
ACO Comprehensive Exam March 17 and 18, 2014

1. Computability, Complexity and Algorithms

(a) Let G(V, E) be an undirected unweighted graph. Let C ⊆ V be a vertex cover of G. Argue
that V \ C is an independent set of G.
(b) Minimum cardinality vertex cover and maximum cardinality independent set are well known
NP-complete problems. Suppose that you have a polynomial time approximation algorithm that,
on input an undirected unweighted graph G(V, E), outputs a vertex cover C whose cardinality is
at most 2OPT. Is the cardinality of the independent set V \ C a constant factor approximation
algorithm for maximum independent set? If yes give a proof, if no give a counter example.
(c) Give a polynomial time algorithm that, on input an undirected unweighted bipartite graph
G, outputs a minimum cardinality vertex cover of G.

Solution: (a) C is a vertex cover of G, therefore for every edge {u, v} ∈ E it is the case that
either u ∈ C, or v ∈ C, or both u and v belong to C. To argue that I = V \C is an independent
set, we need to show that, for every pair of vertices u′ ∈ I and v′ ∈ I, it is the case that
{u′, v′} 6∈ E. This is obviously true, since if {u′, v′} ∈ E, then either u′ ∈ C, or v′ ∈ C, or both,
contradicting the assumption that both u′ and v′ belong to I = V \ C.
(b) The anwer is no. Counter example. Suppose G(V, E) is the complete bipartite graph,
with V = L ∪ R, |L| = |R| = |V |/2, and all edges having exactly one endpoint in L and the
other endpoint in R. Clearly L is a minimum cardinality vertex cover and it has cardinality
|V |/2, and R is a maximum cardinality independent set and has cardinality |V |/2. Clearly, a
factor 2 approximation algorithm for vertex cover may output C = V = L ∪ R which satisfies
|C| = |V | ≤ 2OPT. However, the complement of C is I = V \ C = ∅, with |I| = 0, which is not
a constant approximation for the cardinality of the minimum independent set |R| = |V |/2.
(c) Here is an algorithm:
Input: undirected, unweighted bipartite graph G(V, E) with vertex bipartition classes L and R.
Construct the standard flow network corresponding to G: G′ = (V ′, E ′), s, t, c = 1∀e ∈ E .
S is a mincut in G′, which can be found in polynomial time using standard maxfow.
Let L1 := L ∩ S, L2 := L \ S, R1 := R ∩ S,R2 = R \ S.
Let B be the set of vertices in R2 that have neighbors in L1.
C := L2 ∪ R1 ∪ B.
output C.
Fact C is a vertex cover of G.
Proof. The set C covers all edges that have one endpoint in either L2 or R1, because C includes
all of L2 and R1. All remaining edges must have one endpoint in L1 and the other endpoint in
R2. These edges are then clearly covered by B.
Fact G has no vertex cover of cardinality smaller than |C|.
Proof. Let k be the capacity of the cut S. Then k = |L2| + |R1| + |edged(L1, R2)|, consequently
k ≥ |L2| + |R1| + |B| = |C|. But S is a mincut of G′, thus k is equal to the mincut of G′, which
is equal to the maxiflow in G′, which is equal to the size of the maximum cardinality matching
of G. This means that G has a matching of size k, and therefore every vertex cover of G must
have cardinality at least k ≥ |C|.
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2. Analysis of Algorithms

1. The exact matching problem is the following: Given a bipartite graph G = (U, V, E) and an
integer k ≤ n, with |U | = |V | = n and with a subset E ′ ⊂ E of the edges colored red, an exact
matching is a perfect matching with exactly k red edges. Give randomized polynomial-time
algorithms for:

(a) Testing if G has an exact matching.

(b) If so find one.

2. Next consider an extension of this problem where two disjoint subsets E1 and E2 of edges are
colored red and blue, respectively, and two integers k1, k2 are specified with k1 +k2 ≤ n. Now we
seek a perfect matching with k1 red edges and k2 blue edges. Repeat the two previous questions
for this extended notion.

Solution: Let A be the n × n adjacency matrix for G. Corresponding to each red edge (i, j),
replace A(i, j) by the variable x. Let Ax be the resulting matrix. Now G has an exact matching
iff the permanent of A has the monomial cxk, where c > 0. However, permanent is hard to
compute. Instead, multiply each entry of Ax by a randomly and independently picked number
in the range [0, 2n2] to obtain the matrix A′, say.

Compute |A′|. By Schwartz’s Lemma, if G has an exact matching, then with high probability,
the monomial with xk will have a non-zero coefficient and that will be proof of existence of exact
matching. If G has no exact matching, then the determinant will not have this monomial. If
yes, the exact matching can be found using self-reducibility.

For the second part, in A, replace red edges by variable x and blue edges by variable y and
again multiply each entry by a randomly and independently picked number in the range [0, 2n2]
to obtain the matrix A′′, say. Now with high probability in |A′′| the monomial xk1yk2 will have a
non-zero coefficient iff G has an exact matching. If yes, again it can be found via self-reducibility.

3. Theory of Linear Inequalities

For a system Ax ≤ b of m rational linear inequalities and a set S ⊆ {1, . . . , m} let

ASx = bS, AS̄x ≤ bS̄ (1)

denote the system obtained by setting each inequality in S to equality while keeping each in-
equality in S̄ = {1, . . . , m} \ S as an inequality.

Suppose the system (1) has no solution for some specified set S. Then, by Farkas’s Lemma, there
exists a vector (yS, yS̄) such that

yT
S bS + yT

S̄ bS̄ < 0, yT
S AS + yT

S̄ AS̄ = 0, yS̄ ≥ 0. (2)
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Due to the equality constraints, the vector yS might have negative components. Notice, however,
that we may scale (yS, yS̄) so that it satisfies

yT
S bS + yT

S̄ bS̄ < 0, yT
S AS + yT

S̄ AS̄ = 0, yS ≥ −1, yS̄ ≥ 0. (3)

Now (2) necessarily has an integral solution (since it has a rational solution), but (3) may not
be solvable in integers. We say that the infeasibility of (1) can be proven integrally if (3) does in
fact have an integral solution.

Prove the following theorem.

Theorem 1 Let A be an integral matrix and let b be a rational vector such that Ax ≤ b has at
least one solution. Then Ax ≤ b is totally dual integral if and only if

(i) the rows of A form a Hilbert basis

and

(ii) for each subset S of inequalities from Ax ≤ b, if (1) is infeasible, then this can be proven
integrally.

Solution is available upon request.

4. Combinatorial Optimization

Recall that a graph G is factor critical if for all v ∈ V (G), G− v has a perfect matching. A near
perfect matching is a matching covering all but one vertex of the graph. It is known that every
2-connected factor critical graph G contains pairwise edge-disjoint subgraphs G0, H1, . . . , Hk

satisfying the following. For j = 1, . . . , k, let Gj = G0 ∪
⋃j

i=1
Hi.

a. G0 is an odd cycle and G = Gk,

b. Hi is an odd length path with both ends in Gi−1 and no internal vertex in V (Gi−1).
Specifically, the endpoints of Hi are distinct.

You may use this assertion without proof. Show that every 2-connected factor critical graph G
contains at least |E(G)| distinct near perfect matchings.

Solution. Let G0, H1, . . . , Hk be the decomposition we get from the statement of the problem,
and let Gi = G0 ∪

⋃i

1
Hi. We will inductively show that Gi has |E(Gi)| distinct near perfect

matchings for all i. As G0 is an odd cycle, the statement clearly holds for G0.
Fix l ≥ 1, let m = |E(Gl)|, and assume Gl has m distinct near perfect matchings. Label the

matchings M1, . . . , Mm. Let Hl+1 be an odd length path with vertices v1, . . . , va for some even
integer a. For every 1 ≤ i ≤ m, the near perfect matching Mi can be extended to a near perfect
matching M ′

i of Gl+1 by including alternating edges of the path Hl+1. Note that since Mi must
cover at least one of the endpoints v1 and va of Hl+1, it is not the case that both the edges v1v2
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and va−1va are contained in M ′

i . For every 2 ≤ i ≤ a − 1, we can find a perfect matching (call
it Ni) of Hl+1 − vi by using alternating edges from the path Hl+1 and adding a near perfect
matching of Gl avoiding one of the two endpoints of Hl+1. Note that each M ′

i covers every
vertex of Hl+1 except possibly one of the endpoints v1 or va. Thus, M ′

1, . . . , M
′

m, N2, . . . , Na−1

are m + (a − 2) = |E(Gl+1)| − 1 distinct near perfect matchings of Gl+1.
To complete the proof, we need to find one more near perfect matching in Gl+1. Let J1 be

a near perfect matching in Gl covering every vertex but v1. Let J2 be a near perfect matching
in Gl covering every vertex except for va. Then J1 ∪ J2 has components which are even length
cycles, single matching edges, and an even length path P from v1 to va. Let v′ be the neighbor
of v1 on P . By taking alternating edges of P which are not incident to any of the three vertices
v1, va, or v′, we see that there exists a matching J in Gl which covers every vertex except v1, va,
and v′. By adding alternating edges of Hl+1, we can extend J to a near perfect matching J ′ of
Gl+1 covering every vertex except v′. Note that by construction, the edges v1v2 and vava−1 are
both contained in J ′. Thus, J ′ is distinct from M ′

1, . . . , M
′

m, N2, . . . , Na−2, completing the proof.

5. Graph Theory

Prove that for every integer k ≥ 1 there exists an integer N such that if the subsets of
{1, 2, . . . , N} are colored using k colors, then there exist disjoint non-empty sets X, Y ⊆ {1, 2, . . . , N}
such that X, Y and X ∪ Y receive the same color.
Hint. You may want to consider intervals.

Solution: By Ramsey’s theorem there exists an integer N such that for every k-coloring of 2-
element subsets of {1, 2, . . . , N + 1} there exists a 3-element set A ⊆ {1, 2, . . . , N + 1} such that
all 2-element subsets of A receive the same color. We claim that N satisfies the requirements
of the problem. For i, j ∈ {1, 2, . . . , N + 1} with i < j we color the set {i, j} using the color
of the set {i, i + 1, . . . , j − 1}. By the choice of N there exist i, j, k ∈ {1, 2, . . . , N + 1} such
that i < j < k and the sets {i, j}, {j, k} and {i, k} receive the same color. Then the sets
X := {i, i + 1, . . . , j − 1} and X := {j, j + 1, . . . , k − 1} are as desired.

6. Probabilistic methods

A proper list-coloring of a graph G = (V, E) from lists {Lv ⊂ N | v ∈ V } is a function c : V → N

such that c (v) ∈ Lv for all v ∈ V and c (u) 6= c (v) for all {u, v} ∈ E.
Let r be a natural number. Prove that if for all v ∈ V we have |Lv| = 10r and for all j ∈ Lv

there are at most r neighbors u ∈ V of v such that j ∈ Lu, then G admits a proper list-coloring
from these lists.

Solution: Consider a random list-coloring c of G, where each c (v) is selected from Lv indepen-
dently and equiprobably. For an edge e = {u, v} ∈ E and a color j ∈ Lu ∩ Lv, let Ej

e be the
event that c (u) = c (v) = j. The event Ej

e is independent of Ei
f when e and f are disjoint or

when j /∈ Le∩f , so Ej
e is only dependent of at most d = 2 · (r − 1) · 10r other events. Since

e (d + 1)Pr
[

Ej
e

]

=
e (20r (r − 1) + 1)

100r2
<

e

5
< 1,
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by the local lemma, Pr
[

⋂

e,j Ej
e

]

> 0, implying that there is a proper list-coloring of G from the

given lists.

7. Algebra

Two polynomials f, g ∈ R[t] over a commutative ring R with identity are called relatively prime
over R if f and g generate the unit ideal in R[t]. Let f, g ∈ Z[t] be non-constant monic polyno-
mials such that f and g are relatively prime over Q and the residues of f and g modulo p are
relatively prime over Z/pZ for all prime numbers p. Prove that f and g are relatively prime over
Z.

Solution: Since f and g are relatively prime over Q, there exist rational numbers α, β such that
αf + βg = 1. Clearing denominators, we find that there exist integers a, b and a positive integer
d such that

af + bg = d. (4)

Without loss of generality, we may assume that d is the minimal positive integer for which there
is a relation of the form given in (4). We would like to show that d = 1.

Suppose for the sake of contradiction that d > 1, and let p be a prime number dividing d.
Then āf̄ + b̄ḡ = 0 in (Z/pZ)[t], which implies that

āf̄ = −b̄ḡ. (5)

Since Z/pZ is a field, (Z/pZ)[t] is a Unique Factorization Domain, and since f, g are monic and
non-constant, f̄ and ḡ are not units in (Z/pZ)[t]. Thus (5) implies that ā = b̄ = 0, which means
that p | a and p | b. But then p | d as well, and dividing both sides of (4) by p contradicts the
minimality of d. Thus d = 1 as claimed, which means that f, g are coprime over Z.


