1. Graph Theory

Let G be a connected simple graph that is not a cycle and is not complete. Prove that there exist distinct non-adjacent vertices $u, v \in V(G)$ such that the graph obtained from G by deleting both u and v is connected.

Solution: Let us say that a vertex v of a connected graph H is remote if v belongs to an end-block of H and is not a cutvertex of H. (An end-block is a block that has degree at most one in the block decomposition tree of H.) Thus if H is 2-connected, then every vertex of H is remote. Furthermore, every connected graph on at least two vertices has at least two remote vertices.

If G has a cutvertex x, then G can be written as $G_{1} \cup G_{2}$, where $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x\}$. For $i=1,2$ let z_{i} be a remote vertex in G_{i}, chosen in a block in which x is not a remote vertex. Then z_{1}, z_{2} are as desired.

Thus we may assume that G is 2-connected. Since G is not a cycle it has a vertex u of degree at least three. Since G is not complete the hypothesis implies that u is not adjacent to some vertex $v \in V(G)$. Since we may assume that $G \backslash u \backslash v$ is disconnected, the graph $G \backslash u$ is not 2-connected, and hence has two non-adjacent remote vertices a, b belonging to different end-blocks of $G \backslash u$. It follows that $G \backslash a \backslash b$ is connected, as desired.

2. Probability

Let $\left\{X_{n}\right\}$ be a sequence of independent identically distributed random variables. Let

$$
S_{n}:=X_{1}+\cdots+X_{n}
$$

Show that

$$
\frac{S_{n}}{\log n} \rightarrow 0 \text { a.s. }
$$

implies that, for all $c>0, \mathbb{E} e^{c\left|X_{1}\right|}<+\infty$.
Solution: The condition

$$
\frac{S_{n}}{\log n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \text { a.s. }
$$

implies that also

$$
\frac{S_{n-1}}{\log n}=\frac{S_{n-1}}{\log (n-1)} \frac{\log (n-1)}{\log n} \rightarrow 0 \text { a.s.. }
$$

Hence

$$
\frac{X_{n}}{\log n} \rightarrow 0 \text { as } n \rightarrow \infty \text { a.s., }
$$

which means that, for all $\varepsilon>0$, the following event

$$
\left\{\frac{\left|X_{n}\right|}{\log n} \geq \varepsilon \text { i.o. }\right\}
$$

has probability 0 . The events

$$
\left\{\frac{\left|X_{n}\right|}{\log n} \geq \varepsilon\right\}, n=1,2, \ldots
$$

are independent. By the Borel-Cantelli Lemma, this implies that for all $\varepsilon>0$

$$
\sum_{n=1}^{\infty} \mathbb{P}\left\{\frac{\left|X_{n}\right|}{\log n} \geq \varepsilon\right\}<+\infty
$$

Since the random variables X_{n} are identically distributed, the last series can be also written as

$$
\sum_{n=1}^{\infty} \mathbb{P}\left\{\left|X_{1}\right| \geq \varepsilon \log n\right\}<+\infty
$$

Take $\varepsilon=\frac{1}{c}$. Then we have

$$
\sum_{n=1}^{\infty} \mathbb{P}\left\{e^{c\left|X_{1}\right|} \geq n\right\}=\sum_{n=1}^{\infty} \mathbb{P}\left\{\left|X_{1}\right| \geq \varepsilon \log n\right\}<+\infty
$$

which implies that $\mathbb{E} e^{c\left|X_{1}\right|}<+\infty$ (because for a nonnegative random variable Y we have $\mathbb{E} Y<+\infty$ if and only if $\left.\sum_{n=1}^{\infty} \mathbb{P}\{Y \geq n\}<+\infty\right)$.

3. Analysis of Algorithms

1. Let $G=(V, E)$ be a graph and let $w: E \rightarrow \mathbf{R}^{+}$be an assignment of nonnegative weights to its edges. For $u, v \in V$ let $f(u, v)$ denote the weight of a minimum $u-v$ cut in G. Show that for $u, v, w \in V$,

$$
f(u, v) \geq \min \{f(u, w), f(w, v)\}
$$

Generalize this to show that for $u, v, w_{1}, \ldots, w_{r} \in V$,

$$
f(u, w) \geq \min \left\{f\left(u, w_{1}\right), f\left(w_{1}, w_{2}\right), \ldots, f\left(w_{r}, v\right)\right\} .
$$

2. Let T be a tree on a vertex set V with weight function w^{\prime} on its edges. We will say that T is a flow equivalent tree if it satisfies the following condition: for each pair of vertices $u, v \in V$, the weight of a minimum $u-v$ cut in G is the same as that in T. Let K be the complete graph on V. Define the weight of each edge (u, v) in K to be $f(u, v)$. Show that any maximum weight spanning tree in K is a flow equivalent tree for G.

Solution: 1. Pick a minimum weight cut separating u and v. It either separates u and w, or w and v. Thus, it is a $u-w$ cut or a $w-v$ cut, and the first part follows. Similarly, in the second part the minimum cut separating u and v separates w_{i} and w_{i+1} for some $i=0,1, \ldots, r+1$, where w_{0} means u and w_{r+1} means v.
2. Let T be a maximum weight spanning tree of K. Pick any two vertices $u, v \in V$. The weight of a minimum $u-v$ cut in G is $f(u, v)$, by definition. The weight of a minimum $u-v$ cut in T is the minimum weight edge in the unique path in T from u to v. Let the path be $w_{0}=u, w_{1}, w_{2}, \ldots, w_{r}, w_{r+1}=v$. Note that the weights of the edges on this path are $f\left(u, w_{1}\right), f\left(w_{1}, w_{2}\right), \ldots, f\left(w_{r}, v\right)$. Thus the minimum of these, by part (1), is no more than $f(u, v)$. We deduce that equality holds, for if $f(u, v)>f\left(w_{i}, w_{i+1}\right)$ for some $i=0,1, \ldots, r$, then by replacing in T the edge w_{i}, w_{i+1} by $u v$ we obtain a spanning tree of strictly larger weight, contrary to the maximality of T.

4. Linear Programming

I found a damaged sheet with the data of a linear programming program. This is what was on the sheet:

Problem:

\[

\]

Solution:

$$
<\text { computations }>
$$

Answer: The optimal value is 1 ?.
Above, "?" stands for a decimal digit $0,1, \ldots, 9$, perhaps different in different places. What is the optimal value in the problem? Justify your answer.

Solution. The problem was misstated. From the second constraint we get $2 x_{4} \geq 10+1 ? x_{1}+x_{2}+1$? $x_{3} \geq$ $10+10 x_{1}+x_{2}+10 x_{3}$, and hence $9 x_{1}-2 x_{2}-12 x_{3}+31 x_{4} \geq 9 x_{1}-2 x_{2}-12 x_{3}+31\left(10+10 x_{1}+x_{2}+10 x_{3}\right) / 2 \geq$ 155. Therefore, the optimal value is not of the form 1 ?.

5. Combinatorial Optimization

Given a set of positive numbers b_{1}, \ldots, b_{n}, consider the following mixed-integer set

$$
S=\left\{(x, y) \in \Re_{+} \times\{0,1\}^{n}: \quad x+a y_{i} \geq b_{i} \quad i=1, \ldots, n\right\}
$$

where $a \geq \max \left\{b_{i}: i=1, \ldots, n\right\}$. Consider a subset $R:=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}$ indexed such that $0=: b_{i_{0}}<b_{i_{1}} \leq b_{i_{2}} \leq \cdots \leq b_{i_{r}}$, and the corresponding inequality

$$
\begin{equation*}
x+\sum_{k=1}^{r}\left(b_{i_{k}}-b_{i_{k-1}}\right) y_{i_{k}} \geq b_{i_{r}} . \tag{1}
\end{equation*}
$$

1. Prove that the above inequality (for any subset R) is valid for $\operatorname{conv}(S)$.
2. Show that the above family of inequalities can be separated in polynomial time by solving an appropriate shortest path problem.

Solution: 1. Let $R=\{1,2, \ldots, K\}$ such that $0=: b_{0} \leq b_{1} \leq \cdots \leq b_{K}$. We prove by induction over R. For the base case $r=1$, inequality (1) is the original inequality $x+a y_{1} \geq b_{1}$ after tightening the coefficient of y_{1} (since $a>b_{1}$). Suppose the inequality (1) corresponding to $\{1, \ldots, r\} \subset R$,

$$
\begin{equation*}
x+\sum_{k=1}^{r}\left(b_{k}-b_{k-1}\right) y_{k} \geq b_{r} \tag{2}
\end{equation*}
$$

is valid. We need to show that

$$
\begin{equation*}
x+\sum_{k=1}^{r+1}\left(b_{k}-b_{k-1}\right) y_{k} \geq b_{r+1} \tag{3}
\end{equation*}
$$

is valid. Note that the original inequality for $i=r+1$ (after coefficient tightening)

$$
\begin{equation*}
x+b_{r+1} y_{r+1} \geq b_{r+1} \tag{4}
\end{equation*}
$$

is valid. Then if $y_{r+1}=0$ then (4) implies $x \geq b_{r+1}$ which in turn implies (3) since $\sum_{k=1}^{r+1}\left(b_{k}-b_{k-1}\right) y_{k} \geq 0$. If $y_{r+1}=1$ then (3) reduces to (2) and so is valid.
2. We index b_{i} such that $0=: b_{0} \leq b_{1} \leq \cdots \leq b_{n}$. Given a solution $\left(x^{*}, y_{1}^{*}, \ldots, y_{n}^{*}\right)$ we need to find a set $R \subseteq\{1, \ldots, n\}$ for which (1) is violated. This can be done by solving a shortest path problem as follows. Construct a directed graph with nodes $\{s, 0,1, \ldots, n, t\}$ such that there is an arc going from node s to node 0 with length x^{*}, an arc going from each node $i \in\{1, \ldots, n\}$ to node t with length $-b_{i}$, and an arc going from a node i to a node j, for $i, j \in\{0,1, \ldots, n\}$ with $i<j$, of length $\left(b_{j}-b_{i}\right) y_{j}^{*}$. Then it is easy to see that inequality (1) is violated if and only if there is an s - t path with negative total length, and the nodes in $\{1, \ldots, n\}$ of such a path constitute the set R.

6. Algebra

Let G be a group of order 203. If H is a normal subgroup of G of order 7 , then show that H is contained in the center of G and that G is abelian.

Solution: Notice that $203=7 \cdot 29$. So if we consider that action of G on itself by conjugation the orbits will have size 1 (if they are in the center), 7 or 29 . Since H is normal it is left invariant under conjugation. Thus the orbit of any element in H under the action is contained in H. So the size of the obit of any element in H is either 1 or 7 and if one element has obit size 7 then every element has orbit size 7. Since the identity is in H and has obit size 1 , all the elements have orbit size 1 . Thus H is in the center of G.

Let Z denote the center of G. We know $|Z| \geq 7$ and since H is a subgroup of Z the order of Z is divisible by 7 . Thus $|Z|=7$ or 209. If the order is 209 the G is abelian. So assume the order is 7 . Thus $Z=H$ is a normal subgroup of G and we can consider G / Z. This is a group of order 29 and hence must be cyclic. It is well know (or see below) that if G / Z is cyclic then G is abelian. This contradicts our assumption that $|Z|=7$ and thus $|Z|$ must be 203 and G is abelian.
(Suppose G / Z is cyclic with generator $y Z$. So every element of G / Z is of the form $(y Z)^{n}$ for some n. Thus every element of G is of the form $y^{n} a$ for some $a \in Z$. Given two elements g and h in G then write $g=y^{n} a$ and $h=y^{m} b$. We have $g h=y^{n} a y^{m} b=y^{n} y^{m} a b=y^{m} y^{n} a b=y^{m} b y^{n} a=h g$. Here the second and fourth equality follow by $a, b \in Z$. So G is abelian.)

7. Approximation Algorithms

Let k be a power of two. Consider the following generalization of the Steiner forest problem to higher connectivity requirements: the specified connectivity requirement function r maps pairs of vertices to $\{0, \ldots, k\}$, where k is part of the input. Assume that multiple copies of any edge can be used; each copy of edge e will cost $c(e)$. Give a factor $2 \cdot\left(\log _{2} k+1\right)$ algorithm for the problem of finding a minimum cost graph satisfying all connectivity requirements. You are allowed to use the Goemans-Williamson factor 2 Steiner forest algorithm as a subroutine.

Solution. Consider the connectivity requirements of all pairs of vertices written as $\left\lfloor\log _{2} k\right\rfloor+1$ bit integers. Consider the i th slice of these requirements as $0 / 1$ requirement problem, i.e., a Steiner forest problem, for $0 \leq i \leq\left\lfloor\log _{2} k\right\rfloor$. Solve it using Goemans-Williamson and multiply the solution by 2^{i}. Take the union of these $\left\lfloor\log _{2} k\right\rfloor+1$ solutions as the final solution.

Let $O P T_{f}$ and $O P T$ be the optimal cost of the fractional and integral solutions to given problem. Let $O P T_{i}$ be the optimal cost of the fractional solution to the i th slice (as a $0 / 1$ problem). Then, the cost of the solution produced is

$$
2 \sum_{i=0}^{\left\lfloor\log _{2} k\right\rfloor} 2^{i} O P T_{i}
$$

Since $2^{i} O P T_{i} \leq O P T_{f}$, the claim follow.

7. Randomized Algorithms

Let n be an odd number. There are n cities $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ located at equidistant points on a circle. Two cars move at random from city to city, dropping packages at random in the visited cities. In particular, the process works as follows. At every time:

- Each car independently, chooses uniformly one of the two adjacent cities to the one where it is located and moves to it.
- With probability $p=n^{-4}$, the car in the city with the smallest number of packages dropped (among the two cities where the two cars are located) drops a new package. (Ties are broken randomly.)

1. Upper bound the number of packages in the city with the maximum number of packages. This should be a high probability bound (i.e., with probability tending to 1 when n tends to infinity).
2. What would be the result if the n cities were located at the vertices of a d-regular graph (instead of the cycle)? (Each car does a random walk on the vertices of the graph.)

Solution

1. Let T_{i} the time when the $i^{\text {th }}$ package is dropped. Let \mathcal{E} be the event $\left\{\forall i \leq n, T_{i+1}-T_{i} \geq n^{5 / 2}\right\}$. As $p=n^{-4}, \operatorname{Pr}\left[T_{i+1}-T_{i}<n^{5 / 2}\right] \leq n^{-3 / 2}$ and using the union bound, $\operatorname{Pr}[\tilde{\mathcal{E}}] \leq n^{-1 / 2}$. The random walk on the cycle of length n has mixing time $O\left(n^{2} \log n\right)$. Therefore, conditioning on \mathcal{E} the position of the cars at time T_{i+1} is independent of the position at time T_{i}, and the process is equivalent to a bins and balls process where two bins are chosen independently at random and a ball is dropped to the least loaded bin. In this process the max load after dropping n balls is $(1+o(1)) \frac{\log \log n}{\log 2}$.
2. Notice that the same argument shows that if the cities are located in a d-regular graph then the maximum load is $(1+o(1)) \frac{\log \log n}{\log 2}$ with probability $1-0\left(n^{-1 / 2}\right)$.
