1. Computability, Complexity and Algorithms

Let $G=(V, E)$ be a directed graph with integer weights $w_{i j}$ on its edges. The vertex set V has been partitioned into m subsets V_{1}, \ldots, V_{m}, each containing k vertices. Each vertex $u \in V_{r}$, for $1 \leq r \leq m-1$, has edges going to every vertex $v \in V_{r+1}$. These are all the edges of the graph.

1. Given two vertices $a \in V_{1}$ and $b \in V_{m}$ and an integer W, give an algorithm to determine whether there is a directed path from a to b of total weight at least W. The time complexity of your algorithm should be polynomial in m and k.
2. Give a nondeterministic algorithm for the same problem that uses only $O(\log m+\log k)$ space.
3. Give a deterministic algorithm that uses $O\left((\log m+\log k)^{2}\right)$ space.

2. Analysis of Algorithms

The 1-2 directed TSP is the following problem: Given a complete directed graph G on n vertices and with weights w on its edges such that all $w(e) \in\{1,2\}$, find a Hamilton cycle of minimum weight. Give a polynomial time $3 / 2$ factor approximation algorithm for the 1-2 directed TSP. (Hint: Cover the vertices with cycles of minimum total weight, then patch the cycles.)

3. Theory of Linear Inequalities

Recall that given a polyhedron $P \subseteq \mathbb{R}^{n}, \pi \in \mathbb{Z}^{n}$ and $\pi_{0} \in \mathbb{Z}$, we have that

$$
P_{I} \subseteq P^{\pi, \pi_{0}}:=\operatorname{conv}\left\{\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi x \leq \pi_{0}\right\}\right) \cup\left(P \cap\left\{x \in \mathbb{R}^{n} \mid \pi x \geq \pi_{0}+1\right\}\right)\right\}
$$

where P_{I} is the integer hull of P. The split closure $S(P)$ is defined as $S(P):=\bigcap_{\pi \in \mathbb{Z}^{n}, \pi_{0} \in \mathbb{Z}} P^{\pi, \pi_{0}}$.
Suppose that $A \in \mathbb{Z}^{m \times n}$ has the property that on removing any column of A, the remaining matrix is totally unimodular. Prove that if $P:=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ and $b \in \mathbb{Z}^{m}$, then $S(P)=P_{I}$.

4. Combinatorial Optimization

Observe that the Petersen graph has two perfect matchings, \mathcal{M}_{1} and \mathcal{M}_{2}, such that \mathcal{M}_{1} and \mathcal{M}_{2} intersect in exactly one edge. Equivalently, the matching \mathcal{M}_{2} contains $\frac{2}{5}$ of the edges of $E(G) \backslash \mathcal{M}_{1}$.

Let G be 3-regular graph with the property that for all $U \subseteq V(G)$ with $|U| \geq 2,|V(G) \backslash U| \geq 2$, we have that at least four edges of G have one end in U and the other end in $V(G) \backslash U$. Prove that for all perfect matchings \mathcal{M} of G, there exists a matching \mathcal{M}^{\prime} such that $\left|\mathcal{M}^{\prime} \cap(E(G) \backslash \mathcal{M})\right| \geq \frac{2}{5}|E(G) \backslash \mathcal{M}|$.

5. Graph Theory

Let G be a simple 3-regular graph, and let k be its edge-chromatic number. Prove that if every two k-edge-colorings of G differ by a permutation of colors, then $k=3$ and G has three distinct Hamiltonian cycles.

6. Probabilistic methods

Show that there exists an absolute constant c so that if $\left\{S_{i}: 1 \leq i \leq n\right\}$ is any sequence of sets with $\left|S_{i}\right| \geq c$, for all $i=1,2, \ldots, n$, then there exists a sequence $\left\{x_{i}: 1 \leq i \leq n\right\}$ with $x_{i} \in S_{i}$, for all $i=1,2, \ldots, n$, which is square-free, i.e., there is no pair i, j with $1 \leq i<j \leq 2 j-i-1 \leq n$ so that $x_{i+k}=x_{j+k}$ for all $k=0,1, \ldots, j-i-1$. Hint: This is an application of the asymmetric version of the Lovasz Local Lemma.

7. Algebra

Let n be an integer >1 and let S_{n} be the symmetric group on the set $\{1, \ldots, n\}$. Let $G \subset S_{n}$ be a subgroup which acts transitively on $\{1, \ldots, n\}$. Prove that there is an element $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in\{1, \ldots, n\}$. Give a complete proof using only basic facts about groups acting on sets.

