1. Graph Theory

Let G be a connected simple graph that is not a cycle and is not complete. Prove that there exist distinct non-adjacent vertices $u, v \in V(G)$ such that the graph obtained from G by deleting both u and v is connected.

2. Probability

Let $\{X_n\}$ be a sequence of independent identically distributed random variables. Let

$$S_n := X_1 + \dots + X_n.$$

Show that

$$\frac{S_n}{\log n} \to 0$$
 a.s

implies that, for all c > 0, $\mathbb{E}e^{c|X_1|} < +\infty$.

3. Analysis of Algorithms

1. Let G = (V, E) be a graph and let $w : E \to \mathbf{R}^+$ be an assignment of nonnegative weights to its edges. For $u, v \in V$ let f(u, v) denote the weight of a minimum u-v cut in G. Show that for $u, v, w \in V$,

$$f(u,v) \ge \min\{f(u,w), f(w,v)\}.$$

Generalize this to show that for $u, v, w_1, \ldots, w_r \in V$,

$$f(u, w) \ge \min\{f(u, w_1), f(w_1, w_2), \dots, f(w_r, v)\}.$$

2. Let T be a tree on a vertex set V with weight function w' on its edges. We will say that T is a flow equivalent tree if it satisfies the following condition: for each pair of vertices $u, v \in V$, the weight of a minimum u-v cut in G is the same as that in T. Let K be the complete graph on V. Define the weight of each edge (u, v) in K to be f(u, v). Show that any maximum weight spanning tree in K is a flow equivalent tree for G.

4. Linear Programming

I found a damaged sheet with the data of a linear programming program. This is what was on the sheet:

Problem:

minimize
$$9x_1 -2x_2 -12x_3 +31x_4$$

s.t.
 $1?x_1 -x_2 -2x_3 +2?x_4 \ge 9$
 $-1?x_1 -x_2 -1?x_3 +2x_4 \ge 10$
 $?x_1 +??x_2 -??x_3 -?x_4 \ge ?$
 $-?x_1 +??x_2 +??x_3 -?x_4 \ge ?$
 $??x_1 +?x_2 +?x_3 +?x_4 \ge -??$
 $x_1, x_2, x_3, x_4 \ge 0$
(1)

ACO Comprehensive Exam

Solution:

< computations >

<u>Answer:</u> The optimal value is 1?.

Above, "?" stands for a decimal digit 0,1,...,9, perhaps different in different places. What is the optimal value in the problem? Justify your answer.

5. Combinatorial Optimization

Given a set of positive numbers b_1, \ldots, b_n , consider the following mixed-integer set

$$S = \{(x, y) \in \Re_+ \times \{0, 1\}^n : x + ay_i \ge b_i \ i = 1, \dots, n\},\$$

where $a \ge \max\{b_i : i = 1, ..., n\}$. Consider a subset $R := \{i_1, ..., i_r\} \subseteq \{1, ..., n\}$ indexed such that $0 =: b_{i_0} < b_{i_1} \le b_{i_2} \le \cdots \le b_{i_r}$, and the corresponding inequality

$$x + \sum_{k=1}^{\prime} (b_{i_k} - b_{i_{k-1}}) y_{i_k} \ge b_{i_r}.$$
 (1)

1. Prove that the above inequality (for any subset R) is valid for conv(S).

2. Show that the above family of inequalities can be separated in polynomial time by solving an appropriate shortest path problem.

6. Algebra

Let G be a group of order 203. If H is a normal subgroup of G of order 7, then show that H is contained in the center of G and that G is abelian.

7. Approximation Algorithms

Let k be a power of two. Consider the following generalization of the Steiner forest problem to higher connectivity requirements: the specified connectivity requirement function r maps pairs of vertices to $\{0, \ldots, k\}$, where k is part of the input. Assume that multiple copies of any edge can be used; each copy of edge e will cost c(e). Give a factor $2 \cdot (\log_2 k + 1)$ algorithm for the problem of finding a minimum cost graph satisfying all connectivity requirements. You are allowed to use the Goemans-Williamson factor 2 Steiner forest algorithm as a subroutine.

7. Randomized Algorithms

Let *n* be an odd number. There are *n* cities $\{C_1, C_2, \ldots, C_n\}$ located at equidistant points on a circle. Two cars move at random from city to city, dropping packages at random in the visited cities. In particular, the process works as follows. At every time:

• Each car independently, chooses uniformly one of the two adjacent cities to the one where it is located and moves to it.

ACO Comprehensive Exam

- With probability $p = n^{-4}$, the car in the city with the smallest number of packages dropped (among the two cities where the two cars are located) drops a new package. (Ties are broken randomly.)
- 1. Upper bound the number of packages in the city with the maximum number of packages. This should be a high probability bound (i.e., with probability tending to 1 when n tends to infinity).
- 2. What would be the result if the n cities were located at the vertices of a d-regular graph (instead of the cycle)? (Each car does a random walk on the vertices of the graph.)