1. Computability, Complexity and Algorithms

Part a: You are given a graph $G=(V, E)$ with edge weights $w(e)>0$ for $e \in E$. You are also given a minimum cost spanning tree (MST) T. For one particular edge $e^{*}=(y, z)$ which is in T, its edge weight is increased (all other edges stay the same).
Specifically the weight of e^{*} changed from $w\left(e^{*}\right)$ to $\widehat{w}\left(e^{*}\right)$.
Give an algorithm to find a MST for this new edge weighting.
(As fast as possible in $O()$ notation.)
The graph G is given in adjacency list representation and the set T is given as a list of edges, for example as $\{4,2\},\{3,4\}, \ldots$. You are given the specified edge $e^{*}=(y, z)$ and you are given the old weights $w()$ for all edges of G, and the new weight $\widehat{w}\left(e^{*}\right)$.

Part b: Suppose you have a flow network $G=(V, E)$ with integer capacities $c_{e}>0$ for $e \in E$, and you are given a maximum flow f^{*} from s to t. Let C^{*} denote the size of this flow f^{*}. Now suppose that for one particular edge e^{*} we decrease the capacity of e^{*} by one, from $c_{e^{*}}$ to $c_{e^{*}}-1$. Give an algorithm to output a maximum flow in the new graph. (As fast as possible in $O()$ notation.)

2. Analysis of Algorithms

Let $G=(V, E)$ be a directed graph with source s, $\operatorname{sink} t$ and capacities on edges. Give a polynomial time algorithm for deciding if G has a unique minimum $s-t$ cut.

3. Theory of Linear Inequalities

Let $P \subseteq[0,1]^{n}$ be an integral polytope contained in the $0 / 1$ cube with ℓ_{1}-diameter bounded by k, i.e., the polytope's vertices have only entries in $\{0,1\}$ and $\max _{x, y \in P}\|x-y\|_{1} \leq k$. The goal is to maximize an objective $c \in \mathbb{Z}^{n}$ over P. Without loss of generality you may assume that $c \geq 0$ as we can simply flip the coordinates of the cube. You are given a feasible integral solution $x_{0} \in P$ and access to the polytope P is restricted to querying the following oracle:

Augmentation oracle $O\left(x_{0}, c\right)$:
Input: $x_{0} \in P$ integral, objective $c \in \mathbb{Z}^{n}$
Output: $x \in P$ integral with

$$
c x>c x_{0},
$$

if such an x exists, otherwise return OPTIMAL.
Let $C:=\|c\|_{\infty}$ and let $K:=\lfloor\log C\rfloor$. Define the following sequence of objective functions $c^{k}:=\left\lfloor c / 2^{K-k}\right\rfloor$ (coordinate-wise operation) and consider the following bit scaling algorithm:

1. Repeat for $k=0, \ldots, K$
(a) While x_{k} is not OPTIMAL for c^{k} do

$$
\text { i. } x_{k} \leftarrow O\left(x_{k}, c^{k}\right)
$$

(b) $x_{k+1} \leftarrow x_{k}$.
2. Return x_{K+1}.

Task.
Prove that the algorithm optimizes c over P with at most $(K+1) k$ oracle calls.

4. Combinatorial Optimization

We are given an undirected graph $G=(V, E)$ and every edge has a color. This is represented by a partition of E into $E_{1} \cup \ldots \cup E_{k}$ where each E_{i} represents a set of edges of the same color i. A spanning tree is called bi-colorful if it contains at most two edges of any color.

1. Give an efficient algorithm that checks whether there is a a bi-colorful spanning tree in G and show its correctness.
2. Show that a graph G has a bi-colorful spanning tree if and only if for any disjoint set of colors $I, J \subseteq\{1, \ldots, k\}$ and any $F \subseteq \cup_{i \in I \cup J} E_{i}$ such that $\left|F \cap E_{i}\right|=1$ for each $i \in I$ and $F \supseteq E_{i}$ for each $i \in J, G \backslash F$ has at most $|I|+2|J|+1$ components.

5. Graph Theory

Let $n \geq 1$ be an integer. At a round table there are $2 n$ Canadians, $2 n$ Americans and $2 n$ Mexicans. The people whose neighbors are of the same nationality are asked to stand up. What is the largest possible number of people that can be asked to stand up?
Note: For example, for an American to stand up his two neighbors must be of the same nationality, but not necessarily American.

6. Probabilistic methods

Let $T=T(n, p)$ be the random (complete) binary tree of depth n (that is, it has 2^{n} leaves in total), where each edge is present with probability p. Let X_{i} be a random indicator variable for the reachability of the i th leaf from the root and denote by

$$
X=\sum_{i=1}^{2^{n}} X_{i}
$$

the number of reachable leaves from the root. Use the second moment method in order to show that for the threshold $p>1 / 2$, one has

$$
\operatorname{Prob}[X>0]>0 .
$$

Moreover, the lower bound on this probability is a constant that depends on p.
Hint: You can use the fact that $\operatorname{Prob}[X>0] \geq \frac{(\mathbf{E}[X])^{2}}{\mathbf{E}\left[X^{2}\right]}$. (You do not need to prove this property.)

7. Algebra

Let ω be the complex number $\omega=e^{2 \pi i / 3}$ and let i be the complex number $i=e^{2 \pi i / 4}$. Which of the following rings are isomorphic?

1. $\mathbb{Z}[\omega] /<23>$
2. $\mathbb{Z}[i] /<23>$
3. $\mathbb{Z} / 529$
4. $\mathbb{Z} / 23 \times \mathbb{Z} / 23$
