
ACO Comprehensive Exam October 13 and 14, 2014

1. Computability, Complexity and Algorithms

(a) (5 points) Let G(V,E) be an undirected graph. A Hamilton Path in G is a path of legth
(|V | − 1), while a Hamilton Cycle in G is a cycle of length |V |. HC is the problem of deciding if
a graph has a Hamilton Cycle, while HP is the problem of deciding if a graph has a Hamilton
Path. We know that HC is NP-complete. Show that HP is NP-complete.
(b) (5 points) Let G be a connected undirected graph with at least 3 vertices. Let G3 be the
graph obtained by connecting all pairs of vertices that are connected by a path in G of length
at most 3. Show that for all graphs G3 as above, HC is in P. (Hint: Show that G3 always has a
Hamilton Cycle.)

Solution: (a) Let G(V,E) be a graph. For every edge e = {u, v} ∈ E construct a graph
Ge(Ve, Ee), where Ve = V ∪ {x, y} and Ee = E ∪ {{u, x}, {v, y}}. Clearly, G has a Hamilton
Cycle that includes e if and only if Ge has a Hamilton Path. We may thus decide if G has a
Hamilton Cycle using at most |E| calls to the polynomial time algorithm that decides Hamilton
Path. If any of this calls returns YES, then the answer to Hamilton Cycle is YES. If all of them
return NO, then the answer to Hamilton Cycle is NO.
(b) To prove this, it suffices to consider only trees; any Hamilton cycle on the cube of a spanning
tree is also a Hamilton cycle on the cube of the original graph. We now prove the following
theorem, which obviously implies that any cube of a tree is Hamiltonian.
Theorem: Let T = (V,E) be a tree. For any edge e ∈ E, there is a Hamilton cycle on T 3 that

contains edge e.
Proof. By induction on n = |V |. The cases n = 3 and n = 4 are trivial, as the cube of the tree
is always a clique.
Now assume that the claim is true for all trees with at most n ≥ 4 vertices and let T = (V,E) be
a tree with (n+1) vertices. Let e = {u, v} ∈ E be an arbitrary edge. We show how to construct
a cycle in T 3 that uses edge e. Since T is a tree, removing edge e will break T into two connected
components, both of which are trees. Let Tu be the component that contains u and let Tv be
the component that contains v. We may assume, without loss of generality, that Tv has at least
3 vertices. Let u′ be the neighbor of u in Tu. By the inductive hypothesis, there is a Hamilton
cycle H in T 3

u that uses edges {u, u′}. There are now three cases to consider:
Case 1: Tv contains only one vertex. We get the desired Hamilton cycle by taking H and adding
v between u and u′; this can be done since dT (u

′, v) = 1 + dT (u, v) = 2.
Case 2: Tv contains two vertices. One of these is v and we denote the other by v′. Obviously, v′

is adjacent to v. We change the cycle H = (. . . , u′, u, . . .) to H(. . . , u′, v′, v, u, . . .), which yields
the desired result. The modification can be done, since dT (u

′, v′) = 3.
Case 3: Tv contains at least three vertices. Let v′ be a neighbor of v in Tv. By the inductive
hypothesis, there is a Hamilton cycleH ′ in Tv that contains edge {v, v

′}. We have that dT (u
′, v′) =

3, so we can constrcuct a Hamilton cycle in T by removing edge {u, u′} from H and {v, v′} from
H ′, and joining these cycles together by adding edges {u′, v′} and {u, v}.
Thus, in all cases, we can construct a Hamilton cycle in T 3 that contains edge {u, v}.
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2. Analysis of Algorithms

Consider the following algorithm for the weighted vertex cover problem, where w(v) is the weight
of vertex v. Initially t(v) := w(v) for all vertices. When t(v) drops to 0, v is picked in the cover.
c(e) is the amount that we charge an edge e. In particular:
1. Initialization
C := ∅
∀v ∈ V , t(v) := w(v)
∀e ∈ E, c(e) := 0
2. While C is not a vertex cover do:

Pick uncovered edge, say {u, v}
Let m := min{t(u), t(v)}
t(u) := t(u)−m
t(v) := t(v)−m
c(u, v) := m
Include in C all vertices v that have t(v) = 0

3. Output C
Argue that this is a factor 2 approximation algorithm for weighted vertex cover.

Solution: The (IP) formulation of weighted vertex cover, its (LP)-relaxation and the dual (DP)
are:

(IP) (LP) (DP)
min

∑

v∈V xvw(v) min
∑

v∈V xvw(v) maxe∈E ye
xv + xu ≥ 1 , ∀ {u, v} ∈ E xv + xu ≥ 1 , ∀ {u, v} ∈ E

∑

u:{u,v}∈E y{u,v} ≤ w(v) , ∀v ∈ V

xv ∈ {0, 1} , ∀v ∈ V xv ≥ 0 , ∀v ∈ V ye ≥ 0 , ∀e ∈ E

The algorithm builds integral solution to (LP), thus also solution to (IP), and solution to (DP).
The complementary slackness conditions hold tight for primal variables, and with factor 2 for
dual variables. In particular, we have

xv > 0⇒
∑

u:{u,v}∈E

y{u,v} = w(v) , ∀v ∈ V

y{u,v} > 0⇒ xv + xu ≤ 2 , ∀ {u, v} ∈ E

We thus have:
∑

v∈V

xvwv =
∑

v∈V

∑

u:{u,v}∈E

y{u,v} , by complementary slackness

≤ 2
∑

{u,v}∈E

y{u,v} , by complementary slackness

≤ 2OPT (DP) = 2OPT (LP) , by duality theory

≤ 2OPT (IP)
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3. Theory of Linear Inequalities

Let P = {x ∈ Rn | Ax ≤ b} ⊆ [0, 1]n with A ∈ Zm×n and b ∈ Zm be a polytope contained in the
0/1 cube; in particular the bound inequalities 0 ≤ x ≤ 1 are valid for P .

For i ∈ [n] we consider the following procedure:

1. Generate the nonlinear system (b− Ax)xi ≥ 0, (b− Ax)(1− xi) ≥ 0.

2. Relinearize the system by replacing xjxi with yj whenever i 6= j and xj whenever i = j.
We obtain a new, higher dimensional polyhedron Mi.

3. Define Pi := projxMi.

Finally define P 1 :=
⋂

i∈[n] Pi. This polyhedron is a strengthening of the original formulation of
P .

Prove the following:

P 1 =
⋂

i∈[n]

conv ((P ∩ {x | xi = 0}) ∪ (P ∩ {x | xi = 1}))

Solution. It suffices to verify the claim separately for each Pi with i ∈ [n]. Let

P̄ := conv((P ∩ {x | xi = 0}) ∪ (P ∩ {x | xi = 1}))

= conv(({x | Ax ≤ b} ∩ {x | xi = 0}) ∪ ({x | Ax ≤ b} ∩ {x | xi = 1})).

We will first show that Pi ⊆ P̄ . We assume that P 6= ∅ as otherwise there is nothing to show.
Let cx ≤ δ be valid for P ∩ {x | xi = 0} and P ∩ {x | xi = 1}. Then by Farkas’ Lemma there
exists τ, λ ≥ 0 so that

cx+ λxi ≤ δ

and
cx+ τ(1− xi) ≤ δ

are valid for P . Hence
(δ − cx+ λxi)(1− xi) ≥ 0

and
(δ − cx+ τ(1− xi))xi ≥ 0

are valid for the nonlinear system. Adding up both inequalities we obtain

δ − cx+ (τ + λ)(1− xi)xi ≥ 0

and using (1− xi)xi = 0 we have cx ≤ δ is valid for Mi and hence also for Pi.
It remains to show that P̄ ⊆ Pi. Suppose that P̄ 6= ∅; otherwise there is nothing to show.

Let x̄ ∈ P ∩ {x | xi = ℓ} for ℓ ∈ {0, 1}. We can lift the point by defining yj = x̄jx̄i for i 6= j.
Then (x̄, y) ∈Mi as x̄

2
i = x̄i.
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4. Combinatorial Optimization

Consider the following generalization of matroids. Given a ground set E and a family F of
subsets of E we say that (E,F) is k-extensible if the following hold: (i) if A ∈ F and B ⊆ A,
then B ∈ F ; (ii) consider A,B ∈ F with A ⊆ B; if e ∈ E is such that A + e ∈ F , then there is
a set K ⊆ B − A of size at most k such that B −K + e belongs to F .

Given (E,F) k-extensible and a weight function w : E → R (extended to sets as usual by
w(A) =

∑

e∈A w(e)), consider the greedy algorithm for maxS∈F w(S): (0) Start with S = ∅; (1)
pick an element e ∈ E − S with largest weight that satisfies S + e ∈ F , and update S ← S + e
(if no such element exists, stop); (2) Repeat the previous step.

1. Let ei be the element chosen by the greedy algorithm in step i, and let Si be the set
obtained at the end of step i (so Si = e1 + . . .+ ei). Given any set A ∈ F , let OPT (A) =
max{w(B) : B ⊇ A,B ∈ F} (i.e. the best extension of A in F). Show that for all i

w(OPT (Si)) ≥ w(OPT (Si−1))− k · w(ei).

2. Show that the last set Sℓ computed by the greedy algorithm satisfies w(Sℓ) ≥
1

k+1
w∗, where

w∗ = max{w(A) : A ∈ F}.

3. Given a graph G = (V,E) and b ∈ RV
+, a set S ⊆ E is a b-matching if S has at most

bv edges incidents to vertex v, for all v ∈ V . Give a polytime algorithm for finding a
b-matching with at least 1/3 as many edges as the largest b-matching. (No need to analyze
the running-time of the algorithm.)

Solution.

1. Notice OPT (Si−1) is an extension of Si−1. Since Si−1+ ei ∈ F , k-extensibility implies that
there is a set K ⊆ OPT (Si−1) − Si−1 of size at most k such that OPT (Si−1) − K + ei
belongs to F . Since the set OPT (Si−1)−K + ei is an extension of Si−1 + ei = Si, we have

w(OPT (Si)) ≥ w(OPT (Si−1)−K + ei) = w(OPT (Si−1))− w(K) + w(ei).

Now notice that for every e ∈ K, we have Si−1 + e ∈ F : this is because OPT (Si−1) ∈ F
contains Si−1+e and because of Property 1 in the definition of k-extensible systems. Thus,
by definition of ei each element of K has weight at most w(ei) and hence w(K) ≤ k ·w(ei).
Plugging this in the last displayed inequality concludes the proof.

2. Notice that the last set Sℓ is a maximal set in F , and hence OPT (Sℓ) = Sℓ; also, w∗ =
w(OPT (∅)). Then applying the result from the previous question repeatedly we get

w(OPT (Sℓ)) ≥ w(OPT (∅))− k ·
ℓ

∑

i=1

w(ei) = w(OPT (∅))− k · w(Sℓ),

or equivalently w(Sℓ) ≥ w∗ − k · w(Sℓ). Reorganizing gives the result.
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3. Let F be the set of b-matchings; we show that (E,F) is 2-extensible. Property 1 of 2-extensibility
clearly holds. For Property 2, consider b-matchings S, S ′ with S ⊆ S ′, and an edge (u, v) such
that S + (u, v) is a b-matching. We claim that there is a set K ⊆ S ′ − S of size at most 2 such
that S ′ −K + (u, v) is a b-matching: simply let K consist of one edge of S ′ − S incident to u (if
exists) and one edge of S ′ − S incident to v (if exists). Then S ′ −K has at most bu − 1 edges
incident to u and at most bv − 1 edges incident to v, hence S ′ −K + (u, v) is a b-matching.

Therefore, the greedy algorithm described above, applied to this system (E,F) gives the desired
approximation (and it is easy to check that it can be made to run in polynomial time).

5. Graph Theory

Let G be a simple plane graph of minimum degree at least three. Prove that G has either a
vertex of degree three incident with a face of size at most five, or a face of size three incident
with a vertex of degree at most five.

Solution: Suppose for a contradiction that G is a simple plane graph of minimum degree at
least three containing neither of the two required configurations. We use the discharging method
to obtain a contradiction. A vertex of degree d will be assigned a charge of d − 4 and a face of
size l will be assigned a charge of l − 4. Then the sum of the charges is −8 by Euler’s formula.
We now redistribute the charges as follows: a vertex of degree three will send a charge of −1/3
to every incident face and every face of size three will send a charge of −1/3 to every incident
vertex. This results in a new distribution of the charges with the same sum. We claim that the
new charge of every vertex and every face is nonnegative. That is a contradiction, because the
total sum is negative. To see that every vertex and face has nonnegative new charge let v be
a vertex of G. If v has degree three, then its initial charge is −1, but it sends −1/3 to every
incident face, and hence ends up with charge zero. If v has degree four or five, then its initial
charge is nonnegative and it does not receive any charge; hence its final charge is nonnegative.
Let us now assume that v has degree d ≥ 6. Its initial charge is d − 4 and it receives at least
−d/3 from its incident faces for total of at least d− 4− d/3 ≥ 0, as desired. The analysis of face
charges is analogous.

6. Probabilistic methods

Let H denote the graph on five vertices consisting of a copy of K4 along with an additional edge
attached to one of the 4 vertices. (Recall that K4 is the complete graph on 4 vertices.) Let Gn,p

denote the usual Erdős-Rényi random graph on n vertices with the edge probability p = p(n).
Then

(i) Show that
Pr(Gn,p contains a copy of H) → 0 if p≪ n−2/3 ;

(ii) Let G1 = Gn,p/2. Show that

Pr(G1 contains a copy of K4) → 1 if p≫ n−2/3 .
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(iii) Let G be the union of two independent copies of Gn,p/2. (i.e., on the same set of vertices,
but the edge set is taken as the union of edge sets.) Prove that

Pr(G contains a copy of H) → 1 if p≫ n−2/3 .

(iv) Conclude that

Pr(Gn,p contains a copy of H) → 1 if p≫ n−2/3 .

(In the above, we are using the fairly standard notation: p(n)≪ f(n) means that p(n)/f(n)→
0, as n→∞, and similarly, p(n)≫ f(n) means that p(n)/f(n)→∞, as n→∞ .)

Solution: (i) Recall that n2/3 is the threshold probability for having a copy of K4. Clearly there
can not be an H, if there are not K4’s in the graph. Now, using the first moment method – the
expected number of K4’s being

(

n
4

)

p6 – the probability that there is a K4 goes to 0, for p≪ n−2/3.
(ii) Follows from a straightforward 2nd moment argument by computing Var(X), for X = #

of copies of K4, and observing that Var(X) = o([E(X)]2) .
(iii) Let G = G1 ∪ G2, where G1 and G2 are independent copies of Gn,p/2. By Part(ii), G1

contains a K4 w.h.p. So it suffices to show that the probability that G2 contains an edge with
exactly one endpoint in this K4 tends to 1. This probability is at least 1 − (1 − p/2)4(n−4) ≈
1− e−2pn → 1 .

(iv) The graph G in Part(iii) can be seen as distributed as Gn,p′ , where p
′ = p− (p/2)2, since

that is the probability of having an edge between a pair of vertices, independent of everything
else. Since p′ < p, Part (iv) follows from Part (iii).

7. Algebra

Let A be n×n matrix with rational entries and let p ∈ N be a prime. Show that A cannot satisfy

An+1 − pAn = pI,

where I is the identity matrix.

Solution: Suppose not. Let m(x) be the minimal polynomial of A. Note that m(x) has
coefficients in Q. The matrix A satisfies An+1 − pAn − pI = 0, and therefore m(x) divides
xn+1 − pxn − p. The polynomial xn+1 − pxn − p is irreducible over Q by Eisenstein’s criterion.
Therefore m(x) = xn+1 − pxn − p. However the degree of m(x) is at most n since m(x) divides
the characteristic polynomial of A. This is a contradiction.

7. Linear Algebra

Let A be a n×n matrix and v a vector in Rn such that the set {v, Av, A2v, . . . , An−1v} is linearly
independent. Show that any matrix B that commutes with A can be written as a polynomial in
A.
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Solution: Observe that since {v, Av, A2v, . . . , An−1v} are n linearly independent vectors in Rn

they form a basis.
Thus the vector Bv can be written uniquely as

Bv = γ0v + γ1Av + · · ·+ γn−1A
n−1v

Set
C = γ0Id + γ1A+ · · ·+ γn−1A

n−1

Since A commute with B we have

BAv = ABv = γ0v + γ1AAv + · · ·+ γn−1A
n−1Av = CAv

Similarly we get that for every m
BAmv = CAmv

This implies that B and C coincide on a basis and thus B = C.


