted degree of each color at each vertex is at most one, i.e.,
∑

e∈δ(v)∩Fi we ≤ 1.

Proof. Suppose for the sake of contradiction, the algorithm is not able to color all

edges. Let e := (u, v) be the first edge that cannot be colored by any color in Step (3)

or Step (4) of the algorithm. Let the weight of edge e, we, be α. Moreover, when e

is considered in Step (2), degree of either u or v is already dtme, else we would have

included e in F . Without loss of generality let that vertex be u, i.e., degF (u) = dtme.

For each color 1 ≤ i ≤ dtme, we must have that
∑

f∈δ(v)∩Fi wf > 1 − α or∑
f∈δ(u)∩Fi wf > 1− α, else we can color e in Step (4). Let Hv = {i|

∑
f∈δ(v)∩Fi wf >

1 − α}, βm = |Hv|. Now for each color i /∈ Hv, we have
∑

f∈δ(u)∩Fi wf > 1 − α.

Moreover, degF (u) = dtme and each of these edges weighs at least we = α. Hence,

for each color 1 ≤ i ≤ dtme, there is an edge incident at u colored with color i with

weight at least α. Let us call a color i tight at u if
∑

f∈δ(u)∩Fi wf > (1 − α) and a

color i open at u if
∑

f∈δ(u)∩Fi wf ∈ [α, 1− α]. Let τ be the number of tight colors at

u and θ be the number of open colors at u. Thus we have,

τ ≥ (t− β)m (51)

θ = (tm− τ) ≤ βm . (52)

Now consider the following lemma.

Lemma 5.3.4. [77] Each edge of weight at least 1/t is in F .

It gives the following inequality.

α < 1/t . (53)

Now consider all edges incident on v. We get,

m > βm(1− α)
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⇒ 1 > β(1− α) . (54)

Similarly considering all edges incident on u. We get,

m > (tm− β)(1− α) + (βm)α

⇒ 1 > t(1− α) + β(2α− 1) . (55)

In fact we can strengthen inequality (53) to the following:

α ≤ 1/3 . (56)

This follows from the fact that a unit-sized bin can contain at most two items with

weight > 1/3. As all edges incident to a vertex can be packed into m unit-sized bins,

there can be at most 2m edges incident to a vertex with weight > 1/3. Since t > 2, we

get that all edges with weight more than 1
3

must have been included in F in Step (2).

Thus α ≤ 1/3. Moreover we also get from (54):

β < 1/(1− α) ≤ 3/2 . (57)

Now there are two cases:

Case A: α ≤ 1/4. Consider the RHS of (55): t(1 − α) + β(2α − 1). If we show

that the expression is always greater than 1 for α ≤ 1/4, then we arrive at a contra-

diction. Now,

t(1− α) + β(2α− 1)− 1 > t(1− α)− (1− 2α)

(1− α)
− 1, [From (54)]

≥ 20(1− α)2 − 9(1− 2α)− 9(1− α)

9(1− α)
[Since, t > 20/9]

≥ (20α2 − 13α + 2)

9(1− α)

≥ (4α− 1)(5α− 2)

9(1− α)

≥ 0, as α ≤ 1/4 . (58)
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Thus t(1− α) + β(2α− 1) > 1, which contradicts (55).

Case B: 1/4 < α ≤ 1/3. In this case, we will show in Lemma 5.3.5 that if β ≤ 13/9,

then all edges incident at u can not be packed into m bins. On the other hand, in

Lemma 5.3.12 we show that if β > 13/9, then all edges incident at v can not be

packed into m bins. These two facts together give us the desired contradiction.

Lemma 5.3.5. If β ≤ 13/9, then edges incident at u can not be packed into m bins.

Proof. To give a lower bound on the number of bins required, we will consider a

relaxation to the bin packing problem for edges incident at vertex u and show that

the optimal value of the relaxation, and thus the optimal number of bins required, is

greater than m. The lower bound will be exhibited by constructing a feasible dual

solution to the relaxation to the bin packing problem.

Since degF (u) = dtme when edge e was considered in Step (2) of the algorithm

and not included in F , we have that all edges incident at u in F have weight at least

the weight of e. Moreover, edges are considered in the decreasing order of weight in

Step (4), the weight of all edges incident at u when e is considered in Step (4) is ≥ we.

We restrict our attention to these edges incident at u with weight ≥ α and show that

they cannot be packed in m unit-sized bins. Let us divide these edges incident at u

into three size classes.

• Large L := {f ∈ δ(u) : wf ∈ (1/2, 1]}.

• Medium M := {f ∈ δ(u) : wf ∈ (1/3, 1/2]}.

• Small S := {f ∈ δ(u) : wf ∈ [α, 1/3]}.

First we have the following observation.

Observation 5.3.6. In any bin packing solution, in any bin there can be at most one

item from L, two items from L ∪M and three items from L ∪M ∪ S.
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Now let us prove the following two claims.

Claim 5.3.7. Edges in L∪M are included in Step (2) of the algorithm and thus are

a subset of F .

Proof. If we are unable to add an edge f in Step (2), it means one of its endpoints

has dtme > 2m edges with weight ≥ wf . Since all edges incident at any vertex v ∈ V

can be packed into m bins, there are at most 2m edges incident at it with weight

more than 1
3
. Thus all edges of weight more than 1

3
, i.e., all edges in L ∪M must be

included in F in Step (2) of the algorithm.

As a corollary we get,

Claim 5.3.8. For any color i, there is at most one edge in L ∪M with color i.

Proof. All edges in L ∪M must be included in F in Step (2) of the algorithm. In

Step (3) of the algorithm, we include at most one edge of F incident at any vertex in

each Fi. Thus each color class obtains at most one edge incident at each vertex from

F and therefore, from L ∪M .

Using the observation and the above claim, we itemize the configuration of each

of the tight colors depending on the size of edges with that color. Note that tight

colors must have weight > 1− α ≥ 1− 1/3 = 2/3.

1. Case 1. The tight color has a single edge f . Then we have that wf >
2
3

and

only possibility is i)(L); Here by (L), we denote that the bin contains only one

item and that item is an item from the set L.

2. Case 2. The tight color contains exactly two edges. Here (S, S) is not tight as

the total weight of edges in such a bin is ≤ 2/3. So, the bin can contain at most

one item from S. On the other hand, the bin can contain at most one item

from L ∪M from Claim 5.3.8. Thus the possible size types of these edges are
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ii)(L, S); iii)(M,S); As above, by (L, S) we denote that the bin contains only

two items: exactly one item from set L and exactly one item from S.

3. Case 3. The tight color contains three edges. The bin can contain at most one

item from L ∪M from Claim 5.3.8. However if it contains one L item, sum of

weights of three items exceeds one. Thus the only possible size types of these

edges are iv)(M,S, S); v)(S, S, S).

Now consider the following LP: LPbin(u):

min
5∑
i=1

yi

x1 + x2 + x3 + x4 + x5 ≥ τ (59)

y1 + y2 ≥ x1 + x2 + z1 (60)

y1 + 2y3 + y4 ≥ x3 + x4 + z2 (61)

y2 + y3 + 2y4 + 3y5 ≥ x2 + x3 + 2x4 + 3x5 + z3 (62)

z1 + z2 + z3 ≥ θ (63)

xj, yk, zl ≥ 0 ∀j ∈ [5], k ∈ [5], l ∈ [3]. (64)

Lemma 5.3.9. The optimal number of unit-sized bins needed to pack all edges

incident at u is at least the optimum value of LPbin(u).

Proof. Given a feasible packing of edges incident at u in at most m unit-sized bins,

we construct a feasible solution (x̄, ȳ, z̄) to the linear programming relaxation whose

objective is at most the number of unit-sized bins needed in the packing. In the

feasible solution (x̄, ȳ, z̄), the variables x̄ and z̄ are constructed using the coloring

given by the algorithm. The variables ȳ are constructed using the optimal bin packing.

We first define the variables x̄. Let x̄1, x̄2, x̄3, x̄4, x̄5 be the number of tight colors

at u of type (L), (L, S), (M,S), (M,S, S), (S, S, S), respectively. Since the coloring of

the edges incident at u is one of the five types described above and there are at least τ
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tight colors, we have that
∑5

i=1 x̄i ≥ τ and thus the solution satisfies constraint (59).

Now we define the variables z̄1, z̄2, z̄3 to be the number of items in open colors from

L,M and S respectively. There are θ open colors. Each open color contains at

least one item L ∪M ∪ S. Thus, z̄1 + z̄2 + z̄3 ≥ θ and thus the solution satisfies

constraint (63).

To construct the solution ȳ, we will group the bins in the optimal bin packing

solutions depending on the subset of items present in them into five classes and the

number of bins in each class will define the variables ȳ. The constraints (60)-(62)

will correspond to making sure that the optimal bin packing solution has appropriate

number of items of each size type.

We now have the following claim where we characterize the possible bin configu-

rations.

Claim 5.3.10. Consider any feasible bin-packing of edges incident at u restricted to

edges in L∪M ∪ S. Then each bin must contain items which correspond to a subset

of one of the following 5 configurations or subsets of these configurations.

C1 : (L,M) C2 : (L, S) C3 : (M,M,S)
C4 : (M,S, S) C5 : (S, S, S)

Proof. Observe that in any bin there can be at most one item from L, two items from

L ∪M and three items from L ∪M ∪ S. Now let us consider two cases.

Case 1. The bin contains an item from L. In this case, the bin can not contain three

items as the sum of their weights exceeds one. So, it can contain at most one item

from L and one item from M ∪ S. Thus C1 and C2 cover such two cases.

Case 2. The bin does not contain any item from L. In this case, the bin can contain

three items from M ∪ S and at most two of these items can be from M . Thus C3, C4

and C5 cover such possibilities.

We map each configuration in the optimal bin packing solution to one of types Ci
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where the configuration is either Ci or its subset. Let ȳi denote the number of bins

mapped to type Ci for each 1 ≤ i ≤ 5. We now count the number of items of each

type to show feasibility of the constraints of the linear program.

Constraint (60). Items of type L equal x̄1 + x̄2 + z̄1 and can only be contained

in configuration C1 and C2. Thus we have ȳ1 + ȳ2 ≥ x̄1 + x̄2 + z̄1 satisfying

constraint (60).

Constraint (61). Items of type M equal x̄3 + x̄4 + z̄2 and are contained once in

configurations C1, C4 and twice in configuration C3. Thus we have ȳ1+2ȳ3+ȳ4 ≥

x̄3 + x̄4 + z̄2 satisfying constraint (61).

Constraint (62). Items of type S equal x̄2 + x̄3 + 2x̄4 + 3x̄5 + z̄3 and occur

once in configurations C2, C3, twice in configuration C4 and thrice in C5. Thus,

we have ȳ2 + ȳ3 + 2ȳ4 + 3ȳ5 ≥ x̄2 + x̄3 + 2x̄4 + 3x̄5 + z̄3 showing feasibility of

constraint (62).

This implies that (x̄, ȳ, z̄) is a feasible solution to LPbin and its objective equals the

number of bins needed to pack the edges incident at u in unit-sized bins. Thus we

have the lemma.

We now show a contradiction by showing the optimal value of the LPbin(u) is more

than m.

Lemma 5.3.11. The optimal solution to LPbin(u) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPbin(u). Since

every feasible solution to the dual LP gives a lower bound on the objective of the

primal LPbin(u), it is enough to exhibit a feasible dual solution of objective strictly

more than m to prove the lemma. Now the dual of the LPbin is following:

A feasible dual solution is: v1 = 2
3
, v2 = 2

3
, v3 = 1

3
, v4 = 1

3
, v5 = 1

3
.
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max τ · v1 + θ · v5

Subject to:
v1 − v2 ≤ 0, v1 − v2 − v4 ≤ 0,
v1 − v3 − v4 ≤ 0, v1 − v3 − 2v4 ≤ 0,
v1 − 3v4 ≤ 0, v2 + v3 ≤ 1,
v2 + v4 ≤ 1, 2v3 + v4 ≤ 1,
v3 + 2v4 ≤ 1, 3v4 ≤ 1,
v5 − v2 ≤ 0, v5 − v3 ≤ 0,
v5 − v4 ≤ 0, vi ≥ 0 ∀i ∈ [4].

Thus dual optima ≥ 2τ
3

+ θ
3

and we need at least these many colors to color items

in τ tight colors and θ open colors. Using the fact that θ = tm − τ, τ ≥ (t − β)m

and t > 20
9
m,β ≤ 13

9
, we obtain that the number of bins required to pack all items

incident on u is:

≥ τ · v1 + θ · v4

≥ 2

3
τ +

1

3
(tm− τ)

=
1

3
τ +

1

3
(tm)

≥ 1

3
(t− β)m+

1

3
(tm)

≥ 2t

3
m− β

3
m

> m(
2

3
· 20

9
− 1

3
· 13

9
)

= m.

Thus the number of bins required to pack all items incident on u is strictly greater

than m. This is a contradiction.

This concludes the proof of Lemma 5.3.5.

Lemma 5.3.12. If β > 13/9, then edges incident at v can not be packed into m bins.

Proof. Similar to the previous lemma, to give a lower bound on the number of bins

required, we will consider a relaxation to the bin packing problem for edges incident

at vertex v and show that the optimal value of the relaxation, and thus the optimal
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number of bins required, is greater than m. Again, the lower bound will be exhibited

by constructing a feasible dual solution to the relaxation to the bin packing problem.

As β(1− α) < 1, we get,

α > 1− 1/β ≥ 4/13 > 0.3. (65)

Let us call a color i tight at v, if
∑

f∈δ(v)∩Fi wf > (1 − α). Now consider any

tight color B at v. At most one edge f in B was colored in Step (3) of the algorithm

and remaining edges (if any) in B were colored in Step (4) of the algorithm. Now,

wf can be smaller than we as it might be the case that when e was considered in

Step (2) then already degree of other endpoint u was dtme. However, edges are con-

sidered in the nonincreasing order of weight in Step (4), thus the weight of all edges

incident at v when e is considered in Step (4) is also ≥ we. Thus, all the remain-

ing edges (if any) in B that were colored in Step (4) of the algorithm have weights > α.

We restrict our attention to the edges at tight colors at v and show that if β > 13
9

they cannot be packed in m unit-sized bins. Let us divide these edges incident at u

into three size classes.

• Large L := {f ∈ δ(v) : wf ∈ (1/2, 1]}.

• Medium M := {f ∈ δ(v) : wf ∈ (1/3, 1/2]}.

• Small S := {f ∈ δ(v) : wf ∈ [α, 1/3]}.

• Tiny T := {f ∈ δ(v) : wf ∈ (1/10, α)}.

First we have the following observation.

Observation 5.3.13. In any bin packing solution, in any bin there can be at most

one item from L, two items from L∪M , three items from L∪M ∪ S and nine items

from L ∪M ∪ S ∪ T .
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Now let us prove the following claim.

Claim 5.3.14. For any tight color i at v, all edges added in Step (4) of the algorithm

are in S. As a corollary, there is at most one edge incident on v with color i that is

in L ∪M ∪ T and it can only be added in Step (2) of the algorithm.

Proof. From Claim 5.3.7, it follows that all edges in L∪M must be included in F in

Step (2) of the algorithm. On the other hand, as all edges colored in Step (4) have

weights ≥ α, they can not be in T . Hence, only edges in S are colored in Step (4).

Edges in L ∪M ∪ T are colored in Step (3). In Step (3) of the algorithm, we include

at most one edge of F incident at any vertex in each Fi. Thus each color class obtains

at most one edge incident at each vertex from F and therefore, from L∪M ∪ T .

Using the observation and the claim, we itemize the configuration of each of the

tight colors depending on the size of edges with that color. Note that in this case

tight colors have weights > 1− α ≥ 1− 1/3 = 2/3.

1. If the tight color has a single edge f . Then we have that wf > 2/3 and only

possibility is i)(L); Here, (L) denotes that the bin contains only one item and

that item is an item from the set L.

2. If the tight color contains exactly two edges. From Claim 5.3.14, the bin can

contain at most one item from L ∪M ∪ T . On the other hand, (S, S) or (T, S)

has weight ≤ 2/3. So the bin can contain at most one item from S and one item

from L∪M . Thus the possible size types of these edges are ii)(L, S); iii)(M,S);

As above, by (L, S) we denote that the bin contains only two items: exactly

one item from set L and exactly one item from S.

3. If the tight color contains three edges. From Claim 5.3.14, the bin can contain

at most one item from L∪M ∪ T . However if the bin contains an item from L,
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the sum of weights of an item from L and two items from S exceeds one. Thus

the possible size types of these edges are iv)(M,S, S); v)(S, S, S); vi)(T, S, S).

Now consider the following configuration LP based on the items at v: LPbin(v):

min

19∑
i=1

yi

x1 + x2 + x3 + x4 + x5 + x6 ≥ βm (66)

y14 ≥ x1 (67)

y8 + y9 + y10 + y15 ≥ x2 (68)

y3 + y7 + y9 + y11 + 2y12 + y16 ≥ x3 (69)

y2 + 2y4 + y6 + y10 + y11 + 2y13 + y17 ≥ x4 (70)

3y1 + 2y2 + 2y3 + y4 + 2y5 + y6 + y7 + y8 + y18 ≥ x2 + x3 + 2x4 + 3x5 + 2x6 (71)

(3y5 + 3y6 + 3y7 + y8 + y9 + y10 + 3y11 + 3y12

+3y13 + 3y14 + 4y15 + 6y16 + 6y17 + 6y18 + 9y19) ≥ x6 (72)

yj, xk ≥ 0 ∀j ∈ [19], k ∈ [6]. (73)

Lemma 5.3.15. The optimal number of unit-sized bins needed to pack all edges

incident at u is at least the optimum value of LPbin(v).

Proof. Given a feasible packing of edges incident at v in at most m unit-sized bins,

we construct a feasible solution (x̄, ȳ) to the linear programming relaxation whose

objective is at most the number of unit-sized bins needed in the packing. In the

feasible solution (x̄, ȳ), the variables x̄ are constructed using the coloring given by the

algorithm. The variables ȳ are constructed using the optimal bin packing.

We first define the variables x̄. Let x̄1, x̄2, x̄3, x̄4, x̄5, x̄6 be the number of tight

colors at v of type (L), (L, S), (M,S), (M,S, S), (S, S, S), (T, S, S), respectively. Since

the coloring of the edges incident at v is one of the six types described above and

there are at least βm tight colors at v, we have that
∑6

i=1 x̄i ≥ βm and thus the

solution satisfies constraint (78).
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To construct the solution ȳ, we will group the bins in the optimal bin packing

solutions depending on the subset of items present in them into nineteen classes and

the number of bins in each class will define the variables ȳ. The constraints (79)-(84)

will correspond to making sure that the optimal bin packing solution has appropriate

number of items of each size type.

To define the 19 different classes of bin types in the optimal solution, we need

to further classify items according to size. Let L1, L2 ⊆ L be the set of large edges

that appear in the configurations of the type (L) and (L, S), respectively, in the tight

colors.

As for any item l1 ∈ L1, wl1 + α > 1. We get,

wl1 > 1− α ≥ 1− 1/3 = 2/3. (74)

Let M1,M2 be the set of medium edges that appear in the tight colors of type

(M,S) and (M,S, S), respectively.

We now have the following claim where we characterize the possible bin configu-

rations. We show that each bin contains items which correspond to one of 19 possible

configurations or their subsets.

Claim 5.3.16. Consider any feasible bin-packing of edges incident at v restricted to

edges in L ∪M ∪ S ∪ T . Then each bin must contain items which correspond to a

subset of one of the following 19 configurations.

C1 : (S, S, S) C2 : (M2, S, S) C3 : (M1, S, S)
C4 : (M2,M2, S) C5 : (S, S, T, T, T ) C6 : (M2, S, T, T, T )
C7 : (M1, S, T, T, T ) C8 : (L2, S, T ) C9 : (L2,M1, T )
C10 : (L2,M2, T ) C11 : (M1,M2, T, T, T ) C12 : (M1,M1, T, T, T )
C13 : (M2,M2, T, T, T ) C14 : (L1, T, T, T ) C15 : (L2, T, T, T, T )
C16 : (M1, T, T, T, T, T, T ) C17 : (M2, T, T, T, T, T, T ) C18 : (S, T, T, T, T, T, T )
C19 : (T, T, T, T, T, T, T, T, T )

Proof. Observe that since items in L have weight more than 1
2
, items in M have

weight more than 1
3
, items in S have weight more than 1

4
and items in T have weight
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more than 1
10

, there can be at most one item from L, two items from L∪M , at most

three items in total from L ∪M ∪ S and at most nine items from L ∪M ∪ S ∪ T in

any feasible packing.

1. Bins with three items from D := L ∪M ∪ S. As the sum of weights of three

elements from D is more than 3α > 0.9, elements from T can not appear in these

bins as 3α + wf > 1 for any f ∈ T . Moreover, configurations which contain

at least one item of L cannot have three items from D without the weight

exceeding one. Thus, the packing can contain only items from M and S. When

the bin contains only S items, it corresponds to configuration C1. Packings

which contain one item from M1 ∪M2 and two items from S are exactly the

configurations C2, C3.

Now let us consider the case when we have two items from M1 ∪ M2. First

observe that for each h ∈M1, there exists a s ∈ S such that (h, s) are the only

edges colored with a tight color. Thus we have that wh +ws > 1−α. But then

for any other h′ ∈M1 ∪M2 and s′ ∈ S, we have that

wh + wh′ + ws′ ≥ wh + ws + α > 1 , (75)

where the inequality follows since wh′ ≥ ws and ws′ ≥ α. This implies that

configurations of type (M1,M1, S) or (M1,M2, S) are not feasible. Hence, the

only possible remaining configuration is C4.

2. Bins with two items from D. Here we consider maximal configurations which

are not subsets of configurations which contain three items from D. When the

configuration contains two items s1, s2 ∈ S, we have that ws1 + ws2 > 0.6 and

thus the only maximal configuration is C5. Configurations C6, C7 cover the case

when the configuration contains one item from S and one item from M . Let

l ∈ L1. Since l appears alone in a tight color, we have that wl + α > 1. Since

every item in M ∪ S has weight at least α, there is no valid configuration with
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two items from D such that one of them is in L1. If the configuration contains

l2 ∈ L2 and g ∈ M1 ∪M2 ∪ S, it can at most contain one element t ∈ T as

wl2 + wg + wt > 0.5 + 0.3 + 0.1 > 0.9. Thus configuration C8 covers the case

when there is one item from S and one item from L. Now we are left with cases

when there are no S items in the bin. If there is one L item and one M item,

C9, C10 cover such possibilities.

Similarly if the configuration contains two items from M , it can contain at most

3 elements from T . Configurations C11, C12, C13 cover all such the possibilities.

3. Bins with one item from D. Here we consider configurations which are not

subsets of configurations which contain at least two items from D. Note that as

for any item l1 ∈ L1, from inequality (74), wl1 > 2/3. Thus (L1, T, T, T ) is the

maximal configuration containing one L1 item. C14 is the corresponding con-

figuration. The other four possible configurations are C15, C16, C17, C18 where

the bins contain one item from L2,M1,M2, S respectively. In these cases the

number of T items are upper bounded by 4, 6, 6, 6 respectively from the lower

bound of size of items in the corresponding classes in D.

4. Bins with no item from D. Only possible maximal configuration is C19.

We map each configuration in the optimal bin packing solution to one of types Ci

where the configuration is either Ci or its subset. Let ȳi denote the number of bins

mapped to type Ci for each 1 ≤ i ≤ 19. We now count the number of items of each

type to show feasibility of the constraints of the linear program.

Constraint (79). Items of type L1 equal x̄1 and can only be contained in con-

figuration C14. Thus we have ȳ14 ≥ x̄1.
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Constraint (80). Similarly, items of type L2 equal x̄2. They are contained in

configurations C8, C9, C10 and C15. Thus we have ȳ8 + ȳ9 + ȳ10 + ȳ15 ≥ x̄2.

Constraint (81). Items of type M1 equal x̄3 and are contained once in con-

figurations C3, C7, C9, C11, C16 and twice in configuration C12. Thus we have

ȳ3 + ȳ7 + ȳ9 + ȳ11 + 2ȳ12 + ȳ16 ≥ x̄3.

Constraint (82). Items of type M2 equal x̄4 and are contained once in configu-

rations C2, C6, C10, C11, C17 and twice in configurations C4, C13. Thus we have

ȳ2 + 2ȳ4 + ȳ6 + ȳ10 + ȳ11 + 2ȳ13 + ȳ17 ≥ x̄4 satisfying constraint (82).

Constraint (83). Items of type S equal x̄2 + x̄3 + 2x̄4 + 3x̄5 + 2x̄6 and occur

once in configurations C4, C6, C7, C8, C18, twice in configurations C2, C3, C5 and

thrice in C1. Thus, we have 3ȳ1 + 2ȳ2 + 2ȳ3 + ȳ4 + 2ȳ5 + ȳ6 + ȳ7 + ȳ8 + ȳ18 ≥

x̄2 + x̄3 + 2x̄4 + 3x̄5 + 2x̄6.

Constraint (84). Items of type T equal x̄6 and occur once in configurations

C8, C9, C10, thrice in configurations C5, C6, C7, C11, C12, C13, C14, four times in

configuration C15, six times in configurations C16, C17, C18 and nine times in

configuration C19. Thus, we have (3ȳ5 + 3ȳ6 + 3ȳ7 + ȳ8 + ȳ9 + ȳ10 + 3ȳ11 + 3ȳ12 +

3ȳ13 + 3ȳ14 + 4ȳ15 + 6ȳ16 + 6ȳ17 + 6ȳ18 + 9ȳ19) ≥ x̄6.

This implies that (x̄, ȳ) is a feasible solution to LPbin(v) and its objective equals the

number of bins needed to pack the edges incident at v in unit-sized bins. Thus we

have the lemma.

We now show a contradiction by showing that the optimal value of the LPbin(v)

is more than m.

Lemma 5.3.17. The optimal solution to the LPbin(v) is strictly more than m.

Proof. We prove this by considering the dual linear program of the LPbin(v). Since

every feasible solution to the dual LP gives a lower bound on the objective of the
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primal LPbin(v), it is enough to exhibit a feasible dual solution of objective strictly

more than m to prove the lemma. Now the dual of the LPbin(v) is given below:

max βm · v1

Subject to:
v1 − v2 ≤ 0, v1 − v3 − v6 ≤ 0,
v1 − v4 − v6 ≤ 0, v1 − v5 − 2v6 ≤ 0,
v1 − 3v6 ≤ 0, v1 − 2v6 − v7 ≤ 0,
3v6 ≤ 1, v5 + 2v6 ≤ 1,
v4 + 2v6 ≤ 1, 2v5 + v6 ≤ 1,
2v6 + 3v7 ≤ 1, v5 + v6 + 3v7 ≤ 1,
v4 + v6 + 3v7 ≤ 1, v3 + v6 + v7 ≤ 1,
v3 + v4 + v7 ≤ 1, v3 + v5 + v7 ≤ 1,
v4 + v5 + 3v7 ≤ 1, 2v4 + 3v7 ≤ 1,
2v5 + 3v7 ≤ 1, v2 + 3v7 ≤ 1,
v3 + 4v7 ≤ 1, v4 + 6v7 ≤ 1,
v5 + 6v7 ≤ 1, v6 + 6v7 ≤ 1,
9v7 ≤ 1, vi ≥ 0 ∀i ∈ [7].

A feasible dual solution is

v1 =
9

13
, v2 =

9

13
, v3 =

7

13
, v4 =

5

13
, v5 =

1

13
, v6 =

4

13
, v7 =

1

13
. (76)

Thus dual optima is at least

βm · 9

13
> m .

Thus, we need more than m bins to pack all items incident at v, a contradiction.

This completes the proof of Lemma 5.3.12.

Therefore, the proof of Theorem 5.0.2 is complete.

5.3.1 Better approximation when all edge weights are > 1/4

If we assume all items have weights > 1/4, then similar analysis shows that 2.2m

colors are sufficient.

Theorem 5.3.18. If all edge-weights are > 1/4, then there is a polynomial time

algorithm for the weighted bipartite edge coloring problem which returns a
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proper weighted coloring using at most d2.2me colors, where m denotes the maximum

over all the vertices of the number of unit-sized bins needed to pack the weights of

incident edges.

Proof. In this section we will show that Algorithm 12 with t > 11
5

is sufficient to get

a proper weighted coloring when all edges are > 1/4. Similar to Section 5.3, we will

show in Lemma 5.3.19 that if β ≤ 7/5, then all edges incident at u can not be packed

into m bins. On the other hand, in Lemma 5.3.20 we show that if β > 7/5, then all

edges incident at v can not be packed into m bins. These two facts together give us

the desired contradiction.

Lemma 5.3.19. If β ≤ 7/5, then edges incident at u can not be packed into m bins.

Proof. From the analysis of Lemma 5.3.11, we get that the number of bins to pack

all items incident on u is :

≥ 2t

3
m− β

3
m

>
2

3
· 11

5
m− 1

3
· 7

5
m

[
Since, t >

11

5

]
= m. (77)

This is a contradiction.

Lemma 5.3.20. If β > 7/5, then edges incident at v can not be packed into m bins.

Proof. As in Lemma 5.3.12, we restrict our attention to the edges at tight colors

at v and show that if β > 7
5

they cannot be packed in m unit-sized bins. The only

difference is that we now have edges that are > 1/4. Let us divide these edges incident

at u into three size classes.

• Large L := {f ∈ δ(v) : wf ∈ (1/2, 1]}.

• Medium M := {f ∈ δ(v) : wf ∈ (1/3, 1/2]}.
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• Small S := {f ∈ δ(v) : wf ∈ [α, 1/3]}.

• Tiny T ′ := {f ∈ δ(v) : wf ∈ (1/4, α)}.

Claim 5.3.21. Consider any feasible bin-packing of edges incident at v restricted to

edges in L ∪M ∪ S ∪ T . Then each bin must contain items which correspond to a

subset of one of the following 19 configurations.

C1 : (S, S, S) C2 : (M2, S, S) C3 : (M1, S, S)
C4 : (M2,M2, S) C5 : (S, S, T ′) C6 : (M2, S, T

′)
C7 : (M1, S, T

′) C8 : (L2, S) C9 : (L2,M1)
C10 : (L2,M2) C11 : (M1,M2, T

′) C12 : (M1,M1, T
′)

C13 : (M2,M2, T
′) C14 : (L1, T

′) C15 : (L2, T
′)

C16 : (M1, T
′, T ′) C17 : (M2, T

′, T ′) C18 : (S, T ′, T ′)
C19 : (T ′, T ′, T ′)

Proof. In Claim 5.3.16, we considered maximal configurations in tight colors. Let us

consider any configuration in Claim 5.3.16 and let us assume that in a tight color

belonging to that configuration there are k items from class T and we can not add

any more item. Then (
∑

i∈L∪M∪S wi + (k + 1) · 1
10

+ ε) > 0 for any ε > 0. Hence,

(
∑

i∈L∪M∪S wi + (k + 1) · 2
5
· 1

4
+ ε) > 0 for any ε > 0. Hence if there were k items

of class T in configurations in Claim 5.3.16, then we can replace items in T with at

most d(k+ 1) · 2
5
e− 1 items from class T ′. Thus we replace 1, 2, 3, 4, 6, 9 items in T in

the configurations in Claim 5.3.16 with items 0, 1, 1, 2, 3 items in T ′ respectively. This

gives us the configurations in this claim from the configurations in Claim 5.3.16.

Thus we get the following LP similar to the configuration LP LPbin(v) in the proof

of Lemma 5.3.12.
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min
19∑
i=1

yi

x1 + x2 + x3 + x4 + x5 + x6 ≥ βm (78)

y14 ≥ x1 (79)

y8 + y9 + y10 + y15 ≥ x2 (80)

y3 + y7 + y9 + y11 + 2y12 + y16 ≥ x3 (81)

y2 + 2y4 + y6 + y10 + y11 + 2y13 + y17 ≥ x4 (82)

3y1 + 2y2 + 2y3 + y4 + 2y5 + y6 + y7 + y8 + y18 ≥ x2 + x3 + 2x4 + 3x5 + 2x6 (83)

(y5 + y6 + y7 + y11 + y12 + y13 + y14

+y15 + 2y16 + 2y17 + 2y18 + 3y19) ≥ x6 (84)

yj, xk ≥ 0 ∀j ∈ [19], k ∈ [6]. (85)

Note that all constraints are same as in the proof of Lemma 5.3.12, except for the

last constraint as now we count the number of items in T ′ instead of T . We also get

the following dual which differs only in the constraints corresponding to configurations

containing type T items.

max βm · v1

Subject to:
v1 − v2 ≤ 0, v1 − v3 − v6 ≤ 0,
v1 − v4 − v6 ≤ 0, v1 − v5 − 2v6 ≤ 0,
v1 − 3v6 ≤ 0, v1 − 2v6 − v7 ≤ 0,
3v6 ≤ 1, v5 + 2v6 ≤ 1,
v4 + 2v6 ≤ 1, 2v5 + v6 ≤ 1,
2v6 + v7 ≤ 1, v5 + v6 + v7 ≤ 1,
v4 + v6 + v7 ≤ 1, v3 + v6 ≤ 1,
v3 + v4 ≤ 1, v3 + v5 ≤ 1,
v4 + v5 + v7 ≤ 1, 2v4 + v7 ≤ 1,
2v5 + v7 ≤ 1, v2 + v7 ≤ 1,
v3 + v7 ≤ 1, v4 + 2v7 ≤ 1,
v5 + 2v7 ≤ 1, v6 + 2v7 ≤ 1,
3v7 ≤ 1, vi ≥ 0 ∀i ∈ [7].

154



Here a feasible dual solution is

v1 =
5

7
, v2 =

5

7
, v3 =

4

7
, v4 =

3

7
, v5 =

1

7
, v6 =

2

7
, v7 =

1

7
. (86)

Thus dual optima is at least

βm · 7

5
> m .

This completes the proof of Lemma 5.3.20.

Therefore, the proof of Theorem 5.3.18 is complete.

5.4 Conclusion

In this chapter, we have shown that d2.2223me colors are sufficient to get a poly-

nomial time proper weighted coloring for bipartite graphs. Our techniques based on

configuration LP and other structural properties of bin packing, might be useful in

the analysis of other algorithms related to Clos networks. We remark that considering

the case 1/4 ≥ α > 1/5 separately, might improve the bound further by more case

analysis and the fact that there are at most 4m items. However we can at most attain

35m/16 ≈ 2.19m by that analysis.

There is no better known existential result even with exponential running time.

Finding a better approximation algorithm (independent of m) or inapproximability,

and extending our techniques to general graphs are other interesting directions.
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Chapter VI

CONCLUSION

In this thesis we obtained improved approximation for three classical generalizations

of bin packing: geometric bin packing, vector bin packing and weighted bipartite edge

coloring. We have made related concluding remarks in the corresponding chapters.

Now in this chapter we conclude by listing some of the open problems related to

multidimensional bin packing for future work.

Problem 1. Tight approximability of bin packing.

The present best algorithm for 1-D BP by Hoberg and Rothvoß [106], uses Opt +

O(logOpt) bins. Proving one could compute a packing with only a constant number

of extra bins will be a remarkable progress and is mentioned as one of the ten most

important problems in approximation algorithms [204]. Consider the seemingly sim-

ple 3-Partition case in which all n items have sizes si ∈ (1/4, 1/2). Recent progress

by [165] suggests that either O(log n) bound is the best possible for 3-Partition or

some fundamentally new ideas are needed to make progress.

Problem 2. Integrality gap of Gilmore-Gomory LP.

It has been conjectured in [181] that the Gilmore-Gomory LP for 1-D BP has Modified

Integer Roundup Property, i.e., Opt ≤ dOptfe + 1. The conjecture has been proved

true for the case when the instance contains at most 7 different item sizes [184]. Set-

tling the status for the general case is an important open problem in optimization.

Problem 3. Tight asymptotic competitive ratio for 1-D online BP.
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The present best algorithm for online bin packing is by Seiden [185] and has asymp-

totic performance ratio at most 1.58889. Ramanan et al. [176] showed that these

Harmonic-type algorithms can not achieve better than 1.58333 asymptotic competi-

tive ratio. In general the best known lower bound for asymptotic competitive ratio

is 1.54014 [200]. Giving a stronger lower bound using some other construction is an

important question in online algorithms.

Problem 4. Improved inapproximability for multidimensional bin packing.

There is a huge gap between the best approximation guarantee and hardness of mul-

tidimensional bin packing. There are no explicit inapproximability bounds known for

multidimensional bin packing as function of d, apart from the APX-hardness in 2-D.

Thus there is a huge gap between the best algorithm (1.69d−1, i.e., exponential in d

for geometric packing and O(ln d) for vector packing for d > 2) and the hardness.

Improved inapproximability, as a function of d, will be an interesting hardness result.

Problem 5. Tight ratio between optimal Guillotine packing and optimal

bin packing. Improving the present guarantee for 2-D GBP will require an algo-

rithm that is not input-agnostic. In particular, this implies that it should have the

property that it can round two identical items (i.e., with identical height and width)

differently. One such candidate is the guillotine packing approach [18]. It has been

conjectured that this approach can give an approximation ratio of 4/3 for 2-D GBP.

At present the best known upper bound on this gap is T∞ ≈ 1.69 [28]. Guillotine cut-

ting also has connections with other geometric packing problems such as geometric

knapsack and maximum independent set rectangles [2].

Problem 6. Tight ratio between optimal two-stage packing and optimal

bin packing. Caprara conjectured [27] that there is a two-stage packing that gives
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3/2 approximation for 2-D bin packing. As there are PTAS for 2-stage packing [28],

this will give another 3/2 approximation for 2-D BP and coupled with our R&A

method this will give another (1.405 + ε) approximation. Presently the upper bound

between best two-stage packing and optimal bin packing is T∞ ≈ 1.69. As 2-stage

packings are very well-studied, this question is of independent interest and it might

give us more insight on the power of Guillotine packing.

Problem 7. Extending R&A framework to d-D GBP and 3-D SP.

One key bottleneck to extend R&A framework to d-D GBP or other related problems,

is to find a good approximation algorithm to find the solution of the configuration

LP. A poly(d) asymptotic approximation for the LP will give us a poly(d) asymptotic

approximation for d-D GBP, a significant improvement over the current best ratio of

2O(d) for d > 2.

Problem 8. Resolving Chung-Ross Conjecture [38].

The first conjecture says that given an instance of the weighted bipartite edge

coloring problem, there is a proper weighted coloring using at most 2m− 1 colors

where m denotes the maximum over all the vertices of the number of unit-sized bins

needed to pack the weights of edges incident at the vertex.

A stronger version of the conjecture is that, given an instance of the weighted

bipartite edge coloring problem, there is a proper weighted coloring using at

most 2n− 1 colors where n is the smallest integer greater than the maximum over all

the vertices of the total weight of edges incident at the vertex.

Finally, finding faster algorithms that work well in practice, is also a very impor-

tant problem.
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Operations Research Letters, vol. 34, no. 5, pp. 564–568, 2006.

163



[69] Epstein, L., “On variable sized vector packing,” Acta Cybern., vol. 16, no. 1,
pp. 47–56, 2003.

[70] Epstein, L., “Two dimensional packing: the power of rotation,” in Mathemat-
ical Foundations of Computer Science 2003, pp. 398–407, Springer, 2003.

[71] Epstein, L., “Harmonic algorithm for bin packing,” in Encyclopedia of Algo-
rithms, 2015.

[72] Epstein, L. and van Stee, R., “Online square and cube packing,” Acta Inf.,
vol. 41, no. 9, pp. 595–606, 2005.

[73] Epstein, L. and van Stee, R., “Optimal online algorithms for multidimen-
sional packing problems,” SIAM Journal on Computing, vol. 35, no. 2, pp. 431–
448, 2005.

[74] Epstein, L. and Van Stee, R., “This side up!,” in Approximation and Online
Algorithms, pp. 48–60, Springer, 2005.

[75] Epstein, L. and Van Stee, R., “Bounds for online bounded space hypercube
packing,” Discrete optimization, vol. 4, no. 2, pp. 185–197, 2007.

[76] Faroe, O., Pisinger, D., and Zachariasen, M., “Guided local search for
the three-dimensional bin-packing problem,” INFORMS Journal on Computing,
vol. 15, no. 3, pp. 267–283, 2003.

[77] Feige, U. and Singh, M., “Edge coloring and decompositions of weighted
graphs,” in ESA, pp. 405–416, 2008.

[78] Fereira, C. E., Miyazawa, F. K., and Wakabayashi, Y., “Packing of
squares into squares,” in Pesquisa Operacional, Citeseer, 1998.

[79] Fishkin, A. V., Gerber, O., and Jansen, K., “On efficient weighted rect-
angle packing with large resources,” in ISAAC, pp. 1039–1050, 2005.

[80] Frieze, A. and Clarke, M., “Approximation algorithms for the m-
dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses,”
European Journal of Operational Research, vol. 15, no. 1, pp. 100–109, 1984.

[81] Galambos, G., Kellerer, H., and Woeginger, G. J., “A lower bound for
on-line vector-packing algorithms,” Acta Cybern., vol. 11, no. 1-2, pp. 23–34,
1993.

[82] Galambos, G. and Woeginger, G. J., “On-line bin packing - A restricted
survey,” Math. Meth. of OR, vol. 42, no. 1, pp. 25–45, 1995.

[83] Garey, M. R., Graham, R. L., and Johnson, D. S., “Resource constrained
scheduling as generalized bin packing,” J. Comb. Theory, Ser. A, vol. 21, no. 3,
pp. 257–298, 1976.

164



[84] Garey, M. R., Graham, R. L., and Ullman, J. D., “Worst-case analysis
of memory allocation algorithms,” in STOC, pp. 143–150, 1972.

[85] Garey, M. R. and Johnson, D. S., “Complexity results for multiprocessor
scheduling under resource constraints,” SIAM Journal on Computing, vol. 4,
no. 4, pp. 397–411, 1975.

[86] Garey, M. R. and Johnson, D. S., “Computers and interactibility: A guide
to the theory of np-completeness,” W.H. Freeman & Co., SF, CA, 1979.

[87] Garey, M. R. and Johnson, D. S., “Approximation algorithms for bin pack-
ing problems: A survey,” in Analysis and design of algorithms in combinatorial
optimization, pp. 147–172, Springer, 1981.

[88] Gilmore, P. C. and Gomory, R. E., “A linear programming approach to the
cutting-stock problem,” Operations research, vol. 9, no. 6, pp. 849–859, 1961.

[89] Glover, F. and Laguna, M., Tabu search. Springer, 1999.

[90] Goemans, M. X. and Rothvoß, T., “Polynomiality for bin packing with a
constant number of item types,” in SODA 2014, pp. 830–839, 2014.

[91] Goemans, M. X. and Williamson, D. P., “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming,” Journal of the ACM (JACM), vol. 42, no. 6, pp. 1115–1145, 1995.

[92] Gollapudi, S., Khan, A., Kulkarni, J., Talwar, K., and Yazdanbod,
S., “A geometric approach to diverse group formation,” Under Submission,
2015.

[93] Gonzalez, T. F., Handbook of approximation algorithms and metaheuristics.
CRC Press, 2007.

[94] Grigoriadis, M. D., Khachiyan, L. G., Porkolab, L., and Villavi-
cencio, J., “Approximate max-min resource sharing for structured concave
optimization,” SIAM Journal on Optimization, vol. 11, no. 4, pp. 1081–1091,
2001.

[95] Grötschel, M., Lovász, L., and Schrijver, A., “The ellipsoid method
and its consequences in combinatorial optimization,” Combinatorica, vol. 1,
no. 2, pp. 169–197, 1981.

[96] Grötschel, M., Lovász, L., and Schrijver, A., “Geometric algorithm
and combinatorial optimization,” Algorithms and Combinatorics: Study and
Research Texts, 2. Springer-Verlag, Berlin, 1988.

[97] Guo, P.-N., Takahashi, T., Cheng, C.-K., and Yoshimura, T., “Floor-
planning using a tree representation,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 20, no. 2, pp. 281–289, 2001.

165



[98] Gupta, V. and Radovanovic, A., “Online stochastic bin packing,” arXiv
preprint arXiv:1211.2687, 2012.

[99] Han, B. T., Diehr, G., and Cook, J. S., “Multiple-type, two-dimensional
bin packing problems: Applications and algorithms,” Annals of Operations Re-
search, vol. 50, no. 1, pp. 239–261, 1994.

[100] Han, X., Chin, F. Y. L., Ting, H.-F., Zhang, G., and Zhang, Y., “A
new upper bound 2.5545 on 2d online bin packing,” ACM Transactions on
Algorithms, vol. 7, no. 4, p. 50, 2011.

[101] Han, X., Ye, D., and Zhou, Y., “A note on online hypercube packing,”
Central European Journal of Operations Research, vol. 18, no. 2, pp. 221–239,
2010.
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