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1. Graph Theory

Given an edge-coloring of a multigraph, we say that color j is missing at a vertex v if no edge incident
with v is colored j. Let G be a multigraph and v1v2 . . . vn (n ≥ 2) a path in G. Suppose there is an
edge-coloring c : E(G− v1v2)→ {1, . . . , k} of G− v1v2, where k ≥ ∆(G) + 1, such that

(1) for each 2 ≤ i ≤ n− 1 there exists 1 ≤ s ≤ i− 1 such that c(vivi+1) is missing at vs, and

(2) there exist 1 ≤ i < n and j ∈ {1, . . . , k} such that j is missing at both vi and vn.

Show that G is k-edge-colorable.

Solution: Let c and v1v2 . . . vn be chosen, subject to the stated properties, such that

(i) n is minimal, and

(ii) subject to (ii), n− i is minimal.

Then we have

(iii) no color is missing at two distinct elements of {v1, . . . vn−1}.

If n = 2 then clearly a k-edge-coloring of G can be obtained from c by assigning the color j to v1v2. So
we may assume n ≥ 3.

If i = n − 1, then we modify c to the edge-coloring c′ of G − v1v2 by simply changing the color
of vn−1vn to j. Clearly, c′ and v1 . . . vn−1 satisfy (1). By (1), c(vn−1vn) is missing at vs for some
1 ≤ s ≤ n− 2; so in the edge-coloring c′, the color c(vn−1vn) is missing at both vn−1 and vs, and c′ and
v1 . . . vn−1 satisfy (2). This contradicts the choice of c and v1 . . . vn (specifically, (i) above).

Therefore, i ≤ n− 2. We now consider vi+1. Since k ≥ ∆(G) + 1, there exist a color ` ∈ {1, . . . , k}
that is missing at vi+1. By (iii), ` 6= j. Consider the subgraph of G induced by the edges with color j
or `, and let C denote its component containing vi+1. Note that C is a path.

Let c′ denote the edge-coloring of G − v1v2 obtained from c by swapping the colors along C. By
(iii), C does not end in {v1, . . . vi−1}; and by (1) and (iii), C is edge-disjoint from v1 . . . vi+1. So c′ and
v1 . . . vi+1 satisfy (1).

Suppose vi /∈ C. Then in the edge-coloring c′, j is missing at both vi and vi+1; so c′ and v1 . . . vi+1

satisfy (2), which contradicts (i).
Now assume vi ∈ C. Since any edge of vi+1 . . . vn with different colors in c and c′ must have color

j or ` (which are missing at vi or vi+1), we see that c′ and v1 . . . vn satisfy (1). Moreover, the color j
is missing at both vi+1 and vn in the edge-coloring c′. So c′ and v1 . . . vn satisfy (2), which contradicts
(ii).
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2. Probability

Assume that we have a Bernoulli variable X so that P (X = 1) = 0.6 and P (X = 0) = 0.4. Assume
that X,X1, X2, . . . are i.i.d. random variables.
(a) Find the smallest c > 0, so that

P (X1 + X2 + . . . + Xn ≥ 0.8n) ≤ cn

for all n.
(b) Once you have found c, explain why c is the smallest constant satisfying the above equality for all
n.

Solution: (a) Assume that 0.8n is an integer. Then the probability P (X1 + X2 + . . . + Xn ≥ 0.8n) is
of the same order as the probability P (X1 + X2 + . . . + Xn = 0.8n). But this is the probability for a
binomial and hence

P (X1 + X2 + . . . + Xn = 0.8n) =

(
n

0.8n

)
0.60.8n0.40.2n. (1)

We have that (
n

0.8n

)
0.80.8n0.20.2n ≤ 1

and hence (
n

0.8n

)
≤

(
1

0.80.8 · 0.20.2

)n

(One could also have used Sterling here). Using the last inequality above with inequality (1) we find

P (X1 + X2 + . . . + Xn = 0.8n) ≤

(
0.60.80.40.2

0.80.8 · 0.20.2

)n

(2)

The above inequality turns out to give the right order of magnitude so that the constant is

c =
0.60.80.40.2

0.80.8 · 0.20.2
.

(b) One approach is the theorem which says that c is given by the solution to the following minimizing
problem:

min
t≥0

E[e(X−0.8)t] = min
t≥0

(
0.6e0.2t + 0.4e−0.8t

)

To solve the above take the derivative and equate to zero. One could also use Sterling or a sublte
argument about the large deviation rate being convex and the fact that there are only a finite polynomial
number of types.
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3. Analysis of Algorithms

Consider a matrix with numerical data where each entry is rational, but each row and column sum is
an integer. Prove that you can “round off” this matrix, rounding each entry to the next integer above
or below, without changing the row or column sums.

Solution: Subtract the unique integer (positive or negative) from each entry so as to make the remainder
a rational number in [0, 1), simultaneously subtracting the same amount from the corresponding row
and column sums. A solution to this new problem gives us a solution to the original problem.

The key to solving the remainder of the problem is thinking in terms of network flows. We consider
the reduced problem where all entries are non-negative and less than one. Let’s make a bipartite graph
where edge (i, j) is present if the corresponding matrix entry is non-zero, and let the entry be the
capacity of the edge. Now connect all of the vertices on one side of the bipartition to a “source” vertex,
taking the row sums as the capacities of these edges, and connect all of the vertices on the other side
of the bipartition to a “sink” vertex, taking the column sums as the capacities of these edges. Because
of the way we constructed this graph, we know that there is a valid flow from the source to the sink
that is equal to the sum of the entries in the reduced matrix. Let us now raise the capacities on the
edges that are not connected to the source or the sink to one. This can only increase the max flow.
Moreover, if we use one of the standard max flow algorithms, we can find an integral solution to the
max flow in which each edge not incident to the source or sink has flow 0 or 1. This in turn gives us a
solution to the reduced matrix problem where each entry is rounded up or down, and thus a solution
to the original matrix rounding problem as well.
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4. Combinatorial Optimization

Let P = {x : Ax ≤ b} be a rational polyhedron in Rn and let w and c be rational vectors such that
both

max {wT x : x ∈ P} (3)

and
max {cT x : x ∈ P} (4)

have optimal solutions.
Give a polynomial-time procedure for finding a linear system Bx ≤ d that defines the set of vectors

x̄ such that x̄ is optimal for (3) and x̄ is optimal for (4). The description of the system Bx ≤ d should
not involve w or c.

Solution. The set of optimal solutions to (3) is a face F of P . Using complementary slackness,
we can write F = {x : A′x = b′, Ax ≤ b} where A′x ≤ b′ consists of the inequalities in Ax ≤ b
corresponding to non-zero variables in an optimal solution to the dual of (3). Similarly we can find a
linear system A′′x = b′′, Ax ≤ b describing the face of optimal solutions for (4). The combined system
A′x = b′, A′′x = b′′, Ax ≤ b defines the set of common optimal solutions to (3) and (4).
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5. Theory of Linear Inequalities

Say that a finite set H of rational vectors in Rn is a super Hilbert basis if for each J ⊆ {e1, . . . , en} the
set H ∪ J is a Hilbert basis (where ei denotes the ith unit vector in Rn). Let P = {x : Ax ≤ b} be a
rational polyhedron in Rn. Show that Ax ≤ b, x ≤ u is totally dual integral for every rational vector u
if and only if for every face F of P the set of active rows in Ax ≤ b is a super Hilbert basis.

Solution We know (Schrijver, Theorem 22.5) that a rational system Ax ≤ b is TDI if and only if for
each face F of P = {x : Ax ≤ b} the active rows in Ax ≤ b form a Hilbert basis.

Suppose that Ax ≤ b, x ≤ u is TDI for every rational vector u. Let F be a face of P = {x : Ax ≤ b}
and let x̄ ∈ F be a vector such that an inequality aix ≤ bi in Ax ≤ b is active for F if and only if
aix̄ = bi. Let H denote the active rows for F in Ax ≤ b and let J ⊆ {e1, . . . , en}. A vector u can be
chosen such that the set of active rows of {x̄} in Ax ≤ b, x ≤ u is H ∪ J . Since Ax ≤ b, x ≤ u is TDI,
we know that H ∪ J is a Hilbert basis.

Now suppose that for every face F of P the set of active rows in Ax ≤ b is a super Hilbert basis.
Let u be a rational vector and let Q be a face of {x : Ax ≤ b, x ≤ u}. The set of rows in Ax ≤ b that are
active for Q form a super Hilbert basis, and thus the active rows for Q in Ax ≤ b, x ≤ u are a Hilbert
basis. It follows that Ax ≤ b, x ≤ u is TDI.
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6. Algebra

Prove or disprove each of the following statements.
(a) Let p be a prime and let G be the group (Z/pZ)n. Let P be a p-Sylow subgroup of the group

of autmorphisms Aut(G). Then, there exist sub-groups {e} = Pn−1 ⊂ Pn−2 · · · ⊂ P0 = P such that for
each i, 1 ≤ i ≤ n− 1, Pi is a normal subgroup of Pi−1 and the quotient Pi−1/Pi is abelian.

(b) Let G be a group, H ⊂ G a subgroup and g an element of G such that gHg−1 ⊂ H. Then,
gHg−1 = H.

(c) Let k be a field with char(k) = p and E a finite algebraic extension of k. Then the number of
distinct intermediate fields F , k ⊂ F ⊂ E, is finite.

Solution: (a) First note that since G is an n-dimensional vector space over the field Z/pZ, Aut(G) ∼=
Gl(n, Z/pZ), and the order of Aut(Z) is (pn−1)(pn−p) · · · (pn−pn−1). The order of a p-Sylow subgroup
of Aut(G) is p(n−1)+(n−2)+···+1. By a cardinality argument we see that the subgroup P is isomorphic to
the subgroup T ⊂ Gl(n, Z/pZ) of upper triangular matrices with 1’s on the diagonal. It is easy to see
that T is a subgroup since it is closed under multiplication and t ∈ T can be written as t = 1−n where
n is a nilpotent marix. Thus, t−1 = 1 + n + n2 + · · · is in T .

For r = 1, . . . , n − 1 let T (r) ⊂ T be the subgroup consisting of upper triangular matrices with 1’s
on the diagonal whose first r super-diagonals are zero.

Then, T (r+1) is a normal subgroup of T (r) since it is the kernel of the homomorphism sending T (r)

to its r-th super-diagonal considered as the additive group (Z/pZ)n−r which is abelian. Also, T (n−1) = 1.

(b) The statement is false. A counter-example is as follows. Let G be the group with two generators
a, b with one relation aba−1 = b2. Let H be the subgoup of G generated by b. Then, aHa−1 is the
subgroup generated by b2. Clearly, b 6∈ aHa−1 and hence aHa−1 ⊂ H but aHa−1 6= H.

(c) The statement is false. A counter-example is as follows. Let p be an odd prime. E = Z/pZ(X,Y )
and let k be the subfield Z/pZ(Xp, Y p). Then, k ⊂ E are both infinite fields of characteristic p, and it
is easy to verify that [E : k] = p2. For c ∈ k, let Fc = Z/pZ(X + cY ). Then, each Fc is an intermediate
field. Since, (X + cY )p = Xp + cpY p ∈ k, we have that [Fc : k] = p. We claim that for c 6= d, c, d ∈ k,
Fc 6= Fd. Suppose that Fc = Fd = F . Then, since both X + cY and X + dY are in F by taking their
sum and their difference we obtain that X and Y are in F too, and hence F = E. But this is impossible
since [E : k] = p2 but [F : k] = p. Since k is infinite we have shown that there exists infinitely many
distinct sub-extensions.
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7. Randomized Algorithms

Consider the following random walk on the states Ω = {0, 1, 2, . . . , n− 1}. From state i:

• move to state i + 1 mod n with probability 1/2,

• move to state 0 with probability 1/2.

More precisely, it is a Markov chain with transition matrix P defined as follows. For 0 ≤ i < n− 1:

Pi,i+1 = Pi,0 = 1/2.

Also, Pn−1,0 = 1.
Give a coupling argument to upper bound the mixing time of the chain (within a constant factor of

optimal is fine).
Recall the mixing time is defined to be

T = max
x∈Ω

Tx

where
Tx = min

{
t : dTV(P t(x, ·), π) ≤ 1/4

}
,

where dTV is the variation distance between the two distributions and π is the stationary distribution
of the chain.

Solution. To analyze the mixing time we define a coupling. For two copies of the chain (Xt) and (Yt),
the transitions Xt → Xt+1 and Yt → Yt+1 are coupled as follows. If Xt = Yt, then we first randomly
choose the transition Xt → Xt+1 and we set Yt = Xt. If Xt 6= Yt, let i = Xt and j = Yt. Then,
with probability 1/2 we set Xt+1 = Yt+1 = 0 and with probability 1/2 we set Xt+1 = i + 1 mod n and
Yt+1 = j + 1 mod n. It is clear that the transitions Xt → Xt+1 and Yt → Yt+1 follow the transition
matrix.

Note, if Xt = Yt then Xt+1 = Yt+1, and if Xt 6= Yt then with probability 1/2 we have Xt+1 = Yt+1.
Hence, for X0 6= Y0,

Pr(X4 6= Y4) = (1− 1/2)4 ≤ exp(−2) < 1/4.

Therefore, the mixing time is O(1).
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7. Approximation Algorithms

Consider the general uncapacitated facility location problem in which the connection costs are not
required to satisfy the triangle inequality:

Let G be a bipartite graph with bipartition (F,C), where F is the set of facilities and C is the set
of cities. Let fi be the cost of opening facility i, and cij be the cost of connecting city j to (opened)
facility i. The problem is to find a subset I ⊆ F of facilities that should be opened, and a function
φ : C → I assigning cities to open facilities in such a way that the total cost of opening facilities and
connecting cities to open facilities is minimized.

Give a reduction from the set cover problem to show that approximating this problem is as hard
as approximating set cover and therefore cannot be done better than O(log n) factor unless NP ⊆ P̃.
Also, give an O(log n) factor algorithm for this problem.

Solution. Reduction. Encode elements of set cover instance as cities and sets as facilities. All connec-
tion costs are zero and opening cost of a facility is cost of set. The rest is obvious.

Algorithm. For a facility f and set S of cities, define the cost effectiveness of a covering S with f
to be: (cost of opening f + connection costs of connecting cities in S to f)/|S|. The greedy algorithm
covers using most cost effective combination in each iteration till all cities are covered. The argument
for log n factor is the same as for set cover.
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7. Computational Complexity

Consider the Factoring problem: Given a natural number N , express N as a product of its prime
factors. To date no polynomial-time algorithm for Factoring is known, and the conjectured hardness
of Factoring has been the basis of several public-key cryptosystems.
1. Prove that if P = NP ∩ coNP, then Factoring can be solved by a polynomial-time algorithm.
You may use a polynomial-time algorithm for deciding whether a given integer is prime.
2. Prove that unless NP = coNP, Factoring is not NP-Hard under Cook reduction. Conclude that
unless NP = PH, Factoring is not NP-Hard under Cook reduction.

Solution. Part 1. Let the language LFac consist of pairs of the form (N,x) where N ∈ N, x ∈ {0, 1}∗,
such that (N,x) ∈ LFac if and only if there is a string y ∈ {0, 1}∗ such that x ◦ y is the binary repre-
sentation of a prime factor of N , where x ◦ y denotes the concatenation of strings x and y. That is,
(N,x) ∈ LFac if and only if x is a prefix of a string representing a prime factor of N . We show that:

Claim 1. Factoring Cook-reduces to LFac.

Claim 2. LFac ∈ NP ∩ coNP.

Hence if P = NP ∩ coNP, then Factoring can be solved by a polynomial-time algorithm.

Proof of Claim 1: We describe an algorithm that solves the Factoring problem in polynomial time,
given access to a membership oracle OLFac

for LFac. The following algorithm AOL
Fac (N) finds one prime

factor of N in polynomial time, given access to OLFac
. One can repeatedly use AOL

Fac to completely
factor N ; that is, compute p1 = AOL

Fac (N), then p2 = AOL
Fac (N/p1), . . . , until N is completely factored.

Since N has at most log2 N prime factors, the resulting algorithm is still efficient.
Algorithm AOL

Fac :
On input N ∈ N (in the binary representation):

1. Test whether N is a prime. If so, output N and halt.

2. Let p← ε, where ε is the empty string.

3. Repeat the following (until p represents a prime factor of N):

(a) Let b← 0.

(b) If OLFac
(N, p ◦ b) = 0, i.e. if (N, p ◦ b) 6∈ LFac, let b← 1.

(c) Let p← p ◦ b.

(d) Test whether p is the binary representation of a prime number. If so, output p and halt.

We first observe that AOL
Fac (N) finds one prime factor of N : If N is prime then Phase (a) of the

algorithm outputs N . If N is composite, then the main loop in Phase (c) finds a prime factor p of N ,
one bit at a time. We also observe that the running time of AOL

Fac (N) is polynomial in n, which is the
number of bits representing N . This is so because primality can be tested in polynomial time, and the
number of iteration in the main loop in Phase (c) is at most n.
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Proof of Claim 2: Note that the complete factorization (pe1

1 , . . . , pek

k ) of N serves both as a certificate of
membership for (N,x) if (N,x) ∈ LFac, and as a certificate of non-membership for (N,x) if (N,x) 6∈ LFac.

To verify the membership or non-membership of a pair (N,x), using (pe1

1 , . . . , pek

k
), simply:

1. Verify that p1, . . . , pk are all primes.

2. Verify that N =
∏k

i=1 pei

i .

3. Verify that x appears as a prefix of pi for at least one i.

The correctness of the verification procedure follows from the unique factorization of integers, and its
efficiency follows from that of the primality test. Therefore, LFac ∈ NP ∩ coNP.

Part 2. If Factoring were NP-Hard under Cook reduction, then the language LFac defined above
would also be NP-Hard under Cook reduction, as Factoring Cook-reduces to LFac and reductions
are transitive.

Claim 3. If a language in NP ∩ coNP is NP-Hard under Cook reduction, then NP = coNP.

Since LFac ∈NP∩coNP, it follows that if Factoring were NP-Hard, then NP = coNP. The latter
implies that NP = PH.

Proof of Claim 3: Let L ∈ NP∩ coNP and suppose that L is NP-Hard under Cook reduction. We
show that this implies that NP ⊆ NP ∩ coNP, and thus NP ⊆ coNP. It is well known and can be
easily shown that the latter holds if and only if NP = coNP.

Let L̃ ∈ NP. By assumption L̃ Cook-reduces to L. That is, there is an algorithm AO
l that decides L̃

in polynomial time given access to an oracle OL for the membership of L. We show that L̃ ∈ NP∩coNP.
To do so, we show how to certify the membership and non-membership with respect to L̃.

Consider any string x and the execution of AO
L (x). Let q1, . . . , qm be the queries made by A to OL

and let a1, . . . , am be the corresponding answers, i.e. ai = OL(qi) for each i. Since L ∈ NP ∩ coNP,
each member of L has a certificate of membership and each non-member of L has a certificate of non-
membership with respect to L. Let π1, . . . , πm be the corresponding certificates of q1, . . . , qm respectively
with respect to L. It follows that with respect to L̃, {(q1, a1, π1), . . . , (qm, am, πm)} serves both as a
certificate of membership if x ∈ L̃, and as a certificate of non-membership if x 6∈ L̃.

To verify the membership or non-membership of x with respect to L̃ using
{(q1, a1, π1), . . . , (qm, am, πm)}, simply:

1. Run A on x.

2. When A makes the i-th query, verify that it is qi, and verify that ai is the correct answer using
πi. If so, give ai to A; else reject.

3. Run A until it halts, and finally verify based on A’s output.

The verification procedure is clearly correct, and is efficient as A is.


