ACO Comprehensive Exam

Student code A

1. Analysis of Algorithms

Describe an algorithm for deciding if an *n*-vertex graph G contains a clique of size 6. Explain how to modify the algorithm so it would also find such a clique in G (if one exists). The running time of both algorithms should be $O(n^5)$.

Hint. You may wish to consider a graph with vertex-set E(G) and suitably defined adjacency.

Solution: Given G let m = |E| and define an m-vertex graph T as follows. Each vertex of T represents an edges of G. We connect two vertices (u, u'), (v, v') of T if and only if u, u', v, v' form a clique of size 4 in G. Then it is easy to see that G contains a clique of size 6 if and only if T contains a triangle. Now we can use fast matrix multiplication to decide in time $O(m^{\omega}) = O(n^{2\omega}) \ll O(n^5)$ if T contains a triangle. In order to actually find such a triangle, we can use the algorithm we saw in class that finds witnesses for Boolean matrix multiplication in time $O(n^{\omega})$.

2. Approximation Algorithms

Let G = (V, E) be a complete graph with distances on its edges; the distance between two vertices uand v is given by d(u, v) and the distances satisfy the triangle inequality. The *k*-partition problem is to partition V into k subsets, C_1, C_2, \ldots, C_k , so that the maximum distance between any pair of vertices in the same subset is minimized. Formally, define the *diameter* of a subset $C_r \subset V$ as

$$Diam(C_r) = \max\{d(v_i, v_j) : v_i, v_j \in C_r\}$$

Then we wish to find a partition that minimizes $\max_{r \in \{1,2,\dots,k\}} \text{Diam}(C_r)$.

Now consider the following process. Start with an arbitrary vertex. Call it v_1 . Then at the i^{th} step, $i \ge 2$, let

$$\delta_i = \max_u \min_{j \in \{1,2,\dots,i-1\}} d(u,v_j)$$

and define v_i to be the vertex u that achieves the maximum. That is, v_i is the vertex u that maximizes the minimum distance of u to one of the vertices in $\{v_1, v_2, \ldots, v_{i-1}\}$.

- 1. Show that δ_{k+1} is a lower bound on the value of the optimal solution of the k-partition problem.
- 2. Give an efficient 2-approximation algorithm for the k-partition problem.

Solution. Note that δ_i is a nondecreasing sequence. Let v_1, \ldots, v_{k+1} be the first k+1 points in the sequence found by the process described. Consider the partition on them induced by the optimal k-partition. At least two of the vertices, say v_i and v_j , with i < j, must be in the same part of the optimal partition. This implies that the diameter of the part they lie in must be at least δ_j . Therefore, the optimal partition has at least one part of diameter at least δ_{k+1} , i.e., $\text{OPT} \geq \delta_{k+1}$.

For the second part, find the first k vertices according to the process. Call these the anchors of a k-partition. For every vertex $u \notin \{v_1, \ldots, v_k\}$, assign it part i if v_i is the closest to u among the anchors (break ties arbitrarily). Then for each part i, for any vertex u in the part, $d(u, v_i) \leq \delta_{k+1}$. Therefore, by the triangle inequality, for any two vertices u, v in the same part i,

$$d(u, v) \le d(u, v_i) + d(v_i, u) \le 2\delta_{k+1} \le 2\text{OPT}.$$

ACO Comprehensive Exam

Student code A

3. Theory of Linear Inequalities

Let $d, f \in \mathbf{R}^n$ be integer vectors with all components positive and let t be a positive integer. Suppose $d_i \leq t$ for all i = 1, ..., n, where $d = (d_1, ..., d_n)^T$. Let A be a matrix such that columns of A are the non-negative integer solutions to the inequality $d^T x \leq t$. The integer cutting-stock problem is

$$\min(e^T y : Ay = f, y \ge 0, y \text{ integer}) \tag{1}$$

where e is the vector of all 1's. Show that (1) has an optimal solution with at most 2^n positive components.

Solution. A solution is available upon request.

4. Combinatorial Optimization

Let G = (V, E) be a complete graph having an even number of vertices and let $c = (c_e : e \in E)$ be edge weights such that $c \ge 0$ and c satisfies the triangle inequality. For $X \subseteq V$ let $\delta(X)$ denote the set of edges with one end in X and the other end in V - X. Let C denote the set of all sets D of the form $D = \delta(X)$ such that $X \subseteq V$, $|X| \ge 3$, $|V(G) - X| \ge 3$ and |X| is odd. The dual LP for Edmonds' perfect-matching system is

Maximize
$$\sum (y_v : v \in V) + \sum (Y_D : D \in C)$$

subject to
 $y_v + y_w + \sum (Y_D : e \in D \in C) \le c_e$, for all $e = vw \in E$
 $Y_D \ge 0$, for all $D \in C$.

Show that there exists an optimal dual solution such that $y_v \ge 0$ for all $v \in V$.

Solution. A solution is available upon request.

5. Graph Theory

Let $k \ge 2$ be an integer. Prove that in a k-connected graph, for every set of k vertices there is a cycle that includes all of them.

Solution: For k = 2 this follows directly from Menger's theorem. For k > 2 there is, by induction, a cycle C containing k - 1 of the given vertices, and we may assume that the last vertex, say v, is not on C. The k - 1 given vertices on C divide C into k - 1 edge-disjoint paths. Let us call those paths segments. If |V(C)| = k - 1 (that is, V(C) consists entirely of the given vertices), then let l := k - 1; otherwise let l := k. By Menger's theorem there exist l paths from v to V(C), vertex-disjoint, except for v. It follows that some two of those paths, say P and Q, have ends in the same segment, and hence $C \cup P \cup Q$ contains a cycle that includes all the given vertices.

6. Probabilistic methods

Let G = (V, E) be a graph with n vertices and m edges. Let $t \ge 1$ be arbitrary.

ACO Comprehensive Exam

Student code A

(i) Form a (random) subset T of V(G) by picking a (uniformly) random vertex of the graph t times, with repetition. (Thus $|T| \leq t$.) Let N(T) denote its common neighborhood – the set of vertices adjacent to every vertex of T. Let X = |N(T)|.

Show that

$$E[X] \ge \frac{(2m)^t}{n^{2t-1}}.$$

(ii) Suppose that

$$\frac{(2m)^t}{n^{2t-1}} - \binom{n}{s} \left(\frac{k}{n}\right)^t \ge u.$$

Then prove that there exists a subset $U \subset V(G)$ of at least u vertices, such that every set of s vertices in U has at least k common neighbors.

Solution: (i) Note that the probability that a vertex v is in N(T) is just the probability that T is a subset of its neighborhood. Hence, by the convexity of x^t (for $t \ge 1$),

$$E(X) = \sum_{v \in V} \left(\frac{|N(v)|}{n}\right)^t \ge n \left(\frac{1}{n} \sum_{v \in V} \frac{|N(v)|}{n}\right)^t = \frac{(2m)^t}{n^{2t-1}}.$$

(ii) (Use the deletion method.) Let A := N(T). Let Y denote the number of s-sets in A with at most k common neighbors. Suppose the pair $\{u, v\}$ has at most k common neighbors; then the probability that a $\{u, v\} \subset A$ is at most $(k/n)^t$, since each element of T must lie in the common neighborhood of u and v; the same argument holds for subsets of s vertices, rather than pairs. And so

$$E(Y) \le \binom{n}{s} (k/n)^t.$$

By linearity of expectation,

$$E[X - Y] \ge \frac{(2m)^t}{n^{2t-1}} - \binom{n}{s} \left(\frac{k}{n}\right)^t \ge u$$

and thus there must exist a choice of T such that $X - Y \ge u$. (As usual), simply remove one element from each s-set in A with at most k neighbors, to obtain U as required.

7. Algebra

Prove that any finite subgroup of the multiplicative group of a field is cyclic.

Solution: Let **F** be a field and *G* be a finite subgroup of the group $\mathbf{F}^{\times} = \mathbf{F} \setminus \{0\}$ under multiplication. Since *G* is finite and abelian, by the Structure Theorem for Abelian Groups, *G* is a direct product of finitely many cyclic groups, i.e. $G \cong C_{n_1} \times C_{n_2} \times \cdots \times C_{n_k}$ for some integers $n_1, n_2, \ldots, n_k \geq 2$. It suffices to show that $gcd(n_i, n_j) = 1$ if $i \neq j$. For $i \neq j$, suppose there is a prime *p* dividing both n_i and n_j . Then it follows from Sylow Theorem that C_{n_i} and C_{n_j} both contain elements of order *p*. Since *p* is prime, if *a* has order *p*, then so does a^2, \ldots, a^{p-1} . Hence both C_{n_i} and C_{n_j} contain at least p-1 elements of order *p*. However, in a field *F*, the polynomial $x^p - 1$ has at most p - 1 roots other than 1, so C_{n_i} and C_{n_j} have a non-empty intersection, which cannot happen in a direct product.