1. Computability, Complexity and Algorithms

Define the class $\mathcal{S N P}$ to be the class of all languages that are accepted by polynomial time nondeterministic Turing machines that have at most polynomial number of accepting computation paths for any $x \in L$. Define the class $\mathcal{O N} \mathcal{P}$ to be the class of all languages that are accepted by polynomial time nondeterministic Turing machines that have an odd number of accepting computation paths for any $x \in L$. Show that $\mathcal{S N P} \subseteq \mathcal{O} \mathcal{N} \mathcal{P}$.

2. Analysis of Algorithms

In the knapsack problem we are given distinct objects a_{1}, \ldots, a_{n}. Each object a_{i} has positive integer value v_{i} and positive integer weight $w_{i}, 1 \leq i \leq n$. We are also given a positive integer W, the "knapsack capacity". The problem is to find a subset of objects whose total weight does not exceed W and whose total value is maximized. We assume that $w_{i} \leq W$ for all $i=1,2, \ldots, n$. Prove that the following greedy algorithm for the knapsack problem achieves an approximation factor of $1 / 2$. First sort the objects according to decreasing ratio of value to weight. That is, a_{1}, \ldots, a_{n} are such that $\frac{v_{1}}{w_{1}} \geq \ldots \frac{v_{k-1}}{w_{k-1}} \geq \frac{v_{k}}{w_{k}} \geq \ldots \frac{v_{n}}{w_{n}}$, and let k be such that $\sum_{i=1}^{k-1} w_{i} \leq W$ while $\sum_{i=1}^{k} w_{i}>W$. Next, if $\sum_{i=1}^{k-1} v_{i} \geq v_{k}$ then output $\left\{a_{1}, \ldots, a_{k-1}\right\}$, while if $\sum_{i=1}^{k-1} v_{i}<v_{k}$ then output $\left\{a_{k}\right\}$.

3. Theory of Linear Inequalities

Let $P \subseteq \mathbb{R}^{n}$ be a nonempty polytope. Let x^{0} be a vertex of P. Let x^{1}, \ldots, x^{k} be all the neighboring vertices of x^{0}, i.e., all the one dimensional faces of P containing x^{0} are of the form $\operatorname{conv}\left\{x^{0}, x^{t}\right\}$ for $t \in\{1, \ldots, k\}$. Prove that if $x \in P$, then there exists $\lambda_{t} \geq 0$ for $t \in\{1, \ldots, k\}$ such that

$$
x=\sum_{t=1}^{k} \lambda_{t}\left(x^{t}-x^{0}\right)+x^{0} .
$$

4. Combinatorial Optimization

(a) (3 points) Let A be a matrix with entries equal to 0,1 , or -1 of the following form:

$$
\left[\begin{array}{ccccc}
\pm 1 & & & & \pm 1 \\
\pm 1 & \pm 1 & & & \\
& \pm 1 & \ddots & & \\
& & \ddots & \pm 1 & \\
& & & \pm 1 & \pm 1
\end{array}\right]
$$

Show that A is totally unimodular if and only if the sum of the entries is equal to $0(\bmod 4)$.
Let A and B be two totally unimodular $n \times m$ matrices. Assume that $A[i, j] \neq 0$ if and only if $B[i, j] \neq 0$ for $1 \leq i \leq n, 1 \leq j \leq m$. Let G be the bipartite graph with vertices $v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{m}$ such that v_{i} is adjacent u_{j} if and only if $A[i, j] \neq 0$.
(b) (2 points) Let T be a forest in G. Show that there exists A^{\prime} which is obtained from A by repeatedly scaling rows and columns by factors of 1 or -1 such that

$$
A^{\prime}[i, j]=B[i, j] \text { for all } i, j \text { such that } v_{i} u_{j} \in E(T)
$$

(c) (5 points) Show that A may be obtained from B by repeatedly scaling rows and columns by factors of 1 or -1 .

5. Graph Theory

A graph G is minimally 2-connected if it is 2-connected and for every edge $e \in E(G)$ the graph $G \backslash e$ is not 2 -connected. Prove that every minimally 2 -connected graph has a vertex of degree two.

6. Probabilistic methods

A random poset of height 2 is formed as follows: The set of minimal elements is $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, and the set of maximal elements is $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$. For each pair $(a, b) \in A \times B, \operatorname{Pr}[a<b]=p$ where $0 \leq p \leq 1$. In general p is a function of n, but here we fix $p=e^{-12}$. Events corresponding to distinct pairs in $A \times B$ are mutually independent. The notation $a \| b$ indicates that an element $a \in A$ is incomparable with an element $b \in B$. For a poset P in this space, let $f(P)$ denote the least positive integer so that there exist t linear extensions $L_{1}, L_{2}, \ldots, L_{t}$ of P so that for each pair $(a, b) \in A \times B$ with $a \| b$, there is some L_{i} for which $a>b$ in L_{i}.
(a) Show that there exists a constant c so that a.s. $f(P) \leq n-c n / \ln n$. Hint. Consider linear extensions in which only the bottom two elements of B are specified. The elements of A are inserted into three gaps.
(b) For each $x \in A \cup B$, let $d(x)$ denote the degree of x in P, i.e., the number of elements comparable with x in P. Also, let $\Delta(P)$ denote the maximum value of $d(x)$ taken over all $x \in A \cup B$. Use a second moment method to show that a.s. $\Delta(P)<(1+o(1)) p n$.

7. Algebra

Let F be a field. Assume that $f_{1}, \ldots, f_{k} \in F[x]$ are distinct monic irreducible polynomials and e_{1}, \ldots, e_{k} are positive integers. Let $I \subset F[x]$ be the ideal generated by $\prod_{i=1}^{k} f_{i}^{e_{i}}$ and let R be the quotient ring $F[x] / I$. How many ideals does R have? How many of them are maximal ideals?

