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1. Graph Theory

Let G be a simple graph with maximum degree d. Prove that E(G) can be decomposed into pairwise
disjoint (possibly empty) matchings M1, . . . ,Md+1 such that −1 ≤ |Mi|−|Mj| ≤ 1 for all 1 ≤ i, j ≤ d+1.

Solution: By Vizing’s theorem, G has a d + 1 edge-coloring. Hence, E(G) can be partitioned into
d + 1 (possibly empty) matchings, say M1, . . . ,Md+1. Let a = max{|Mi| : i = 1, . . . , d + 1} and
b = min{|Mi| : i = 1, . . . , d+ 1}. Choose M1, . . . ,Md+1 such that

(1) a− b is minimal, and

(2) subject to (1), the number of pairs (Mi,Mj) with |Mi| − |Mj | = a− b is minimal.

If a− b ≤ 1, we are done. So we may assume that there is a pair (Mi,Mj) with |Mi|− |Mj | = a− b ≥ 2.
We may assume i = 1 and j = 2, by an appropriate relabeling (if necessary). ConsiderH := G[M1∪M2],
the subgraph of G induced by M1 ∪M2. Note that the components of H are paths and/or cycles whose
edges alternate in M1 and M2.

Since |M1| − |M2| ≥ 2, there is a component of H, say P , that is a path with one more edge in M1

than in M2. Let M ′

1 := M1∆P and M ′

2 := M2∆P , where ∆ denotes the symmetric difference. Then
M ′

1 ∪M ′

2 = M1 ∪M2, 1 ≤ |M ′

1| − |M ′

2| < |M1| − |M2|, and M ′

1 and M ′

2 are disjoint matchings.
Let M ′

k := Mk for all k = 3, . . . , d+1. It is straightforward to verify that the partition M ′

1, . . . ,M
′

d+1

violates (1) or (2).
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2. Probability

Assume that a Markov text X0, X1, X2, X3, . . . , Xn with letters from the alphabet S = {a, b, c} has its
transition probabilities given in the following transition matrix:





pa→a pa→b pa→c

pb→a pb→b pb→c

pc→a pc→b pc→c



 =





0.5 0.2 0.3
0.1 0.8 0.1
0.3 0.2 0.5





a) What are the stationary probabilities π(a), π(b), π(c) equal to? (i.e. what are the long term frequen-
cies of the a’s, b’s and c’s in the text?)
b) Given that we start in state a, what is the expected time until we visit state b for the first time?

Solution: (a) The solution is obtained by solving the vector equation.

~π = ~πP (1)

where ~π = (πa, πb, πc) and P is the transition matrix. Solving the vector equation 1, we obtain

~π = (0.25, 0.5, 0.25).

This could also be obtained by a simple symmetry argument.
(b) Let T = min{t ≥ 0|Xt = b}. We want to find

E[T |X0 = a] = Ea[T ].

For this we condition on the first step and find

Ea[T ] = Ea[T |X1 = a]Pa(X1 = a) +Ea[T |X1 = b]Pa(X1 = b) +Ea[T |X1 = c]Pa(X1 = c)

where Ea[T |X1 = b] = 1, Pa(X1 = b) = pa→b, Pa(X1 = c) = pa→c and Ea[T |X1 = c] = 1 + Ec[T ].
Hence, we find the equation

Ea[T ] = pa→a(1 +Ea[T ]) + pa→b + (1 +Ec[T ])pa→c.

Similarly, one gets
Ec[T ] = (1 +Ea[T ])pc→a + pc→b + pc→c(1 +Ec[T ]).

The last two equation above form a system of equations which can be solved. We know the transition
probabilities and we put x = Ea[T ] and y = Eb[T ] as unknowns. In this manner we obtain

x = 0.5(1 + x) + 0.2 + (1 + y)0.3

and
y = 0.3(1 + x) + 0.2 + (1 + y)0.5

which can be solved. The solution is x = y = 5. (One could also see that given that we start in a or c
the time until we visit b is like a geometric variable with parameter 0.2).
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3. Analysis of Algorithms

Given an undirected graph G = (V,E), let C be a coloring of G where each vertex is colored either red,
green, or blue. We say that an edge is monochromatic in C if the colors on its endpoints agree, and
bichromatic if they disagree. An ideal coloring is any coloring that maximizes the number of bichromatic
edges. Unfortunately finding an ideal coloring is NP-hard.
(a) Let M(G) be the number of monochromatic edges in an ideal coloring. Show that it is NP-hard to
approximate M(G) to within a factor of 10100.
(b) Let B(G) be the number of bichromatic edges in an ideal coloring. Give a randomized algorithm
that outputs a coloring such that the expected number of bichromatic edges is at least 2

3B(G).

Solution: (a) If a graph is 3-colorable, then M(G) is 0 and if it is not 3-colorable then M(G) ≥ 1.
Any approximation algorithm that estimates M(G) within a constant factor would output x > 0 if the
graph is 3-colorable and x = 0 if it is not, thus deciding whether the graph is 3-colorable. Therefore we
can conclude that approximating M(G) within any factor is NP-hard.
(b) Assign each vertex a random color from the set {Red, Blue, Green}. Each edge has a 2/3 chance
of being bichromatic, so the expected number of bichromatic edges is 2

3 |E| ≥ 2
3B(G).
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4. Combinatorial Optimization

Let A be an integral m× n matrix and let b and c be integral m-dimensional vectors. Show that there
exists an integral vector x with Ax ∈ {b, c} if and only if there does not exist a vector y such that yTA
is integral, yT b is not an integer, and yT c is not an integer.

Solution. A solution is available upon request.
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5. Theory of Linear Inequalities

Let P = {x : Ax ≤ b, 0 ≤ x ≤ 1} be a rational polytope of dimension d, where A is an m×n matrix, b
is an m-dimensional vector, and 0 and 1 represent n-dimensional vectors with all components 0 and 1,
respectively. Suppose P does not contain any integer vectors. Show that the Chvátal rank of P is no
greater than d.

Solution. A solution is available upon request.
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6. Algebra

Let G be a finite group acting on a set X, and let H be a normal subgroup of G. If x ∈ X, show that
the G-orbit of x is a union of at most [G : H] H-orbits of X, each having the same cardinality.

Solution: Replacing X by the orbit of x, we may assume that G acts transitively on X. Let H ·
x1, . . . ,H · xk be the distinct H-orbits. For each i, choose gi ∈ G such that gi · x1 = xi. We claim that:

(a) If i 6= j then the left cosets giH and gjH are different.

(b) The action of gi induces a bijection H · x1 → H · xi.

Claim (a) implies that the number of H-orbits is at most |G/H|, and Claim (b) implies that each
H-orbit has the same size. So it remains to prove the two claims.

For (a), first note that since H is normal in G, left cosets are the same as right cosets. If giH = gjH
with i 6= j, then hgi = gj for some h ∈ H. Thus (hgi) · x1 = h · xi = gj · x1 = xj . Therefore xj = h · xi,
contradicting our assumption that xi and xj live in different H-orbits.

For (b), note that if h · x1 ∈ H · x1, then

gi · (h · x1) = (gih) · x1

= (h′gi) · x1 for some h′ ∈ H

= h′ · xi ∈ H · xi,

so the action of gi induces a map ψ : H · x1 → H · xi. The action of g−1
i gives an inverse to this map,

so ψ must be a bijection.
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7. Randomized Algorithms

Consider the following scheme for shuffling a deck of n cards labelled c1, c2, . . . , cn. For i = 1, . . . , n, let
Xt(i) denote the card in the i-th position at time t. Let X0 be an arbitrary ordering of the cards. For
t ≥ 1, given Xt−1 define Xt as follows:

• Choose position i uniformly at random from {1, . . . , n} and card cj uniformly at random from
{c1, . . . , cn}.

• Swap the card in position i with card cj . I.e., let Xt+1(i) = cj and let Xt+1(k) = Xt(i) where
k = X−1

t (cj) is the position of card cj in Xt.

• For ` 6∈ {i, k}, let Xt+1(`) = Xt(`).

Show a coupling argument to upper bound the mixing time of this Markov chain, within a constant
factor of optimal is fine. Recall, the mixing time is defined to be the number of steps (from the worst
initial state) to get within variation distance ≤ 1/4 of the uniform distribution.

Solution. Consider an arbitrary pair X0, Y0. Couple the evolution of this pair of processes using the
identity coupling so that in every time step both chains choose the same position i and card cj for the
update.

Let Dt denote the number of positions where the chains Xt and Yt differ. Note, after the coupled
move we have Xt+1(i) = Yt+1 = cj . Thus, if we choose a position i where they differ (i.e., Xt(i) 6= Yt(i))
and a card cj which is in different positions in the two chains then after the coupled move we have
Dt+1 ≤ Dt − 1. In the other 3 scenarios (depending on whether Xt(i) = Yt(i) and/or card cj is in the
same position in Xt and Yt), it is easy to check that Dt+1 ≤ Dt. Therefore,

Pr(Dt+1 ≤ Dt − 1) ≥ (Dt/n)2

Hence the expected time t until Dt = 0 is O(n2). By Markov’s inequality, it follows that Pr(Xt 6= Yt) ≤
Pr(Dt = 0) < 1/8 for t = O(n2).
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7. Approximation Algorithms

Consider the following modification to the metric uncapacitated facility location problem. Define the
cost of connecting city j to facility i to be c2ij . The cij ’s still satisfy the triangle inequality (but the new

connection costs, of c2ij , do not). Show that factor 3 primal-dual algorithm (given below), which uses
the usual LP-relaxation and dual for the facility location problem, achieves an approximation guarantee
of factor 9 for this case.
Phase 1
Raise the dual variable αj for each unconnected city j uniformly at unit rate, i.e., αj will grow by
1 in unit time. When αj = cij for some edge (i, j), the algorithm will declare this edge to be tight.
Henceforth, dual variable βij will be raised uniformly, and it goes towards paying for facility i. Each
edge (i, j) such that βij > 0 is declared special. Facility i is said to be paid for if

∑

j βij = fi. If so,
the algorithm declares this facility temporarily open. Furthermore, all unconnected cities having tight
edges to this facility are declared connected and facility i is declared the connecting witness for each of
these cities. In the future, as soon as an unconnected city j gets a tight edge to i, j will also be declared
connected and i will be declared the connecting witness for j. When all cities are connected, the first
phase terminates.
Phase 2
Let Ft denote the set of temporarily open facilities and T denote the subgraph of G consisting of all
special edges. Let T 2 denote the graph that has edge (u, v) iff there is a path of length at most 2
between u and v in T , and let H be the subgraph of T 2 induced on Ft. Find any maximal independent
set in H, say I.

All facilities in the set I are declared open. For city j, define Fj = {i ∈ Ft | (i, j) is special}. Since
I is an independent set, at most one of the facilities in Fj is opened. If there is a facility i ∈ Fj that is
opened, then set φ(j) = i. Otherwise, consider tight edge (i′, j) such that i′ was the connecting witness
for j. If i′ ∈ I, again set φ(j) = i′. In the remaining case that i′ /∈ I, let i be any neighbor of i′ in graph
H such that i ∈ I. Set φ(j) = i.

Solution. At the end of Phase 1 the algorithm clearly produces an integral feasible primal solution and
a feasible dual solution to the LP relaxation of the facility location problem, with costs cij . Throughout
the analysis that follows, the variables aj and bij refer to the ones developed in Phase 1.

We will establish the performance quarantee by showing that

∑

i∈I

fi +
∑

j∈C

cφj,j ≤ 9
∑

j∈C

αj ≤ 9OPT (∗)

Let aj be the dual variable for a city j. If city j is connected to facility φ(j) ∈ I during Phase 2, and
facility φ(j) was also a connecting witness for city j at the end of Phase 1, then city j is called directly

connected to φ(j). Let CD denote the set cities directly connected to facilities. If city j is connected
to facility φ(j) ∈ I during Phase 2, but facility φ(j) was not a connecting witness for city j at the
end of Phase 1, then city j is called indirectly connected to φ(j). Let C̄D be the set of cities indirectly
connected to facilities.

Fact 1: If city j ∈ CD, then, for all facilities i ∈ I such that j was temporarily connected to i during
Phase 1, aij = cij + bij .
Proof: By the definition of temporary connectivity in Phase 1.
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Fact 2: If city j ∈ C̄D, then, for all facilities i ∈ I, bij = 0.
Proof: By the definition of indirect connectivity.

Fact 3: For all open facilities i ∈ I fi =
∑

i∈CD
bij.

Proof: By the structure imposed during Phase 1, and by Facts 1 and 2 above.

Fact 4: If city j ∈ C̄D, and φ(j) = i ∈ I, then, there is a city i′ and a facility j ′, such that
√
cij ≤√

ci′j +
√
ci′j′ +

√
cij′ and max{ci′j , ci′j′ , cij′} ≤ aj .

Proof: Let i′ be a connecting witness for city j. Since j is indirectly connected to i, (i, i ′) must be an
edge in H. In turn, there must be a city, say j ′, such that (i, j ′) and (i′, j′) are both special edges. Let
t1 and t2 be the times at which i and i′ were declared temporarily open during Phase 1. Since edge
(i′, j) is tight,

ci′j ≤ αj.

We will also show that
cij′ ≤ αj and ci′j′ ≤ aj.

The rest of the fact follows by triangular inequality. Since edges (i′, j′) and (i, j′) are tight, αj′ ≥ cij′

and αj′ ≥ ci′j′. Since both these edges are special, they must both have gone tight before either i or i ′

is declared temporarily open. Consider the time min(t1, t2). Clearly, αj′ cannot be growing beyond this
time. Therefore, αj′ ≤ min(t1, t2). Finally, since i′ is the connecting witness for j, αj ≥ t2. Therefore,
αj ≥ αj′ , and the required inequalities follow.

Fact 5: If city j ∈ C̄D and phi(j) = i, then, cφ(j),j ≤ 9aj .
Proof: By Fact 4,

cφ(j),j =
(√

ci′j +
√
ci′j′ +

√
cij′

)

2

≤ (3
√
aj)2

= 9aj

We are now ready to establish (*):

∑

i∈I

fi +
∑

j∈C

cφj,j =
∑

j∈CD

bij +
∑

j∈C

cφj,j by Fact 3

=
∑

j∈CD

bij +
∑

j∈CD

cφj,j +
∑

j∈C̄D

cφj,j

=
∑

j∈CD

aj +
∑

j∈C̄D

cφj,j by Fact 1

≤
∑

j∈CD

aj + 9
∑

j∈CD

aj by Fact 5

≤ 9
∑

j∈C

aj ≤ 9OPT


