1. Computability, Complexity and Algorithms

(a) Let $G(V, E)$ be an undirected unweighted graph. Let $C \subseteq V$ be a vertex cover of G. Argue that $V \backslash C$ is an independent set of G.
(b) Minimum cardinality vertex cover and maximum cardinality independent set are well known NP-complete problems. Suppose that you have a polynomial time approximation algorithm that, on input an undirected unweighted graph $G(V, E)$, outputs a vertex cover C whose cardinality is at most 2OPT. Is the cardinality of the independent set $V \backslash C$ a constant factor approximation algorithm for maximum independent set? If yes give a proof, if no give a counter example.
(c) Give a polynomial time algorithm that, on input an undirected unweighted bipartite graph G, outputs a minimum cardinality vertex cover of G.

Solution: (a) C is a vertex cover of G, therefore for every edge $\{u, v\} \in E$ it is the case that either $u \in C$, or $v \in C$, or both u and v belong to C. To argue that $I=V \backslash C$ is an independent set, we need to show that, for every pair of vertices $u^{\prime} \in I$ and $v^{\prime} \in I$, it is the case that $\left\{u^{\prime}, v^{\prime}\right\} \notin E$. This is obviously true, since if $\left\{u^{\prime}, v^{\prime}\right\} \in E$, then either $u^{\prime} \in C$, or $v^{\prime} \in C$, or both, contradicting the assumption that both u^{\prime} and v^{\prime} belong to $I=V \backslash C$.
(b) The anwer is no. Counter example. Suppose $G(V, E)$ is the complete bipartite graph, with $V=L \cup R,|L|=|R|=|V| / 2$, and all edges having exactly one endpoint in L and the other endpoint in R. Clearly L is a minimum cardinality vertex cover and it has cardinality $|V| / 2$, and R is a maximum cardinality independent set and has cardinality $|V| / 2$. Clearly, a factor 2 approximation algorithm for vertex cover may output $C=V=L \cup R$ which satisfies $|C|=|V| \leq 2 \mathrm{OPT}$. However, the complement of C is $I=V \backslash C=\emptyset$, with $|I|=0$, which is not a constant approximation for the cardinality of the minimum independent set $|R|=|V| / 2$.
(c) Here is an algorithm:

Input: undirected, unweighted bipartite graph $G(V, E)$ with vertex bipartition classes L and R. Construct the standard flow network corresponding to $G: G^{\prime}=\left(V^{\prime}, E^{\prime}\right), s, t, c=1 \forall e \in E$.
S is a mincut in G^{\prime}, which can be found in polynomial time using standard maxfow.
Let $L_{1}:=L \cap S, L_{2}:=L \backslash S, R_{1}:=R \cap S, R_{2}=R \backslash S$.
Let B be the set of vertices in R_{2} that have neighbors in L_{1}.
$C:=L_{2} \cup R_{1} \cup B$.
output C.
Fact C is a vertex cover of G.
Proof. The set C covers all edges that have one endpoint in either L_{2} or R_{1}, because C includes all of L_{2} and R_{1}. All remaining edges must have one endpoint in L_{1} and the other endpoint in R_{2}. These edges are then clearly covered by B.
Fact G has no vertex cover of cardinality smaller than $|C|$.
Proof. Let k be the capacity of the cut S. Then $k=\left|L_{2}\right|+\left|R_{1}\right|+\left|\operatorname{edged}\left(L_{1}, R_{2}\right)\right|$, consequently $k \geq\left|L_{2}\right|+\left|R_{1}\right|+|B|=|C|$. But S is a mincut of G^{\prime}, thus k is equal to the mincut of G^{\prime}, which is equal to the maxiflow in G^{\prime}, which is equal to the size of the maximum cardinality matching of G. This means that G has a matching of size k, and therefore every vertex cover of G must have cardinality at least $k \geq|C|$.

2. Analysis of Algorithms

1. The exact matching problem is the following: Given a bipartite graph $G=(U, V, E)$ and an integer $k \leq n$, with $|U|=|V|=n$ and with a subset $E^{\prime} \subset E$ of the edges colored red, an exact matching is a perfect matching with exactly k red edges. Give randomized polynomial-time algorithms for:
(a) Testing if G has an exact matching.
(b) If so find one.
2. Next consider an extension of this problem where two disjoint subsets E_{1} and E_{2} of edges are colored red and blue, respectively, and two integers k_{1}, k_{2} are specified with $k_{1}+k_{2} \leq n$. Now we seek a perfect matching with k_{1} red edges and k_{2} blue edges. Repeat the two previous questions for this extended notion.

Solution: Let A be the $n \times n$ adjacency matrix for G. Corresponding to each red edge (i, j), replace $A(i, j)$ by the variable x. Let A_{x} be the resulting matrix. Now G has an exact matching iff the permanent of A has the monomial $c x^{k}$, where $c>0$. However, permanent is hard to compute. Instead, multiply each entry of A_{x} by a randomly and independently picked number in the range $\left[0,2 n^{2}\right]$ to obtain the matrix A^{\prime}, say.

Compute $\left|A^{\prime}\right|$. By Schwartz's Lemma, if G has an exact matching, then with high probability, the monomial with x^{k} will have a non-zero coefficient and that will be proof of existence of exact matching. If G has no exact matching, then the determinant will not have this monomial. If yes, the exact matching can be found using self-reducibility.

For the second part, in A, replace red edges by variable x and blue edges by variable y and again multiply each entry by a randomly and independently picked number in the range $\left[0,2 n^{2}\right]$ to obtain the matrix $A^{\prime \prime}$, say. Now with high probability in $\left|A^{\prime \prime}\right|$ the monomial $x^{k_{1}} y^{k_{2}}$ will have a non-zero coefficient iff G has an exact matching. If yes, again it can be found via self-reducibility.

3. Theory of Linear Inequalities

For a system $A x \leq b$ of m rational linear inequalities and a set $S \subseteq\{1, \ldots, m\}$ let

$$
\begin{equation*}
A_{S} x=b_{S}, \quad A_{\bar{S}} x \leq b_{\bar{S}} \tag{1}
\end{equation*}
$$

denote the system obtained by setting each inequality in S to equality while keeping each inequality in $\bar{S}=\{1, \ldots, m\} \backslash S$ as an inequality.
Suppose the system (1) has no solution for some specified set S. Then, by Farkas's Lemma, there exists a vector $\left(y_{S}, y_{\bar{S}}\right)$ such that

$$
\begin{equation*}
y_{S}^{T} b_{S}+y_{\bar{S}}^{T} b_{\bar{S}}<0, y_{S}^{T} A_{S}+y_{\bar{S}}^{T} A_{\bar{S}}=0, y_{\bar{S}} \geq 0 \tag{2}
\end{equation*}
$$

Due to the equality constraints, the vector y_{S} might have negative components. Notice, however, that we may scale $\left(y_{S}, y_{\bar{S}}\right)$ so that it satisfies

$$
\begin{equation*}
y_{S}^{T} b_{S}+y_{\bar{S}}^{T} b_{\bar{S}}<0, y_{S}^{T} A_{S}+y_{\bar{S}}^{T} A_{\bar{S}}=0, y_{S} \geq-1, y_{\bar{S}} \geq 0 . \tag{3}
\end{equation*}
$$

Now (2) necessarily has an integral solution (since it has a rational solution), but (3) may not be solvable in integers. We say that the infeasibility of (1) can be proven integrally if (3) does in fact have an integral solution.
Prove the following theorem.
Theorem 1 Let A be an integral matrix and let b be a rational vector such that $A x \leq b$ has at least one solution. Then $A x \leq b$ is totally dual integral if and only if
(i) the rows of A form a Hilbert basis
and
(ii) for each subset S of inequalities from $A x \leq b$, if (1) is infeasible, then this can be proven integrally.

Solution is available upon request.

4. Combinatorial Optimization

Recall that a graph G is factor critical if for all $v \in V(G), G-v$ has a perfect matching. A near perfect matching is a matching covering all but one vertex of the graph. It is known that every 2-connected factor critical graph G contains pairwise edge-disjoint subgraphs $G_{0}, H_{1}, \ldots, H_{k}$ satisfying the following. For $j=1, \ldots, k$, let $G_{j}=G_{0} \cup \bigcup_{i=1}^{j} H_{i}$.
a. G_{0} is an odd cycle and $G=G_{k}$,
b. H_{i} is an odd length path with both ends in G_{i-1} and no internal vertex in $V\left(G_{i-1}\right)$. Specifically, the endpoints of H_{i} are distinct.

You may use this assertion without proof. Show that every 2-connected factor critical graph G contains at least $|E(G)|$ distinct near perfect matchings.

Solution. Let $G_{0}, H_{1}, \ldots, H_{k}$ be the decomposition we get from the statement of the problem, and let $G_{i}=G_{0} \cup \bigcup_{1}^{i} H_{i}$. We will inductively show that G_{i} has $\left|E\left(G_{i}\right)\right|$ distinct near perfect matchings for all i. As G_{0} is an odd cycle, the statement clearly holds for G_{0}.

Fix $l \geq 1$, let $m=\left|E\left(G_{l}\right)\right|$, and assume G_{l} has m distinct near perfect matchings. Label the matchings M_{1}, \ldots, M_{m}. Let H_{l+1} be an odd length path with vertices v_{1}, \ldots, v_{a} for some even integer a. For every $1 \leq i \leq m$, the near perfect matching M_{i} can be extended to a near perfect matching M_{i}^{\prime} of G_{l+1} by including alternating edges of the path H_{l+1}. Note that since M_{i} must cover at least one of the endpoints v_{1} and v_{a} of H_{l+1}, it is not the case that both the edges $v_{1} v_{2}$
and $v_{a-1} v_{a}$ are contained in M_{i}^{\prime}. For every $2 \leq i \leq a-1$, we can find a perfect matching (call it N_{i}) of $H_{l+1}-v_{i}$ by using alternating edges from the path H_{l+1} and adding a near perfect matching of G_{l} avoiding one of the two endpoints of H_{l+1}. Note that each M_{i}^{\prime} covers every vertex of H_{l+1} except possibly one of the endpoints v_{1} or v_{a}. Thus, $M_{1}^{\prime}, \ldots, M_{m}^{\prime}, N_{2}, \ldots, N_{a-1}$ are $m+(a-2)=\left|E\left(G_{l+1}\right)\right|-1$ distinct near perfect matchings of G_{l+1}.

To complete the proof, we need to find one more near perfect matching in G_{l+1}. Let J_{1} be a near perfect matching in G_{l} covering every vertex but v_{1}. Let J_{2} be a near perfect matching in G_{l} covering every vertex except for v_{a}. Then $J_{1} \cup J_{2}$ has components which are even length cycles, single matching edges, and an even length path P from v_{1} to v_{a}. Let v^{\prime} be the neighbor of v_{1} on P. By taking alternating edges of P which are not incident to any of the three vertices v_{1}, v_{a}, or v^{\prime}, we see that there exists a matching J in G_{l} which covers every vertex except v_{1}, v_{a}, and v^{\prime}. By adding alternating edges of H_{l+1}, we can extend J to a near perfect matching J^{\prime} of G_{l+1} covering every vertex except v^{\prime}. Note that by construction, the edges $v_{1} v_{2}$ and $v_{a} v_{a-1}$ are both contained in J^{\prime}. Thus, J^{\prime} is distinct from $M_{1}^{\prime}, \ldots, M_{m}^{\prime}, N_{2}, \ldots, N_{a-2}$, completing the proof.

5. Graph Theory

Prove that for every integer $k \geq 1$ there exists an integer N such that if the subsets of $\{1,2, \ldots, N\}$ are colored using k colors, then there exist disjoint non-empty sets $X, Y \subseteq\{1,2, \ldots, N\}$ such that X, Y and $X \cup Y$ receive the same color.
Hint. You may want to consider intervals.
Solution: By Ramsey's theorem there exists an integer N such that for every k-coloring of 2 element subsets of $\{1,2, \ldots, N+1\}$ there exists a 3 -element set $A \subseteq\{1,2, \ldots, N+1\}$ such that all 2 -element subsets of A receive the same color. We claim that N satisfies the requirements of the problem. For $i, j \in\{1,2, \ldots, N+1\}$ with $i<j$ we color the set $\{i, j\}$ using the color of the set $\{i, i+1, \ldots, j-1\}$. By the choice of N there exist $i, j, k \in\{1,2, \ldots, N+1\}$ such that $i<j<k$ and the sets $\{i, j\},\{j, k\}$ and $\{i, k\}$ receive the same color. Then the sets $X:=\{i, i+1, \ldots, j-1\}$ and $X:=\{j, j+1, \ldots, k-1\}$ are as desired.

6. Probabilistic methods

A proper list-coloring of a graph $G=(V, E)$ from lists $\left\{L_{v} \subset \mathbb{N} \mid v \in V\right\}$ is a function $c: V \rightarrow \mathbb{N}$ such that $c(v) \in L_{v}$ for all $v \in V$ and $c(u) \neq c(v)$ for all $\{u, v\} \in E$.

Let r be a natural number. Prove that if for all $v \in V$ we have $\left|L_{v}\right|=10 r$ and for all $j \in L_{v}$ there are at most r neighbors $u \in V$ of v such that $j \in L_{u}$, then G admits a proper list-coloring from these lists.

Solution: Consider a random list-coloring c of G, where each $c(v)$ is selected from L_{v} independently and equiprobably. For an edge $e=\{u, v\} \in E$ and a color $j \in L_{u} \cap L_{v}$, let E_{e}^{j} be the event that $c(u)=c(v)=j$. The event E_{e}^{j} is independent of E_{f}^{i} when e and f are disjoint or when $j \notin L_{e \cap f}$, so E_{e}^{j} is only dependent of at most $d=2 \cdot(r-1) \cdot 10 r$ other events. Since

$$
e(d+1) \operatorname{Pr}\left[E_{e}^{j}\right]=\frac{e(20 r(r-1)+1)}{100 r^{2}}<\frac{e}{5}<1
$$

by the local lemma, $\operatorname{Pr}\left[\bigcap_{e, j} \overline{E_{e}^{j}}\right]>0$, implying that there is a proper list-coloring of G from the given lists.

7. Algebra

Two polynomials $f, g \in R[t]$ over a commutative ring R with identity are called relatively prime over R if f and g generate the unit ideal in $R[t]$. Let $f, g \in \mathbf{Z}[t]$ be non-constant monic polynomials such that f and g are relatively prime over \mathbf{Q} and the residues of f and g modulo p are relatively prime over $\mathbf{Z} / p \mathbf{Z}$ for all prime numbers p. Prove that f and g are relatively prime over Z.

Solution: Since f and g are relatively prime over \mathbf{Q}, there exist rational numbers α, β such that $\alpha f+\beta g=1$. Clearing denominators, we find that there exist integers a, b and a positive integer d such that

$$
\begin{equation*}
a f+b g=d \tag{4}
\end{equation*}
$$

Without loss of generality, we may assume that d is the minimal positive integer for which there is a relation of the form given in (4). We would like to show that $d=1$.

Suppose for the sake of contradiction that $d>1$, and let p be a prime number dividing d. Then $\bar{a} \bar{f}+\bar{b} \bar{g}=0$ in $(\mathbf{Z} / p \mathbf{Z})[t]$, which implies that

$$
\begin{equation*}
\bar{a} \bar{f}=-\bar{b} \bar{g} . \tag{5}
\end{equation*}
$$

Since $\mathbf{Z} / p \mathbf{Z}$ is a field, $(\mathbf{Z} / p \mathbf{Z})[t]$ is a Unique Factorization Domain, and since f, g are monic and non-constant, \bar{f} and \bar{g} are not units in $(\mathbf{Z} / p \mathbf{Z})[t]$. Thus (5) implies that $\bar{a}=\bar{b}=0$, which means that $p \mid a$ and $p \mid b$. But then $p \mid d$ as well, and dividing both sides of (4) by p contradicts the minimality of d. Thus $d=1$ as claimed, which means that f, g are coprime over \mathbf{Z}.

