1. Computability, Complexity and Algorithms

(a) Let G(V, E) be an undirected unweighted graph. Let $C \subseteq V$ be a vertex cover of G. Argue that $V \setminus C$ is an independent set of G.

(b) Minimum cardinality vertex cover and maximum cardinality independent set are well known NP-complete problems. Suppose that you have a polynomial time approximation algorithm that, on input an undirected unweighted graph G(V, E), outputs a vertex cover C whose cardinality is at most 2OPT. Is the cardinality of the independent set $V \setminus C$ a constant factor approximation algorithm for maximum independent set? If yes give a proof, if no give a counter example.

(c) Give a polynomial time algorithm that, on input an undirected unweighted bipartite graph G, outputs a minimum cardinality vertex cover of G.

Solution: (a) *C* is a vertex cover of *G*, therefore for every edge $\{u, v\} \in E$ it is the case that either $u \in C$, or $v \in C$, or both *u* and *v* belong to *C*. To argue that $I = V \setminus C$ is an independent set, we need to show that, for every pair of vertices $u' \in I$ and $v' \in I$, it is the case that $\{u', v'\} \notin E$. This is obviously true, since if $\{u', v'\} \in E$, then either $u' \in C$, or $v' \in C$, or both, contradicting the assumption that both u' and v' belong to $I = V \setminus C$.

(b) The answer is no. Counter example. Suppose G(V, E) is the complete bipartite graph, with $V = L \cup R$, |L| = |R| = |V|/2, and all edges having exactly one endpoint in L and the other endpoint in R. Clearly L is a minimum cardinality vertex cover and it has cardinality |V|/2, and R is a maximum cardinality independent set and has cardinality |V|/2. Clearly, a factor 2 approximation algorithm for vertex cover may output $C = V = L \cup R$ which satisfies $|C| = |V| \leq 2$ OPT. However, the complement of C is $I = V \setminus C = \emptyset$, with |I| = 0, which is not a constant approximation for the cardinality of the minimum independent set |R| = |V|/2. (c) Here is an algorithm:

Input: undirected, unweighted bipartite graph G(V, E) with vertex bipartition classes L and R. Construct the standard flow network corresponding to $G: G' = (V', E'), s, t, c = 1 \forall e \in E$.

S is a mincut in G', which can be found in polynomial time using standard maxfow.

Let $L_1 := L \cap S$, $L_2 := L \setminus S$, $R_1 := R \cap S$, $R_2 = R \setminus S$.

Let B be the set of vertices in R_2 that have neighbors in L_1 .

 $C := L_2 \cup R_1 \cup B.$

output C.

<u>Fact</u> C is a vertex cover of G.

<u>Proof.</u> The set C covers all edges that have one endpoint in either L_2 or R_1 , because C includes all of L_2 and R_1 . All remaining edges must have one endpoint in L_1 and the other endpoint in R_2 . These edges are then clearly covered by B.

<u>Fact</u> G has no vertex cover of cardinality smaller than |C|.

<u>Proof.</u> Let k be the capacity of the cut S. Then $k = |L_2| + |R_1| + |edged(L_1, R_2)|$, consequently $k \ge |L_2| + |R_1| + |B| = |C|$. But S is a mincut of G', thus k is equal to the mincut of G', which is equal to the maximum cardinality matching of G. This means that G has a matching of size k, and therefore every vertex cover of G must have cardinality at least $k \ge |C|$.

2. Analysis of Algorithms

1. The *exact matching* problem is the following: Given a bipartite graph G = (U, V, E) and an integer $k \leq n$, with |U| = |V| = n and with a subset $E' \subset E$ of the edges colored red, an exact matching is a perfect matching with exactly k red edges. Give randomized polynomial-time algorithms for:

- (a) Testing if G has an exact matching.
- (b) If so find one.

2. Next consider an extension of this problem where two disjoint subsets E_1 and E_2 of edges are colored red and blue, respectively, and two integers k_1, k_2 are specified with $k_1 + k_2 \leq n$. Now we seek a perfect matching with k_1 red edges and k_2 blue edges. Repeat the two previous questions for this extended notion.

Solution: Let A be the $n \times n$ adjacency matrix for G. Corresponding to each red edge (i, j), replace A(i, j) by the variable x. Let A_x be the resulting matrix. Now G has an exact matching iff the permanent of A has the monomial cx^k , where c > 0. However, permanent is hard to compute. Instead, multiply each entry of A_x by a randomly and independently picked number in the range $[0, 2n^2]$ to obtain the matrix A', say.

Compute |A'|. By Schwartz's Lemma, if G has an exact matching, then with high probability, the monomial with x^k will have a non-zero coefficient and that will be proof of existence of exact matching. If G has no exact matching, then the determinant will not have this monomial. If yes, the exact matching can be found using self-reducibility.

For the second part, in A, replace red edges by variable x and blue edges by variable y and again multiply each entry by a randomly and independently picked number in the range $[0, 2n^2]$ to obtain the matrix A'', say. Now with high probability in |A''| the monomial $x^{k_1}y^{k_2}$ will have a non-zero coefficient iff G has an exact matching. If yes, again it can be found via self-reducibility.

3. Theory of Linear Inequalities

For a system $Ax \leq b$ of m rational linear inequalities and a set $S \subseteq \{1, \ldots, m\}$ let

$$A_S x = b_S, \ A_{\bar{S}} x \le b_{\bar{S}} \tag{1}$$

denote the system obtained by setting each inequality in S to equality while keeping each inequality in $\overline{S} = \{1, \ldots, m\} \setminus S$ as an inequality.

Suppose the system (1) has no solution for some specified set S. Then, by Farkas's Lemma, there exists a vector $(y_S, y_{\bar{S}})$ such that

$$y_{S}^{T}b_{S} + y_{\bar{S}}^{T}b_{\bar{S}} < 0, \ y_{S}^{T}A_{S} + y_{\bar{S}}^{T}A_{\bar{S}} = 0, \ y_{\bar{S}} \ge 0.$$
 (2)

Due to the equality constraints, the vector y_S might have negative components. Notice, however, that we may scale $(y_S, y_{\bar{S}})$ so that it satisfies

$$y_{\bar{S}}^T b_{\bar{S}} + y_{\bar{S}}^T b_{\bar{S}} < 0, \ y_{\bar{S}}^T A_{\bar{S}} + y_{\bar{S}}^T A_{\bar{S}} = 0, \ y_{\bar{S}} \ge -1, \ y_{\bar{S}} \ge 0.$$
 (3)

Now (2) necessarily has an integral solution (since it has a rational solution), but (3) may not be solvable in integers. We say that the infeasibility of (1) can be *proven integrally* if (3) does in fact have an integral solution.

Prove the following theorem.

Theorem 1 Let A be an integral matrix and let b be a rational vector such that $Ax \leq b$ has at least one solution. Then $Ax \leq b$ is totally dual integral if and only if

(i) the rows of A form a Hilbert basis

and

(ii) for each subset S of inequalities from $Ax \leq b$, if (1) is infeasible, then this can be proven integrally.

Solution is available upon request.

4. Combinatorial Optimization

Recall that a graph G is factor critical if for all $v \in V(G)$, G - v has a perfect matching. A near perfect matching is a matching covering all but one vertex of the graph. It is known that every 2-connected factor critical graph G contains pairwise edge-disjoint subgraphs G_0, H_1, \ldots, H_k satisfying the following. For $j = 1, \ldots, k$, let $G_j = G_0 \cup \bigcup_{i=1}^j H_i$.

- a. G_0 is an odd cycle and $G = G_k$,
- b. H_i is an odd length path with both ends in G_{i-1} and no internal vertex in $V(G_{i-1})$. Specifically, the endpoints of H_i are distinct.

You may use this assertion without proof. Show that every 2-connected factor critical graph G contains at least |E(G)| distinct near perfect matchings.

Solution. Let G_0, H_1, \ldots, H_k be the decomposition we get from the statement of the problem, and let $G_i = G_0 \cup \bigcup_{i=1}^{i} H_i$. We will inductively show that G_i has $|E(G_i)|$ distinct near perfect matchings for all *i*. As G_0 is an odd cycle, the statement clearly holds for G_0 .

Fix $l \ge 1$, let $m = |E(G_l)|$, and assume G_l has m distinct near perfect matchings. Label the matchings M_1, \ldots, M_m . Let H_{l+1} be an odd length path with vertices v_1, \ldots, v_a for some even integer a. For every $1 \le i \le m$, the near perfect matching M_i can be extended to a near perfect matching M'_i of G_{l+1} by including alternating edges of the path H_{l+1} . Note that since M_i must cover at least one of the endpoints v_1 and v_a of H_{l+1} , it is not the case that both the edges v_1v_2

and $v_{a-1}v_a$ are contained in M'_i . For every $2 \le i \le a-1$, we can find a perfect matching (call it N_i) of $H_{l+1} - v_i$ by using alternating edges from the path H_{l+1} and adding a near perfect matching of G_l avoiding one of the two endpoints of H_{l+1} . Note that each M'_i covers every vertex of H_{l+1} except possibly one of the endpoints v_1 or v_a . Thus, $M'_1, \ldots, M'_m, N_2, \ldots, N_{a-1}$ are $m + (a-2) = |E(G_{l+1})| - 1$ distinct near perfect matchings of G_{l+1} .

To complete the proof, we need to find one more near perfect matching in G_{l+1} . Let J_1 be a near perfect matching in G_l covering every vertex but v_1 . Let J_2 be a near perfect matching in G_l covering every vertex except for v_a . Then $J_1 \cup J_2$ has components which are even length cycles, single matching edges, and an even length path P from v_1 to v_a . Let v' be the neighbor of v_1 on P. By taking alternating edges of P which are not incident to any of the three vertices v_1, v_a , or v', we see that there exists a matching J in G_l which covers every vertex except v_1, v_a , and v'. By adding alternating edges of H_{l+1} , we can extend J to a near perfect matching J' of G_{l+1} covering every vertex except v'. Note that by construction, the edges v_1v_2 and v_av_{a-1} are both contained in J'. Thus, J' is distinct from $M'_1, \ldots, M'_m, N_2, \ldots, N_{a-2}$, completing the proof.

5. Graph Theory

Prove that for every integer $k \ge 1$ there exists an integer N such that if the subsets of $\{1, 2, \ldots, N\}$ are colored using k colors, then there exist disjoint non-empty sets $X, Y \subseteq \{1, 2, \ldots, N\}$ such that X, Y and $X \cup Y$ receive the same color.

Hint. You may want to consider intervals.

Solution: By Ramsey's theorem there exists an integer N such that for every k-coloring of 2element subsets of $\{1, 2, ..., N+1\}$ there exists a 3-element set $A \subseteq \{1, 2, ..., N+1\}$ such that all 2-element subsets of A receive the same color. We claim that N satisfies the requirements of the problem. For $i, j \in \{1, 2, ..., N+1\}$ with i < j we color the set $\{i, j\}$ using the color of the set $\{i, i+1, ..., j-1\}$. By the choice of N there exist $i, j, k \in \{1, 2, ..., N+1\}$ such that i < j < k and the sets $\{i, j\}, \{j, k\}$ and $\{i, k\}$ receive the same color. Then the sets $X := \{i, i+1, ..., j-1\}$ and $X := \{j, j+1, ..., k-1\}$ are as desired.

6. Probabilistic methods

A proper list-coloring of a graph G = (V, E) from lists $\{L_v \subset \mathbb{N} \mid v \in V\}$ is a function $c : V \to \mathbb{N}$ such that $c(v) \in L_v$ for all $v \in V$ and $c(u) \neq c(v)$ for all $\{u, v\} \in E$.

Let r be a natural number. Prove that if for all $v \in V$ we have $|L_v| = 10r$ and for all $j \in L_v$ there are at most r neighbors $u \in V$ of v such that $j \in L_u$, then G admits a proper list-coloring from these lists.

Solution: Consider a random list-coloring c of G, where each c(v) is selected from L_v independently and equiprobably. For an edge $e = \{u, v\} \in E$ and a color $j \in L_u \cap L_v$, let E_e^j be the event that c(u) = c(v) = j. The event E_e^j is independent of E_f^i when e and f are disjoint or when $j \notin L_{e\cap f}$, so E_e^j is only dependent of at most $d = 2 \cdot (r-1) \cdot 10r$ other events. Since

$$e(d+1)\Pr\left[E_e^j\right] = \frac{e(20r(r-1)+1)}{100r^2} < \frac{e}{5} < 1,$$

by the local lemma, $\Pr\left[\bigcap_{e,j} \overline{E_e^j}\right] > 0$, implying that there is a proper list-coloring of G from the given lists.

7. Algebra

Two polynomials $f, g \in R[t]$ over a commutative ring R with identity are called *relatively prime* over R if f and g generate the unit ideal in R[t]. Let $f, g \in \mathbf{Z}[t]$ be non-constant monic polynomials such that f and g are relatively prime over \mathbf{Q} and the residues of f and g modulo p are relatively prime over $\mathbf{Z}/p\mathbf{Z}$ for all prime numbers p. Prove that f and g are relatively prime over \mathbf{Z} .

Solution: Since f and g are relatively prime over \mathbf{Q} , there exist rational numbers α, β such that $\alpha f + \beta g = 1$. Clearing denominators, we find that there exist integers a, b and a positive integer d such that

$$af + bg = d. \tag{4}$$

Without loss of generality, we may assume that d is the *minimal* positive integer for which there is a relation of the form given in (4). We would like to show that d = 1.

Suppose for the sake of contradiction that d > 1, and let p be a prime number dividing d. Then $\bar{a}\bar{f} + \bar{b}\bar{g} = 0$ in $(\mathbf{Z}/p\mathbf{Z})[t]$, which implies that

$$\bar{a}\bar{f} = -\bar{b}\bar{g}.\tag{5}$$

Since $\mathbf{Z}/p\mathbf{Z}$ is a field, $(\mathbf{Z}/p\mathbf{Z})[t]$ is a Unique Factorization Domain, and since f, g are monic and non-constant, \bar{f} and \bar{g} are not units in $(\mathbf{Z}/p\mathbf{Z})[t]$. Thus (5) implies that $\bar{a} = \bar{b} = 0$, which means that $p \mid a$ and $p \mid b$. But then $p \mid d$ as well, and dividing both sides of (4) by p contradicts the minimality of d. Thus d = 1 as claimed, which means that f, g are coprime over \mathbf{Z} .