
ACO Comprehensive Exam Student code A March 19 and 20, 2012

1. Analysis of Algorithms

Describe an algorithm for deciding if an n-vertex graph G contains a clique of size 6. Explain how to
modify the algorithm so it would also find such a clique in G (if one exists). The running time of both
algorithms should be O(n5).
Hint. You may wish to consider a graph with vertex-set E(G) and suitably defined adjacency.

Solution: Given G let m = |E| and define an m-vertex graph T as follows. Each vertex of T represents
an edges of G. We connect two vertices (u, u′), (v, v′) of T if and only if u, u′, v, v′ form a clique of size
4 in G. Then it is easy to see that G contains a clique of size 6 if and only if T contains a triangle.
Now we can use fast matrix multiplication to decide in time O(mω) = O(n2ω) ≪ O(n5) if T contains a
triangle. In order to actually find such a triangle, we can use the algorithm we saw in class that finds
witnesses for Boolean matrix multiplication in time O(nω).

2. Approximation Algorithms

Let G = (V,E) be a complete graph with distances on its edges; the distance between two vertices u
and v is given by d(u, v) and the distances satisfy the triangle inequality. The k-partition problem is to
partition V into k subsets, C1, C2, . . . , Ck, so that the maximum distance between any pair of vertices
in the same subset is minimized. Formally, define the diameter of a subset Cr ⊂ V as

Diam(Cr) = max{d(vi, vj) : vi, vj ∈ Cr}

Then we wish to find a partition that minimizes max
r∈{1,2,...,k}

Diam(Cr).

Now consider the following process. Start with an arbitrary vertex. Call it v1. Then at the ith step,
i ≥ 2, let

δi = max
u

min
j∈{1,2,...,i−1}

d(u, vj)

and define vi to be the vertex u that achieves the maximum. That is, vi is the vertex u that maximizes
the minimum distance of u to one of the vertices in {v1, v2, . . . , vi−1}.

1. Show that δk+1 is a lower bound on the value of the optimal solution of the k-partition problem.

2. Give an efficient 2-approximation algorithm for the k-partition problem.

Solution. Note that δi is a nondecreasing sequence. Let v1, . . . , vk+1 be the first k + 1 points in the
sequence found by the process described. Consider the partition on them induced by the optimal k-
partition. At least two of the vertices, say vi and vj , with i < j, must be in the same part of the optimal
partition. This implies that the diameter of the part they lie in must be at least δj . Therefore, the
optimal partition has at least one part of diameter at least δk+1, i.e., OPT ≥ δk+1.

For the second part, find the first k vertices according to the process. Call these the anchors of a
k-partition. For every vertex u 6∈ {v1, . . . , vk}, assign it part i if vi is the closest to u among the anchors
(break ties arbitrarily). Then for each part i, for any vertex u in the part, d(u, vi) ≤ δk+1. Therefore,
by the triangle inequality, for any two vertices u, v in the same part i,

d(u, v) ≤ d(u, vi) + d(vi, u) ≤ 2δk+1 ≤ 2OPT.
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3. Theory of Linear Inequalities

Let d, f ∈ Rn be integer vectors with all components positive and let t be a positive integer. Suppose
di ≤ t for all i = 1, . . . n, where d = (d1, . . . , dn)T . Let A be a matrix such that columns of A are the
non-negative integer solutions to the inequality dT x ≤ t. The integer cutting-stock problem is

min(eT y : Ay = f, y ≥ 0, y integer) (1)

where e is the vector of all 1’s. Show that (1) has an optimal solution with at most 2n positive
components.

Solution. A solution is available upon request.

4. Combinatorial Optimization

Let G = (V,E) be a complete graph having an even number of vertices and let c = (ce : e ∈ E) be edge
weights such that c ≥ 0 and c satisfies the triangle inequality. For X ⊆ V let δ(X) denote the set of
edges with one end in X and the other end in V − X. Let C denote the set of all sets D of the form
D = δ(X) such that X ⊆ V , |X| ≥ 3, |V (G) − X| ≥ 3 and |X| is odd. The dual LP for Edmonds’
perfect-matching system is

Maximize
∑

(yv : v ∈ V ) +
∑

(YD : D ∈ C)

subject to

yv + yw +
∑

(YD : e ∈ D ∈ C) ≤ ce, for all e = vw ∈ E

YD ≥ 0, for all D ∈ C.

Show that there exists an optimal dual solution such that yv ≥ 0 for all v ∈ V .

Solution. A solution is available upon request.

5. Graph Theory

Let k ≥ 2 be an integer. Prove that in a k-connected graph, for every set of k vertices there is a cycle
that includes all of them.

Solution: For k = 2 this follows directly from Menger’s theorem. For k > 2 there is, by induction, a
cycle C containing k − 1 of the given vertices, and we may assume that the last vertex, say v, is not
on C. The k − 1 given vertices on C divide C into k − 1 edge-disjoint paths. Let us call those paths
segments. If |V (C)| = k − 1 (that is, V (C) consists entirely of the given vertices), then let l := k − 1;
otherwise let l := k. By Menger’s theorem there exist l paths from v to V (C), vertex-disjoint, except
for v. It follows that some two of those paths, say P and Q, have ends in the same segment, and hence
C ∪ P ∪ Q contains a cycle that includes all the given vertices.

6. Probabilistic methods

Let G = (V,E) be a graph with n vertices and m edges. Let t ≥ 1 be arbitrary.
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(i) Form a (random) subset T of V (G) by picking a (uniformly) random vertex of the graph t times,
with repetition. (Thus |T | ≤ t.) Let N(T ) denote its common neighborhood – the set of vertices
adjacent to every vertex of T . Let X = |N(T )|.

Show that

E[X] ≥
(2m)t

n2t−1
.

(ii) Suppose that
(2m)t

n2t−1
−

(

n

s

)

(k

n

)t

≥ u .

Then prove that there exists a subset U ⊂ V (G) of at least u vertices, such that every set of s vertices
in U has at least k common neighbors.

Solution: (i) Note that the probability that a vertex v is in N(T ) is just the probability that T is a
subset of its neighborhood. Hence, by the convexity of xt (for t ≥ 1),

E(X) =
∑

v∈V

( |N(v)|

n

)t

≥ n
( 1

n

∑

v∈V

|N(v)|

n

)t

=
(2m)t

n2t−1
.

(ii) (Use the deletion method.) Let A := N(T ). Let Y denote the number of s-sets in A with at most
k common neighbors. Suppose the pair {u, v} has at most k common neighbors; then the probability
that a {u, v} ⊂ A is at most (k/n)t, since each element of T must lie in the common neighborhood of
u and v; the same argument holds for subsets of s vertices, rather than pairs. And so

E(Y ) ≤

(

n

s

)

(k/n)t .

By linearity of expectation,

E[X − Y ] ≥
(2m)t

n2t−1
−

(

n

s

)

(k

n

)t

≥ u ,

and thus there must exist a choice of T such that X − Y ≥ u. (As usual), simply remove one element
from each s-set in A with at most k neighbors, to obtain U as required.

7. Algebra

Prove that any finite subgroup of the multiplicative group of a field is cyclic.

Solution: Let F be a field and G be a finite subgroup of the group F× = F\{0} under multiplication.
Since G is finite and abelian, by the Structure Theorem for Abelian Groups, G is a direct product of
finitely many cyclic groups, i.e. G ∼= Cn1

× Cn2
× · · · × Cnk

for some integers n1, n2, . . . , nk ≥ 2. It
suffices to show that gcd(ni, nj) = 1 if i 6= j. For i 6= j, suppose there is a prime p dividing both ni

and nj. Then it follows from Sylow Theorem that Cni
and Cnj

both contain elements of order p. Since
p is prime, if a has order p, then so does a2, . . . , ap−1. Hence both Cni

and Cnj
contain at least p − 1

elements of order p. However, in a field F , the polynomial xp − 1 has at most p− 1 roots other than 1,
so Cni

and Cnj
have a non-empty intersection, which cannot happen in a direct product.


