1. Analysis of Algorithms

Describe an algorithm for deciding if an n-vertex graph G contains a clique of size 6 . Explain how to modify the algorithm so it would also find such a clique in G (if one exists). The running time of both algorithms should be $O\left(n^{5}\right)$.
Hint. You may wish to consider a graph with vertex-set $E(G)$ and suitably defined adjacency.
Solution: Given G let $m=|E|$ and define an m-vertex graph T as follows. Each vertex of T represents an edges of G. We connect two vertices $\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)$ of T if and only if $u, u^{\prime}, v, v^{\prime}$ form a clique of size 4 in G. Then it is easy to see that G contains a clique of size 6 if and only if T contains a triangle. Now we can use fast matrix multiplication to decide in time $O\left(m^{\omega}\right)=O\left(n^{2 \omega}\right) \ll O\left(n^{5}\right)$ if T contains a triangle. In order to actually find such a triangle, we can use the algorithm we saw in class that finds witnesses for Boolean matrix multiplication in time $O\left(n^{\omega}\right)$.

2. Approximation Algorithms

Let $G=(V, E)$ be a complete graph with distances on its edges; the distance between two vertices u and v is given by $d(u, v)$ and the distances satisfy the triangle inequality. The k-partition problem is to partition V into k subsets, $C_{1}, C_{2}, \ldots, C_{k}$, so that the maximum distance between any pair of vertices in the same subset is minimized. Formally, define the diameter of a subset $C_{r} \subset V$ as

$$
\operatorname{Diam}\left(C_{r}\right)=\max \left\{d\left(v_{i}, v_{j}\right): v_{i}, v_{j} \in C_{r}\right\}
$$

Then we wish to find a partition that minimizes $\max _{r \in\{1,2, \ldots, k\}} \operatorname{Diam}\left(C_{r}\right)$.
Now consider the following process. Start with an arbitrary vertex. Call it v_{1}. Then at the $i^{\text {th }}$ step, $i \geq 2$, let

$$
\delta_{i}=\max _{u} \min _{j \in\{1,2, \ldots, i-1\}} d\left(u, v_{j}\right)
$$

and define v_{i} to be the vertex u that achieves the maximum. That is, v_{i} is the vertex u that maximizes the minimum distance of u to one of the vertices in $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$.

1. Show that δ_{k+1} is a lower bound on the value of the optimal solution of the k-partition problem.
2. Give an efficient 2 -approximation algorithm for the k-partition problem.

Solution. Note that δ_{i} is a nondecreasing sequence. Let v_{1}, \ldots, v_{k+1} be the first $k+1$ points in the sequence found by the process described. Consider the partition on them induced by the optimal k partition. At least two of the vertices, say v_{i} and v_{j}, with $i<j$, must be in the same part of the optimal partition. This implies that the diameter of the part they lie in must be at least δ_{j}. Therefore, the optimal partition has at least one part of diameter at least δ_{k+1}, i.e., OPT $\geq \delta_{k+1}$.

For the second part, find the first k vertices according to the process. Call these the anchors of a k-partition. For every vertex $u \notin\left\{v_{1}, \ldots, v_{k}\right\}$, assign it part i if v_{i} is the closest to u among the anchors (break ties arbitrarily). Then for each part i, for any vertex u in the part, $d\left(u, v_{i}\right) \leq \delta_{k+1}$. Therefore, by the triangle inequality, for any two vertices u, v in the same part i,

$$
d(u, v) \leq d\left(u, v_{i}\right)+d\left(v_{i}, u\right) \leq 2 \delta_{k+1} \leq 2 \mathrm{OPT} .
$$

3. Theory of Linear Inequalities

Let $d, f \in \mathbf{R}^{n}$ be integer vectors with all components positive and let t be a positive integer. Suppose $d_{i} \leq t$ for all $i=1, \ldots n$, where $d=\left(d_{1}, \ldots, d_{n}\right)^{T}$. Let A be a matrix such that columns of A are the non-negative integer solutions to the inequality $d^{T} x \leq t$. The integer cutting-stock problem is

$$
\begin{equation*}
\min \left(e^{T} y: A y=f, y \geq 0, y \text { integer }\right) \tag{1}
\end{equation*}
$$

where e is the vector of all 1's. Show that (1) has an optimal solution with at most 2^{n} positive components.

Solution. A solution is available upon request.

4. Combinatorial Optimization

Let $G=(V, E)$ be a complete graph having an even number of vertices and let $c=\left(c_{e}: e \in E\right)$ be edge weights such that $c \geq 0$ and c satisfies the triangle inequality. For $X \subseteq V$ let $\delta(X)$ denote the set of edges with one end in X and the other end in $V-X$. Let \mathcal{C} denote the set of all sets D of the form $D=\delta(X)$ such that $X \subseteq V,|X| \geq 3,|V(G)-X| \geq 3$ and $|X|$ is odd. The dual LP for Edmonds' perfect-matching system is

$$
\begin{gathered}
\text { Maximize } \sum\left(y_{v}: v \in V\right)+\sum\left(Y_{D}: D \in \mathcal{C}\right) \\
\text { } \text { subject to } \\
y_{v}+y_{w}+\sum\left(Y_{D}: e \in D \in \mathcal{C}\right) \leq c_{e}, \text { for all } e=v w \in E \\
Y_{D} \geq 0, \text { for all } D \in \mathcal{C} .
\end{gathered}
$$

Show that there exists an optimal dual solution such that $y_{v} \geq 0$ for all $v \in V$.
Solution. A solution is available upon request.

5. Graph Theory

Let $k \geq 2$ be an integer. Prove that in a k-connected graph, for every set of k vertices there is a cycle that includes all of them.

Solution: For $k=2$ this follows directly from Menger's theorem. For $k>2$ there is, by induction, a cycle C containing $k-1$ of the given vertices, and we may assume that the last vertex, say v, is not on C. The $k-1$ given vertices on C divide C into $k-1$ edge-disjoint paths. Let us call those paths segments. If $|V(C)|=k-1$ (that is, $V(C)$ consists entirely of the given vertices), then let $l:=k-1$; otherwise let $l:=k$. By Menger's theorem there exist l paths from v to $V(C)$, vertex-disjoint, except for v. It follows that some two of those paths, say P and Q, have ends in the same segment, and hence $C \cup P \cup Q$ contains a cycle that includes all the given vertices.

6. Probabilistic methods

Let $G=(V, E)$ be a graph with n vertices and m edges. Let $t \geq 1$ be arbitrary.
(i) Form a (random) subset T of $V(G)$ by picking a (uniformly) random vertex of the graph t times, with repetition. (Thus $|T| \leq t$.) Let $N(T)$ denote its common neighborhood - the set of vertices adjacent to every vertex of T. Let $X=|N(T)|$.

Show that

$$
E[X] \geq \frac{(2 m)^{t}}{n^{2 t-1}}
$$

(ii) Suppose that

$$
\frac{(2 m)^{t}}{n^{2 t-1}}-\binom{n}{s}\left(\frac{k}{n}\right)^{t} \geq u
$$

Then prove that there exists a subset $U \subset V(G)$ of at least u vertices, such that every set of s vertices in U has at least k common neighbors.

Solution: (i) Note that the probability that a vertex v is in $N(T)$ is just the probability that T is a subset of its neighborhood. Hence, by the convexity of x^{t} (for $t \geq 1$),

$$
E(X)=\sum_{v \in V}\left(\frac{|N(v)|}{n}\right)^{t} \geq n\left(\frac{1}{n} \sum_{v \in V} \frac{|N(v)|}{n}\right)^{t}=\frac{(2 m)^{t}}{n^{2 t-1}}
$$

(ii) (Use the deletion method.) Let $A:=N(T)$. Let Y denote the number of s-sets in A with at most k common neighbors. Suppose the pair $\{u, v\}$ has at most k common neighbors; then the probability that a $\{u, v\} \subset A$ is at most $(k / n)^{t}$, since each element of T must lie in the common neighborhood of u and v; the same argument holds for subsets of s vertices, rather than pairs. And so

$$
E(Y) \leq\binom{ n}{s}(k / n)^{t}
$$

By linearity of expectation,

$$
E[X-Y] \geq \frac{(2 m)^{t}}{n^{2 t-1}}-\binom{n}{s}\left(\frac{k}{n}\right)^{t} \geq u
$$

and thus there must exist a choice of T such that $X-Y \geq u$. (As usual), simply remove one element from each s-set in A with at most k neighbors, to obtain U as required.

7. Algebra

Prove that any finite subgroup of the multiplicative group of a field is cyclic.
Solution: Let \mathbf{F} be a field and G be a finite subgroup of the group $\mathbf{F}^{\times}=\mathbf{F} \backslash\{0\}$ under multiplication. Since G is finite and abelian, by the Structure Theorem for Abelian Groups, G is a direct product of finitely many cyclic groups, i.e. $G \cong C_{n_{1}} \times C_{n_{2}} \times \cdots \times C_{n_{k}}$ for some integers $n_{1}, n_{2}, \ldots, n_{k} \geq 2$. It suffices to show that $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ if $i \neq j$. For $i \neq j$, suppose there is a prime p dividing both n_{i} and n_{j}. Then it follows from Sylow Theorem that $C_{n_{i}}$ and $C_{n_{j}}$ both contain elements of order p. Since p is prime, if a has order p, then so does a^{2}, \ldots, a^{p-1}. Hence both $C_{n_{i}}$ and $C_{n_{j}}$ contain at least $p-1$ elements of order p. However, in a field F, the polynomial $x^{p}-1$ has at most $p-1$ roots other than 1 , so $C_{n_{i}}$ and $C_{n_{j}}$ have a non-empty intersection, which cannot happen in a direct product.

