
ACO Comprehensive Exam Student code C March 21 and 22, 2011

1. Theory of Linear Inequalities

For each k = 0, . . . , n, let Uk denote the set of all vectors x ∈ Rn such that x has exactly k coordinates
equal to 1/2 and all other coordinates of x are either 0 or 1. Let P ⊆ {x ∈ Rn : 0 ≤ x ≤ 1} be a
polyhedron and let P ′ denote its Chvátal closure. Show that if Uk ⊆ P for some k < n, then Uk+1 ⊆ P ′.

Solution. A solution is available upon request.

2. Combinatorial Optimization

Let G = (V,E) be a complete graph. For a vertex v ∈ V let δ(v) denote the set of edges having v as
an end; for S ⊂ V let γ(S) denote the set of edges having both ends in the set S; for a set F ⊂ E let
x(F) denote

∑

(xe : e ∈ F).

A Hamiltonian circuit in G is an integer solution to the following linear system:

x(δ(v)) = 2, for all v ∈ V

x(γ(S)) ≤ |S| − 1, for all S 6= V, |S| ≥ 3

0 ≤ xe ≤ 1, for all e ∈ E.

By a comb we refer to a non-empty handle H ⊆ V,H 6= V and 2k +1 pairwise disjoint, non-empty teeth

T1, T2, ..., T2k+1 ⊆ V , for k at least 1. We require each tooth Ti to have at least one vertex in common
with the handle and at least one vertex not in the handle.

Show that the comb inequality

x(γ(H)) +
2k+1
∑

i=1

x(γ(Ti)) ≤ |H|+
2k+1
∑

i=1

(|Ti| − 1)− (k + 1).

is satisfied by all Hamiltonian circuits of G by deriving the inequality as a Chvátal cut for the above
linear system.

NOTE: No credit is given for an alternative proof that comb inequalities are satisfied by Hamiltonian
circuits. Such a proof is given, for example, on page 988 of Schrijver’s Combinatorial Optimization.

Solution. A solution is available upon request.

3. Analysis of Algorithms

We say that a 4-CNF formula is strongly satisfiable if it has an assignment that satisfies at least 2
literals in each clause. Design a polynomial time randomized algorithm that given a 4-CNF formula Ψ
which is strongly satisfiable, finds a satisfying assignment (in the usual sense) of Ψ. The algorithm is
not required to find a satisfying assignment if the input formula is not strongly satisfiable (even if it is
satisfiable in the usual sense).

ACO Comprehensive Exam Student code C March 21 and 22, 2011

Solution. The algorithm is basically the same random walk algorithm for 2-CNF we analyzed in class.
That is, starting from any initial assignment (say, all 0) we do the following: if the current assignment
satisfies Ψ we are done. Otherwise, we pick a clause that is not satisfied, randomly pick one of its 4
literals, and change the assignment to that literal.

We now claim that if Ψ is strongly satisfiable then the algorithm will find a satisfying assignment
within O(n2) steps. Assume f is some strongly satisfying assignment of Ψ. Since f strongly satisfies Ψ,
when we randomly flip a literal we have a probability of at least 1/2 to decrease the hamming distance
between the current assignment and f . So we are exactly at the same situation we had for the 2-CNF
algorithm, where a random walk starts at some 0 ≤ k ≤ n and at each step takes a random step to
the left or to the right, where the probability of going left (that is, toward 0) is at least 1/2. Hence, as
we saw in class, with high probability, within O(n2) steps we either find a satisfying assignment or we
reach 0, meaning that we found f (which is also a satisfying assignment).

4. Graph Algorithms

Design a polynomial-time algorithm for the following problem and prove its correctness.
INPUT: A graph G and edges e1, e2 ∈ E(G).
QUESTION: Do there exist disjoint cycles C1, C2 in G such that ei ∈ E(Ci)?
Note. To receive full credit a complete proof is required; not just a statement of a theorem from the
literature.

Solution. This is the Two Disjoint Paths Algorithm of Seymour, Shiloah and Thomassen. It can be
found in various places in the literature.

4. Approximation Algorithms

Consider the weighted vertex cover problem on a graph G(V,E) over vertices V =[n], with corresponding
costs ci >0, i ∈ [n]. Show that, for any ǫ ∈ [0, 1), the following hold:
(a) The algorithm below is a factor 2/(1−ǫ) approximation algorithm for weighted vertex cover.
(b) The analysis of (a) cannot be improved beyond factor (2−ǫ)/(1−ǫ).
Note: You may answer the question for ǫ=0 for partial credit strictly greater than zero.

Algorithm
1. Initialization:

U ← E (all edges are uncovered)
∀e ∈ E, ye ← 0
C ← ∅ (no vertices have been added to the vertex cover)
∀u ∈ V = [n], δu ← cu

2. While U 6= ∅ (thus while C is not a vertex cover) do:
Pick an uncovered edge e∈U , and let the endpoints of e be e=(u, v)
µ = min(δu, δv)
ye ← µ
δu ← δu − µ
δv ← δv − µ
Include in C all vertices having δi ≤ ǫ ci and update U :

∀i ∈ V = [n], if δi ≤ ǫ ci then C ← C ∪ {i}

ACO Comprehensive Exam Student code C March 21 and 22, 2011

U ← U \
⋃

(i,j)∈E:i∈C{(i, j)}

3. Output C.

Solution.
(a)
Lemma 1 (Invariance): ∀i ∈ V , throughout the execution of the algorithm, the following holds:

∑

e∈E:e=(i,j)

ye

+ δi = ci (1)

Proof (of Lemma 1): Assume that (1) is true at the begining of an iteration of the while loop (it
is obviously true at the begining of the first iteration, by the setting of variables at initialization). We
can argue that (1) remains true at the end of the iteration of the while loop. In particular, if e=(u, v)
was the uncovered edge considered, prior to the updates of ye, δu and δv we had:

∑

e∈E:e=(i,j)

ye

+ δi = ci ,

thus

∑

e∈E:e=(i,j)

ye

+ µ + (δi − µ) = ci .

This immediately implies that (1) is true after the updates ye ← µ, δu ← δu−µ and δv ← δv−µ.

Corollary 1: ∀i ∈ V , at the end of the execution of the algorithm, the following holds:

∑

e∈E:e=(i,j)

ye

 ≤ ci (2)

Proof (of Corollary 1): Follows from (1) and the fact that all δi’s are always non-negative.

Corollary 2: ∀i ∈ C, at the end of the execution of the algorithm, the following holds:

∑

e∈E:e=(i,j)

ye

 ≥ (1− ǫ)ci (3)

Proof (of Corollary 2): Follows from (1) and the fact that vertices are included in C if and only
if δi ≤ ǫ ci.

Lemma 2 (Duality): Let COPT be a vertex cover of minimum cost. Then

(

∑

e∈E

ye

)

≤
∑

u∈COPT

cu (4)

ACO Comprehensive Exam Student code C March 21 and 22, 2011

Proof (of Lemma 2):

∑

e∈E

ye ≤
∑

(u,v)=e∈E

|{u, v} ∩ COPT| ye =
∑

u∈COPT

∑

v:(u,v)=e∈E

ye

 ≤
∑

u∈COPT

cu ,

where the first inequality follows from the fact that any cover, and hence also an optimal cover, includes
at least one of the two endpoints of each edge: 1 ≤ |{u, v} ∩ COPT| ≤ 2, and the second inequality
follows from (2) of the first corollary of Lemma 1.

Lemma 3 (Slackness): Let C be the vertex cover output by the algorithm. Then

∑

u∈C

cu ≤
2

1− ǫ

∑

e∈E

ye (5)

Proof (of Lemma 3):

(1− ǫ)
∑

u∈C

cu ≤
∑

u∈C

∑

v:(u,v)=e∈E

ye

 =
∑

(u,v)=e∈E

|{u, v} ∩ C| ye ≤ 2
∑

e∈E

ye ,

where the first inequality follows from (3) of the second corollary of Lemma 1, and the second inequality
follows from the fact that any cover, and hence also the cover C constructed by the algorithm, includes
at least one of the two endpoints of each edge: 1 ≤ |{u, v} ∩ C| ≤ 2.

Finally, combining (5) of Lemma 3 and (4) of Lemma 2 we establish the approximation factor:

∑

u∈C

cu ≤
2

1− ǫ

∑

e∈E

ye ≤
2

1− ǫ

∑

u∈COPT

cu .

(b) Consider a bipartite graph with vertices v1, . . . , vn on the left, vertices u1, . . . , un on the right, and n
edges (v1, u1), . . . (vn, un). All vi’s have the same cost, say 1. All ui’s have the same cost 1/(1−ǫ)=1+ ǫ

1−ǫ .

Clearly, the optimal cover is COPT = {u1, . . . , un} which is of cost n.

On the other hand, the algorithm will consider all n edges (vi, ui) successively, set µ = 1 in each iteration,
update the corresponding δvi

← 0 and δui
← ǫ

1−ǫ , and consequently include in C both vi and ui. The

final cover C will consist of all vertices vi and ui, 1 ≤ i ≤ n, and will thus be of cost n+n/(1−ǫ)= 2−ǫ
1−ǫn.

5. Graph Theory

Let G be a simple graph on n vertices and m edges. Prove that it has at least m
3n(4m− n2) triangles.

Solution. For adjacent vertices u, v ∈ V (G) let t(u, v) denote the number of triangles containing u, v,
and let t be the number of triangles in G. Then deg(u) + deg(v) ≤ n + t(u, v). By summing over all
edges uv ∈ E(G) we obtain

∑

uv∈E(G)(deg(u) + deg(v)) ≤ nm + 3t. But

∑

uv∈E(G)

(deg(u) + deg(v)) =
∑

v∈V (G)

deg2(v) ≥

∑

v∈V (G)

deg(v)

2

/n = 4m2/n

ACO Comprehensive Exam Student code C March 21 and 22, 2011

by the Cauchy-Schwarz inequality. The result follows.

6. Probability

A superinversion of a permutation σ on {1, . . . , n} is a pair (i, j) satisfying the following two conditions:

(i) j − i >
n

4

(ii) σ(i) − σ(j) >
n

4
.

Let Xn be the number of superinversions of a permutation chosen uniformly at random from all n!
permutations on n elements.
(a): Compute, up to first order, E(Xn).
(b): Let ǫ be fixed and arbitrary. Show that

P ((1− ǫ)E(Xn) < Xn < (1 + ǫ)E(Xn)) = 1− o(1)

as n tends to infinity. Solution. (a): Assume n is divisible by 4 (this only effects the lower order terms)

The number of pairs (i, j) with j > i + n/4 is

3n

4
∑

i=1

(

n− i−
n

4

)

=

3n

4
∑

i=1

(

3n

4
− i

)

=

(

9

32
+ o(1)

)

n2 .

By symmetry, this is also the number of pairs (k, l) with k − l > n/4. It follows that for any individual
pair (i, j) satisfying (i), the probability it satisfies (ii) is (9/32 + o(1)). By linearity of expectation, we
have

E(Xn) =

(

9

32
+ o(1)

)2

n2 =

(

81

1024
+ o(1)

)

n2 .

(b): Method 1: By Chebyshev’s inequality, it suffices to show V ar(Xn) = o(n4). We write

E(X2
n) =

∑

(i,j),(k,l)

P((i, j) and (k, l) both superinversions)

and split the sum up into two parts.
Class 1: Pairs where i = k or j = l. There are n3 such pairs, and each can contribute at most 1 to

the sum. So this part is o(n4).
Class 2: Pairs where i 6= k and j 6= l. Then the probability that both form a superinversion is

zero unless both pairs satisfy (i). If both pairs do satisfy (i) it follows from independence and direct
computation that the probability both satisfy (ii) is (9/32+o(1))2 . It follows that the total contribution
from this class is (9/32 + o(1))4n4.

This gives E(X2
n) = E(Xn)2(1 + o(1)), which is what we needed.

Method 2: We view σ as being formed by putting first choosing x1, . . . , xn uniformly and indepen-
dently from [0, 1], then ordering them from smallest to largest. Under this new model, changing xi does
not impact the relative order of the xj for j 6= i, so can only create or destroy at most n superinversions.
It follows from Azuma’s inequality (the method of bounded differences) that

P
(

|Xn −E(Xn)| ≥ λn3/2
)

≤ e−λ2/2

ACO Comprehensive Exam Student code C March 21 and 22, 2011

(NOTE : The second method is slicker than the first method, but depends heavily on the knowledge
of the trick of making the xi independent.)

7. Algebra

Let R be an integral domain and suppose that R[x] is a principal ideal domain. Show that R is a field.

Solution. Let a ∈ R be nonzero. We need to show that a is a unit. Consider the ideal (a, x) in R[x]. It
consists of polynomials whose constant term lies in (a). Since R[x] is a principal ideal domain, there is
a p(x) ∈ R[x] so that (a, x) = (p(x)). The elements of (p(x)) are all of the form rp(x) for r ∈ R. So in
particular, p(x) is nonzero and divides both a and x. Since p(x) divides a, it must be that p(x) = c for
some nonzero c ∈ R, that is, p(x) is a nonzero constant polynomial. Since p(x) = c also divides x, there
is a degree one polynomial q(x) = bx + d such that p(x)q(x) = x, that is, c(bx + d) = x. Rewriting, we
have (cb)x + cd = x. Thus, cb = 1. This means that c is a unit in R, and so 1 ∈ (c). Since (a, x) = c,
we then have 1 ∈ (a, c). This means

s(x)a + t(x)x = 1

for some s(x), t(x) ∈ R[x]. By considering degrees, we find that t(x) = 0 and s(x) is a constant
polynomial s(x) = a′. Rewriting, we have a′a + 0x = a′a = 1, and so a is a unit.

