1. Analysis of Algorithms

A k-uniform hypergraph $H=(V, E)$ is composed of a vertex set V and a collection E of subsets of V of size k (so a 2-uniform hypergraph is just a graph). A vertex cover of $H=(V, E)$ is a collection of vertices that intersects all the edges of H.

1. Give a polynomial time k-approximation algorithm for vertex-cover in k-uniform hypergraphs.
2. Give a fixed-parameter algorithm for vertex-cover in k-uniform hypergraph. That is, show that for any k and d there is an algorithm that decides in time $f(k, d) \cdot n^{k}$ if a k-uniform hypergraph on n vertices has a vertex cover of size d. Here, $f(k, d)$ can be any function of k and d that is independent of n.

2. Approximation Algorithms

Recall that MAX-SAT is the following problem: Given a conjunctive normal form formula f on Boolean variables x_{1}, \ldots, x_{n}, and non-negative weights, w_{c}, for each clause c of f, find a truth assignment to the Boolean variables that maximizes the total weight of satisfied clauses.
(a) Show that the following is a factor $1 / 2$ approximation algorithm for MAX-SAT. Let τ be an arbitrary truth assignment, and τ^{\prime} be its complement, i.e., a variable is True in τ if and only if it is False in τ^{\prime}. Compute the weight of clauses satisfied by τ and τ^{\prime}, then output the better assignment.
(b) Give a tight example: Class of input instances where this algorithm performs as badly as $1 / 2$.

3. Theory of Linear Inequalities

Let a_{1}, \ldots, a_{k} be rational vectors. Show that if $\left\{a_{1}, \ldots, a_{k}\right\}$ is a Hilbert basis then $\left\{a_{1}, \ldots, a_{k},-a_{1}\right\}$ is also a Hilbert basis.

Use this result to give an alternative proof of Theorem 22.2 in A. Shrijver's Theory of Linear and Integer Programming: If $A x \leq b, \alpha^{T} x \leq \beta$ is a totally-dual-integral system, then the system $A x \leq b, \alpha^{T} x=\beta$ is also totally-dual integral.

4. Combinatorial Optimization

Let $D=(V, A)$ be a directed graph with arc costs $\left(c_{a}: a \in A\right)$ and let $r, s \in V$. Show that the problem of finding a minimum-cost simple directed (r, s)-dipath in D containing every vertex in V can be reduced to the problem of finding a maximum-weight common independent set of three matroids.

5. Graph Theory

Let G be a connected graph on n vertices and m edges. For $v \in V(G)$ let $\delta(v)$ denote the set of edges incident with v, and let X be the subspace of $\mathbb{R}^{E(G)}$ consisting of all vectors \mathbf{y} satisfying $\sum_{e \in \delta(v)} y_{e}=0$ for every $v \in V(G)$. Determine the dimension of X and prove that your answer is correct.
Hint. The answer depends on whether G is bipartite or not.

6. Probability/Probabilistic methods

Choose exactly one of the problems below.

1. Let X_{i}, X_{2}, \ldots, be bounded, independent, identically distributed random variables with mean zero. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Show that if $\alpha>0$ then, almost surely,

$$
\frac{S_{n}}{n^{(1 / 2)+\alpha}} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Hint: First you may want to show that $E\left(S_{n}^{2 k}\right) \leq C_{k} n^{k}$ for $k \geq 1$, and suitable constant C_{k}.
2. An (n, k, l)-cover is a family \mathcal{F} of k-subsets of an n-element set such that every l-subset is contained in at least one of $A \in \mathcal{F}$. Let $M(n, k, l)$ denote the minimal cardinality of such a cover.

Show that

$$
M(n, k, l) \leq \frac{\binom{n}{l}}{\binom{k}{l}}\left[1+\ln \binom{k}{l}\right] .
$$

7. Algebra

Let V be a finite-dimensional vector space over the complex numbers. Let S and T be linear maps $V \rightarrow V$. Assume that S and T commute and that the characteristic polynomial of S has distinct roots. Show that every eigenvector for S is an eigenvector for T. Show that if T is nilpotent (that is, $T^{n}=0$ for some $n>0$), then $T=0$.

