
ACO Comprehensive Exam October 13 and 14, 2014

1. Computability, Complexity and Algorithms

(a) (5 points) Let G(V,E) be an undirected graph. A Hamilton Path in G is a path of legth
(|V | − 1), while a Hamilton Cycle in G is a cycle of length |V |. HC is the problem of deciding if
a graph has a Hamilton Cycle, while HP is the problem of deciding if a graph has a Hamilton
Path. We know that HC is NP-complete. Show that HP is NP-complete.
(b) (5 points) Let G be a connected undirected graph with at least 3 vertices. Let G3 be the
graph obtained by connecting all pairs of vertices that are connected by a path in G of length
at most 3. Show that for all graphs G3 as above, HC is in P. (Hint: Show that G3 always has a
Hamilton Cycle.)

2. Analysis of Algorithms

Consider the following algorithm for the weighted vertex cover problem, where w(v) is the weight
of vertex v. Initially t(v) := w(v) for all vertices. When t(v) drops to 0, v is picked in the cover.
c(e) is the amount that we charge an edge e. In particular:
1. Initialization
C := ∅
∀v ∈ V , t(v) := w(v)
∀e ∈ E, c(e) := 0
2. While C is not a vertex cover do:

Pick uncovered edge, say {u, v}
Let m := min{t(u), t(v)}
t(u) := t(u)−m
t(v) := t(v)−m
c(u, v) := m
Include in C all vertices v that have t(v) = 0

3. Output C
Argue that this is a factor 2 approximation algorithm for weighted vertex cover.

3. Theory of Linear Inequalities

Let P = {x ∈ R
n | Ax ≤ b} ⊆ [0, 1]n with A ∈ Z

m×n and b ∈ Z
m be a polytope contained in the

0/1 cube; in particular the bound inequalities 0 ≤ x ≤ 1 are valid for P .

For i ∈ [n] we consider the following procedure:

1. Generate the nonlinear system (b− Ax)xi ≥ 0, (b− Ax)(1− xi) ≥ 0.

2. Relinearize the system by replacing xjxi with yj whenever i 6= j and xj whenever i = j.
We obtain a new, higher dimensional polyhedron Mi.
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3. Define Pi := projxMi.

Finally define P 1 :=
⋂

i∈[n] Pi. This polyhedron is a strengthening of the original formulation of
P .

Prove the following:

P 1 =
⋂

i∈[n]

conv ((P ∩ {x | xi = 0}) ∪ (P ∩ {x | xi = 1}))

4. Combinatorial Optimization

Consider the following generalization of matroids. Given a ground set E and a family F of
subsets of E we say that (E,F) is k-extensible if the following hold: (i) if A ∈ F and B ⊆ A,
then B ∈ F ; (ii) consider A,B ∈ F with A ⊆ B; if e ∈ E is such that A + e ∈ F , then there is
a set K ⊆ B − A of size at most k such that B −K + e belongs to F .

Given (E,F) k-extensible and a weight function w : E → R (extended to sets as usual by
w(A) =

∑
e∈A w(e)), consider the greedy algorithm for maxS∈F w(S): (0) Start with S = ∅; (1)

pick an element e ∈ E − S with largest weight that satisfies S + e ∈ F , and update S ← S + e
(if no such element exists, stop); (2) Repeat the previous step.

1. Let ei be the element chosen by the greedy algorithm in step i, and let Si be the set
obtained at the end of step i (so Si = e1 + . . .+ ei). Given any set A ∈ F , let OPT (A) =
max{w(B) : B ⊇ A,B ∈ F} (i.e. the best extension of A in F). Show that for all i

w(OPT (Si)) ≥ w(OPT (Si−1))− k · w(ei).

2. Show that the last set Sℓ computed by the greedy algorithm satisfies w(Sℓ) ≥
1

k+1
w∗, where

w∗ = max{w(A) : A ∈ F}.

3. Given a graph G = (V,E) and b ∈ R
V
+, a set S ⊆ E is a b-matching if S has at most

bv edges incidents to vertex v, for all v ∈ V . Give a polytime algorithm for finding a
b-matching with at least 1/3 as many edges as the largest b-matching. (No need to analyze
the running-time of the algorithm.)

5. Graph Theory

Let G be a simple plane graph of minimum degree at least three. Prove that G has either a
vertex of degree three incident with a face of size at most five, or a face of size three incident
with a vertex of degree at most five.
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6. Probabilistic methods

Let H denote the graph on five vertices consisting of a copy of K4 along with an additional edge
attached to one of the 4 vertices. (Recall that K4 is the complete graph on 4 vertices.) Let Gn,p

denote the usual Erdős-Rényi random graph on n vertices with the edge probability p = p(n).
Then

(i) Show that
Pr(Gn,p contains a copy of H) → 0 if p≪ n−2/3 ;

(ii) Let G1 = Gn,p/2. Show that

Pr(G1 contains a copy of K4) → 1 if p≫ n−2/3 .

(iii) Let G be the union of two independent copies of Gn,p/2. (i.e., on the same set of vertices,
but the edge set is taken as the union of edge sets.) Prove that

Pr(G contains a copy of H) → 1 if p≫ n−2/3 .

(iv) Conclude that

Pr(Gn,p contains a copy of H) → 1 if p≫ n−2/3 .

(In the above, we are using the fairly standard notation: p(n)≪ f(n) means that p(n)/f(n)→
0, as n→∞, and similarly, p(n)≫ f(n) means that p(n)/f(n)→∞, as n→∞ .)

7. Algebra

Let A be n×n matrix with rational entries and let p ∈ N be a prime. Show that A cannot satisfy

An+1 − pAn = pI,

where I is the identity matrix.

7. Linear Algebra

Let A be a n×n matrix and v a vector in R
n such that the set {v, Av, A2v, . . . , An−1v} is linearly

independent. Show that any matrix B that commutes with A can be written as a polynomial in
A.


