1. Computability, Complexity and Algorithms

Define the class $\mathcal{S N P}$ to be the class of all languages that are accepted by polynomial time nondeterministic Turing machines that have at most polynomial number of accepting computation paths for any $x \in L$. Define the class $\mathcal{O N} \mathcal{P}$ to be the class of all languages that are accepted by polynomial time nondeterministic Turing machines that have an odd number of accepting computation paths for any $x \in L$. Show that $\mathcal{S N P} \subseteq \mathcal{O} \mathcal{N P}$.

Solution: Let L be a language in $\mathcal{S N} \mathcal{P}$ that is accepted by an $\mathcal{N} \mathcal{P}$-machine N. For any string $x \in L$, let $q(|x|)$ be the number of accepting computation paths of N on x, where $q(n)$ is a polynomial function.

On input x, consider the following $\mathcal{N} \mathcal{P}$-machine M :

- For $i=1$ TO $q(|x|)$ DO:
- Guess i distinct computation paths $P_{1}, P_{2}, \cdots, P_{i}$ and verify that these are accepting computation paths of N on x by simulating N on x guided by the paths.

Clearly, M accepts x iff N accepts x.
Suppose $x \in L$. Then, there are at most $q(|x|)$ accepting computation paths for N on x. For each i in $1 \leq i \leq t$, the machine has $C(q(|x|), i)$ accepting computation paths so that it has a total of $2^{q(|x|)}-1$ accepting computation paths on x.
(Here, $C(n, m)$ stands for the number of ways of choosing m distinct elements from a set of n elements.)

Suppose $x \notin L$. Then, M has 0 accepting computation paths.

2. Analysis of Algorithms

In the knapsack problem we are given distinct objects a_{1}, \ldots, a_{n}. Each object a_{i} has positive integer value v_{i} and positive integer weight $w_{i}, 1 \leq i \leq n$. We are also given a positive integer W, the "knapsack capacity". The problem is to find a subset of objects whose total weight does not exceed W and whose total value is maximized. We assume that $w_{i} \leq W$ for all $i=1,2, \ldots, n$. Prove that the following greedy algorithm for the knapsack problem achieves an approximation factor of $1 / 2$. First sort the objects according to decreasing ratio of value to weight. That is, a_{1}, \ldots, a_{n} are such that $\frac{v_{1}}{w_{1}} \geq \ldots \frac{v_{k-1}}{w_{k-1}} \geq \frac{v_{k}}{w_{k}} \geq \ldots \frac{v_{n}}{w_{n}}$, and let k be such that $\sum_{i=1}^{k-1} w_{i} \leq W$ while $\sum_{i=1}^{k} w_{i}>W$. Next, if $\sum_{i=1}^{k-1} v_{i} \geq v_{k}$ then output $\left\{a_{1}, \ldots, a_{k-1}\right\}$, while if $\sum_{i=1}^{k-1} v_{i}<v_{k}$ then output $\left\{a_{k}\right\}$.

Solution: Write knapsack as an (IP), and take the (LP) relaxation and its dual (DP).
(IP)
$\begin{array}{ll} & \max \sum_{i=1}^{n} v_{i} x_{i} \\ \text { s.t. } & \sum_{i=1}^{n} w_{i} x_{i} \leq W\end{array}$
$x_{i} \in\{0,1\} \quad 1 \leq i \leq n$
(LP)
$\max \sum_{i=1}^{n} v_{i} x_{i} \quad \min \sum_{i=1}^{n} y_{i}+z W$
s.t. $\sum_{i=1}^{n} w_{i} x_{i} \leq W$ s.t. $\quad y_{i}+w_{i} z \geq v_{i} \quad 1 \leq i \leq n$
$0 \leq x_{i} \leq 1 \quad 1 \leq i \leq n \quad y_{i} \geq 0 \quad 1 \leq i \leq n$
$z \geq 0$

CLAIM 1: The following assignment to the x_{i} 's is primal feasible (check by elementary calculations):

$$
\begin{gathered}
x_{1}=\ldots=x_{k-1}=1 \\
x_{k}=\frac{W-\left(w_{1}+\ldots+w_{k-1}\right)}{w_{k}} \\
x_{k+1}=\ldots=x_{n}=0
\end{gathered}
$$

CLAIM 2: The following assignment to the y_{i} 's is dual feasible (check by elementary calculations):

$$
\begin{array}{ll}
y_{i}=v_{i}-w_{i} \frac{v_{k}}{w_{k}} & 1 \leq i \leq k \\
y_{i}=0 & k+1 \leq i \leq n \\
z=\frac{v_{k}}{w_{k}} &
\end{array}
$$

CLAIM 3: For the primal and dual feasible solutions of CLAIMS 1 and 2, the objective values of the (LP) and (DP) are equal. Thus, these solutions are optimal.
PROOF: Verify that

$$
\sum_{i=1}^{k-1} v_{i}+\frac{W-\left(w_{1}+\ldots+w_{k-1}\right)}{w_{k}} v_{k}=\sum_{i=1}^{k}\left(v_{i}-w_{i} \frac{v_{k}}{w_{k}}\right)+\frac{v_{k}}{w_{k}} W
$$

We are now ready to establish the approximation factor:

$$
\begin{aligned}
\left(\sum_{i=1}^{k-1} v_{i}\right)+v_{k} & \geq \sum_{i=1}^{k-1} v_{i}+\frac{W-\left(w_{1}+\ldots+w_{k-1}\right)}{w_{k}} v_{k} \\
& =\mathrm{OPT}(\mathrm{LP}) \\
& \geq \mathrm{OPT}(\mathrm{IP})
\end{aligned}
$$

Thus

$$
\left(\sum_{i=1}^{k-1} v_{i}\right)+v_{k} \geq \mathrm{OPT}(\mathrm{IP})
$$

Thus at least one of $\left(\sum_{i=1}^{k-1} v_{i}\right)$ and v_{k} is $\geq \mathrm{OPT}(\mathrm{IP}) / 2$, and the algorithm indeed picks the largest of the $\left(\sum_{i=1}^{k-1} v_{i}\right)$ and v_{k}.

3. Theory of Linear Inequalities

Let $P \subseteq \mathbb{R}^{n}$ be a nonempty polytope. Let x^{0} be a vertex of P. Let x^{1}, \ldots, x^{k} be all the neighboring vertices of x^{0}, i.e., all the one dimensional faces of P containing x^{0} are of the form $\operatorname{conv}\left\{x^{0}, x^{t}\right\}$ for $t \in\{1, \ldots, k\}$. Prove that if $x \in P$, then there exists $\lambda_{t} \geq 0$ for $t \in\{1, \ldots, k\}$ such that

$$
x=\sum_{t=1}^{k} \lambda_{t}\left(x^{t}-x^{0}\right)+x^{0} .
$$

Solution. Since x^{0} is a vertex, i.e. a face of P, there exists a vector $c \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
c x^{0}<c x \forall x \in P \backslash\left\{x^{0}\right\} \tag{1}
\end{equation*}
$$

Let $x^{0}, \ldots, x^{k}, x^{k+1}, \ldots, x^{r}$ be the vertices of P. Since there are a finite number of vertices, by (1), there exists $d \in \mathbb{R}$ such that $c x^{0}<d$ and $c x^{t}>d$ for all $t \in\{1, \ldots, r\}$. Let $Q \subseteq \mathbb{R}^{n}$ be the polytope $Q:=P \cap\left\{x \in \mathbb{R}^{n} \mid c x=d\right\}$. Let $v^{t}=\operatorname{conv}\left\{x^{0}, x^{t}\right\} \cap\left\{x \in \mathbb{R}^{n} \mid c x=d\right\}$ for $t \in\{1, \ldots, k\}$. Since $c x^{0}<d<c x^{t}$, we obtain that v^{t} is a point.

We claim that the set of points v^{t} 's are exactly the set of vertices of Q : Let u be a vertex of Q. Therefore there are n linearly independent constraints (i.e. constraints whose left-hand-side vectors are linearly independent) of Q that are satisfied at equality by u (This is equation (23), page 104 in textbook). By definition of $Q, c u=d$ and therefore there are atleast $n-1$ linearly independent constraints of P that are satisfied at equality by u. Therefore u belongs to some one dimensional face of P. Since $c u=d$, and $c x^{t}>d$ for all $t \in\{1, \ldots, r\}$, this one dimensional face is of the form $\operatorname{conv}\left\{x^{0}, x^{t}\right\}$ for $t \in\{1, \ldots, r\}$. Since all the one dimensional faces of P containing x^{0} are $\operatorname{conv}\left\{x^{0}, x^{t}\right\}$ for $t \in\{1, \ldots, k\}$, we have that $u=\operatorname{conv}\left\{x^{0}, x^{t}\right\} \cap\left\{x \in \mathbb{R}^{n} \mid c x=d\right\}$ for some $t \in\{1, \ldots, k\}$. Conversely, observe that the point v^{t} satisifes at equality n linearly independent constraints satisfying Q, since there are $n-1$ linearly independent constraints satisfied at equality by the edge conv $\left\{x^{0}, x^{t}\right\}$ and the constraint $c x=d$ is the $n^{\text {th }}$ linearly independent constraint (since $c x^{t} \neq c x^{0}, c x=d$ is linearly independent from the other $n-1$ constraints.). Therefore v^{t} is a vertex of Q.

Representation Theorem (Thm 8.5) applied to Q and the above claim implies that

$$
\begin{equation*}
Q=\operatorname{conv}\left\{\cup_{t=1}^{k} v^{t}\right\}=\operatorname{conv}\left\{\cup_{t=1}^{k}\left(\gamma_{t}\left(x^{t}-x^{0}\right)+x^{0}\right)\right\}, \tag{2}
\end{equation*}
$$

where $\gamma_{t} \in[0,1]$ for all $t \in\{1, \ldots, k\}$.
By applying Representation Theorem to P, it is sufficient to prove the statement of the problem for the vertices $x^{t}, t \in\{k+1, \ldots, r\}$. By construction of c, there exists, \tilde{x} satisfying

$$
\begin{equation*}
\tilde{x} \in \operatorname{conv}\left\{x^{0}, x^{t}\right\}, \quad c \tilde{x}=d \tag{3}
\end{equation*}
$$

Therefore, $\tilde{x} \in P \cap\left\{x \in \mathbb{R}^{n} \mid c x=d\right\}=Q$. By (2) and (3), we have that $x^{t}=\mu\left(\tilde{x}-x^{0}\right)+x^{0}=$ $\mu\left(\sum_{i=1}^{k} \tau_{i}\left(\gamma_{i}\left(x^{i}-x^{0}\right)+x^{0}\right)-x^{0}\right)+x^{0}$ for some $\mu>1$ and $\tau_{i} \geq 0$ for all $i \in\{1, \ldots, k\}, \sum_{i=1}^{k} \tau_{i}=1$, or equivalently $x^{t}=\sum_{i=1}^{k} \lambda_{i}\left(x^{i}-x^{0}\right)+x^{0}$ for some $\lambda_{i} \geq 0$ for all $i \in\{1, \ldots, k\}$.

4. Combinatorial Optimization

(a) (3 points) Let A be a matrix with entries equal to 0,1 , or -1 of the following form:

$$
\left[\begin{array}{ccccc}
\pm 1 & & & & \pm 1 \\
\pm 1 & \pm 1 & & & \\
& \pm 1 & \ddots & & \\
& & \ddots & \pm 1 & \\
& & & \pm 1 & \pm 1
\end{array}\right]
$$

Show that A is totally unimodular if and only if the sum of the entries is equal to $0(\bmod 4)$.
Let A and B be two totally unimodular $n \times m$ matrices. Assume that $A[i, j] \neq 0$ if and only if $B[i, j] \neq 0$ for $1 \leq i \leq n, 1 \leq j \leq m$. Let G be the bipartite graph with vertices $v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{m}$ such that v_{i} is adjacent u_{j} if and only if $A[i, j] \neq 0$.
(b) (2 points) Let T be a forest in G. Show that there exists A^{\prime} which is obtained from A by repeatedly scaling rows and columns by factors of 1 or -1 such that

$$
A^{\prime}[i, j]=B[i, j] \text { for all } i, j \text { such that } v_{i} u_{j} \in E(T)
$$

(c) (5 points) Show that A may be obtained from B by repeatedly scaling rows and columns by factors of 1 or -1 .

Solution. (a) Observe that there exists A^{\prime} of the form

$$
\left[\begin{array}{ccccc}
1 & & & & \alpha \\
1 & 1 & & & \\
& 1 & \ddots & & \\
& & \ddots & 1 & \\
& & & 1 & 1
\end{array}\right]
$$

for some $\alpha \in\{-1,1\}$ which is obtained from A by resigning rows and columns by -1 . By construction, A is totally unimodular if and only if A^{\prime} is totally unimodular. Note as well that the sum of the entries modulo 4 is the same for A and A^{\prime}, as the sum modulo 4 is unchanged by resigning either a row or column by -1 .

Assume that A is an $n \times n$ matrix. By expanding the determinant on the final column, we see that $\operatorname{det}\left(A^{\prime}\right) \in\{1,-1,0\}$ if $\alpha=-1$ and n is odd, or alternatively, if $\alpha=1$ and n is even. Thus, if A is totally unimodular, then the sum of the entries is equal to zero modulo 4 .

To see the other direction, we may assume that $\alpha=-1$ if n is odd and $\alpha=1$ if n is even. Assume A^{\prime} is not totally modular and pick a $k \times k$ submatrix $A^{\prime \prime}$ of A^{\prime} such that $\operatorname{det}\left(A^{\prime \prime}\right) \notin\{1,0,-1\}$. Moreover, do so to minimize k. Every row and every column must have at least two non-zero entries; otherwise, we could expand the determinant on a row or column with at most one non-zero entry and by the minimality of k, derive a contradiction to $\operatorname{det}\left(A^{\prime \prime}\right) \notin\{1,0,-1\}$. But now it follows that $A^{\prime \prime}=A^{\prime}$ and $\operatorname{det}\left(A^{\prime}\right) \in\{1,0,-1\}$, a contradiction.
(b) Assume the claim is false. Pick totally unimodular matrices A and B with auxiliary graph G defined as above, and forest T in G forming a counterexample to the claim. Moreover, assume we pick the counterexample to minimize $|V(G)|$.

Let $v \in V(T)$ be a leaf. Let \bar{A} (respectively \bar{B}) be the matrix obtained from A (resp. B) by deleting the row or column of A (resp. B) corresponding to the vertex v. Let \bar{G} be the auxiliary graph corresponding to A. The graph $T-v$ is a forest in \bar{G}, and so by our choice of counterexample, there exists a matrix \bar{A}^{\prime} obtained from \bar{A} by scaling rows and columns of \bar{A} by -1 such that $\bar{A}^{\prime}[i, j]=$ $\bar{B}[i, j]$ for all i, j such that $v_{i} u_{j} \in E(T-v)$. By scaling the same rows and columns of A, we find A^{\prime} such that $A^{\prime}[i, j]=B[i, j]$ for all edges $v_{i} u_{j} \in E(T-v)$. We can then rescale the row or column corresponding to v to ensure that A^{\prime} and B agree on the entry corresponding to the unique edge of T incident the vertex v, proving the claim.
(c) Fix a forest T in G containing a maximum number of edges. Let A^{\prime} be obtained from A by resigning rows and columns by -1 such that

1. $A^{\prime}[i, j]=B[i, j]$ for all i, j such that $v_{i} u_{j} \in E(T)$, and
2. subject to 1 , the number of pairs of indices i, j such that $A^{\prime}[i, j]=B[i, j]$ is maximized.

We may assume that there exists indices i and j such that $A^{\prime}[i, j] \neq B[i, j]$, as otherwise the theorem is proven. By our choice of T and choice of counterexample to satisfy 1 , the edge $v_{i} u_{j}$ is contained in a cycle C of G such that for all edges $v_{i^{\prime}} u_{j^{\prime}} \in E(C)$ with $\left\{i^{\prime}, j^{\prime}\right\} \neq\{i, j\}$, we have that $A^{\prime}\left[i^{\prime}, j^{\prime}\right]=B\left[i^{\prime}, j^{\prime}\right]$. Pick such a pair of indices i, j and cycle C to minimize $|E(C)|$. It follows that C is an induced cycle in G.

If we now let \bar{A}^{\prime} be the submatrix of A^{\prime} given by the rows and columns corresponding to $V(C)$. Similarly, define \bar{B} to be the submatrix of B given by the rows and columns corresponding to $V(C)$. After possibly reordering the columns and rows, we see that both \bar{A}^{\prime} and \bar{B} are of the form

$$
\left[\begin{array}{ccccc}
\pm 1 & & & & \gamma \\
\pm 1 & \pm 1 & & & \\
& \pm 1 & \ddots & & \\
& & \ddots & \pm 1 & \\
& & & \pm 1 & \pm 1
\end{array}\right]
$$

given the fact that C is an induced cycle. Moreover, \bar{A}^{\prime} and \bar{B} agree at every entry except one, indicated as γ above, corresponding to the edge $v_{i} u_{j}$ of G. However, by part a. of the problem, there is only one choice of the value $\gamma \in\{-1,1\}$ which makes the determinant equal to 1 or -1 . This contradicts our choice of i and j, proving the claim.

5. Graph Theory

A graph G is minimally 2-connected if it is 2-connected and for every edge $e \in E(G)$ the graph $G \backslash e$ is not 2 -connected. Prove that every minimally 2 -connected graph has a vertex of degree two.

Solution: This follows easily from the ear decomposition theorem. Another proof can be obtained as follows. Let $e \in E(G)$. Since $G \backslash e$ is not 2-connected, it has at least two blocks. By the block structure theorem $G \backslash e$ has an end-block H; that is, a block containing exactly one cutvertex. Let c be the unique cutvertex of H. Let us choose e and H so that H is minimal with respect to taking subgraphs. Since G is 2-connected, one end of e, say v, belongs to $V(H)-\{c\}$. We may assume that v has degree at least three in G, for otherwise we are done. Thus H has at least three vertices, and it follows that it has an edge f not incident with c. Let H^{\prime} be an end-block of $G \backslash f$ not containing e. Since H^{\prime} includes an end of f it follows that H^{\prime} is a subgraph of H; but it does not include f, and hence it is a proper subgraph of H, a contradiction.

6. Probabilistic methods

A random poset of height 2 is formed as follows: The set of minimal elements is $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, and the set of maximal elements is $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. For each pair $(a, b) \in A \times B, \operatorname{Pr}[a<b]=p$ where $0 \leq p \leq 1$. In general p is a function of n, but here we fix $p=e^{-12}$. Events corresponding to distinct pairs in $A \times B$ are mutually independent. The notation $a \| b$ indicates that an element $a \in A$ is incomparable with an element $b \in B$. For a poset P in this space, let $f(P)$ denote the least positive
integer so that there exist t linear extensions $L_{1}, L_{2}, \ldots, L_{t}$ of P so that for each pair $(a, b) \in A \times B$ with $a \| b$, there is some L_{i} for which $a>b$ in L_{i}.
(a) Show that there exists a constant c so that a.s. $f(P) \leq n-c n / \ln n$. Hint. Consider linear extensions in which only the bottom two elements of B are specified. The elements of A are inserted into three gaps.
(b) For each $x \in A \cup B$, let $d(x)$ denote the degree of x in P, i.e., the number of elements comparable with x in P. Also, let $\Delta(P)$ denote the maximum value of $d(x)$ taken over all $x \in A \cup B$. Use a second moment method to show that a.s. $\Delta(P)<(1+o(1)) p n$.

Solution: (a) Let c be a constant (we specify the actual size of c later). Set $t=n-c n / \ln n$ and $m=n-t=c n / \ln n$. Form a family $L_{1}, L_{2}, \ldots, L_{t}$ of linear extensions of P as follows. First, choose an arbitrary t-element subset $S=\left\{s_{1}, s_{2}, \ldots, s_{t}\right\}$ of B. Label the remaining elements of B as $S^{\prime}=\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{m}^{\prime}\right\}$. In the linear extension L_{i}, s_{i} will be the lowest element of B. Choose an arbitrary partition of the integers in $\{1,2, \ldots, t\}$ into m blocks each of size t / m, and label these blocks as $W_{1}, W_{2}, \ldots, W_{m}$. When the integer i belongs to the block W_{j}, the element s_{j}^{\prime} will be the second lowest element of B in L_{i}.

For each $i=1,2, \ldots, t$, when $i \in W_{j}$, we insert the elements of A in L_{i} by placing them into one of three gaps: the bottom gap is immediatly under s_{i}; the middle gap is between s_{i} and s_{j}^{\prime}; and the top gap is immediately above s_{j}^{\prime} (and below all other elements of B). The order of elements of A placed into the same gap is arbitrary. In the bottom gap, we place those elements $a \in A$ with $a<s_{i}$ in P. In the middle gap, we place those elements $a \in A$ with $a \| s_{i}$ and $a<s_{j}^{\prime}$ in P. In the top gap, we place those elements $a \in A$ with $a \| s_{i}$ and $a \| s_{j}^{\prime}$ in P.

Evidently, each S_{i} is a linear extension. So we need only show that if $a \in A, b \in B$ and $a \| b$, there is some L_{i} with $a>b$ in L_{i}. This is obviously true if $b=s_{i}$ for some i. So we assume that $b=s_{j}^{\prime}$ for some j. In this case, $a>b$ in some L_{i} with $i \in W_{j}$ unless $a<s_{i}$ for every $i \in W_{j}$. Now there are $n m$ pairs $\left(a, s_{j}\right)$ and the probability that any such pair is "bad" is $p^{t / m}$. So the expected number of bad pairs is at most $n m p^{t / m}$. Now $t / m \sim \ln n / c$ and $n m<n^{2}$, so the expected number of bad pairs is $o(1)$ provided $n^{2} e^{\ln n \ln p / c}=o(1)$. Since $\ln p=-12$, it suffices to have $4 c=-\ln p=12$, i.e., $c=3$.
(b) First, focus on the quantities $d(a)$ where $a \in A$. For each $a \in A$, the quantity $d(a)$ is a bernoulli r.v. with mean $p n$ and variance $p n(1-p)$. It follows that $\operatorname{Pr}[d(a)-p n \geq \lambda \sigma] \leq e^{-\lambda^{2} / 2}$. Now $\sigma=\sqrt{p n(1-p)}>n^{1 / 3}$, being terribly generous. Setting $\lambda=n^{1 / 3}$, we see that the probability that some $a \in A$ is "bad" because it has degree more than $p n+n^{2 / 3}$ is less than $n e^{-n^{2 / 3} / 2}$ which certainly goes to zero, i.e., a.s there are no bad elements of A. Dually, a.s. there are no bad elements of B, which implies that a.s. $\Delta(P) \leq p n+n^{2 / 3}=(1+o(1)) p n$.

7. Algebra

Let F be a field. Assume that $f_{1}, \ldots, f_{k} \in F[x]$ are distinct monic irreducible polynomials and e_{1}, \ldots, e_{k} are positive integers. Let $I \subset F[x]$ be the ideal generated by $\prod_{i=1}^{k} f_{i}^{e_{i}}$ and let R be the quotient ring $F[x] / I$. How many ideals does R have? How many of them are maximal ideals?

Solution: We'll show that R has $\prod_{i=1}^{k}\left(e_{i}+1\right)$ ideals and that k of them are maximal.
Let $\phi: F[x] \rightarrow R$ be the quotient homomorphism. The map $\bar{J} \mapsto J=\phi^{-1}(\bar{J})$ gives a bijection between ideals of R and ideals of $F[x]$ which contain I. Moreover, an ideal \bar{J} of R is maximal if and only if $\phi^{-1}(\bar{J})$ is a maximal ideal of $F[x]$. Thus we will count ideals and maximal ideals of $F[x]$ containing I.

Let J be an ideal of $F[x]$ containing I. Since $F[x]$ is a PID, J is generated by a non-zero element $f \in F[x]$ which we may assume to be monic. The containment $I \subset J$ implies that f divides $\prod_{i=1}^{k} f_{i}^{e_{i}}$ and distinct monic divisors of $\prod_{i=1}^{k} f_{i}^{e_{i}}$ give distinct ideals J containing I. Thus the number of ideals J containing I is the same as the number of monic divisors of $\prod_{i=1}^{k} f_{i}^{e_{i}}$. Since the f_{i} are assumed to be monic, distinct, and irreducible, there are $\prod_{i=1}^{k}\left(e_{i}+1\right)$ such divisors, namely

$$
\prod_{i=1}^{k} f_{i}^{d_{i}}
$$

where $0 \leq d_{i} \leq e_{i}$ for all i.
Since $F[x]$ is a PID, an ideal J is maximal if and only if it is prime, if and only if it is generated by an irreducible polynomial. The monic irreducible divisors of $\prod_{i=1}^{k} f_{i}^{e_{i}}$ are precisely the products $\prod_{i=1}^{k} f_{i}^{d_{i}}$ where one of the exponents d_{i} is 1 and the others are 0 . Thus there are k maximal ideals of $F[x]$ containing I.

