1. Computability, Complexity and Algorithms

Consider two sets A and B, each having n integers in the range from 0 to 8n where n is a power of 2. We wish to compute the *Cartesian sum* of A and B, defined by:

$$C = \{x + y : x \in A \text{ and } y \in B\}.$$

We want to find the set of elements in C and also the number of times each element of C is realized as a sum of elements in A and B.

Part (a): Give an algorithm to compute the Cartesian sum C by a reduction to FFT. State the running time (as fast as possible in O() notation).

Part (b): Extend your algorithm to obtain the number of times each $i \in C$ is realized as a sum of elements in A and B.

Example: for A = [1, 2, 3] and B = [2, 3] then C = [3, 4, 5, 6] and the solution to the Cartesian Sum problem is:

3 appears and is obtainable in 1 way,

4 appears and is obtainable in 2 ways,

5 appears and is obtainable in 2 ways,

6 appears and is obtainable in 1 way.

Solution: Let

$$A(x) = \sum_{i \in A} x^i$$
 and $B(x) = \sum_{i \in B} x^i$.

Note, these polynomials are of degree $\leq 8n$. Hence, denote their respective coefficients as the vectors $a = (a_0, \ldots, a_{8n})$ and $b = (b_0, \ldots, b_{8n})$. Next we compute the product polynomial $C(x) = A(x) \times B(x)$ using FFT. Specifically, we run FFT on the vectors a and b with the 16n-th roots of unity. We multiply these values to get C(x) at the 16n-th roots of unity. Then we run inverse FFT to get the coefficients of C(x). Denote these coefficients as $c = (c_0, \ldots, c_{16n})$. For all $0 \leq i \leq 16n$, if $c_i > 0$ then $i \in C$ and it can be obtained in c_i ways. The running time is $O(n \log n)$.

2. Analysis of Algorithms

Recall that computing the number of perfect matchings in a graph G = (V, E) is #P-complete. For this problem assume that you are given an oracle that returns the number of perfect matchings in a given graph in one time step.

(i) A graph is said to be *matching covered* if every edge of it participates in some perfect matching. Given graph G = (V, E) show how to obtain, in polynomial time, a subgraph G' = (V, E'), with $E' \subseteq E$ such that G' is matching covered and the number of perfect matchings in G and G' is the same.

Recall that the perfect matching polytope for a bipartite graph G = (V, E) is defined in \mathbb{R}^E and is given by the following set of linear equalities and inequalities.

$$\begin{aligned} x(\delta(v)) &= 1 \quad \forall v \in V, \\ x_e \ge 0 \quad \forall e \in E. \end{aligned}$$
(1)

The equation says that the total x value of edges incident at each vertex v is 1.

(ii) Give a polynomial time algorithm for finding a point in the interior of the perfect matching polytope for a connected, matching covered bipartite graph G = (V, E).

Solution: (i) Let \mathcal{O} denote the oracle and #G the number of perfect matchings in G. First call $\mathcal{O}(G)$ to find #G. For each edge $e \in E$: remove e and find the number of perfect matchings in the remaining graph. If the number is the same as #G, remove e forever, else leave e in G. The resulting graph, say G', is matching covered and has the same number of perfect matchings as G.

(ii) For edge $e \in E$, let $\#G_e$ denote the number of perfect matchings that e participates in. Also let $G'_e = (V, E - e)$. First call $\mathcal{O}(G)$ to find #G. Next, for each edge $e \in E$, call $\mathcal{O}(G'_e)$; this will return $\#G - \#G_e$. Hence $\#G_e$ can be computed for each $e \in E$.

Finally, output the point x such that

$$x_e = \frac{\#G_e}{\#G}.$$

This point satisfies all constraints of the perfect matching polytope for G = (V, E). Since G is connected and matching covered, the degree of each vertex is at least 2. Therefore, for each edge $e, 0 < x_e < 1$. Hence this point lies in its interior of the polytope.

3. Theory of Linear Inequalities

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\} \subseteq [0,1]^n$ with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ be a polytope contained in the 0/1 cube; in particular the bound inequalities $0 \leq x \leq 1$ are valid for P.

For $i \in [n]$ we consider the following procedure:

- 1. Generate the nonlinear system $(b Ax)x_i \ge 0$, $(b Ax)(1 x_i) \ge 0$.
- 2. Relinearize the system by replacing $x_j x_i$ with y_j whenever $i \neq j$ and x_j whenever i = j. We obtain a new, higher dimensional polyhedron M_i .
- 3. Define $P_i := \operatorname{proj}_x M_i$.

Finally define $P^1 := \bigcap_{i \in [n]} P_i$. This polyhedron is a strengthening of the original formulation of P.

Prove the following:

$$\operatorname{conv}(P \cap \{0,1\}^n) \subseteq P^1 \subseteq P.$$

Solution: It suffices to verify the claims separately for each P_i with $i \in [n]$. First observe that $P_i \subseteq P$: every row $A_j x \leq b_j$ of the system $Ax \leq b$ can be obtained by adding up $(b_j - A_j x)x_i \geq 0$ and $(b_j - A_j x)(1 - x_i) \geq 0$. So $A_j x \leq b_j$ is valid for M_i . Moreover, as $A_j x \leq b_j$ only involves x-variables it is also valid for the projection of M_i .

Now we will show that $P_I \subseteq P_i$. As P_i is a polyhedron as a projection of the polyhedron M_i , it suffices to consider a 0/1 vertex \bar{x} of P_I . For this we define a new point $(\bar{x}, y) \in M_i$ that projects to \bar{x} . For this we define $y_j = \bar{x}_j \bar{x}_i$ for all $i \neq j$ and we claim that $(\bar{x}, y) \in M_i$. With this we can reverse the substitution in Step 2 (as $\bar{x} \in \{0, 1\}^n$ and so $x_i^2 = x_i$) and we see that the nonlinear system in Step 1 is trivially satisfied. Step 2 is a relaxation of the feasible region of the nonlinear system in Step 1 and so we have indeed $(\bar{x}, y) \in M_i$ which concludes the proof.

4. Combinatorial Optimization

Given an integer n, let $\mathcal{M}_k = (U, \mathcal{I}_k)$ be a matroid for each $1 \leq k \leq n$ with $\mathcal{M}_k^* = (U, \mathcal{I}_k^*)$ its dual matroid. Consider the matroid $\mathcal{N} = (U, \mathcal{I})$ defined as $\mathcal{N} := (\mathcal{M}_1^* \vee \ldots \vee \mathcal{M}_n^*)^*$, i.e., it is the dual of the union of matroids $\mathcal{M}_1^*, \ldots \mathcal{M}_n^*$.

1. (4 points) Show that

$$\mathcal{I} \subseteq \bigcap_{k \in \{1,\dots,n\}} \mathcal{I}_k.$$

- 2. (4 points) Let (P_1, \ldots, P_n) denote a partition of U, i.e. $\bigcup_{k=1}^n P_k = U$ and each element of U appears in exactly one P_k . Let b_1, \ldots, b_n be positive integers such that $|P_k| \ge b_k$ for each $1 \le k \le n$. For every $1 \le k \le n$, consider the matroid $\mathcal{M}_k = (U, \mathcal{I}_k)$ where some subset S of U is in \mathcal{I}_k if $|S \cap P_k| \le b_k$ (observe that there is no restriction on elements not in P_k). Show that the matroid \mathcal{N} as defined above is a partition matroid in the this case. Moreover, show that equality holds in the above containment.
- 3. (2 points) Give an example where equality does not hold in the containment in (a).

Solution:

- 1. Since both set families are downward closed, it is enough to argue the containment for the maximal sets in \mathcal{I} . Let $A \in \mathcal{I}$ be a basis of \mathcal{N} . This implies $U \setminus A$ is a basis of the matroid $\mathcal{N}' := \mathcal{M}_1^* \vee \ldots \vee \mathcal{M}_n^*$. Thus there exists independent sets B_k of \mathcal{M}_k^* for each $1 \leq k \leq n$ such that $U \setminus A = \bigcup_{k=1}^n B_k$. Since $U \setminus A$ is basis of \mathcal{N}' , we can assume that B_k is a basis of \mathcal{M}_k^* without loss of generality. Thus $A = \bigcap_{k=1}^n (U \setminus B_k)$ and therefore $A \subseteq U \setminus B_k$. But $U \setminus B_k$ is a basis of \mathcal{M}_k . Thus $A \in \mathcal{I}_k$ for each k.
- 2. We apply the definition of dual matroid and matroid union. The basis of \mathcal{M}_k are sets S such that $S \supseteq U \setminus P_k$ and $|S \cap P_k| = b_k$. For any k, the dual matroid $\mathcal{M}_k^* = (U, \mathcal{I}_k^*)$ contains a set $S \in \mathcal{I}_k^*$ if $S \subseteq P_k$ and $|S \cap P_k| \le |S| - b_k$. Let $\mathcal{N}' = \mathcal{M}_1^* \vee \ldots \vee \mathcal{M}_n^*$. Then a set Sis independent in \mathcal{N}' if $|S \cap P_k| \le |S| - b_k$ for each $1 \le k \le n$. Now, the dual matroid \mathcal{N} contains exactly those sets as independent if $|S \cap P_k| \le b_k$ for each $1 \le k \le n$. Thus \mathcal{N} is a partition matroid. Equality holds since $S \in \bigcap_{k \in \{1,\ldots,n\}} \mathcal{I}_k$ iff $|S \cap P_k| \le b_k$.

3. We will consider the simplest case of n = 2 where the two matroids are defined as above but P_1 and P_2 intersect non-trivially. Let $U = \{x, y, z\}$. Let $P_1 = \{x, y\}$ and $P_2 = \{y, z\}$. Let $b_1 = b_2 = 1$. Let $\mathcal{M}_k = (U, \mathcal{I}_k)$ contain sets such that $|S \cap P_k| \leq 1$. Thus

$$\mathcal{I}_1 = \{\{\}, \{x\}, \{y\}, \{z\}, \{x, z\}, \{y, z\}\},$$
$$\mathcal{I}_2 = \{\{\}, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}\}.$$

Therefore,

$$\mathcal{I}_1 \cap \mathcal{I}_2 = \{\{\}, \{x\}, \{y\}, \{z\}, \{x, z\}\}$$

It is easy to see $\mathcal{I}_1 \cap \mathcal{I}_2$ is not a collection of independent sets of a matroid. This follows since the exchange property is violated for $\{y\}$ and $\{x, z\}$. Thus the equality cannot hold.

5. Graph Theory

Consider the graphs G in which every induced subgraph H has the property that the vertex-set of every maximal complete subgraph of H intersects every maximal independent set in H.

- 1. Prove that every such graph G is perfect.
- 2. Prove that these graphs G are precisely the graphs with no induced subgraph isomorphic to the path on four vertices.

Solution: To prove that G is perfect let H be an induced subgraph of G. We show that $\chi(H) = \omega(H)$ by induction on $\omega(H)$. The assertion clearly holds when $\omega(H) = 1$, and so we may assume that $\omega(H) > 1$ and that the assertion holds for all induced subgraphs H' of H with $\omega(H') < \omega(H)$. Let I be a maximal independent set in H. By hypothesis $\omega(H \setminus I) < \omega(H)$. Thus $\chi(H \setminus I) = \omega(H \setminus I) < \omega(H) \le \chi(H)$ by the induction hypothesis. By adding I as a color class to a $\chi(H \setminus I)$ -coloring of $H \setminus I$ we find that $\chi(H) \le \omega(H)$, as desired.

To prove the second assertion let x, y, z, w be the vertices of a 4-vertex path P in order. Then $\{y, z\}$ is the vertex-set of a maximal complete subgraph of P and $\{x, w\}$ is a maximal independent set disjoint from $\{y, z\}$.

To prove the converse let I be a maximal independent set in an induced subgraph H of G and let Q be the vertex-set of a maximal complete subgraph of H such that $I \cap Q = \emptyset$, and suppose for a contradiction that H has no induced subgraph isomorphic to the path on four vertices. For $v \in Q$ let N(v) denote the set of neighbors of v in I. Then for distinct $u, v \in Q$ we have that either $N(u) \subseteq N(v)$ or $N(v) \subseteq N(u)$, for if $v' \in N(v) - N(u)$ and $u' \in N(u) - N(v)$, then $\{v', v, u, u'\}$ is the vertex-set of an induced path in H, a contradiction. Let $v \in Q$ be such that N(v) is minimal. We have $N(v) \neq \emptyset$, for otherwise $I \cup \{v\}$ contradicts the maximality of I. Let $x \in N(v)$. The minimality of N(v) implies that $x \in N(u)$ for every $u \in Q$. But now $Q \cup \{x\}$ contradicts the maximality of Q.

6. Probabilistic methods

Let $B_{n,n,p}$ denote the random *bipartite* graph with *n* vertices in each part, where an edge connecting two vertices in different parts is included independently with probability *p* (and there are no edges connecting vertices in the same part). Let *X* be the random variable which counts the number of 4-cycles in $B_{n,n,p}$. Use Janson's inequality (or extended Janson's inequality) to prove bounds of the form

$$\Pr[X=0] \le e^{-\Omega(n^x p^y)}$$

(a) if 0 is a constant.

(b) if 0 is a function of <math>n(*Hint: you might want to distinguish different ranges of p, e.g., where* $n^{-\alpha} \ll p \ll n^{-\beta}$ *holds for suitable* $\alpha, \beta > 0$)

Solution: Let V_1 and V_2 denote the two parts of size n in $B_{n,n,p}$. Observe that $B_{n,n,p}$ has n^2 many edges in total. As usual, we view $B_{n,n,p}$ as the product of n^2 smaller probability spaces, one for each possible edge. For every possible 4-cycle $S \subseteq K_{n,n}$, let X_S be the indicator variable which takes the value 1 iff all four edges are present in $B_{n,n,p}$. Thus the coordinates I_S from Janson's inequality are exactly the four edges of the cycle S. Clearly, X_S only depends on these. Moreover, clearly we have $\Pr[X_S] = p^4$.

Let now

$$X = \sum_{S \text{ possible 4-cycle}} X_S$$

denote the number of 4-cycles in $B_{n,n,p}$. Since we need to pick exactly two vertices from both V_1 and V_2 to obtain a 4-cycle, the sum has $\Theta(n^2) \cdot \Theta(n^2) = \Theta(n^4)$ many terms. By linearity of expectation we obtain

$$\mu = \mathbb{E}[X] = \Theta(n^4 p^4) \; .$$

In order to apply Janson's inequality we have to calculate Δ and in particular the terms $\Pr[X_S = 1 \land X_T = 1]$. Observe that I_S and I_T intersect in either 1 or 2 vertices since in all other cases S and T are either disjoint or equal.

For $|I_S \cap I_T| = 1$, S and T share exactly one edge. Once the intersecting edge is fixed there are $\Theta(n^2) \cdot \Theta(n^2) = \Theta(n^4)$ many ways to extend it to S and T such that they do not share any further edges (we simply have to pick two extra vertices in both V_1 and V_2). As there are n^2 edges we obtain that in total there are $\Theta(n^2) \cdot \Theta(n^4) = \Theta(n^6)$ pairs S, T with $|I_S \cap I_T| = 1$. By counting the edges we obtain that $\Pr[X_S = 1 \wedge X_T = 1] = p^7$ for these pairs.

For $|I_S \cap I_T| = 2$, S and T share exactly two edges. It is easily seen that this is only possible if the two common edges are incident. We assume that the two edges meet in a vertex of V_1 – clearly, the other case is symmetric. Observe that there are $\Theta(n) \cdot \Theta(n^2) = \Theta(n^3)$ many ways to fix such a pair of edges. Once the intersecting edges are fixed there are $\Theta(n^2)$ many ways to extend them to S and T such that they do not share any further edges. Hence there are $\Theta(n^5)$ many pairs S, T with $|I_S \cap I_T| = 2$. By counting the edges we obtain $\Pr[X_S = 1 \land X_T = 1] = p^6$ for these pairs.

Putting it all together, we obtain that

$$\Delta = \Theta(n^6 p^7) + \Theta(n^5 p^6) = \begin{cases} \Theta(n^6 p^7) & p \gg n^{-1} \\ \Theta(n^5 p^6) & p \ll n^{-1}. \end{cases}$$

If $0 is a constant we have <math>\mu = \Theta(n^4)$ and $\Delta = \Theta(n^6)$, and thus $\Delta \ge \mu$ for n large enough. Using Janson's inequality we obtain

$$\Pr[X=0] \le e^{-\mu^2/2\Delta} = e^{-\Omega(n^2)}$$

which solves (a).

If 0 is a function of <math>n, then we first note that $\mu \gg \Delta$ when $p \ll n^{-2/3}$ and $\mu \ll \Delta$ when $p \gg n^{-2/3}$. Combining Janson's inequality with extended Janson's inequality (which give good bounds for, say, $\mu \ge \Delta$ and $\mu \le \Delta$, respectively), it follows that, say,

$$\Pr[X=0] \le \begin{cases} e^{-\Omega(\mu)} & p \ll n^{-2/3}, \\ e^{-\Omega(\mu^2/\Delta)} & p \gg n^{-2/3}. \end{cases}$$

Noting that

$$\frac{\mu^2}{\Delta} \stackrel{(p \gg n^{-2/3})}{=} \frac{\Theta(n^8 p^8)}{\Theta(n^6 p^7)} = \Theta(n^2 p),$$

as well as

$$\mu = \Theta(n^4 p^4) \overset{(p \ll n^{-1})}{\ll} 1,$$

in view of the trivial bound $\Pr[X=0] \leq 1$ we altogether we obtain that

$$\Pr[X=0] \le \min\{e^{-\frac{\Theta(n^8p^8)}{\mu+\Delta}}, 1\} = \begin{cases} e^{-\Omega(n^2p)} & p \gg n^{-2/3} \\ e^{-\Omega(n^4p^4)} & n^{-1} \ll p \ll n^{-2/3} \\ 1 & p \ll n^{-1}, \end{cases}$$

which solves (b).

7. Algebra

Let p be a prime and \mathbb{F}_q be a field with p^d elements. Let $f : \mathbb{F}_q \to \mathbb{F}_q$ be the map $f(x) = x^p$ for all x in \mathbb{F}_q . Show that there exists an element x in \mathbb{F}_q such that $\{x, fx, \ldots, f^{d-1}x\}$ is a basis for \mathbb{F}_q as an \mathbb{F}_p -vector space.

Solution: \mathbb{F}_q is a module over $\mathbb{F}_p[T]$ with T acting by f. We claim that the minimal polynomial of f is $T^d - 1$. Since \mathbb{F}_q^{\times} is an abelian group of order $p^d - 1$, we have that $x^{p^d - 1} = 1$, thus $x^{p^d} = x$,

showing that $f^d = 1$. Thus the minimal polynomial of f must divide $T^d - 1$. Let g(T) be a factor of $T^d - 1$ of degree less than d. Then g(f)(x) is a polynomial of degree less than p^d . Since \mathbb{F}_q is a field, g(f)(x) has fewer than p^d roots in \mathbb{F}_q . Thus g(T) is not the minimal polynomial of f, and it follows that $T^d - 1$ is the minimal polynomial of f as claimed. Since the minimal polynomial has degree d, it must also be the characteristic polynomial. By the classification of modules over PIDs, it follows that $\mathbb{F}_q \cong \mathbb{F}_p[T]/\langle T^d - 1 \rangle$ as $\mathbb{F}_p[T]$ -modules. The basis $\{1, T, \ldots, T^{d-1}\}$ of the right hand side as an \mathbb{F}_p -vector space corresponds to a basis $\{x, fx, \ldots, f^{d-1}x\}$ of the left hand side.

7. Linear Algebra

Notation. For a matrix $A \in \mathbb{R}^{n \times n}$, we write $A \ge 0$ to mean that all the entries of A are nonnegative numbers.

Consider a matrix $A \in \mathbb{R}^{n \times n}$ satisfying these conditions (this is called an *M*-matrix):

- (i) for all $i, j = 1, \ldots, n$, and $i \neq j, a_{ij} \leq 0$;
- (ii) we can write A = sI B, where $B \ge 0$, and $s \ge \rho(B)$.

Further, A is an invertible M-matrix if, in part (ii), $s > \rho(B)$. Prove that A is an invertible M-matrix if and only if $A^{-1} > 0$.

Solution: Assume that A is an invertible M-matrix. Then A = sI - B, with $s > \rho(B)$ and $B \ge 0$. So, A = s(I - B/s) and $\rho(I - B/s) < 1$, so that (I - B/s) is convergent. Therefore, A^{-1} exists and

$$A^{-1} = \frac{1}{s} \sum_{k=0}^{\infty} \left(B/s \right)^k ,$$

and since all terms on the right hand side are matrices with nonnegative entries, then $A^{-1} \ge 0$.

Conversely, assume that $A^{-1} \ge 0$. Let $C = A^{-1}$. From the relation CA = I, looking at the (i, i) element, and using that $a_{ij} \le 0$ for $i \ne j$, one has

$$\sum_{j=1}^{n} c_{ij} a_{ji} = c_{ii} a_{ii} - \sum_{j \neq i} c_{ij} |a_{ji}| = 1$$

from which $a_{ii} > 0$ for all $i = 1, \ldots, n$.

Now, write $A = D + A_{\text{off}}$, where D is the diagonal matrix with the diagonal entries of A and A_{off} is the matrix A with 0's replacing its diagonal entries, and let $s = \max_i a_{ii}$. Therefore:

$$A = sI + [(D - sI) + A_{\text{off}}] = sI - [(sI - D) - A_{\text{off}}] = sI - B ,$$

with $B \ge 0$. Now we prove that $s > \rho(B)$, knowing that $A^{-1} = (sI - B)^{-1} \ge 0$.

Since $B \ge 0$, using Frobenius theorem, let $x \ge 0$, $x \ne 0$, be an eigenvector of B such that $Bx = \rho(B)x$, and therefore $(sI - B)x = (s - \rho(B))x$. Since (sI - B) is invertible, one has

$$(s - \rho(B))(sI - B)^{-1}x = x$$
,

and since $(sI - B)^{-1} \ge 0$ and $x \ge 0$, but $x \ne 0$, then $s - \rho(B) > 0$.