
ACO Comprehensive Exam March 20 and 21, 2017

1. Computability, Complexity and Algorithms

Part a: You are given a graph G = (V,E) with edge weights w(e) > 0 for e ∈ E. You are also
given a minimum cost spanning tree (MST) T . For one particular edge e∗ = (y, z) which is in T ,
its edge weight is increased (all other edges stay the same).
Specifically the weight of e∗ changed from w(e∗) to ŵ(e∗).

Give an algorithm to find a MST for this new edge weighting.
(As fast as possible in O() notation.)

The graph G is given in adjacency list representation and the set T is given as a list of edges,
for example as {4, 2}, {3, 4}, .... You are given the specified edge e∗ = (y, z) and you are given
the old weights w() for all edges of G, and the new weight ŵ(e∗).

Part b: Suppose you have a flow network G = (V,E) with integer capacities ce > 0 for e ∈ E,
and you are given a maximum flow f ∗ from s to t. Let C∗ denote the size of this flow f ∗. Now
suppose that for one particular edge e∗ we decrease the capacity of e∗ by one, from ce∗ to ce∗ − 1.
Give an algorithm to output a maximum flow in the new graph. (As fast as possible in O()
notation.)

Solution:

Part a: The algorithm:

1. Remove e∗ from T .

2. The graph T \ {e∗} has two components. Run DFS in T \ {e∗} to label the vertices with
their respective components.

3. Go through all of the edges of G to find the minimum weight edge e′ that crosses between
the 2 components of T \ {e∗}.

4. Return T ′ = T ∪ {e′} \ {e∗}.

The algorithm takes O(|E|) time.
Correctness: Each of the edges of T \ {e∗} were minimum across some cut in the original graph
to be part of the MST T . In the new graph they are still minimum across the same cut. Hence,
T \ {e∗} is part of a MST in this new graph. Thus, since e′ is also minimum weight across a cut,
by the cut property again, T ′ is a MST.
Running time: Step 2 takes O(n) time and then step 3 takes O(1) time per edge so a total time
of O(m).
Part b: If fe∗ < ce∗ then f ∗ is still a valid flow in the new graph and so we simply output f ∗. If
the edge e∗ was fully capacitated then we do the following. We first need to find a path P with
positive flow that goes through e∗. Let e∗ = (v, w). Let G′ be the graph of edges with positive
flow. Then run DFS on G′ to find a path P1 from v to s and then run DFS to find a path P2

from w to t. If these two paths do not share an edge then let P = P1 ∪ e∗ ∪ P2. Decrease the
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flow in f ∗ by 1 unit along P . For the resulting flow, build the residual network and look for an
augmenting path. Output the resulting flow.
If the paths P1 and P2 share an edge then that means there is a cycle C containing e∗ with
positive flow. We simply decrease the flow in f ∗ by 1 unit along C and this gives a max flow in
the new graph.

2. Analysis of Algorithms

Let G = (V,E) be a directed graph with source s, sink t and capacities on edges. Give a
polynomial time algorithm for deciding if G has a unique minimum s–t cut.

Solution: Find a max s-t flow, f , in G and construct the residual graph R(G, f). R will have
paths from t to s but no paths from s to t. Next, find the Picard-Queyranne structure by finding
strongly connected components in R and shrinking them. This will yield a DAG. Let Qs and Qt

be the components containing s and t, respectively. The ideal cuts between these two vertices
are in one-to-one correspondence with the set of minimum s-t cuts in G.

Now G has a unique minimum s-t cut iff there is only one ideal cut. This is easy to check in
polynomial time.

3. Theory of Linear Inequalities

Let P ⊆ [0, 1]n be an integral polytope contained in the 0/1 cube with ℓ1-diameter bounded by
k, i.e., the polytope’s vertices have only entries in {0, 1} and maxx,y∈P ‖x − y‖1 ≤ k. The goal
is to maximize an objective c ∈ Z

n over P . Without loss of generality you may assume that
c ≥ 0 as we can simply flip the coordinates of the cube. You are given a feasible integral solution
x0 ∈ P and access to the polytope P is restricted to querying the following oracle:

Augmentation oracle O(x0, c):
Input: x0 ∈ P integral, objective c ∈ Z

n

Output: x ∈ P integral with

cx > cx0,

if such an x exists, otherwise return OPTIMAL.

Let C := ‖c‖∞ and let K := ⌊logC⌋. Define the following sequence of objective functions
ck := ⌊c/2K−k⌋ (coordinate-wise operation) and consider the following bit scaling algorithm:

1. Repeat for k = 0, . . . , K

(a) While xk is not OPTIMAL for ck do

i. xk ← O(xk, c
k)

(b) xk+1 ← xk.

2. Return xK+1.
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Task.
Prove that the algorithm optimizes c over P with at most (K + 1)k oracle calls.

Solution: Clearly, xK+1 is the optimal solution as cK = c. Moreover, the number of outer
iterations is bounded by K + 1. Thus it remains to verify that the number of inner iterations is
bounded by k.

To this end observe that at the end of (outer) iteration k − 1, we have that xk is an optimal
solution w.r.t. ck−1. Now we can write ck = 2ck−1 + c(k) for some 0/1 vector c(k). If now xk+1

is the optimal solution for ck, we have

ck(xk+1 − xk) = 2 ck−1(xk+1 − xk)︸ ︷︷ ︸
≤0, as xk opt. for ck−1

+ c(k)(xk − xk+1)︸ ︷︷ ︸
≤‖xk−xk+1‖≤k

≤ k,

and hence the claim follows.

4. Combinatorial Optimization

We are given an undirected graph G = (V,E) and every edge has a color. This is represented by
a partition of E into E1 ∪ . . . ∪ Ek where each Ei represents a set of edges of the same color i.
A spanning tree is called bi-colorful if it contains at most two edges of any color.

1. Give an efficient algorithm that checks whether there is a a bi-colorful spanning tree in G
and show its correctness.

2. Show that a graph G has a bi-colorful spanning tree if and only if for any disjoint set of
colors I, J ⊆ {1, . . . , k} and any F ⊆ ∪i∈I∪JEi such that |F ∩ Ei| = 1 for each i ∈ I and
F ⊇ Ei for each i ∈ J , G \ F has at most |I|+ 2|J |+ 1 components.

Solution:

1. Consider the following two matroids. The first matroid M1 = (E, I1) is the graphic
matroid. The second matroid M2 = (E, I2) is the partition matroid where F ∈ I2 if and
only if |F ∩ Ei| ≤ 2 for each 1 ≤ i ≤ k. Observe that a graph has a bi-colorful spanning
tree if and only if there is a common independent set of size |V | − 1. Thus one can use
matroid intersection to check whether a graph has a colorful spanning tree.

2. We first prove the necessity. Consider any disjoint set of colors I, J ⊆ {1, . . . , k} and any
F ⊆ E such that |F ∩ Ei| = 1 for each i ∈ I, F ⊇ Ei for each i ∈ J and F ∩ Ei = ∅ for
each i /∈ I ∪ J ,. Then any bi-colorful tree can pick at most one arc from F ∩ Ei for each
i ∈ I and at most two arcs from Ei ⊇ F ∩Ei for each i ∈ J . Thus bi-colorful tree can pick
at most |I|+ 2|J | edges from F . Thus G \ F can have at most |I|+ 2|J |+ 1 components.

Now, we argue sufficiency. Let r1 and r2 denote the rank functions of the M1 and M2, respec-
tively. Observe that for any F ⊆ E, r1(F ) = |V | − κ(F ) where κ(F ) denotes the number of
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connected components in (V, F ). Also, r2(F ) =
∑k

i=1 min{2, |F ∩ Ei|}. From part (a), G has a
bi-colorful spanning tree if the maximum common independent set has size at least |V | − 1. But
the size of the maximum independent set equals minF⊆E r1(E \ F ) + r2(F ). We now show this
minimum is at least |V |−1. Let F to be the minimizer. If |F ∩Ei| ≥ 2, then we can assume that
F ⊇ Ei. This follows since updating F to F ∪ Ei does not change r2(F ) but can only decrease
r1(E \ F ). Let I = {i : |F ∩ Ei| = 1} and J = {i : |F ∩ Ei| ≥ 2}. Then r2(F ) = |I| + 2|J |
and κ(E \ F ) ≤ |I| + 2|J | + 1 by the assumption. Thus r1(E \ F ) ≥ |V | − 1 − |I| − 2|J | and
r1(E \ F ) + r2(F ) ≥ |V | − 1 as required.

5. Graph Theory

Let n ≥ 1 be an integer. At a round table there are 2n Canadians, 2n Americans and 2n Mex-
icans. The people whose neighbors are of the same nationality are asked to stand up. What is
the largest possible number of people that can be asked to stand up?
Note: For example, for an American to stand up his two neighbors must be of the same nation-
ality, but not necessarily American.

Solution: The number is 6n− 4. To see that consider a graph with one vertex per person and
an edge if the two persons are seated with exactly one person between them. What we get is
the union of two disjoint cycles of length 3n (the persons seated in an even position and the
ones seated in an odd position). We color the vertices with 3 colors according to nationality.
Note that, if there are two adjacent vertices of the same color, then the person between them
is standing up, and if not the person between them remains seated. Thus we want to maximize
the number of adjacent vertices of the same color. Consider one of the cycles. As there are only
2n vertices of each color, it cannot be monochromatic. Consider a vertex v0 in that cycle. Start
in v0 and go around the cycle until you reach a vertex of another color. You can do this in two
ways, one for each direction in the cycle. Note that when you find a vertex of different color for
the first time you use a different edge depending on which sense you chose to go along the cycle.

Thus in that cycle we have at least 2 seated persons. If we do the same for the other cycle
we get that at most 6n − 4 persons are standing up. To see that this number can be reached,
seat the 2n Canadians in 2n consecutive vertices of one of the cycles, the 2n Americans in 2n
consecutive vertices of the other cycle and the 2n Mexicans in the remaining seats. Then we
obtain an arrangement where only 4 persons stay seated.

6. Probabilistic methods

Let T = T (n, p) be the random (complete) binary tree of depth n (that is, it has 2n leaves in
total), where each edge is present with probability p. Let Xi be a random indicator variable for
the reachability of the ith leaf from the root and denote by

X =
2n∑

i=1

Xi
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the number of reachable leaves from the root. Use the second moment method in order to show
that for the threshold p > 1/2, one has

Prob[X > 0] > 0.

Moreover, the lower bound on this probability is a constant that depends on p.

Hint : You can use the fact that Prob[X > 0] ≥ (E[X])2

E[X2]
. (You do not need to prove this property.)

Solution: We have E[Xi] = pn, for i = 1, . . . , 2n. Therefore

E[X] = 2npn,

which goes to ∞ as n→∞, under the assumption p > 1/2.
We are now using the fact that

Prob[X > 0] ≥
(E[X])2

E[X2]
,

and thus we are left to bound E[X2]. We have

X2 =

(
2n∑

i=1

Xi

)2

=
2n∑

i=1

X2
i +

∑

1≤i 6=j≤2n

XiXj.

Let k(i, j) be the depth of the node at which the two respective paths from the root to leaves
i and j split. Then

E[XiXj] = p2n−k(i,k).

Thus:
∑

1≤i 6=j≤2n

XiXj =
∑

1≤i 6=j≤2n

p2n−k(i,k) =
n−1∑

k=0

22n−k−1p2n−k.

The latter is equal to:

1

2

n−1∑

k=0

22n
1

2k
p2n

1

pk
=

1

2
(2p)2n

n−1∑

k=0

1

(2p)k
≤

1

2
(2p)2n

2p

2p− 1
=

p

2p− 1
(2p)2n.

Therefore
E[X2] ≤

p

2p− 1
(2p)2n + 2npn =

p

2p− 1
(2p)2n(1 + o(1)).

Overall, we obtain:

Prob[X > 0] ≥
(E[X])2

E[X2]
≥

2p− 1

p
(1− o(1)),

and the latter is indeed a constant that depends on p, assuming p > 1/2.

7. Algebra

Let ω be the complex number ω = e2πi/3 and let i be the complex number i = e2πi/4. Which of
the following rings are isomorphic?
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1. Z[ω]/ < 23 >

2. Z[i]/ < 23 >

3. Z/529

4. Z/23× Z/23

Solution: We first claim that 1) and 2) are both isomorphic to the finite field with 232 = 529
elements: Since ω is a primitive 3rd root of unity, its minimal polynomial is x2 + x + 1. Thus
Z[ω] = Z[x]/ < x2 + x + 1 > . Thus Z[ω]/ < 23 >= Z/23[x]/ < x2 + x + 1 >. Since
(Z/23)∗ ∼= Z/22, there is no primitive 3rd root of unity in Z/23. Moreover, the polynomial
x2 + x+ 1 is separable over Z/23 because it is a factor of the separable polynomial x3− 1. (You
can see x3 − 1 is separable by computing that its derivative is 3x2, which is non-zero and shares
no common factor with x3 − 1.) It follows that x2 + x + 1 has no roots in Z/23 and is thus
irreducible, prime, and maximal in Z/23[x]. Thus Z[ω]/ < 23 > is indeed a field. Moreover,
Z/23[x]/ < x2 + x + 1 > has 232 elements corresponding to linear polynomials ax + b with a, b
running from 0 to 23.

The analysis of Z[i]/ < 23 > is similar. The minimal polynomial of i is x2 + 1, which is also
irreducible in Z/23[x] because (Z/23)∗ ∼= Z/22 has no primitive fourth root of unity. The rest of
the argument is the same.

Since 1) and 2) are fields and 3) and 4) have zero divisors, 1) and 2) are not isomorphic to
3) or 4).

3) and 4) themselves represent district isomorphism classes because 3) has an element of order
529 and for any element (a, b) of Z/23× Z/23 we have that 23(a, b) = 0.


