1. Theory of Linear Inequalities

For each $k=0, \ldots, n$, let U_{k} denote the set of all vectors $x \in \mathbf{R}^{n}$ such that x has exactly k coordinates equal to $1 / 2$ and all other coordinates of x are either 0 or 1 . Let $P \subseteq\left\{x \in \mathbf{R}^{n}: 0 \leq x \leq 1\right\}$ be a polyhedron and let P^{\prime} denote its Chvátal closure. Show that if $U_{k} \subseteq P$ for some $k<n$, then $U_{k+1} \subseteq P^{\prime}$.

2. Combinatorial Optimization

Let $G=(V, E)$ be a complete graph. For a vertex $v \in V$ let $\delta(v)$ denote the set of edges having v as an end; for $S \subset V$ let $\gamma(S)$ denote the set of edges having both ends in the set S; for a set $F \subset E$ let $x(F)$ denote $\sum\left(x_{e}: e \in F\right)$.
A Hamiltonian circuit in G is an integer solution to the following linear system:

$$
\begin{gathered}
x(\delta(v))=2, \text { for all } v \in V \\
x(\gamma(S)) \leq|S|-1, \text { for all } S \neq V,|S| \geq 3 \\
0 \leq x_{e} \leq 1, \text { for all } e \in E .
\end{gathered}
$$

By a comb we refer to a non-empty handle $H \subseteq V, H \neq V$ and $2 k+1$ pairwise disjoint, non-empty teeth $T_{1}, T_{2}, \ldots, T_{2 k+1} \subseteq V$, for k at least 1 . We require each tooth T_{i} to have at least one vertex in common with the handle and at least one vertex not in the handle.

Show that the comb inequality

$$
x(\gamma(H))+\sum_{i=1}^{2 k+1} x\left(\gamma\left(T_{i}\right)\right) \leq|H|+\sum_{i=1}^{2 k+1}\left(\left|T_{i}\right|-1\right)-(k+1) .
$$

is satisfied by all Hamiltonian circuits of G by deriving the inequality as a Chvátal cut for the above linear system.

NOTE: No credit is given for an alternative proof that comb inequalities are satisfied by Hamiltonian circuits. Such a proof is given, for example, on page 988 of Schrijver's Combinatorial Optimization.

3. Analysis of Algorithms

We say that a 4-CNF formula is strongly satisfiable if it has an assignment that satisfies at least 2 literals in each clause. Design a polynomial time randomized algorithm that given a 4-CNF formula Ψ which is strongly satisfiable, finds a satisfying assignment (in the usual sense) of Ψ. The algorithm is not required to find a satisfying assignment if the input formula is not strongly satisfiable (even if it is satisfiable in the usual sense).

4. Graph Algorithms

Design a polynomial-time algorithm for the following problem and prove its correctness.
INPUT: A graph G and edges $e_{1}, e_{2} \in E(G)$.
QUESTION: Do there exist disjoint cycles C_{1}, C_{2} in G such that $e_{i} \in E\left(C_{i}\right)$?
Note. To receive full credit a complete proof is required; not just a statement of a theorem from the literature.

4. Approximation Algorithms

Consider the weighted vertex cover problem on a graph $G(V, E)$ over vertices $V=[n]$, with corresponding $\operatorname{costs} c_{i}>0, i \in[n]$. Show that, for any $\epsilon \in[0,1)$, the following hold:
(a) The algorithm below is a factor $2 /(1-\epsilon)$ approximation algorithm for weighted vertex cover.
(b) The analysis of (a) cannot be improved beyond factor $(2-\epsilon) /(1-\epsilon)$.

Note: You may answer the question for $\epsilon=0$ for partial credit strictly greater than zero.

Algorithm

1. Initialization:
$U \leftarrow E$ (all edges are uncovered)
$\forall e \in E, y_{e} \leftarrow 0$
$C \leftarrow \emptyset$ (no vertices have been added to the vertex cover)
$\forall u \in V=[n], \delta_{u} \leftarrow c_{u}$
2. While $U \neq \emptyset$ (thus while C is not a vertex cover) do:

Pick an uncovered edge $e \in U$, and let the endpoints of e be $e=(u, v)$
$\mu=\min \left(\delta_{u}, \delta_{v}\right)$
$y_{e} \leftarrow \mu$
$\delta_{u} \leftarrow \delta_{u}-\mu$
$\delta_{v} \leftarrow \delta_{v}-\mu$
Include in C all vertices having $\delta_{i} \leq \epsilon c_{i}$ and update U :

$$
\forall i \in V=[n] \text {, if } \delta_{i} \leq \epsilon c_{i} \text { then } C \leftarrow C \cup\{i\}
$$

$U \leftarrow U \backslash \bigcup_{(i, j) \in E: i \in C}\{(i, j)\}$
3. Output C.

5. Graph Theory

Let G be a simple graph on n vertices and m edges. Prove that it has at least $\frac{m}{3 n}\left(4 m-n^{2}\right)$ triangles.

6. Probability

A superinversion of a permutation σ on $\{1, \ldots, n\}$ is a pair (i, j) satisfying the following two conditions:

$$
\begin{aligned}
\text { (i) } j-i & >\frac{n}{4} \\
\text { (ii) } \sigma(i)-\sigma(j) & >\frac{n}{4} .
\end{aligned}
$$

Let X_{n} be the number of superinversions of a permutation chosen uniformly at random from all n ! permutations on n elements.
(a): Compute, up to first order, $\mathbf{E}\left(X_{n}\right)$.
(b): Let ϵ be fixed and arbitrary. Show that

$$
\mathbf{P}\left((1-\epsilon) \mathbf{E}\left(X_{n}\right)<X_{n}<(1+\epsilon) \mathbf{E}\left(X_{n}\right)\right)=1-o(1)
$$

as n tends to infinity.

7. Algebra

Let R be an integral domain and suppose that $R[x]$ is a principal ideal domain. Show that R is a field.

