1. Graph Theory

Let G be a connected simple graph that is not a cycle and is not complete. Prove that there exist distinct non-adjacent vertices $u, v \in V(G)$ such that the graph obtained from G by deleting both u and v is connected.

2. Probability

Let $\left\{X_{n}\right\}$ be a sequence of independent identically distributed random variables. Let

$$
S_{n}:=X_{1}+\cdots+X_{n}
$$

Show that

$$
\frac{S_{n}}{\log n} \rightarrow 0 \text { a.s. }
$$

implies that, for all $c>0, \mathbb{E} e^{c\left|X_{1}\right|}<+\infty$.

3. Analysis of Algorithms

1. Let $G=(V, E)$ be a graph and let $w: E \rightarrow \mathbf{R}^{+}$be an assignment of nonnegative weights to its edges. For $u, v \in V$ let $f(u, v)$ denote the weight of a minimum $u-v$ cut in G. Show that for $u, v, w \in V$,

$$
f(u, v) \geq \min \{f(u, w), f(w, v)\} .
$$

Generalize this to show that for $u, v, w_{1}, \ldots, w_{r} \in V$,

$$
f(u, w) \geq \min \left\{f\left(u, w_{1}\right), f\left(w_{1}, w_{2}\right), \ldots, f\left(w_{r}, v\right)\right\} .
$$

2. Let T be a tree on a vertex set V with weight function w^{\prime} on its edges. We will say that T is a flow equivalent tree if it satisfies the following condition: for each pair of vertices $u, v \in V$, the weight of a minimum $u-v$ cut in G is the same as that in T. Let K be the complete graph on V. Define the weight of each edge (u, v) in K to be $f(u, v)$. Show that any maximum weight spanning tree in K is a flow equivalent tree for G.

4. Linear Programming

I found a damaged sheet with the data of a linear programming program. This is what was on the sheet:

Problem:

\[

\]

Solution:
Answer: The optimal value is $1 ?$. <computations $>$
Above, "?" stands for a decimal digit $0,1, \ldots, 9$, perhaps different in different places. What is the optimal value in the problem? Justify your answer.

5. Combinatorial Optimization

Given a set of positive numbers b_{1}, \ldots, b_{n}, consider the following mixed-integer set

$$
S=\left\{(x, y) \in \Re_{+} \times\{0,1\}^{n}: \quad x+a y_{i} \geq b_{i} \quad i=1, \ldots, n\right\}
$$

where $a \geq \max \left\{b_{i}: \quad i=1, \ldots, n\right\}$. Consider a subset $R:=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq\{1, \ldots, n\}$ indexed such that $0=: b_{i_{0}}<b_{i_{1}} \leq b_{i_{2}} \leq \cdots \leq b_{i_{r}}$, and the corresponding inequality

$$
\begin{equation*}
x+\sum_{k=1}^{r}\left(b_{i_{k}}-b_{i_{k-1}}\right) y_{i_{k}} \geq b_{i_{r}} . \tag{1}
\end{equation*}
$$

1. Prove that the above inequality (for any subset R) is valid for $\operatorname{conv}(S)$.
2. Show that the above family of inequalities can be separated in polynomial time by solving an appropriate shortest path problem.

6. Algebra

Let G be a group of order 203. If H is a normal subgroup of G of order 7 , then show that H is contained in the center of G and that G is abelian.

7. Approximation Algorithms

Let k be a power of two. Consider the following generalization of the Steiner forest problem to higher connectivity requirements: the specified connectivity requirement function r maps pairs of vertices to $\{0, \ldots, k\}$, where k is part of the input. Assume that multiple copies of any edge can be used; each copy of edge e will cost $c(e)$. Give a factor $2 \cdot\left(\log _{2} k+1\right)$ algorithm for the problem of finding a minimum cost graph satisfying all connectivity requirements. You are allowed to use the Goemans-Williamson factor 2 Steiner forest algorithm as a subroutine.

7. Randomized Algorithms

Let n be an odd number. There are n cities $\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ located at equidistant points on a circle. Two cars move at random from city to city, dropping packages at random in the visited cities. In particular, the process works as follows. At every time:

- Each car independently, chooses uniformly one of the two adjacent cities to the one where it is located and moves to it.
- With probability $p=n^{-4}$, the car in the city with the smallest number of packages dropped (among the two cities where the two cars are located) drops a new package. (Ties are broken randomly.)

1. Upper bound the number of packages in the city with the maximum number of packages. This should be a high probability bound (i.e., with probability tending to 1 when n tends to infinity).
2. What would be the result if the n cities were located at the vertices of a d-regular graph (instead of the cycle)? (Each car does a random walk on the vertices of the graph.)
