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1. Computability, Complexity and Algorithms

Define the class SNP to be the class of all languages that are accepted by polynomial time nondeter-
ministic Turing machines that have at most polynomial number of accepting computation paths for any
x ∈ L. Define the class ONP to be the class of all languages that are accepted by polynomial time
nondeterministic Turing machines that have an odd number of accepting computation paths for any
x ∈ L. Show that SNP ⊆ ONP .

Solution: Let L be a language in SNP that is accepted by an NP-machine N . For any string x ∈ L,
let q(|x|) be the number of accepting computation paths of N on x, where q(n) is a polynomial function.

On input x, consider the following NP-machine M :

• For i = 1 TO q(|x|) DO:

– Guess i distinct computation paths P1, P2, · · · , Pi and verify that these are accepting com-
putation paths of N on x by simulating N on x guided by the paths.

Clearly, M accepts x iff N accepts x.
Suppose x ∈ L. Then, there are at most q(|x|) accepting computation paths for N on x. For each

i in 1 ≤ i ≤ t, the machine has C(q(|x|), i) accepting computation paths so that it has a total of
2q(|x|) − 1 accepting computation paths on x.

(Here, C(n,m) stands for the number of ways of choosing m distinct elements from a set of n
elements.)

Suppose x 6∈ L. Then, M has 0 accepting computation paths.

2. Analysis of Algorithms

In the knapsack problem we are given distinct objects a1, . . . , an. Each object ai has positive integer
value vi and positive integer weight wi, 1 ≤ i ≤ n. We are also given a positive integer W , the
“knapsack capacity”. The problem is to find a subset of objects whose total weight does not exceed W
and whose total value is maximized. We assume that wi ≤ W for all i = 1, 2, . . . , n. Prove that the
following greedy algorithm for the knapsack problem achieves an approximation factor of 1/2. First
sort the objects according to decreasing ratio of value to weight. That is, a1, . . . , an are such that
v1

w1
≥ . . .

vk−1

wk−1

≥ vk
wk

≥ . . . vn
wn

, and let k be such that
∑k−1

i=1 wi ≤ W while
∑k

i=1 wi > W . Next, if
∑k−1

i=1 vi ≥ vk then output {a1, . . . , ak−1}, while if
∑k−1

i=1 vi < vk then output {ak}.

Solution: Write knapsack as an (IP), and take the (LP) relaxation and its dual (DP).

(IP)
max

∑n
i=1 vixi

s.t.
∑n

i=1 wixi ≤ W
xi ∈ {0, 1} 1≤ i≤n

(LP) (DP)
max

∑n
i=1 vixi min

∑n
i=1 yi + zW

s.t.
∑n

i=1 wixi ≤ W s.t. yi + wiz ≥ vi 1≤ i≤n
0≤xi≤1 1≤ i≤n yi≥0 1≤ i≤n

z ≥ 0
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CLAIM 1: The following assignment to the xi’s is primal feasible
(check by elementary calculations):

x1 = . . .=xk−1 =1

xk =
W−(w1+...+wk−1)

wk

xk+1 = . . .=xn =0

CLAIM 2: The following assignment to the yi’s is dual feasible
(check by elementary calculations):

yi = vi − wi
vk
wk

1 ≤ i ≤ k

yi = 0 k+1 ≤ i ≤ n
z = vk

wk

CLAIM 3: For the primal and dual feasible solutions of CLAIMS 1 and 2, the objective values of the
(LP) and (DP) are equal. Thus, these solutions are optimal.
PROOF: Verify that

k−1
∑

i=1

vi +
W − (w1 + . . . + wk−1)

wk
vk =

k
∑

i=1

(

vi − wi
vk

wk

)

+
vk

wk
W

We are now ready to establish the approximation factor:

(

k−1
∑

i=1

vi

)

+ vk ≥
k−1
∑

i=1

vi +
W − (w1 + . . . + wk−1)

wk
vk

= OPT(LP)

≥ OPT(IP)

Thus
(

k−1
∑

i=1

vi

)

+ vk ≥ OPT(IP)

Thus at least one of
(

∑k−1
i=1 vi

)

and vk is ≥ OPT(IP)/2, and the algorithm indeed picks the largest of

the
(

∑k−1
i=1 vi

)

and vk.

3. Theory of Linear Inequalities

Let P ⊆ R
n be a nonempty polytope. Let x0 be a vertex of P . Let x1, . . . , xk be all the neighboring

vertices of x0, i.e., all the one dimensional faces of P containing x0 are of the form conv{x0, xt} for
t ∈ {1, . . . , k}. Prove that if x ∈ P , then there exists λt ≥ 0 for t ∈ {1, . . . , k} such that

x =

k
∑

t=1

λt(x
t − x0) + x0.
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Solution. Since x0 is a vertex, i.e. a face of P , there exists a vector c ∈ R
n such that

cx0 < cx ∀x ∈ P \ {x0}. (1)

Let x0, . . . , xk, xk+1, . . . , xr be the vertices of P . Since there are a finite number of vertices, by (1),
there exists d ∈ R such that cx0 < d and cxt > d for all t ∈ {1, . . . , r}. Let Q ⊆ R

n be the polytope
Q := P ∩ {x ∈ R

n | cx = d}. Let vt = conv{x0, xt} ∩ {x ∈ R
n | cx = d} for t ∈ {1, . . . , k}. Since

cx0 < d < cxt, we obtain that vt is a point.
We claim that the set of points vt’s are exactly the set of vertices of Q: Let u be a vertex of Q.

Therefore there are n linearly independent constraints (i.e. constraints whose left-hand-side vectors
are linearly independent) of Q that are satisfied at equality by u (This is equation (23), page 104
in textbook). By definition of Q, cu = d and therefore there are atleast n − 1 linearly independent
constraints of P that are satisfied at equality by u. Therefore u belongs to some one dimensional
face of P . Since cu = d, and cxt > d for all t ∈ {1, . . . , r}, this one dimensional face is of the form
conv{x0, xt} for t ∈ {1, . . . , r}. Since all the one dimensional faces of P containing x0 are conv{x0, xt}
for t ∈ {1, . . . , k}, we have that u = conv{x0, xt}∩{x ∈ R

n | cx = d} for some t ∈ {1, . . . , k}. Conversely,
observe that the point vt satisifes at equality n linearly independent constraints satisfying Q, since there
are n−1 linearly independent constraints satisfied at equality by the edge conv{x0, xt} and the constraint
cx = d is the nth linearly independent constraint (since cxt 6= cx0, cx = d is linearly independent from
the other n − 1 constraints.). Therefore vt is a vertex of Q.

Representation Theorem (Thm 8.5) applied to Q and the above claim implies that

Q = conv{∪k
t=1v

t} = conv{∪k
t=1

(

γt(x
t − x0) + x0

)

}, (2)

where γt ∈ [0, 1] for all t ∈ {1, . . . , k}.
By applying Representation Theorem to P , it is sufficient to prove the statement of the problem for

the vertices xt, t ∈ {k + 1, . . . , r}. By construction of c, there exists, x̃ satisfying

x̃ ∈ conv{x0, xt}, cx̃ = d. (3)

Therefore, x̃ ∈ P ∩ {x ∈ R
n | cx = d} = Q. By (2) and (3), we have that xt = µ(x̃ − x0) + x0 =

µ
(

∑k
i=1 τi

(

γi(x
i − x0) + x0

)

− x0
)

+ x0 for some µ > 1 and τi ≥ 0 for all i ∈ {1, . . . , k},
∑k

i=1 τi = 1,

or equivalently xt =
∑k

i=1 λi(x
i − x0) + x0 for some λi ≥ 0 for all i ∈ {1, . . . , k}. �

4. Combinatorial Optimization

(a) (3 points) Let A be a matrix with entries equal to 0, 1, or -1 of the following form:

















±1 ±1
±1 ±1

±1
. . .
. . . ±1

±1 ±1
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Show that A is totally unimodular if and only if the sum of the entries is equal to 0(mod 4).
Let A and B be two totally unimodular n×m matrices. Assume that A[i, j] 6= 0 if and only if B[i, j] 6= 0
for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Let G be the bipartite graph with vertices v1, . . . , vn, u1, . . . , um such that vi

is adjacent uj if and only if A[i, j] 6= 0.
(b) (2 points) Let T be a forest in G. Show that there exists A′ which is obtained from A by repeatedly
scaling rows and columns by factors of 1 or -1 such that

A′[i, j] = B[i, j] for all i, j such that viuj ∈ E(T )

(c) (5 points) Show that A may be obtained from B by repeatedly scaling rows and columns by factors
of 1 or -1.

Solution. (a) Observe that there exists A′ of the form

















1 α
1 1

1
. . .
. . . 1

1 1

















for some α ∈ {−1, 1} which is obtained from A by resigning rows and columns by −1. By construction,
A is totally unimodular if and only if A′ is totally unimodular. Note as well that the sum of the entries
modulo 4 is the same for A and A′, as the sum modulo 4 is unchanged by resigning either a row or
column by −1.

Assume that A is an n× n matrix. By expanding the determinant on the final column, we see that
det(A′) ∈ {1,−1, 0} if α = −1 and n is odd, or alternatively, if α = 1 and n is even. Thus, if A is totally
unimodular, then the sum of the entries is equal to zero modulo 4.

To see the other direction, we may assume that α = −1 if n is odd and α = 1 if n is even. Assume
A′ is not totally modular and pick a k×k submatrix A′′ of A′ such that det(A′′) /∈ {1, 0,−1}. Moreover,
do so to minimize k. Every row and every column must have at least two non-zero entries; otherwise,
we could expand the determinant on a row or column with at most one non-zero entry and by the
minimality of k, derive a contradiction to det(A′′) /∈ {1, 0,−1}. But now it follows that A′′ = A′ and
det(A′) ∈ {1, 0,−1}, a contradiction.
(b) Assume the claim is false. Pick totally unimodular matrices A and B with auxiliary graph G
defined as above, and forest T in G forming a counterexample to the claim. Moreover, assume we pick
the counterexample to minimize |V (G)|.

Let v ∈ V (T ) be a leaf. Let Ā (respectively B̄) be the matrix obtained from A (resp. B) by
deleting the row or column of A (resp. B) corresponding to the vertex v. Let Ḡ be the auxiliary
graph corresponding to A. The graph T − v is a forest in Ḡ, and so by our choice of counterexample,
there exists a matrix Ā′ obtained from Ā by scaling rows and columns of Ā by −1 such that Ā′[i, j] =
B̄[i, j] for all i, j such that viuj ∈ E(T − v). By scaling the same rows and columns of A, we find A′

such that A′[i, j] = B[i, j] for all edges viuj ∈ E(T − v). We can then rescale the row or column
corresponding to v to ensure that A′ and B agree on the entry corresponding to the unique edge of T
incident the vertex v, proving the claim.
(c) Fix a forest T in G containing a maximum number of edges. Let A′ be obtained from A by resigning
rows and columns by −1 such that
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1. A′[i, j] = B[i, j] for all i, j such that viuj ∈ E(T ), and

2. subject to 1, the number of pairs of indices i, j such that A′[i, j] = B[i, j] is maximized.

We may assume that there exists indices i and j such that A′[i, j] 6= B[i, j], as otherwise the theorem
is proven. By our choice of T and choice of counterexample to satisfy 1, the edge viuj is contained in a
cycle C of G such that for all edges vi′uj′ ∈ E(C) with {i′, j′} 6= {i, j}, we have that A′[i′, j′] = B[i′, j′].
Pick such a pair of indices i, j and cycle C to minimize |E(C)|. It follows that C is an induced cycle in
G.

If we now let Ā′ be the submatrix of A′ given by the rows and columns corresponding to V (C).
Similarly, define B̄ to be the submatrix of B given by the rows and columns corresponding to V (C).
After possibly reordering the columns and rows, we see that both Ā′ and B̄ are of the form

















±1 γ
±1 ±1

±1
. . .
. . . ±1

±1 ±1

















given the fact that C is an induced cycle. Moreover, Ā′ and B̄ agree at every entry except one, indicated
as γ above, corresponding to the edge viuj of G. However, by part a. of the problem, there is only one
choice of the value γ ∈ {−1, 1} which makes the determinant equal to 1 or −1. This contradicts our
choice of i and j, proving the claim.

5. Graph Theory

A graph G is minimally 2-connected if it is 2-connected and for every edge e ∈ E(G) the graph G\e is
not 2-connected. Prove that every minimally 2-connected graph has a vertex of degree two.

Solution: This follows easily from the ear decomposition theorem. Another proof can be obtained as
follows. Let e ∈ E(G). Since G\e is not 2-connected, it has at least two blocks. By the block structure
theorem G\e has an end-block H; that is, a block containing exactly one cutvertex. Let c be the unique
cutvertex of H. Let us choose e and H so that H is minimal with respect to taking subgraphs. Since G
is 2-connected, one end of e, say v, belongs to V (H) − {c}. We may assume that v has degree at least
three in G, for otherwise we are done. Thus H has at least three vertices, and it follows that it has an
edge f not incident with c. Let H ′ be an end-block of G\f not containing e. Since H ′ includes an end
of f it follows that H ′ is a subgraph of H; but it does not include f , and hence it is a proper subgraph
of H, a contradiction.

6. Probabilistic methods

A random poset of height 2 is formed as follows: The set of minimal elements is A = {a1, a2, . . . , an},
and the set of maximal elements is B = {b1, b2, . . . , bn}. For each pair (a, b) ∈ A × B, Pr[a < b] = p
where 0 ≤ p ≤ 1. In general p is a function of n, but here we fix p = e−12. Events corresponding to
distinct pairs in A × B are mutually independent. The notation a‖b indicates that an element a ∈ A
is incomparable with an element b ∈ B. For a poset P in this space, let f(P ) denote the least positive
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integer so that there exist t linear extensions L1, L2, . . . , Lt of P so that for each pair (a, b) ∈ A × B
with a‖b, there is some Li for which a > b in Li.
(a) Show that there exists a constant c so that a.s. f(P ) ≤ n−cn/ ln n. Hint. Consider linear extensions
in which only the bottom two elements of B are specified. The elements of A are inserted into three
gaps.
(b) For each x ∈ A ∪ B, let d(x) denote the degree of x in P , i.e., the number of elements comparable
with x in P . Also, let ∆(P ) denote the maximum value of d(x) taken over all x ∈ A∪B. Use a second
moment method to show that a.s. ∆(P ) < (1 + o(1))pn.

Solution: (a) Let c be a constant (we specify the actual size of c later). Set t = n − cn/ ln n and
m = n − t = cn/ ln n. Form a family L1, L2, . . . , Lt of linear extensions of P as follows. First,
choose an arbitrary t-element subset S = {s1, s2, . . . , st} of B. Label the remaining elements of B
as S′ = {s′1, s

′
2, . . . , s

′
m}. In the linear extension Li, si will be the lowest element of B. Choose an

arbitrary partition of the integers in {1, 2, . . . , t} into m blocks each of size t/m, and label these blocks
as W1,W2, . . . ,Wm. When the integer i belongs to the block Wj, the element s′j will be the second
lowest element of B in Li.

For each i = 1, 2, . . . , t, when i ∈ Wj, we insert the elements of A in Li by placing them into one of
three gaps: the bottom gap is immediatly under si; the middle gap is between si and s′j; and the top
gap is immediately above s′j (and below all other elements of B). The order of elements of A placed
into the same gap is arbitrary. In the bottom gap, we place those elements a ∈ A with a < si in P . In
the middle gap, we place those elements a ∈ A with a‖si and a < s′j in P . In the top gap, we place
those elements a ∈ A with a‖si and a‖s′j in P .

Evidently, each Si is a linear extension. So we need only show that if a ∈ A, b ∈ B and a‖b, there
is some Li with a > b in Li. This is obviously true if b = si for some i. So we assume that b = s′j for
some j. In this case, a > b in some Li with i ∈ Wj unless a < si for every i ∈ Wj . Now there are nm
pairs (a, sj) and the probability that any such pair is “bad” is pt/m. So the expected number of bad
pairs is at most nmpt/m. Now t/m ∼ ln n/c and nm < n2, so the expected number of bad pairs is o(1)
provided n2eln n ln p/c = o(1). Since ln p = −12, it suffices to have 4c = − ln p = 12, i.e., c = 3.
(b) First, focus on the quantities d(a) where a ∈ A. For each a ∈ A, the quantity d(a) is a bernoulli
r.v. with mean pn and variance pn(1 − p). It follows that Pr[d(a) − pn ≥ λσ] ≤ e−λ2/2. Now
σ =

√

pn(1 − p) > n1/3, being terribly generous. Setting λ = n1/3, we see that the probability that

some a ∈ A is “bad” because it has degree more than pn + n2/3 is less than ne−n2/3/2 which certainly
goes to zero, i.e., a.s there are no bad elements of A. Dually, a.s. there are no bad elements of B, which
implies that a.s. ∆(P ) ≤ pn + n2/3 = (1 + o(1))pn.

7. Algebra

Let F be a field. Assume that f1, . . . , fk ∈ F [x] are distinct monic irreducible polynomials and e1, . . . , ek

are positive integers. Let I ⊂ F [x] be the ideal generated by
∏k

i=1 f ei
i and let R be the quotient ring

F [x]/I. How many ideals does R have? How many of them are maximal ideals?

Solution: We’ll show that R has
∏k

i=1(ei + 1) ideals and that k of them are maximal.
Let φ : F [x] → R be the quotient homomorphism. The map J 7→ J = φ−1(J) gives a bijection

between ideals of R and ideals of F [x] which contain I. Moreover, an ideal J of R is maximal if and only
if φ−1(J) is a maximal ideal of F [x]. Thus we will count ideals and maximal ideals of F [x] containing
I.
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Let J be an ideal of F [x] containing I. Since F [x] is a PID, J is generated by a non-zero element
f ∈ F [x] which we may assume to be monic. The containment I ⊂ J implies that f divides

∏k
i=1 f ei

i

and distinct monic divisors of
∏k

i=1 f ei
i give distinct ideals J containing I. Thus the number of ideals

J containing I is the same as the number of monic divisors of
∏k

i=1 f ei
i . Since the fi are assumed to be

monic, distinct, and irreducible, there are
∏k

i=1(ei + 1) such divisors, namely

k
∏

i=1

fdi
i

where 0 ≤ di ≤ ei for all i.
Since F [x] is a PID, an ideal J is maximal if and only if it is prime, if and only if it is generated

by an irreducible polynomial. The monic irreducible divisors of
∏k

i=1 f ei
i are precisely the products

∏k
i=1 fdi

i where one of the exponents di is 1 and the others are 0. Thus there are k maximal ideals of
F [x] containing I.


