1. Computability, Complexity and Algorithms

(a) (5 points) Let $G(V, E)$ be an undirected graph. A Hamilton Path in G is a path of legth ($|V|-1$), while a Hamilton Cycle in G is a cycle of length $|V|$. HC is the problem of deciding if a graph has a Hamilton Cycle, while HP is the problem of deciding if a graph has a Hamilton Path. We know that HC is NP-complete. Show that HP is NP-complete.
(b) (5 points) Let G be a connected undirected graph with at least 3 vertices. Let G^{3} be the graph obtained by connecting all pairs of vertices that are connected by a path in G of length at most 3. Show that for all graphs G^{3} as above, HC is in P. (Hint: Show that G^{3} always has a Hamilton Cycle.)

2. Analysis of Algorithms

Consider the following algorithm for the weighted vertex cover problem, where $w(v)$ is the weight of vertex v. Initially $t(v):=w(v)$ for all vertices. When $t(v)$ drops to $0, v$ is picked in the cover. $c(e)$ is the amount that we charge an edge e. In particular:

1. Initialization
$C:=\emptyset$
$\forall v \in V, t(v):=w(v)$
$\forall e \in E, c(e):=0$
2. While C is not a vertex cover do:

Pick uncovered edge, say $\{u, v\}$
Let $m:=\min \{t(u), t(v)\}$
$t(u):=t(u)-m$
$t(v):=t(v)-m$
$c(u, v):=m$
Include in C all vertices v that have $t(v)=0$
3. Output C

Argue that this is a factor 2 approximation algorithm for weighted vertex cover.

3. Theory of Linear Inequalities

Let $P=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\} \subseteq[0,1]^{n}$ with $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^{m}$ be a polytope contained in the $0 / 1$ cube; in particular the bound inequalities $0 \leq x \leq 1$ are valid for P.
For $i \in[n]$ we consider the following procedure:

1. Generate the nonlinear system $(b-A x) x_{i} \geq 0,(b-A x)\left(1-x_{i}\right) \geq 0$.
2. Relinearize the system by replacing $x_{j} x_{i}$ with y_{j} whenever $i \neq j$ and x_{j} whenever $i=j$. We obtain a new, higher dimensional polyhedron M_{i}.

3. Define $P_{i}:=\operatorname{proj}_{x} M_{i}$.

Finally define $P^{1}:=\bigcap_{i \in[n]} P_{i}$. This polyhedron is a strengthening of the original formulation of P.

Prove the following:

$$
P^{1}=\bigcap_{i \in[n]} \operatorname{conv}\left(\left(P \cap\left\{x \mid x_{i}=0\right\}\right) \cup\left(P \cap\left\{x \mid x_{i}=1\right\}\right)\right)
$$

4. Combinatorial Optimization

Consider the following generalization of matroids. Given a ground set E and a family \mathcal{F} of subsets of E we say that (E, \mathcal{F}) is k-extensible if the following hold: (i) if $A \in \mathcal{F}$ and $B \subseteq A$, then $B \in \mathcal{F}$; (ii) consider $A, B \in \mathcal{F}$ with $A \subseteq B$; if $e \in E$ is such that $A+e \in \mathcal{F}$, then there is a set $K \subseteq B-A$ of size at most k such that $B-K+e$ belongs to \mathcal{F}.

Given $(E, \mathcal{F}) k$-extensible and a weight function $w: E \rightarrow \mathbb{R}$ (extended to sets as usual by $\left.w(A)=\sum_{e \in A} w(e)\right)$, consider the greedy algorithm for $\max _{S \in \mathcal{F}} w(S)$: (0) Start with $S=\emptyset$; (1) pick an element $e \in E-S$ with largest weight that satisfies $S+e \in \mathcal{F}$, and update $S \leftarrow S+e$ (if no such element exists, stop); (2) Repeat the previous step.

1. Let e_{i} be the element chosen by the greedy algorithm in step i, and let S_{i} be the set obtained at the end of step i (so $S_{i}=e_{1}+\ldots+e_{i}$). Given any set $A \in \mathcal{F}$, let $\operatorname{OPT}(A)=$ $\max \{w(B): B \supseteq A, B \in \mathcal{F}\}$ (i.e. the best extension of A in \mathcal{F}). Show that for all i

$$
w\left(O P T\left(S_{i}\right)\right) \geq w\left(O P T\left(S_{i-1}\right)\right)-k \cdot w\left(e_{i}\right) .
$$

2. Show that the last set S_{ℓ} computed by the greedy algorithm satisfies $w\left(S_{\ell}\right) \geq \frac{1}{k+1} w^{*}$, where $w^{*}=\max \{w(A): A \in \mathcal{F}\}$.
3. Given a graph $G=(V, E)$ and $b \in \mathbb{R}_{+}^{V}$, a set $S \subseteq E$ is a b-matching if S has at most b_{v} edges incidents to vertex v, for all $v \in V$. Give a polytime algorithm for finding a b-matching with at least $1 / 3$ as many edges as the largest b-matching. (No need to analyze the running-time of the algorithm.)

5. Graph Theory

Let G be a simple plane graph of minimum degree at least three. Prove that G has either a vertex of degree three incident with a face of size at most five, or a face of size three incident with a vertex of degree at most five.

6. Probabilistic methods

Let H denote the graph on five vertices consisting of a copy of K_{4} along with an additional edge attached to one of the 4 vertices. (Recall that K_{4} is the complete graph on 4 vertices.) Let $G_{n, p}$ denote the usual Erdős-Rényi random graph on n vertices with the edge probability $p=p(n)$. Then
(i) Show that

$$
\operatorname{Pr}\left(G_{n, p} \text { contains a copy of } H\right) \rightarrow 0 \text { if } p \ll n^{-2 / 3} ;
$$

(ii) Let $G_{1}=G_{n, p / 2}$. Show that

$$
\operatorname{Pr}\left(G_{1} \text { contains a copy of } K_{4}\right) \rightarrow 1 \text { if } p \gg n^{-2 / 3} .
$$

(iii) Let G be the union of two independent copies of $G_{n, p / 2}$. (i.e., on the same set of vertices, but the edge set is taken as the union of edge sets.) Prove that

$$
\operatorname{Pr}(G \text { contains a copy of } H) \rightarrow 1 \text { if } p \gg n^{-2 / 3} .
$$

(iv) Conclude that

$$
\operatorname{Pr}\left(G_{n, p} \text { contains a copy of } H\right) \rightarrow 1 \text { if } p \gg n^{-2 / 3} \text {. }
$$

(In the above, we are using the fairly standard notation: $p(n) \ll f(n)$ means that $p(n) / f(n) \rightarrow$ 0 , as $n \rightarrow \infty$, and similarly, $p(n) \gg f(n)$ means that $p(n) / f(n) \rightarrow \infty$, as $n \rightarrow \infty$.)

7. Algebra

Let A be $n \times n$ matrix with rational entries and let $p \in \mathbb{N}$ be a prime. Show that A cannot satisfy

$$
A^{n+1}-p A^{n}=p I,
$$

where I is the identity matrix.

7. Linear Algebra

Let A be a $n \times n$ matrix and v a vector in \mathbb{R}^{n} such that the set $\left\{v, A v, A^{2} v, \ldots, A^{n-1} v\right\}$ is linearly independent. Show that any matrix B that commutes with A can be written as a polynomial in A.

