
ACO Comprehensive Exam October 10 and 11, 2016

1. Computability, Complexity and Algorithms

Let G = (V,E) be an undirected graph. Consider the following algorithm to find a large matching
in G:

1. Start with M = ∅, the empty matching.

2. Add edges of G greedily to M as long as they maintain a matching.

3. If there is any edge (u, v) ∈M such that removing (u, v) from M allows you to add 2 new
edges, then apply this change, increasing the size of M by one. Repeat this step as long as
such a change is possible (augmentations of length 3).

• Show that the resulting matchingM has at least 2/3 as many edges as a maximum matching
of G.

• Consider the extension where the algorithm augments on paths of length up to 2k + 1.
Show that the matching obtained has size at least (k + 1)/(k + 2) times the size of the
maximum cardinality matching.

• Suppose G has nonnegative weights on its edges. Show that any greedy maximal matching
— choose edges in order of weight while maintaining a matching — gives a matching of at
least half the weight of a maximum weight matching.

2. Analysis of Algorithms

Given an edge weighted complete bipartite graph G = (V,E) and a perfect matching M in G,
define f(M) to be the weight of the heaviest edge in M . Define a bottleneck perfect matching in
G to be a perfect matching N that minimizes f(N).

First consider the algorithm that simply finds a minimum weight perfect matching in G. Give
an example to show that the matching found by this algorithm may not be a bottleneck perfect
matching. What is the approximation ratio achieved by this algorithm?

Give a polynomial time algorithm for finding a bottleneck perfect matching. Make sure your
algorithm is as efficient as possible. What is its running time?

3. Theory of Linear Inequalities

Let P ⊆ R
n be a non-empty polytope. Let vert(P ) be the set of vertices of P . Let X ⊆ vert(P ).

Define P (X) := conv (vert(P ) \X). The graph of the polytope P is a graph GP with nodes
corresponding to vert(P ) such that two nodes are adjacent in GP if and only if the corresponding
vertices are adjacent in P (i.e. the two vertices are contained in a one-dimensional face of P ).
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Let X ⊆ vert(P ) and let (X1, . . . , Xm) be a partition of X such that Xi and Xj are inde-
pendent in GP , i.e. there is no edge connecting Xi to Xj for all 1 ≤ i < j ≤ m. Then show
that

P (X) =
m⋂

i=1

P (Xi).

4. Combinatorial Optimization

Let G = (V,E) be an undirected graph with vertex set V and edge set E. Let c(e) for e ∈ E
be the capacity of an edge. Furthermore, let R = {((s1, t1), d1), ((s2, t2), d2)} be a set of two
commodities, i.e., a quantity d1 has to be send from source s1 to sink t1 and a quantity d2 has
to be send from source s2 to sink t2. Let δE(W ) be the set of edges with exactly one endpoint in
W and let δR(W ) be the set of commodities with either its source or its sink in W but not both.

Cut condition: For each W ⊆ V , the capacity of δE(W ) is not less than the demand of δR(W ).

Euler condition:

∑

e∈δ(v)

c(e) ≡ 0 (mod 2) if v 6= s1, t1, s2, t2

d1 (mod 2) if v = s1, t1

d2 (mod 2) if v = s2, t2

We have the following theorem:

Theorem 1 If all capacities and demands are integer and both the cut condition and the Euler
condition are satisfied, then the undirected 2-commodity flow problem has an integer solution.

Question 1. Prove the following lemma

Lemma 1 Every cut in an Eulerian graph (with edge capacities equal to one) has even cardi-
nality.

Question 2. Use Theorem 1 and Lemma 1 to show the following. Let G = (V,E) be an Eulerian
graph and let s1, t1, s2, t2 be distinct vertices. Then the maximum number k of pairwise edge-
disjoint paths P1, . . . , Pk, where each path Pj connects either s1 and t1 or s2 and t2, is equal to
the minimum cardinality of a cut both separating s1 and t1 and separating s2 and t2.
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5. Graph Theory

Let k ≥ 1 be an integer and let G be a k-connected k-regular graph on an even number of
vertices. Prove that G has a perfect matching.

6. Probabilistic methods

Let X1 . . . , Xn be independent random variables with Xi ∈ {0, 1} and Prob[Xi = 1] = p, for
i = 1, . . . , n, where 0 < p < 1. Set X :=

∑n

i=1 Xi. Prove that for any t ∈ [0, 1− p], we have

Prob[X ≥ (p+ t)n] ≤ e−nh(p,t),

where h(p, t) = (p + t) ln p+t

p
+ (1− p− t) ln 1−p−t

1−p
, and is also referred to as a “relative entropy

function”.

7. Algebra

(a) Suppose K ⊂ H ⊂ G are groups under the same operation and that K is normal in H and
H is normal in G. Does K have to be normal in G?

(b) Let G be a group and H be a subgroup of G with index n. Prove that there is a normal
subgroup K of G such that K ⊂ H and [G : K] ≤ n!.

7. Linear Algebra

Let T ∈ Hom(V, V ), where V is an n-dimensional vector space over a field F. (In other words,
T is a linear transformation from V to V .)

(i) Show that if Tm = 0, but Tm−1 6= 0, then there is a vector v ∈ V such that {v, Tv, . . . , Tm−1v}
is a linear independent set.

(ii) Show that if Tm = 0, then T n = 0.

(iii) Show that if ker(T ) ∩ Im(T ) = {0}, then ker(T 2) = ker(T ). By giving an example, show
that the conclusion is false if the assumption ker(T ) ∩ Im(T ) = {0} does not hold.


