
ACO Comprehensive Exam October 9 and 10, 2017

1. Computability, Complexity and Algorithms

Consider two sets A and B, each having n integers in the range from 0 to 8n where n is a
power of 2. We wish to compute the Cartesian sum of A and B, defined by:

C = {x+ y : x ∈ A and y ∈ B}.

We want to find the set of elements in C and also the number of times each element of C is
realized as a sum of elements in A and B.

Part (a): Give an algorithm to compute the Cartesian sum C by a reduction to FFT.
State the running time (as fast as possible in O() notation).

Part (b): Extend your algorithm to obtain the number of times each i ∈ C is realized as a
sum of elements in A and B.

Example: for A = [1, 2, 3] and B = [2, 3] then C = [3, 4, 5, 6] and the solution to the Cartesian
Sum problem is:

3 appears and is obtainable in 1 way,
4 appears and is obtainable in 2 ways,
5 appears and is obtainable in 2 ways,
6 appears and is obtainable in 1 way.

Solution: Let
A(x) =

∑
i∈A

xi and B(x) =
∑
i∈B

xi.

Note, these polynomials are of degree ≤ 8n. Hence, denote their respective coefficients as the
vectors a = (a0, . . . , a8n) and b = (b0, . . . , b8n). Next we compute the product polynomial C(x) =
A(x)× B(x) using FFT. Specifically, we run FFT on the vectors a and b with the 16n-th roots
of unity. We multiply these values to get C(x) at the 16n-th roots of unity. Then we run
inverse FFT to get the coefficients of C(x). Denote these coefficients as c = (c0, . . . , c16n). For
all 0 ≤ i ≤ 16n, if ci > 0 then i ∈ C and it can be obtained in ci ways. The running time is
O(n log n).

2. Analysis of Algorithms

Recall that computing the number of perfect matchings in a graph G = (V,E) is #P-complete.
For this problem assume that you are given an oracle that returns the number of perfect matchings
in a given graph in one time step.

(i) A graph is said to be matching covered if every edge of it participates in some perfect
matching. Given graph G = (V,E) show how to obtain, in polynomial time, a subgraph G′ =
(V,E ′), with E ′ ⊆ E such that G’ is matching covered and the number of perfect matchings in
G and G′ is the same.

Recall that the perfect matching polytope for a bipartite graph G = (V,E) is defined in RE

and is given by the following set of linear equalities and inequalities.
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x(δ(v)) = 1 ∀v ∈ V,
xe ≥ 0 ∀e ∈ E. (1)

The equation says that the total x value of edges incident at each vertex v is 1.
(ii) Give a polynomial time algorithm for finding a point in the interior of the perfect matching

polytope for a connected, matching covered bipartite graph G = (V,E).

Solution: (i) Let O denote the oracle and #G the number of perfect matchings in G. First call
O(G) to find #G. For each edge e ∈ E: remove e and find the number of perfect matchings
in the remaining graph. If the number is the same as #G, remove e forever, else leave e in G.
The resulting graph, say G′, is matching covered and has the same number of perfect matchings
as G.

(ii) For edge e ∈ E, let #Ge denote the number of perfect matchings that e participates in.
Also let G′e = (V,E − e). First call O(G) to find #G. Next, for each edge e ∈ E, call O(G′e);
this will return #G−#Ge. Hence #Ge can be computed for each e ∈ E.

Finally, output the point x such that

xe =
#Ge

#G
.

This point satisfies all constraints of the perfect matching polytope for G = (V,E). Since G is
connected and matching covered, the degree of each vertex is at least 2. Therefore, for each edge
e, 0 < xe < 1. Hence this point lies in its interior of the polytope.

3. Theory of Linear Inequalities

Let P = {x ∈ Rn | Ax ≤ b} ⊆ [0, 1]n with A ∈ Zm×n and b ∈ Zm be a polytope contained in the
0/1 cube; in particular the bound inequalities 0 ≤ x ≤ 1 are valid for P .

For i ∈ [n] we consider the following procedure:

1. Generate the nonlinear system (b− Ax)xi ≥ 0, (b− Ax)(1− xi) ≥ 0.

2. Relinearize the system by replacing xjxi with yj whenever i 6= j and xj whenever i = j.
We obtain a new, higher dimensional polyhedron Mi.

3. Define Pi := projxMi.

Finally define P 1 :=
⋂
i∈[n] Pi. This polyhedron is a strengthening of the original formulation

of P .

Prove the following:

conv(P ∩ {0, 1}n) ⊆ P 1 ⊆ P.
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Solution: It suffices to verify the claims separately for each Pi with i ∈ [n]. First observe that
Pi ⊆ P : every row Ajx ≤ bj of the system Ax ≤ b can be obtained by adding up (bj−Ajx)xi ≥ 0
and (bj − Ajx)(1 − xi) ≥ 0. So Ajx ≤ bj is valid for Mi. Moreover, as Ajx ≤ bj only involves
x-variables it is also valid for the projection of Mi.

Now we will show that PI ⊆ Pi. As Pi is a polyhedron as a projection of the polyhedron
Mi, it suffices to consider a 0/1 vertex x̄ of PI . For this we define a new point (x̄, y) ∈ Mi that
projects to x̄. For this we define yj = x̄jx̄i for all i 6= j and we claim that (x̄, y) ∈ Mi. With
this we can reverse the substitution in Step 2 (as x̄ ∈ {0, 1}n and so x2

i = xi) and we see that
the nonlinear system in Step 1 is trivially satisfied. Step 2 is a relaxation of the feasible region
of the nonlinear system in Step 1 and so we have indeed (x̄, y) ∈Mi which concludes the proof.

4. Combinatorial Optimization

Given an integer n, let Mk = (U, Ik) be a matroid for each 1 ≤ k ≤ n with M∗
k = (U, I∗k) its

dual matroid. Consider the matroid N = (U, I) defined as N := (M∗
1 ∨ . . .∨M∗

n)∗ ,i.e., it is the
dual of the union of matroids M∗

1, . . .M∗
n.

1. (4 points) Show that

I ⊆
⋂

k∈{1,...,n}

Ik.

2. (4 points) Let (P1, . . . , Pn) denote a partition of U , i.e. ∪nk=1Pk = U and each element of
U appears in exactly one Pk. Let b1, . . . , bn be positive integers such that |Pk| ≥ bk for
each 1 ≤ k ≤ n. For every 1 ≤ k ≤ n, consider the matroid Mk = (U, Ik) where some
subset S of U is in Ik if |S ∩ Pk| ≤ bk (observe that there is no restriction on elements not
in Pk). Show that the matroid N as defined above is a partition matroid in the this case.
Moreover, show that equality holds in the above containment.

3. (2 points) Give an example where equality does not hold in the containment in (a).

Solution:

1. Since both set families are downward closed, it is enough to argue the containment for the
maximal sets in I. Let A ∈ I be a basis of N . This implies U \A is a basis of the matroid
N ′ := M∗

1 ∨ . . . ∨M∗
n. Thus there exists independent sets Bk of M∗

k for each 1 ≤ k ≤ n
such that U \ A = ∪nk=1Bk. Since U \ A is basis of N ′, we can assume that Bk is a basis
of M∗

k without loss of generality. Thus A = ∩nk=1(U \ Bk) and therefore A ⊆ U \ Bk. But
U \Bk is a basis of Mk. Thus A ∈ Ik for each k.

2. We apply the definition of dual matroid and matroid union. The basis of Mk are sets S
such that S ⊇ U \Pk and |S∩Pk| = bk. For any k, the dual matroidM∗

k = (U, I∗k) contains
a set S ∈ I∗k if S ⊆ Pk and |S ∩ Pk| ≤ |S| − bk. Let N ′ = M∗

1 ∨ . . . ∨M∗
n. Then a set S

is independent in N ′ if |S ∩ Pk| ≤ |S| − bk for each 1 ≤ k ≤ n. Now, the dual matroid N
contains exactly those sets as independent if |S ∩ Pk| ≤ bk for each 1 ≤ k ≤ n. Thus N is
a partition matroid. Equality holds since S ∈

⋂
k∈{1,...,n} Ik iff |S ∩ Pk| ≤ bk.
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3. We will consider the simplest case of n = 2 where the two matroids are defined as above
but P1 and P2 intersect non-trivially. Let U = {x, y, z}. Let P1 = {x, y} and P2 = {y, z}.
Let b1 = b2 = 1. Let Mk = (U, Ik) contain sets such that |S ∩ Pk| ≤ 1. Thus

I1 = {{}, {x}, {y}, {z}, {x, z}, {y, z}},

I2 = {{}, {x}, {y}, {z}, {x, y}, {x, z}}.

Therefore,
I1 ∩ I2 = {{}, {x}, {y}, {z}, {x, z}}.

It is easy to see I1 ∩ I2 is not a collection of independent sets of a matroid. This follows
since the exchange property is violated for {y} and {x, z}. Thus the equality cannot hold.

5. Graph Theory

Consider the graphs G in which every induced subgraph H has the property that the vertex-set
of every maximal complete subgraph of H intersects every maximal independent set in H.

1. Prove that every such graph G is perfect.

2. Prove that these graphs G are precisely the graphs with no induced subgraph isomorphic
to the path on four vertices.

Solution: To prove that G is perfect let H be an induced subgraph of G. We show that
χ(H) = ω(H) by induction on ω(H). The assertion clearly holds when ω(H) = 1, and so we
may assume that ω(H) > 1 and that the assertion holds for all induced subgraphs H ′ of H with
ω(H ′) < ω(H). Let I be a maximal independent set in H. By hypothesis ω(H\I) < ω(H). Thus
χ(H\I) = ω(H\I) < ω(H) ≤ χ(H) by the induction hypothesis. By adding I as a color class to
a χ(H\I)-coloring of H\I we find that χ(H) ≤ ω(H), as desired.

To prove the second assertion let x, y, z, w be the vertices of a 4-vertex path P in order.
Then {y, z} is the vertex-set of a maximal complete subgraph of P and {x,w} is a maximal
independent set disjoint from {y, z}.

To prove the converse let I be a maximal independent set in an induced subgraph H of G and
let Q be the vertex-set of a maximal complete subgraph of H such that I ∩Q = ∅, and suppose
for a contradiction that H has no induced subgraph isomorphic to the path on four vertices.
For v ∈ Q let N(v) denote the set of neighbors of v in I. Then for distinct u, v ∈ Q we have
that either N(u) ⊆ N(v) or N(v) ⊆ N(u), for if v′ ∈ N(v)−N(u) and u′ ∈ N(u)−N(v), then
{v′, v, u, u′} is the vertex-set of an induced path in H, a contradiction. Let v ∈ Q be such that
N(v) is minimal. We have N(v) 6= ∅, for otherwise I ∪ {v} contradicts the maximality of I. Let
x ∈ N(v). The minimality of N(v) implies that x ∈ N(u) for every u ∈ Q. But now Q ∪ {x}
contradicts the maximality of Q.
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6. Probabilistic methods

Let Bn,n,p denote the random bipartite graph with n vertices in each part, where an edge con-
necting two vertices in different parts is included independently with probability p (and there
are no edges connecting vertices in the same part). Let X be the random variable which counts
the number of 4-cycles in Bn,n,p. Use Janson’s inequality (or extended Janson’s inequality) to
prove bounds of the form

Pr[X = 0] ≤ e−Ω(nxpy)

(a) if 0 < p < 1 is a constant.

(b) if 0 < p = p(n) < 1 is a function of n
(Hint: you might want to distinguish different ranges of p, e.g., where n−α � p � n−β

holds for suitable α, β > 0)

Solution: Let V1 and V2 denote the two parts of size n in Bn,n,p. Observe that Bn,n,p has n2

many edges in total. As usual, we view Bn,n,p as the product of n2 smaller probability spaces,
one for each possible edge. For every possible 4-cycle S ⊆ Kn,n, let XS be the indicator variable
which takes the value 1 iff all four edges are present in Bn,n,p. Thus the coordinates IS from
Janson’s inequality are exactly the four edges of the cycle S. Clearly, XS only depends on these.
Moreover, clearly we have

Pr[XS] = p4 .

Let now
X =

∑
S possible 4-cycle

XS

denote the number of 4-cycles in Bn,n,p. Since we need to pick exactly two vertices from both
V1 and V2 to obtain a 4-cycle, the sum has Θ(n2) · Θ(n2) = Θ(n4) many terms. By linearity of
expectation we obtain

µ = E[X] = Θ(n4p4) .

In order to apply Janson’s inequality we have to calculate ∆ and in particular the terms Pr[XS =
1 ∧XT = 1]. Observe that IS and IT intersect in either 1 or 2 vertices since in all other cases S
and T are either disjoint or equal.

For |IS ∩ IT | = 1, S and T share exactly one edge. Once the intersecting edge is fixed there
are Θ(n2) · Θ(n2) = Θ(n4) many ways to extend it to S and T such that they do not share any
further edges (we simply have to pick two extra vertices in both V1 and V2). As there are n2

edges we obtain that in total there are Θ(n2) ·Θ(n4) = Θ(n6) pairs S, T with |IS ∩ IT | = 1. By
counting the edges we obtain that Pr[XS = 1 ∧XT = 1] = p7 for these pairs.

For |IS ∩ IT | = 2, S and T share exactly two edges. It is easily seen that this is only possible
if the two common edges are incident. We assume that the two edges meet in a vertex of V1 –
clearly, the other case is symmetric. Observe that there are Θ(n) · Θ(n2) = Θ(n3) many ways
to fix such a pair of edges. Once the intersecting edges are fixed there are Θ(n2) many ways to
extend them to S and T such that they do not share any further edges. Hence there are Θ(n5)
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many pairs S, T with |IS ∩ IT | = 2. By counting the edges we obtain Pr[XS = 1 ∧XT = 1] = p6

for these pairs.
Putting it all together, we obtain that

∆ = Θ(n6p7) + Θ(n5p6) =

{
Θ(n6p7) p� n−1

Θ(n5p6) p� n−1.

If 0 < p < 1 is a constant we have µ = Θ(n4) and ∆ = Θ(n6), and thus ∆ ≥ µ for n large
enough. Using Janson’s inequality we obtain

Pr[X = 0] ≤ e−µ
2/2∆ = e−Ω(n2) ,

which solves (a).

If 0 < p = p(n) < 1 is a function of n, then we first note that µ � ∆ when p � n−2/3

and µ� ∆ when p� n−2/3. Combining Janson’s inequality with extended Janson’s inequality
(which give good bounds for, say, µ ≥ ∆ and µ ≤ ∆, respectively), it follows that, say,

Pr[X = 0] ≤

{
e−Ω(µ) p� n−2/3,

e−Ω(µ2/∆) p� n−2/3.

Noting that
µ2

∆

(p�n−2/3)
=

Θ(n8p8)

Θ(n6p7)
= Θ(n2p),

as well as

µ = Θ(n4p4)
(p�n−1)
� 1,

in view of the trivial bound Pr[X = 0] ≤ 1 we altogether we obtain that

Pr[X = 0] ≤ min{e−
Θ(n8p8)
µ+∆ , 1} =


e−Ω(n2p) p� n−2/3

e−Ω(n4p4) n−1 � p� n−2/3

1 p� n−1,

which solves (b).

7. Algebra

Let p be a prime and Fq be a field with pd elements. Let f : Fq → Fq be the map f(x) = xp for
all x in Fq. Show that there exists an element x in Fq such that {x, fx, . . . , fd−1x} is a basis for
Fq as an Fp-vector space.

Solution: Fq is a module over Fp[T ] with T acting by f . We claim that the minimal polynomial

of f is T d−1. Since F×q is an abelian group of order pd−1, we have that xp
d−1 = 1, thus xp

d
= x,
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showing that fd = 1. Thus the minimal polynomial of f must divide T d−1. Let g(T ) be a factor
of T d−1 of degree less than d. Then g(f)(x) is a polynomial of degree less than pd. Since Fq is a
field, g(f)(x) has fewer than pd roots in Fq. Thus g(T ) is not the minimal polynomial of f , and
it follows that T d − 1 is the minimal polynomial of f as claimed. Since the minimal polynomial
has degree d, it must also be the characteristic polynomial. By the classification of modules over
PIDs, it follows that Fq ∼= Fp[T ]/〈T d − 1〉 as Fp[T ]-modules. The basis {1, T, . . . , T d−1} of the
right hand side as an Fp-vector space corresponds to a basis {x, fx, . . . , fd−1x} of the left hand
side.

7. Linear Algebra

Notation. For a matrix A ∈ Rn×n, we write A ≥ 0 to mean that all the entries of A are
nonnegative numbers.

Consider a matrix A ∈ Rn×n satisfying these conditions (this is called an M-matrix ):

(i) for all i, j = 1, . . . , n, and i 6= j, aij ≤ 0;

(ii) we can write A = sI −B, where B ≥ 0, and s ≥ ρ(B).

Further, A is an invertible M -matrix if, in part (ii), s > ρ(B). Prove that

A is an invertible M-matrix if and only if A−1 ≥ 0.

Solution: Assume that A is an invertible M -matrix. Then A = sI − B, with s > ρ(B) and
B ≥ 0. So, A = s(I −B/s) and ρ(I −B/s) < 1, so that (I −B/s) is convergent. Therefore, A−1

exists and

A−1 =
1

s

∞∑
k=0

(B/s)k ,

and since all terms on the right hand side are matrices with nonnegative entries, then A−1 ≥ 0.
Conversely, assume that A−1 ≥ 0. Let C = A−1. From the relation CA = I, looking at the

(i, i) element, and using that aij ≤ 0 for i 6= j, one has
n∑
j=1

cijaji = ciiaii −
∑
j 6=i

cij|aji| = 1

from which aii > 0 for all i = 1, . . . , n.
Now, write A = D+Aoff, where D is the diagonal matrix with the diagonal entries of A and Aoff

is the matrix A with 0’s replacing its diagonal entries, and let s = maxi aii. Therefore:

A = sI + [(D − sI) + Aoff] = sI − [(sI −D)− Aoff] = sI −B ,

with B ≥ 0. Now we prove that s > ρ(B), knowing that A−1 = (sI −B)−1 ≥ 0.
Since B ≥ 0, using Frobenius theorem, let x ≥ 0, x 6= 0, be an eigenvector of B such that

Bx = ρ(B)x, and therefore (sI −B)x = (s− ρ(B))x. Since (sI −B) is invertible, one has

(s− ρ(B)) (sI −B)−1x = x ,

and since (sI −B)−1 ≥ 0 and x ≥ 0, but x 6= 0, then s− ρ(B) > 0.


