1. Analysis of Algorithms

Describe an algorithm for deciding if an n-vertex graph G contains a clique of size 6 . Explain how to modify the algorithm so it would also find such a clique in G (if one exists). The running time of both algorithms should be $O\left(n^{5}\right)$.
Hint. You may wish to consider a graph with vertex-set $E(G)$ and suitably defined adjacency.

2. Approximation Algorithms

Let $G=(V, E)$ be a complete graph with distances on its edges; the distance between two vertices u and v is given by $d(u, v)$ and the distances satisfy the triangle inequality. The k-partition problem is to partition V into k subsets, $C_{1}, C_{2}, \ldots, C_{k}$, so that the maximum distance between any pair of vertices in the same subset is minimized. Formally, define the diameter of a subset $C_{r} \subset V$ as

$$
\operatorname{Diam}\left(C_{r}\right)=\max \left\{d\left(v_{i}, v_{j}\right): v_{i}, v_{j} \in C_{r}\right\}
$$

Then we wish to find a partition that minimizes $\max _{r \in\{1,2, \ldots, k\}} \operatorname{Diam}\left(C_{r}\right)$.
Now consider the following process. Start with an arbitrary vertex. Call it v_{1}. Then at the $i^{\text {th }}$ step, $i \geq 2$, let

$$
\delta_{i}=\max _{u} \min _{j \in\{1,2, \ldots, i-1\}} d\left(u, v_{j}\right)
$$

and define v_{i} to be the vertex u that achieves the maximum. That is, v_{i} is the vertex u that maximizes the minimum distance of u to one of the vertices in $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$.

1. Show that δ_{k+1} is a lower bound on the value of the optimal solution of the k-partition problem.
2. Give an efficient 2 -approximation algorithm for the k-partition problem.

3. Theory of Linear Inequalities

Let $d, f \in \mathbf{R}^{n}$ be integer vectors with all components positive and let t be a positive integer. Suppose $d_{i} \leq t$ for all $i=1, \ldots n$, where $d=\left(d_{1}, \ldots, d_{n}\right)^{T}$. Let A be a matrix such that columns of A are the non-negative integer solutions to the inequality $d^{T} x \leq t$. The integer cutting-stock problem is

$$
\begin{equation*}
\min \left(e^{T} y: A y=f, y \geq 0, y \text { integer }\right) \tag{1}
\end{equation*}
$$

where e is the vector of all 1's. Show that (1) has an optimal solution with at most 2^{n} positive components.

4. Combinatorial Optimization

Let $G=(V, E)$ be a complete graph having an even number of vertices and let $c=\left(c_{e}: e \in E\right)$ be edge weights such that $c \geq 0$ and c satisfies the triangle inequality. For $X \subseteq V$ let $\delta(X)$ denote the set of edges with one end in X and the other end in $V-X$. Let \mathcal{C} denote the set of all sets D of the form $D=\delta(X)$ such that $X \subseteq V,|X| \geq 3,|V(G)-X| \geq 3$ and $|X|$ is odd. The dual LP for Edmonds' perfect-matching system is

$$
\begin{gathered}
\text { Maximize } \sum\left(y_{v}: v \in V\right)+\sum\left(Y_{D}: D \in \mathcal{C}\right) \\
\text { subject to } \\
y_{v}+y_{w}+\sum\left(Y_{D}: e \in D \in \mathcal{C}\right) \leq c_{e}, \text { for all } e=v w \in E \\
Y_{D} \geq 0, \text { for all } D \in \mathcal{C}
\end{gathered}
$$

Show that there exists an optimal dual solution such that $y_{v} \geq 0$ for all $v \in V$.

5. Graph Theory

Let $k \geq 2$ be an integer. Prove that in a k-connected graph, for every set of k vertices there is a cycle that includes all of them.

6. Probabilistic methods

Let $G=(V, E)$ be a graph with n vertices and m edges. Let $t \geq 1$ be arbitrary.
(i) Form a (random) subset T of $V(G)$ by picking a (uniformly) random vertex of the graph t times, with repetition. (Thus $|T| \leq t$.) Let $N(T)$ denote its common neighborhood - the set of vertices adjacent to every vertex of T. Let $X=|N(T)|$.

Show that

$$
E[X] \geq \frac{(2 m)^{t}}{n^{2 t-1}}
$$

(ii) Suppose that

$$
\frac{(2 m)^{t}}{n^{2 t-1}}-\binom{n}{s}\left(\frac{k}{n}\right)^{t} \geq u
$$

Then prove that there exists a subset $U \subset V(G)$ of at least u vertices, such that every set of s vertices in U has at least k common neighbors.

7. Algebra

Prove that any finite subgroup of the multiplicative group of a field is cyclic.

