1. Computability, Complexity and Algorithms

Consider two sets A and B, each having n integers in the range from 0 to 8n where n is a power of 2. We wish to compute the *Cartesian sum* of A and B, defined by:

$$C = \{x + y : x \in A \text{ and } y \in B\}.$$

We want to find the set of elements in C and also the number of times each element of C is realized as a sum of elements in A and B.

Part (a): Give an algorithm to compute the Cartesian sum C by a reduction to FFT. State the running time (as fast as possible in O() notation).

Part (b): Extend your algorithm to obtain the number of times each $i \in C$ is realized as a sum of elements in A and B.

Example: for A = [1, 2, 3] and B = [2, 3] then C = [3, 4, 5, 6] and the solution to the Cartesian Sum problem is:

3 appears and is obtainable in 1 way,

4 appears and is obtainable in 2 ways,

5 appears and is obtainable in 2 ways,

6 appears and is obtainable in 1 way.

2. Analysis of Algorithms

Recall that computing the number of perfect matchings in a graph G = (V, E) is #P-complete. For this problem assume that you are given an oracle that returns the number of perfect matchings in a given graph in one time step.

(i) A graph is said to be *matching covered* if every edge of it participates in some perfect matching. Given graph G = (V, E) show how to obtain, in polynomial time, a subgraph G' = (V, E'), with $E' \subseteq E$ such that G' is matching covered and the number of perfect matchings in G and G' is the same.

Recall that the perfect matching polytope for a bipartite graph G = (V, E) is defined in \mathbb{R}^E and is given by the following set of linear equalities and inequalities.

$$\begin{aligned} x(\delta(v)) &= 1 \quad \forall v \in V, \\ x_e &\geq 0 \quad \forall e \in E. \end{aligned}$$
(1)

The equation says that the total x value of edges incident at each vertex v is 1.

(ii) Give a polynomial time algorithm for finding a point in the interior of the perfect matching polytope for a connected, matching covered bipartite graph G = (V, E).

3. Theory of Linear Inequalities

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\} \subseteq [0,1]^n$ with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ be a polytope contained in the 0/1 cube; in particular the bound inequalities $0 \leq x \leq 1$ are valid for P.

For $i \in [n]$ we consider the following procedure:

- 1. Generate the nonlinear system $(b Ax)x_i \ge 0$, $(b Ax)(1 x_i) \ge 0$.
- 2. Relinearize the system by replacing $x_j x_i$ with y_j whenever $i \neq j$ and x_j whenever i = j. We obtain a new, higher dimensional polyhedron M_i .
- 3. Define $P_i := \operatorname{proj}_x M_i$.

Finally define $P^1 := \bigcap_{i \in [n]} P_i$. This polyhedron is a strengthening of the original formulation of P.

Prove the following:

$$\operatorname{conv}(P \cap \{0,1\}^n) \subseteq P^1 \subseteq P$$

4. Combinatorial Optimization

Given an integer n, let $\mathcal{M}_k = (U, \mathcal{I}_k)$ be a matroid for each $1 \leq k \leq n$ with $\mathcal{M}_k^* = (U, \mathcal{I}_k^*)$ its dual matroid. Consider the matroid $\mathcal{N} = (U, \mathcal{I})$ defined as $\mathcal{N} := (\mathcal{M}_1^* \vee \ldots \vee \mathcal{M}_n^*)^*$, i.e., it is the dual of the union of matroids $\mathcal{M}_1^*, \ldots \mathcal{M}_n^*$.

1. (4 points) Show that

$$\mathcal{I}\subseteq igcap_{k\in\{1,...,n\}}\mathcal{I}_k.$$

- 2. (4 points) Let (P_1, \ldots, P_n) denote a partition of U, i.e. $\bigcup_{k=1}^n P_k = U$ and each element of U appears in exactly one P_k . Let b_1, \ldots, b_n be positive integers such that $|P_k| \ge b_k$ for each $1 \le k \le n$. For every $1 \le k \le n$, consider the matroid $\mathcal{M}_k = (U, \mathcal{I}_k)$ where some subset S of U is in \mathcal{I}_k if $|S \cap P_k| \le b_k$ (observe that there is no restriction on elements not in P_k). Show that the matroid \mathcal{N} as defined above is a partition matroid in the this case. Moreover, show that equality holds in the above containment.
- 3. (2 points) Give an example where equality does not hold in the containment in (a).

5. Graph Theory

Consider the graphs G in which every induced subgraph H has the property that the vertex-set of every maximal complete subgraph of H intersects every maximal independent set in H.

- 1. Prove that every such graph G is perfect.
- 2. Prove that these graphs G are precisely the graphs with no induced subgraph isomorphic to the path on four vertices.

6. Probabilistic methods

Let $B_{n,n,p}$ denote the random *bipartite* graph with *n* vertices in each part, where an edge connecting two vertices in different parts is included independently with probability *p* (and there are no edges connecting vertices in the same part). Let *X* be the random variable which counts the number of 4-cycles in $B_{n,n,p}$. Use Janson's inequality (or extended Janson's inequality) to prove bounds of the form

$$\Pr[X=0] \le \mathrm{e}^{-\Omega(n^x p^y)}$$

(a) if 0 is a constant.

(b) if 0 is a function of <math>n(Hint: you might want to distinguish different ranges of p, e.g., where $n^{-\alpha} \ll p \ll n^{-\beta}$ holds for suitable $\alpha, \beta > 0$)

7. Algebra

Let p be a prime and \mathbb{F}_q be a field with p^d elements. Let $f : \mathbb{F}_q \to \mathbb{F}_q$ be the map $f(x) = x^p$ for all x in \mathbb{F}_q . Show that there exists an element x in \mathbb{F}_q such that $\{x, fx, \ldots, f^{d-1}x\}$ is a basis for \mathbb{F}_q as an \mathbb{F}_p -vector space.

7. Linear Algebra

Notation. For a matrix $A \in \mathbb{R}^{n \times n}$, we write $A \ge 0$ to mean that all the entries of A are nonnegative numbers.

Consider a matrix $A \in \mathbb{R}^{n \times n}$ satisfying these conditions (this is called an *M*-matrix):

- (i) for all $i, j = 1, \ldots, n$, and $i \neq j, a_{ij} \leq 0$;
- (ii) we can write A = sI B, where $B \ge 0$, and $s \ge \rho(B)$.

Further, A is an invertible M-matrix if, in part (ii), $s > \rho(B)$. Prove that A is an invertible M-matrix if and only if $A^{-1} \ge 0$.