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1. Computability, Complexity and Algorithms

Let G = (V,E) be an undirected graph. Consider the following algorithm to find a large matching
in G:

1. Start with M = ∅, the empty matching.

2. Add edges of G greedily to M as long as they maintain a matching.

3. If there is any edge (u, v) ∈M such that removing (u, v) from M allows you to add 2 new
edges, then apply this change, increasing the size of M by one. Repeat this step as long as
such a change is possible (augmentations of length 3).

• Show that the resulting matchingM has at least 2/3 as many edges as a maximum matching
of G.

• Consider the extension where the algorithm augments on paths of length up to 2k + 1.
Show that the matching obtained has size at least (k + 1)/(k + 2) times the size of the
maximum cardinality matching.

• Suppose G has nonnegative weights on its edges. Show that any greedy maximal matching
— choose edges in order of weight while maintaining a matching — gives a matching of at
least half the weight of a maximum weight matching.

Solution: Let N be an maximum matching of G. Consider the symmetric difference of M and
N . It is a graph with degrees in {0, 1, 2}, therefore consisting of isolated vertices, paths and
cycles. All cycles must be even alternating cycles. On cycles and even paths, both matchings
have the same number of edges as the paths must be alternating. There can be no odd paths
of length 3, since this would imply either an augmenting path of length 3 (ruled out by the
conclusion of the algorithm) or a larger matching than N (ruled out by the optimality of N).
On any path of length 5, the matching M has at least 2/3 as many edges as N . All the cycles
must be even.

For the second part, we observe that on paths of length at least 2k + 1, M has the required
fraction of edges compared to N .

For the third part, notice that the weight of any edge of the optimal matching is at most the
weight of one of its neigboring edges in the symmetric difference, since if it were heavier than
both, it would be picked before its neighbors. Adding up over all edges we see that the optimum
matching is at most twice the greedy matching, since each edge of the latter is counted at most
twice.
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2. Analysis of Algorithms

Given an edge weighted complete bipartite graph G = (V,E) and a perfect matching M in G,
define f(M) to be the weight of the heaviest edge in M . Define a bottleneck perfect matching in
G to be a perfect matching N that minimizes f(N).

First consider the algorithm that simply finds a minimum weight perfect matching in G. Give
an example to show that the matching found by this algorithm may not be a bottleneck perfect
matching. What is the approximation ratio achieved by this algorithm?

Give a polynomial time algorithm for finding a bottleneck perfect matching. Make sure your
algorithm is as efficient as possible. What is its running time?

Solution: The ratio is unbounded. Let k be a fixed positive number. In Kn,n, assume that
each edge (i, i) has weight k, for 1 ≤ i ≤ n, edge (i, i + 1) has weight 1 for 1 ≤ i ≤ n − 1 and
edge (n, 1) has weight n(k − 1). The rest of the edges are very heavy. Let M be the perfect
matching (i, i) for 1 ≤ i ≤ n and N be the perfect matching consisting of the edges of weight 1
and n(k − 1). Now, M is the bottleneck perfect matching and f(M) = k. The minimum weight
perfect matching is N and f(N) = n(k − 1). As n goes to infinity, the ratio is unbounded.

An algorithm is as follows: Do a binary search on edge weights. While considering weight w,
pick only the edges of weight at most w and check if they contain a perfect matching. In this
manner, find the minimum w such that the edges of weight at most w have a perfect matching.
The running time is O(n2.5 log n).

3. Theory of Linear Inequalities

Let P ⊆ R
n be a non-empty polytope. Let vert(P ) be the set of vertices of P . Let X ⊆ vert(P ).

Define P (X) := conv (vert(P ) \X). The graph of the polytope P is a graph GP with nodes
corresponding to vert(P ) such that two nodes are adjacent in GP if and only if the corresponding
vertices are adjacent in P (i.e. the two vertices are contained in a one-dimensional face of P ).

Let X ⊆ vert(P ) and let (X1, . . . , Xm) be a partition of X such that Xi and Xj are inde-
pendent in GP , i.e. there is no edge connecting Xi to Xj for all 1 ≤ i < j ≤ m. Then show
that

P (X) =
m
⋂

i=1

P (Xi).

Solution. Since P (X) ⊆ P (Xi), we have that P (X) ⊆
⋂m

i=1 P (Xi). Therefore it is sufficient to
prove that P (X) ⊇

⋂m

i=1 P (Xi).
In order to verify this, we will show that for all c ∈ R

n, we have that

max{c⊤x | x ∈ P (X)} ≥ max

{

c⊤x

∣

∣

∣

∣

∣

x ∈
m
⋂

i=1

P (Xi)

}

. (1)
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Let u be an optimal solution to the right-hand-side of (1). Let W be the set of vertices w of
P such that c⊤w ≥ c⊤u. Observe that the set of nodes corresponding to W in Gp is connected.
(Indeed, the set of vertices of P that maximize c⊤x, are all the vertices of a face of P and thus
connected. Running simplex algorithm starting from any non-optimal vertex w ∈ W shows that
w is connected to some optimal vertex that maximizes c⊤x.)

Since (X1, . . . , Xm) are independent and W is connected, there can be only two possible cases:

1. W 6⊆ X1 ∪ · · · ∪Xm which implies that there exists w ∈ W , such that w 6∈ X1 ∪ · · · ∪Xm:
In this case, w ∈ P (X) and c⊤w ≥ c⊤u as desired.

2. W ⊆ X1 ∪ · · · ∪ Xm which implies W ⊆ Xi for some i: This case is not possible, since
we have the following contradiction; on one hand we have u ∈ P (Xi) ⊆ P (W ) and on the
other hand by definition of W we have c⊤x < c⊤u for all x ∈ vert(P ) \W , i.e. c⊤x < c⊤u
for all x ∈ P (W ).

4. Combinatorial Optimization

Let G = (V,E) be an undirected graph with vertex set V and edge set E. Let c(e) for e ∈ E
be the capacity of an edge. Furthermore, let R = {((s1, t1), d1), ((s2, t2), d2)} be a set of two
commodities, i.e., a quantity d1 has to be send from source s1 to sink t1 and a quantity d2 has
to be send from source s2 to sink t2. Let δE(W ) be the set of edges with exactly one endpoint in
W and let δR(W ) be the set of commodities with either its source or its sink in W but not both.

Cut condition: For each W ⊆ V , the capacity of δE(W ) is not less than the demand of δR(W ).

Euler condition:

∑

e∈δ(v)

c(e) ≡ 0 (mod 2) if v 6= s1, t1, s2, t2

d1 (mod 2) if v = s1, t1

d2 (mod 2) if v = s2, t2

We have the following theorem:

Theorem 1 If all capacities and demands are integer and both the cut condition and the Euler
condition are satisfied, then the undirected 2-commodity flow problem has an integer solution.

Question 1. Prove the following lemma

Lemma 1 Every cut in an Eulerian graph (with edge capacities equal to one) has even cardi-
nality.



ACO Comprehensive Exam October 10 and 11, 2016

Question 2. Use Theorem 1 and Lemma 1 to show the following. Let G = (V,E) be an Eulerian
graph and let s1, t1, s2, t2 be distinct vertices. Then the maximum number k of pairwise edge-
disjoint paths P1, . . . , Pk, where each path Pj connects either s1 and t1 or s2 and t2, is equal to
the minimum cardinality of a cut both separating s1 and t1 and separating s2 and t2.

Solution. A graph is Eulerian if and only if it has no vertices of odd degree. Consider any cut
W . We have that |

∑

v∈W δE(v)| = 2|E(W )| + |δE(W )|, where E(W ) denotes the set of edges
with both endpoints in W . This implies that |δE(W )| = |

∑

v∈W δE(v)| − 2|E(W )|, and, since
|
∑

v∈W δE(v)| is even (the graph is Eulerian), we get the desired result.
Let k∗ be the maximum number of pairwise edge-disjoint paths P1, . . . , Pk∗ in G, where each

path Pj connects either s1 and t1 or s2 and t2.
Let the capacity of each edge be one, i.e., c(e) = 1 for all e ∈ E. Then we have that there

exist k pairwise edge-disjoint paths P1, . . . , Pk, where each path Pj connects either s1 and t1 or
s2 and t2, if and only if there exist demands d1 and d2 such that d1 + d2 = k and an integer
solution to the undirected 2-commodity flow problem exists.
Let

m1 = min
{

|δ(W )|
∣

∣

∣
W ⊆ V, δR(W ) = (s1, t1)

}

and
m2 = min

{

|δ(W )|
∣

∣

∣
W ⊆ V, δR(W ) = (s2, t2)

}

be the cardinality of a minimum cut separating (s1, t1) and (s2, t2), respectively.
Let

k∗ = m = min
{

|δ(W )|
∣

∣

∣
W ⊆ V, δR(W ) = {(s1, t1), (s2, t2)}

}

be cardinality of a minimum cut separating both (s1, t1) and (s2, t2). Lemma 1 implies that

m1,m2 and m are even. We will show that m1 +m2 ≥ m, which implies that there exist d1, d2
with d1 + d2 = m, d1 ≤ m1, d2 ≤ m2, and d1, d2 even. Note that d1, d2 even implies that the

Euler condition is satisfied (since
∑

e∈δ(v) c(e) ≡ 0 ∀v) and that d1 + d2 = m = k∗ implies that
cut condition is satisfied, which in turn implies that the conditions of Theorem 1 are satisfied
and an integer solution exists, which gives the desired result. Claim: m1 +m2 ≥ m.

Proof. Let W1 be such that δR(W1) = (s1, t1) and |δ(W1)| = m1. Let W2 be such that δR(W2) =
(s2, t2) and |δ(W2)| = m2. Now consider the following four cases:

• Case 1. δR(W1 ∪W2) = {(s1, t1), (s2, t2)}.
This implies m ≤ |δE(W1 ∪W2)| ≤ |δE(W1)|+ |δE(W2)| ≤ m1 +m2.

• Case 2. δR(W1 \W2) = {(s1, t1), (s2, t2)}.
This implies m ≤ |δE(W1 \W2)| ≤ |δE(W1) ∪ δE(W2)| ≤ m1 +m2.

• Case 3. δR(W2 \W1) = {(s1, t1), (s2, t2)}.
This implies m ≤ |δE(W2 \W1)| ≤ |δE(W1) ∪ δE(W2)| ≤ m1 +m2.
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• Case 4. δR(W1 ∩W2) = {(s1, t1), (s2, t2)}.
This implies m ≤ |δE(W2 ∩W1)| ≤ |δE(W1) ∪ δE(W2)| ≤ m1 +m2. �

5. Graph Theory

Let k ≥ 1 be an integer and let G be a k-connected k-regular graph on an even number of
vertices. Prove that G has a perfect matching.

Solution: We will show that for every X ⊆ V (G) we have o(G\X) ≤ |X|, where o(H) denotes
the number of odd components of the graph H. The conclusion then follows from Tutte’s 1-factor
theorem. Suppose for a contradiction that o(G\X) > |X| for some set X ⊆ V (G), and let N
be the number of edges with one end in X and the other end in V (G) − X. Then N ≤ k|X|,
because G is k-regular. On the other hand, we claim that for every component K of G\X there
are at least k edges with exactly one end in V (K) (and therefore the other end in X). Indeed,
let F be the set of edges with exactly one end in V (K), and assume for a contradiction that
|F | < k. Let X ′ be the set of ends of edges in F that belong to X. Then X ′ = X, because G is
k-connected, and hence |X| < k. The k-connectivity of G implies that K is the only component
of G\X, and hence 1 ≥ o(G\X) > |X|. Thus X = ∅, and yet o(G\X) ≥ 1, contrary to the fact
that G has an even number of vertices. This proves our claim that for every component K of
G\X there are at least k edges with exactly one end in V (K). By the claim N ≥ kc, where c is
the number of components of G\X. Thus

o(G\X) ≤ c ≤ N/k ≤ |X|,

a contradiction.

6. Probabilistic methods

Let X1 . . . , Xn be independent random variables with Xi ∈ {0, 1} and Prob[Xi = 1] = p, for
i = 1, . . . , n, where 0 < p < 1. Set X :=

∑n

i=1 Xi. Prove that for any t ∈ [0, 1− p], we have

Prob[X ≥ (p+ t)n] ≤ e−nh(p,t),

where h(p, t) = (p + t) ln p+t

p
+ (1− p− t) ln 1−p−t

1−p
, and is also referred to as a “relative entropy

function”.

Solution: Let λ > 0 be a parameter to be determined later. We have

Prob[X ≥ (p+ t)n] = Prob[λX ≥ λ(p+ t)n] = Prob
[

eλX ≥ eλ(p+t)n
]

.

From Markov’s inequality, we obtain

Prob
[

eλX ≥ eλ(p+t)n
]

≤
E
[

eλX
]

eλ(p+t)n
.



ACO Comprehensive Exam October 10 and 11, 2016

Now, the independence of the Xi yields

E
[

eλX
]

= E

[

n
∏

i=1

eλXi

]

=
n
∏

i=1

E
[

eλXi
]

= (peλ + 1− p)n.

Thus

Prob[X > (p+ t)n] ≤
(peλ + 1− p)n

eλ(p+t)n
,

for every λ > 0.
The right hand-side is minimized when choosing:

eλ =
(1− p)(p+ t)

p(1− p− t)
.

Plugging this into the above inequality, we obtain:

Prob[X > (p+ t)n] ≤

[

(

p

p+ t

)p+t (
1− p

1− p− t

)1−p−t
]n

= e−n((p+t) ln p+t

p
+(1−p−t) ln 1−p−t

1−p )

7. Algebra

(a) Suppose K ⊂ H ⊂ G are groups under the same operation and that K is normal in H and
H is normal in G. Does K have to be normal in G?

(b) Let G be a group and H be a subgroup of G with index n. Prove that there is a normal
subgroup K of G such that K ⊂ H and [G : K] ≤ n!.

Solution:

(a) No. Let G be the dihedral group of order 8 consisting of the symmetries (rotations and
reflections) of a square. Let H be the subgroup generated by the 180-degree rotation and
one reflection s. Then |H| = 4 and [G : H] = 2, so H is normal in G. Let K be the group
consisting of the identity and s only, which is normal is H since H is abelian. But K is
not normal in G since rsr−1 /∈ K for the 90-degree rotation r.

(b) Consider the group G acting on the set of left cosets of H by left multiplication. This gives
a homomorphism ϕ from G to the symmetric group Sn of order n!. Let K be the kernel
of ϕ, which is a normal subgroup of G. In particular, for any x ∈ K we have xH = H,
so x ∈ H. This shows that K ⊂ H. Moreover, by the First Isomorphism Theorem, the
quotient group G/K is isomorphic to a subgroup of Sn, so we have [G : K] ≤ n!.
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7. Linear Algebra

Let T ∈ Hom(V, V ), where V is an n-dimensional vector space over a field F. (In other words,
T is a linear transformation from V to V .)

(i) Show that if Tm = 0, but Tm−1 6= 0, then there is a vector v ∈ V such that {v, Tv, . . . , Tm−1v}
is a linear independent set.

(ii) Show that if Tm = 0, then T n = 0.

(iii) Show that if ker(T ) ∩ Im(T ) = {0}, then ker(T 2) = ker(T ). By giving an example, show
that the conclusion is false if the assumption ker(T ) ∩ Im(T ) = {0} does not hold.

Solution:

(i) Since Tm−1 6= 0, then there exist v ∈ V such that Tm−1v 6= 0. Consider the vectors
v, Tv, . . . , Tm−1v. Suppose these are not linearly independent, then there exist scalar
a0, . . . , am−1 ∈ F, not all 0, such that

a0v + a1Tv + . . . am−1T
m−1v = 0 .

Multiply this relation by Tm−1, to obtain that it must be a0 = 0, so that

a1Tv + . . . am−1T
m−1v = 0 .

Multiplying by Tm−2, gives a1 = 0. Continuing this way, we reach a contradiction.

(ii) If m ≤ n, the result is obvious. So, assume m > n and, by contradiction, that T n 6= 0.
Then, it must be that there is a first index k ≥ 1 for which T n+k = 0, but T n+k−1 6= 0.
Reasoning as in part (i), we have that there would be a vector w such that

{w, Tw, . . . , T nw, . . . , T n+k−1w}

is a linearly independent set in V . But since k ≥ 1, we would have more than n linearly
independent elements in V , which is however n-dimensional.

(iii) Surely, if Tv = 0, then T 2v = 0, so ker(T ) ⊆ ker(T 2). To show the reverse implication,
suppose that there is a v ∈ ker(T 2) but v /∈ ker(T ). Then it must be Tv 6= 0, hence
Tv ∈ Im(T ), and also Tv ∈ ker(T ), which is a contradiction.

As far as the counterexample, take T : R
2 → R

2 such that Te1 = 0, but Te2 = e1, thus T
2 = 0

(since it annihilates a basis), and ker(T 2) = R
2, but ker(T ) is 1-dimensional.


