1. Analysis of Algorithms

Consider the following two graph problems:
Graph coloring: Given a graph $G=(V, E)$ and an integer $c \geq 0$, a c-coloring is a function $f: V \rightarrow$ $\{1,2, \ldots, c\}$ such that $f(u) \neq f(v)$ for all edges $u v \in E(G)$. We define $\chi(G)$ to be the minimum integer $c \geq 0$ such that G has a c-coloring. An α-approximation algorithm for the coloring problem is one that, given a graph G , returns a c-coloring, where $c \leq \alpha \chi(G)$.

Longest path: Given a graph $G=(V, E)$, a path P in G is a sequence of distinct vertices v_{1}, \ldots, v_{d} such that $v_{i} v_{i+1} \in E$ for all $1 \leq i<d$, and the length of the path P is d. We wish to find a path which maximizes d. We write that the longest path uses $\ell(G)$ vertices. An α-approximation algorithm for the longest path problem is one that, given a graph G, returns a path of length at least $\ell(G) / \alpha$.

Unfortunately, unless $P=N P$, there is no polynomial time $n^{1-\epsilon}$-approximation algorithm for either problem, for any constant $\epsilon \in(0,1)$, where $n=|V|$. Taken together, however, the problems are easier. In this question, you will give a linear time algorithm that, for any graph G and for any $0<\epsilon<1$, outputs either an $n^{1-\epsilon}$-approximation to the graph coloring problem, or a n^{ϵ}-approximation to the longest path problem.
(a) For any c-coloring f of a graph $G=(V, E)$, the color class of color i is defined to be $C(i)=\{v \in V$: $f(v)=i\}$. Given an n vertex graph, use DFS to find some parameter k such that there is a k-coloring as well as a path in the graph of length k so that each color class of the coloring contains exactly one vertex on the path.
(b) Using part (a), for any graph G and parameter $\epsilon \in(0,1)$, show how to output in linear time either a path that is an n^{ϵ}-approximation for the longest path problem, or a c-coloring that is an $n^{1-\epsilon}$ approximation for the graph coloring problem. (Hint: Observe that each path has length at most n and each coloring has at least 1 color.)

2. Approximation Algorithms

Minimizing Shipping Times. A factory produces m different kinds of items (say $\{1, \ldots, m\}$), and produces one item of each kind every time step. Let $\mathcal{R}=\left\{R_{1}, \ldots R_{n}\right\}$ be a set of customer requests. Every request contains at most one item of each kind, and hence a request R_{i} is specified by a subset $R_{i} \subseteq\{1, \ldots, m\}$.

The items produced by the factory are to be allocated to the requests \mathcal{R}. The shipping time of a request R_{i} is the time at which all its items are allocated. The goal is to find an allocation that minimizes the total shipping time of all the requests.

In particular, design a polynomial time algorithm that outputs an allocation whose total shipping time is within a factor 2 of the optimal allocation (a 2 -approximation algorithm).
(Hint: Write a linear program with only the shipping times of the requests as variables.)

3. Theory of Linear Inequalities

Let P be a non-empty bounded polyhedron in R^{n}, let $c \in R^{n}$, and let $a_{i} \in R^{n}$ and $b_{i} \in R$ for $i=1, \ldots, t$ for some positive integer t. Show that the linear programing problem

$$
\max \left(c^{T} x: x \in P, a_{1}^{T} x=b_{1}, \ldots, a_{t}^{T} x=b_{t}\right)
$$

has an optimal solution that is a convex combination of at most $t+1$ vertices of P.

4. Combinatorial Optimization

Let $G=(V, E)$ be a complete graph, with vertex set V and edge set E; let $n=|V|$. Consider the polytope P defined by

$$
\begin{gathered}
x_{i}+x_{j} \leq 1, \text { for all }\{i, j\} \in E \\
0 \leq x_{i} \leq 1, \text { for all } i \in V .
\end{gathered}
$$

Show that the Chvátal rank of P is at least $\log _{2}(n-1)$.

5. Graph Theory

Let G be a connected graph. (a) Use a depth-first-search spanning tree to prove that if G is triangle-free, then G contains a bipartite subgraph H such that $|E(H)| \geq 3(|V(G)|-1) / 4$ and every component of H is an induced subgraph of G. (b) Prove an analogous bound when G has odd girth $g \geq 5$ by replacing the constant $3 / 4$ by an appropriate function of g. [A graph G has odd girth g if g is the largest integer such that every odd cycle in G has length at least g.]

6. Probability

Let $\left(X_{n}\right)_{n=1}^{\infty}$ be a sequence of i.i.d. random variables taking values ± 1 with probability $1 / 2$. Let

$$
S_{n}= \begin{cases}X_{1}+\ldots+X_{n}, & n=1,2, \ldots \\ 0, & n=0\end{cases}
$$

Let $S_{n}^{*}=\max _{k=1, \ldots, n} S_{k}, n=1,2, \ldots$
Find the density of the limiting distribution for $\frac{S_{n}^{*}}{\sqrt{n}}$ and prove the convergence using the following "reflection principle": for any $n, r=1,2, \ldots$,

$$
\mathrm{P}\left\{S_{n}^{*}>r\right\}=2 \mathrm{P}\left\{S_{n}>r+1\right\}+\mathrm{P}\left\{S_{n}=r+1\right\}
$$

You do not need to prove the reflection principle.

7. Algebra

Let $G=G L(2, \mathbb{C})$ denote the group of invertible 2 by 2 matrices with complex entries, and B denote the subgroup of G that consists of all matrices with lower-left entry 0 . Recall that the double-coset $[g]$ of $g \in G$ with respect to B is the set $\left\{b g b^{\prime} \mid b, b^{\prime} \in B\right\}$. Let $X=\{[g] \mid g \in G\}$ denote the set of double cosets of B in G. Prove that there exist two matrices g_{0} and g_{1} in G such that $X=\left\{\left[g_{0}\right],\left[g_{1}\right]\right\}$.

