
ACO Comprehensive Exam 19 March 2007

1. Graph Theory

Let G be a connected simple graph that is not a cycle and is not complete. Prove that there exist
distinct non-adjacent vertices u, v ∈ V (G) such that the graph obtained from G by deleting both u and
v is connected.

Solution: Let us say that a vertex v of a connected graph H is remote if v belongs to an end-block
of H and is not a cutvertex of H. (An end-block is a block that has degree at most one in the block
decomposition tree of H.) Thus if H is 2-connected, then every vertex of H is remote. Furthermore,
every connected graph on at least two vertices has at least two remote vertices.

If G has a cutvertex x, then G can be written as G1 ∪G2, where V (G1)∩V (G2) = {x}. For i = 1, 2
let zi be a remote vertex in Gi, chosen in a block in which x is not a remote vertex. Then z1, z2 are as
desired.

Thus we may assume that G is 2-connected. Since G is not a cycle it has a vertex u of degree at least
three. Since G is not complete the hypothesis implies that u is not adjacent to some vertex v ∈ V (G).
Since we may assume that G\u\v is disconnected, the graph G\u is not 2-connected, and hence has
two non-adjacent remote vertices a, b belonging to different end-blocks of G\u. It follows that G\a\b is
connected, as desired.
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2. Probability

Let {Xn} be a sequence of independent identically distributed random variables. Let

Sn := X1 + · · · + Xn.

Show that
Sn

log n
→ 0 a.s.

implies that, for all c > 0, Eec|X1| < +∞.

Solution: The condition
Sn

log n
→ 0 as n → ∞ a.s.

implies that also
Sn−1

log n
=

Sn−1

log(n − 1)

log(n − 1)

log n
→ 0 a.s..

Hence
Xn

log n
→ 0 as n → ∞ a.s.,

which means that, for all ε > 0, the following event
{

|Xn|

log n
≥ ε i.o.

}

has probability 0. The events
{

|Xn|

log n
≥ ε

}

, n = 1, 2, . . .

are independent. By the Borel-Cantelli Lemma, this implies that for all ε > 0

∞
∑

n=1

P

{

|Xn|

log n
≥ ε

}

< +∞.

Since the random variables Xn are identically distributed, the last series can be also written as

∞
∑

n=1

P

{

|X1| ≥ ε log n

}

< +∞.

Take ε =
1

c
. Then we have

∞
∑

n=1

P

{

ec|X1| ≥ n

}

=

∞
∑

n=1

P

{

|X1| ≥ ε log n

}

< +∞,

which implies that Eec|X1| < +∞ (because for a nonnegative random variable Y we have EY < +∞ if

and only if

∞
∑

n=1

P{Y ≥ n} < +∞).
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3. Analysis of Algorithms

1. Let G = (V,E) be a graph and let w : E → R+ be an assignment of nonnegative weights to its
edges. For u, v ∈ V let f(u, v) denote the weight of a minimum u–v cut in G. Show that for u, v, w ∈ V ,

f(u, v) ≥ min{f(u,w), f(w, v)}.

Generalize this to show that for u, v, w1, . . . , wr ∈ V ,

f(u,w) ≥ min{f(u,w1), f(w1, w2), . . . , f(wr, v)}.

2. Let T be a tree on a vertex set V with weight function w ′ on its edges. We will say that T is a flow

equivalent tree if it satisfies the following condition: for each pair of vertices u, v ∈ V , the weight of a
minimum u–v cut in G is the same as that in T . Let K be the complete graph on V . Define the weight
of each edge (u, v) in K to be f(u, v). Show that any maximum weight spanning tree in K is a flow
equivalent tree for G.

Solution: 1. Pick a minimum weight cut separating u and v. It either separates u and w, or w and
v. Thus, it is a u − w cut or a w − v cut, and the first part follows. Similarly, in the second part the
minimum cut separating u and v separates wi and wi+1 for some i = 0, 1, . . . , r + 1, where w0 means u
and wr+1 means v.

2. Let T be a maximum weight spanning tree of K. Pick any two vertices u, v ∈ V . The weight of a
minimum u–v cut in G is f(u, v), by definition. The weight of a minimum u–v cut in T is the minimum
weight edge in the unique path in T from u to v. Let the path be w0 = u,w1, w2, ..., wr , wr+1 = v. Note
that the weights of the edges on this path are f(u,w1), f(w1, w2), ..., f(wr , v). Thus the minimum of
these, by part (1), is no more than f(u, v). We deduce that equality holds, for if f(u, v) > f(wi, wi+1)
for some i = 0, 1, . . . , r, then by replacing in T the edge wi, wi+1 by uv we obtain a spanning tree of
strictly larger weight, contrary to the maximality of T .
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4. Linear Programming

I found a damaged sheet with the data of a linear programming program. This is what was on the
sheet:

Problem:
minimize 9x1 −2x2 −12x3 +31x4

s.t.
1?x1 −x2 −2x3 +2?x4 ≥ 9

−1?x1 −x2 −1?x3 +2x4 ≥ 10
?x1 +??x2 −??x3 −?x4 ≥ ?

−?x1 +??x2 +??x3 −?x4 ≥ ?
??x1 +?x2 +?x3 +?x4 ≥ −??

x1, x2, x3, x4 ≥ 0

(1)

Solution:
< computations >

Answer: The optimal value is 1?.

Above, “?” stands for a decimal digit 0,1,...,9, perhaps different in different places. What is the optimal
value in the problem? Justify your answer.

Solution. The problem was misstated. From the second constraint we get 2x4 ≥ 10+1?x1+x2+1?x3 ≥
10+10x1+x2+10x3, and hence 9x1−2x2−12x3+31x4 ≥ 9x1−2x2−12x3+31(10+10x1+x2+10x3)/2 ≥
155. Therefore, the optimal value is not of the form 1?.
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5. Combinatorial Optimization

Given a set of positive numbers b1, . . . , bn, consider the following mixed-integer set

S =
{

(x, y) ∈ <+ × {0, 1}n : x + ayi ≥ bi i = 1, . . . , n
}

,

where a ≥ max{bi : i = 1, . . . , n}. Consider a subset R := {i1, . . . , ir} ⊆ {1, . . . , n} indexed such that
0 =: bi0 < bi1 ≤ bi2 ≤ · · · ≤ bir , and the corresponding inequality

x +
r

∑

k=1

(bik − bik−1
)yik ≥ bir . (1)

1. Prove that the above inequality (for any subset R) is valid for conv(S).
2. Show that the above family of inequalities can be separated in polynomial time by solving an appro-
priate shortest path problem.

Solution: 1. Let R = {1, 2, . . . ,K} such that 0 =: b0 ≤ b1 ≤ · · · ≤ bK . We prove by induction over
R. For the base case r = 1, inequality (1) is the original inequality x + ay1 ≥ b1 after tightening the
coefficient of y1 (since a > b1). Suppose the inequality (1) corresponding to {1, . . . , r} ⊂ R,

x +
r

∑

k=1

(bk − bk−1)yk ≥ br (2)

is valid. We need to show that

x +

r+1
∑

k=1

(bk − bk−1)yk ≥ br+1 (3)

is valid. Note that the original inequality for i = r + 1 (after coefficient tightening)

x + br+1yr+1 ≥ br+1 (4)

is valid. Then if yr+1 = 0 then (4) implies x ≥ br+1 which in turn implies (3) since

r+1
∑

k=1

(bk −bk−1)yk ≥ 0.

If yr+1 = 1 then (3) reduces to (2) and so is valid.

2. We index bi such that 0 =: b0 ≤ b1 ≤ · · · ≤ bn. Given a solution (x∗, y∗1 , . . . , y
∗
n) we need to find a

set R ⊆ {1, . . . , n} for which (1) is violated. This can be done by solving a shortest path problem as
follows. Construct a directed graph with nodes {s, 0, 1, . . . , n, t} such that there is an arc going from
node s to node 0 with length x∗, an arc going from each node i ∈ {1, . . . , n} to node t with length −bi,
and an arc going from a node i to a node j, for i, j ∈ {0, 1, . . . , n} with i < j, of length (bj − bi)y

∗
j .

Then it is easy to see that inequality (1) is violated if and only if there is an s-t path with negative
total length, and the nodes in {1, . . . , n} of such a path constitute the set R.
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6. Algebra

Let G be a group of order 203. If H is a normal subgroup of G of order 7, then show that H is contained
in the center of G and that G is abelian.

Solution: Notice that 203 = 7 · 29. So if we consider that action of G on itself by conjugation the
orbits will have size 1 (if they are in the center), 7 or 29. Since H is normal it is left invariant under
conjugation. Thus the orbit of any element in H under the action is contained in H. So the size of the
obit of any element in H is either 1 or 7 and if one element has obit size 7 then every element has orbit
size 7. Since the identity is in H and has obit size 1, all the elements have orbit size 1. Thus H is in
the center of G.

Let Z denote the center of G. We know |Z| ≥ 7 and since H is a subgroup of Z the order of Z is
divisible by 7. Thus |Z| = 7 or 209. If the order is 209 the G is abelian. So assume the order is 7. Thus
Z = H is a normal subgroup of G and we can consider G/Z. This is a group of order 29 and hence
must be cyclic. It is well know (or see below) that if G/Z is cyclic then G is abelian. This contradicts
our assumption that |Z| = 7 and thus |Z| must be 203 and G is abelian.

(Suppose G/Z is cyclic with generator yZ. So every element of G/Z is of the form (yZ)n for some
n. Thus every element of G is of the form yna for some a ∈ Z. Given two elements g and h in G then
write g = yna and h = ymb. We have gh = ynaymb = ynymab = ymynab = ymbyna = hg. Here the
second and fourth equality follow by a, b ∈ Z. So G is abelian.)
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7. Approximation Algorithms

Let k be a power of two. Consider the following generalization of the Steiner forest problem to higher
connectivity requirements: the specified connectivity requirement function r maps pairs of vertices to
{0, . . . , k}, where k is part of the input. Assume that multiple copies of any edge can be used; each copy
of edge e will cost c(e). Give a factor 2 · (log2 k + 1) algorithm for the problem of finding a minimum
cost graph satisfying all connectivity requirements. You are allowed to use the Goemans-Williamson
factor 2 Steiner forest algorithm as a subroutine.

Solution. Consider the connectivity requirements of all pairs of vertices written as blog2 kc + 1 bit
integers. Consider the ith slice of these requirements as 0/1 requirement problem, i.e., a Steiner forest
problem, for 0 ≤ i ≤ blog2 kc. Solve it using Goemans-Williamson and multiply the solution by 2i.
Take the union of these blog2 kc + 1 solutions as the final solution.

Let OPTf and OPT be the optimal cost of the fractional and integral solutions to given problem.
Let OPTi be the optimal cost of the fractional solution to the ith slice (as a 0/1 problem). Then, the
cost of the solution produced is

2

blog
2

kc
∑

i=0

2iOPTi

Since 2iOPTi ≤ OPTf , the claim follow.
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7. Randomized Algorithms

Let n be an odd number. There are n cities {C1, C2, . . . , Cn} located at equidistant points on a circle.
Two cars move at random from city to city, dropping packages at random in the visited cities. In
particular, the process works as follows. At every time:

• Each car independently, chooses uniformly one of the two adjacent cities to the one where it is
located and moves to it.

• With probability p = n−4, the car in the city with the smallest number of packages dropped
(among the two cities where the two cars are located) drops a new package. (Ties are broken
randomly.)

1. Upper bound the number of packages in the city with the maximum number of packages. This
should be a high probability bound (i.e., with probability tending to 1 when n tends to infinity).

2. What would be the result if the n cities were located at the vertices of a d-regular graph (instead
of the cycle)? (Each car does a random walk on the vertices of the graph.)

Solution

1. Let Ti the time when the ith package is dropped. Let E be the event {∀i ≤ n, Ti+1 − Ti ≥ n5/2}.

As p = n−4, Pr
[

Ti+1 − Ti < n5/2
]

≤ n−3/2 and using the union bound, Pr
[

Ẽ
]

≤ n−1/2. The

random walk on the cycle of length n has mixing time O(n2 log n). Therefore, conditioning on E
the position of the cars at time Ti+1 is independent of the position at time Ti, and the process
is equivalent to a bins and balls process where two bins are chosen independently at random and
a ball is dropped to the least loaded bin. In this process the max load after dropping n balls is

(1 + o(1))
log log n

log 2
.

2. Notice that the same argument shows that if the cities are located in a d-regular graph then the

maximum load is (1 + o(1))
log log n

log 2
with probability 1 − 0(n−1/2).


