
ACO Comprehensive Exam March 24 and 25, 2010

1. Theory of Linear Inequalities

Let a0, a1, . . . an be integral vectors in Rd and let A be the matrix having a0, a1, . . . , an as columns.
For a nonnegative integer λ, call {a0, a1, . . . , an} a (a0, λ)-Hilbert basis if every integral vector b in
cone({a0, a1, . . . , an}) can be written as integral combination

b =
∑

(γiai : i = 0, 1, . . . n)

where γ0 + λ ≥ 0 and γi ≥ 0 for i = 1, 2, . . . , n. Suppose cone{a0, a1, . . . , an} is a pointed cone.
Show that {a0, a1, . . . , an} is not a (a0, λ)-Hilbert basis if and only if there is an integral vector b in
cone({a0, a1, . . . , an}) such that b + λa0 is not a nonnegative integer combination of a0, a1, . . . , an and

max{1T x|Ax = b, x ≥ 0} < d.

Solution. A solution is available upon request.

2. Combinatorial Optimization

Let G = (V,E) be a graph and let k be the cardinality of a maximum matching in G. Let E1 and E2

be non-empty subsets of E with E1 ∪ E2 = E. For i = 1, 2, let ki be the cardinality of a maximum
matching of G contained in Ei. If k1 + k2 = k, then (E1, E2) is called a matching separation of G. If G
has no matching separation then it is called matching nonseparable.

A graph G = (V,E) is called factor-critical if for each vertex v ∈ V the graph obtained by deleting v
from G has a perfect matching.

Show that a graph G with no isolated vertices is matching nonseparable if and only if G is isomorphic
to K1,t for some t or G is factor-critical and 2-vertex connected.

Solution. A solution is available upon request.

3. Analysis of Algorithms

(a) Given n points in the plane, design an O(n2logn) algorithm that determines if any three points are
colinear.

(b) Assume you have n square containers of different sizes with matching lids. Consider the following
randomized algorithm for finding the largest container or lid.

Draw a lid uniformly at random from the set of n lids, and draw a container uniformly at random
from the set of n containers. If the lid is smaller than the container, discard the lid, draw a new lid
uniformly at random from the remaining lids, and repeat. If the container is smaller than the lid discard
the container, draw a new container uniformly at random from the remaining containers, and repeat.
If they are the same size flip a fair coin to decide which one to discard and repeat. Stop when you run
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out of containers or lids. When you stop, the container (or lid) you are holding is the largest.

What is the expected number of lid-container tests performed by this algorithm? Prove your answer
is correct.

Solution:
(a) Let P be the set of n points. Notice that if three points p, q and r are collinear, with q being the
central point, then the slopes of segments pq and qr are identical. Consider the following algorithm:

Select a point q ∈ S, compute the slope of qs for all s ∈ S such that s 6= q. Now take the n − 1
slopes and sort them. If any two slopes are the same then we have found our collinear points. Repeat
for each point q ∈ S. This takes O(nlogn) time for each point q for a total running time of O(n2logn).

(b) Each time a lid-container test is performed an item (lid or container) is discarded. Let R be the
number of items not discarded. Then the expected number of tests is equal to 2n − E(R). Let Xi

be a random variable which is 0 if item i is discarded and 1 otherwise. By linearity of expectation
E(R) =

∑2n
i=1 E(Xi). Now let us consider any lid i that is not the largest lid. Let pl be the probability

i is not discarded given that we are left at the end of the process holding a lid and similarly let pc be
the probability i is not discarded given that we are left holding a container. With equal probability we
will be left holding a lid or a container. Notice that if we are left holding a container then all lids have
been discarded so pc = 0. If we are left with a lid then the probabiliy that i has not been discarded
is the probability that the largest lid was drawn before lid i. We can consider the process of drawing
lids the same as selecting a random permutation of lids. In exactly half the permutations lid i is drawn
after the largest lid so pl = 1

2 . Therefore, E(Xi) = 1
2pl + 1

2pc = 1
4 . If i is the largest lid then if we are

left holding a lid it is lid i so E(Xi) = 1
2 . This analysis is the same for containers so if we sum over all

containers and lids, E(R) =
∑2n

i=1 E(Xi) = 2(1
2 ) + 2(n − 1)1

4 = n+1
2 . Therefore the expected number of

tests is 2n − n+1
2 .

4. Approximation Algorithms

1. Consider the (2 − 2/k) factor algorithm for the multiway cut problem that operates by finding
minimum cuts separating each terminal from all the rest. Show that the analogous algorithm for the
node multiway cut problem, based on isolating cuts, does not achieve a constant factor. What is the
best factor you can prove for this algorithm?
2. The multiway cut problem also possesses the half-integrality property. Give a suitable LP for the
multiway cut problem and prove this fact.

Solution.
1. Consider the following graph G = (V,E) on 2n + 1 vertices of which s1, . . . , sn are terminals. In
addition, there are vertices v1, . . . , vn and w. The edges are: (si, vi) and (vi, w), for 1 ≤ i ≤ n. The
costs of vi’s are 1 − ǫ and the cost of w is 1. It is easy to see that the algorithm will produce a cut of
cost n(1 − ǫ) by picking all vi’s and OPT is simply w of cost 1. The best factor for this algorithm is
O(n).
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2. The LP for multiway cut problem we will use picks edges fractionally – let de be the edge variables
– and ensures that each path between 2 terminals encounters a total de of 1. The dual is a maximum
multicommodity flow between all pairs of terminals.

Consider any fractional optimal primal solution. Shrink edges having de = 0. Next, if v is a degree 2
vertex with edges (u, v) and (v,w), then replace the 2 edges by (u,w) with the sum of the two distance
labels.

Now, any edges connecting 2 terminals must have distance label of 1. By optimality of the solution,
the remaining edges must have distance label of < 1.

Next, we claim that any path carrying non-zero flow between 2 terminals consists of 1 or 2 edges.
Suppose p is a path of 3 or more edges running between si and sj. Clearly, an intermediate vertex has
a path to a terminal, say sk; it may be the same as si or sj . Now, out of the 2 paths, si to sk and sk

to sj, one must have length < 1, contradicting feasibility.
Finally, we set edges on length 1 paths to 1 and those on length 2 paths to 1/2. By complementary

slackness conditions and the previous fact, this solution must be optimal. Hence there is a half-integral
optimal solution.

5. Graph Theory

For a graph G we use e(G) to denote the number of edges of G. Let H be a spanning subgraph of a
graph G such that every component of H is an induced subgraph of G and is bipartite. Prove that G
has a bipartite subgraph with at least e(G)/2 + e(H)/2 edges.

Solution: Let Hi, i = 1, . . . , k, be the components of H. Then Hi is bipartite; so let Ai, Bi denote a
partition of V (Hi) such that all edges of Hi are between Ai and Bi.

We form a partition V1, V2 of V (G) such that

(1) for i = 1, . . . , k, one of Ai, Bi is contained in V1 and the other is contained in V2, and

(2) for i = 2, . . . , k, at least half of the edges in [Hi,
⋃i−1

j=1 Hj] (the set of edges with one end in Hi

and the other in
⋃i−1

j=1 Hj) are in [V1, V2].

This can be done by placing one of Ai, Bi in V1 and the other in V2, in order i = 1, . . . , k. At the ith
stage, if (2) does not hold then switch Ai and Bi.

Since each Hi is an induced subgraph of G,

k
∑

i=2

e(Hi,∪i−1
j=1Hj) = e(G) − e(H).

Now the number of edges of G between V1 and V2 is at least

e(H) +
k

∑

i=2

(1/2)|[Hi,∪i−1
j=1Hj]| = e(H) + (e(G) − e(H))/2 = e(G)/2 + e(H)/2.
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6. Probability

Suppose (Xn)∞n=1 is a sequence of independent standard Gaussian random variables. Prove:

P

{

lim sup
n→∞

Xn√
2 ln n

= 1

}

= 1.

Hint. Use the asymptotic relation

1√
2π

∫ ∞

x
e−y2/2dy ∼ 1

x
√

2π
e−x2/2, x → ∞, (1)

to show

P

{

lim sup
n→∞

Xn√
2 ln n

≤ 1

}

= 1, (2)

and

P

{

lim sup
n→∞

Xn√
2 ln n

≥ 1

}

= 1. (3)

Solution: Relation (2) is equivalent to the fact that for any ε > 0,

P

{

Xn ≥ (1 + ε)
√

2 ln n i.o.
}

= 0. (4)

Estimate (1) implies that for some constant K > 0

∞
∑

n=2

P

{

Xn ≥ (1 + ε)
√

2 ln n
}

≤ K

∞
∑

n=2

1

(1 + ε)
√

2 ln n
√

2π
e−((1+ε)

√
2 lnn)2/2

≤ K
∞
∑

n=2

1

(1 + ε)
√

2 ln n
√

2π
n−(1+ε)2 < ∞,

The desired relation (4) follows by the Borel–Cantelli Lemma.
Relation (3) is equivalent to the fact that for any small ε > 0,

P

{

Xn ≥ (1 − ε)
√

2 ln n i.o.
}

= 1. (5)

Estimate (1) implies that for some constant C > 0

∞
∑

n=2

P

{

Xn ≥ (1 − ε)
√

2 ln n
}

≥ C

∞
∑

n=2

1

(1 − ε)
√

2 ln n
√

2π
e−((1−ε)

√
2 lnn)2/2

≥ C
∞

∑

n=2

1

(1 − ε)
√

2 ln n
√

2π
n−(1−ε)2 = ∞,

The desired relation (5) follows by the second part of Borel–Cantelli Lemma.
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7. Algebra

Let an denote the Fibonacci sequence a0 = 0, a1 = 1, an = an−1 + an−2, and let bn = (an)2. Prove that
bn satisfies a linear recursion relation.

Solution:
bn = (an−1 + an−2)

2 = bn−1 + bn−2 + 2an−1an−2. (6)

Now use an−1 in terms of an−2, an−3 to get

bn = bn−1 + 3bn−2 + 2an−2an−3.

On the other hand, replacing n by n − 1 in (6) gives

bn−1 = bn−2 + bn−3 + 2an−2an−3.

Subtracting the last two equations gives the desired linear recursion bn = 2bn−1 + 2bn−2 − bn−3.


