
ACO Comprehensive Exam October 9 and 10, 2017

1. Computability, Complexity and Algorithms

Consider two sets A and B, each having n integers in the range from 0 to 8n where n is a
power of 2. We wish to compute the Cartesian sum of A and B, defined by:

C = {x+ y : x ∈ A and y ∈ B}.

We want to find the set of elements in C and also the number of times each element of C is
realized as a sum of elements in A and B.

Part (a): Give an algorithm to compute the Cartesian sum C by a reduction to FFT.
State the running time (as fast as possible in O() notation).

Part (b): Extend your algorithm to obtain the number of times each i ∈ C is realized as a
sum of elements in A and B.

Example: for A = [1, 2, 3] and B = [2, 3] then C = [3, 4, 5, 6] and the solution to the Cartesian
Sum problem is:

3 appears and is obtainable in 1 way,
4 appears and is obtainable in 2 ways,
5 appears and is obtainable in 2 ways,
6 appears and is obtainable in 1 way.

2. Analysis of Algorithms

Recall that computing the number of perfect matchings in a graph G = (V,E) is #P-complete.
For this problem assume that you are given an oracle that returns the number of perfect matchings
in a given graph in one time step.

(i) A graph is said to be matching covered if every edge of it participates in some perfect
matching. Given graph G = (V,E) show how to obtain, in polynomial time, a subgraph G′ =
(V,E ′), with E ′ ⊆ E such that G’ is matching covered and the number of perfect matchings in
G and G′ is the same.

Recall that the perfect matching polytope for a bipartite graph G = (V,E) is defined in RE

and is given by the following set of linear equalities and inequalities.

x(δ(v)) = 1 ∀v ∈ V,
xe ≥ 0 ∀e ∈ E. (1)

The equation says that the total x value of edges incident at each vertex v is 1.
(ii) Give a polynomial time algorithm for finding a point in the interior of the perfect matching

polytope for a connected, matching covered bipartite graph G = (V,E).
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3. Theory of Linear Inequalities

Let P = {x ∈ Rn | Ax ≤ b} ⊆ [0, 1]n with A ∈ Zm×n and b ∈ Zm be a polytope contained in the
0/1 cube; in particular the bound inequalities 0 ≤ x ≤ 1 are valid for P .

For i ∈ [n] we consider the following procedure:

1. Generate the nonlinear system (b− Ax)xi ≥ 0, (b− Ax)(1− xi) ≥ 0.

2. Relinearize the system by replacing xjxi with yj whenever i 6= j and xj whenever i = j.
We obtain a new, higher dimensional polyhedron Mi.

3. Define Pi := projxMi.

Finally define P 1 :=
⋂
i∈[n] Pi. This polyhedron is a strengthening of the original formulation

of P .

Prove the following:

conv(P ∩ {0, 1}n) ⊆ P 1 ⊆ P.

4. Combinatorial Optimization

Given an integer n, let Mk = (U, Ik) be a matroid for each 1 ≤ k ≤ n with M∗
k = (U, I∗k) its

dual matroid. Consider the matroid N = (U, I) defined as N := (M∗
1 ∨ . . .∨M∗

n)∗ ,i.e., it is the
dual of the union of matroids M∗

1, . . .M∗
n.

1. (4 points) Show that

I ⊆
⋂

k∈{1,...,n}

Ik.

2. (4 points) Let (P1, . . . , Pn) denote a partition of U , i.e. ∪nk=1Pk = U and each element of
U appears in exactly one Pk. Let b1, . . . , bn be positive integers such that |Pk| ≥ bk for
each 1 ≤ k ≤ n. For every 1 ≤ k ≤ n, consider the matroid Mk = (U, Ik) where some
subset S of U is in Ik if |S ∩ Pk| ≤ bk (observe that there is no restriction on elements not
in Pk). Show that the matroid N as defined above is a partition matroid in the this case.
Moreover, show that equality holds in the above containment.

3. (2 points) Give an example where equality does not hold in the containment in (a).
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5. Graph Theory

Consider the graphs G in which every induced subgraph H has the property that the vertex-set
of every maximal complete subgraph of H intersects every maximal independent set in H.

1. Prove that every such graph G is perfect.

2. Prove that these graphs G are precisely the graphs with no induced subgraph isomorphic
to the path on four vertices.

6. Probabilistic methods

Let Bn,n,p denote the random bipartite graph with n vertices in each part, where an edge con-
necting two vertices in different parts is included independently with probability p (and there
are no edges connecting vertices in the same part). Let X be the random variable which counts
the number of 4-cycles in Bn,n,p. Use Janson’s inequality (or extended Janson’s inequality) to
prove bounds of the form

Pr[X = 0] ≤ e−Ω(nxpy)

(a) if 0 < p < 1 is a constant.

(b) if 0 < p = p(n) < 1 is a function of n
(Hint: you might want to distinguish different ranges of p, e.g., where n−α � p � n−β

holds for suitable α, β > 0)

7. Algebra

Let p be a prime and Fq be a field with pd elements. Let f : Fq → Fq be the map f(x) = xp for
all x in Fq. Show that there exists an element x in Fq such that {x, fx, . . . , fd−1x} is a basis for
Fq as an Fp-vector space.

7. Linear Algebra

Notation. For a matrix A ∈ Rn×n, we write A ≥ 0 to mean that all the entries of A are
nonnegative numbers.

Consider a matrix A ∈ Rn×n satisfying these conditions (this is called an M-matrix ):

(i) for all i, j = 1, . . . , n, and i 6= j, aij ≤ 0;

(ii) we can write A = sI −B, where B ≥ 0, and s ≥ ρ(B).

Further, A is an invertible M -matrix if, in part (ii), s > ρ(B). Prove that

A is an invertible M-matrix if and only if A−1 ≥ 0.


