14 October 2008

1. Graph Theory

Let G be a simple graph with maximum degree d. Prove that E(G) can be decomposed into pairwise disjoint (possibly empty) matchings M_1, \ldots, M_{d+1} such that $-1 \leq |M_i| - |M_j| \leq 1$ for all $1 \leq i, j \leq d+1$.

Solution: By Vizing's theorem, G has a d + 1 edge-coloring. Hence, E(G) can be partitioned into d + 1 (possibly empty) matchings, say M_1, \ldots, M_{d+1} . Let $a = \max\{|M_i| : i = 1, \ldots, d + 1\}$ and $b = \min\{|M_i| : i = 1, \ldots, d + 1\}$. Choose M_1, \ldots, M_{d+1} such that

- (1) a-b is minimal, and
- (2) subject to (1), the number of pairs (M_i, M_j) with $|M_i| |M_j| = a b$ is minimal.

If $a-b \leq 1$, we are done. So we may assume that there is a pair (M_i, M_j) with $|M_i| - |M_j| = a - b \geq 2$. We may assume i = 1 and j = 2, by an appropriate relabeling (if necessary). Consider $H := G[M_1 \cup M_2]$, the subgraph of G induced by $M_1 \cup M_2$. Note that the components of H are paths and/or cycles whose edges alternate in M_1 and M_2 .

Since $|M_1| - |M_2| \ge 2$, there is a component of H, say P, that is a path with one more edge in M_1 than in M_2 . Let $M'_1 := M_1 \Delta P$ and $M'_2 := M_2 \Delta P$, where Δ denotes the symmetric difference. Then $M'_1 \cup M'_2 = M_1 \cup M_2$, $1 \le |M'_1| - |M'_2| < |M_1| - |M_2|$, and M'_1 and M'_2 are disjoint matchings.

Let $M'_k := M_k$ for all $k = 3, \ldots, d+1$. It is straightforward to verify that the partition M'_1, \ldots, M'_{d+1} violates (1) or (2).

14 October 2008

2. Probability

Assume that a Markov text $X_0, X_1, X_2, X_3, \ldots, X_n$ with letters from the alphabet $S = \{a, b, c\}$ has its transition probabilities given in the following transition matrix:

$$\begin{pmatrix} p_{a \to a} & p_{a \to b} & p_{a \to c} \\ p_{b \to a} & p_{b \to b} & p_{b \to c} \\ p_{c \to a} & p_{c \to b} & p_{c \to c} \end{pmatrix} = \begin{pmatrix} 0.5 & 0.2 & 0.3 \\ 0.1 & 0.8 & 0.1 \\ 0.3 & 0.2 & 0.5 \end{pmatrix}$$

a) What are the stationary probabilities $\pi(a), \pi(b), \pi(c)$ equal to? (i.e. what are the long term frequencies of the *a*'s, *b*'s and *c*'s in the text?)

b) Given that we start in state a, what is the expected time until we visit state b for the first time?

Solution: (a) The solution is obtained by solving the vector equation.

$$\vec{\pi} = \vec{\pi}P \tag{1}$$

where $\vec{\pi} = (\pi_a, \pi_b, \pi_c)$ and P is the transition matrix. Solving the vector equation 1, we obtain

$$\vec{\pi} = (0.25, 0.5, 0.25).$$

This could also be obtained by a simple symmetry argument. (b) Let $T = \min\{t \ge 0 | X_t = b\}$. We want to find

$$E[T|X_0 = a] = E_a[T].$$

For this we condition on the first step and find

$$E_a[T] = E_a[T|X_1 = a]P_a(X_1 = a) + E_a[T|X_1 = b]P_a(X_1 = b) + E_a[T|X_1 = c]P_a(X_1 = c)$$

where $E_a[T|X_1 = b] = 1$, $P_a(X_1 = b) = p_{a\to b}$, $P_a(X_1 = c) = p_{a\to c}$ and $E_a[T|X_1 = c] = 1 + E_c[T]$. Hence, we find the equation

$$E_a[T] = p_{a \to a}(1 + E_a[T]) + p_{a \to b} + (1 + E_c[T])p_{a \to c}.$$

Similarly, one gets

$$E_{c}[T] = (1 + E_{a}[T])p_{c \to a} + p_{c \to b} + p_{c \to c}(1 + E_{c}[T])$$

The last two equation above form a system of equations which can be solved. We know the transition probabilities and we put $x = E_a[T]$ and $y = E_b[T]$ as unknowns. In this manner we obtain

$$x = 0.5(1+x) + 0.2 + (1+y)0.3$$

and

$$y = 0.3(1 + x) + 0.2 + (1 + y)0.5$$

which can be solved. The solution is x = y = 5. (One could also see that given that we start in a or c the time until we visit b is like a geometric variable with parameter 0.2).

3. Analysis of Algorithms

Given an undirected graph G = (V, E), let C be a coloring of G where each vertex is colored either red, green, or blue. We say that an edge is monochromatic in C if the colors on its endpoints agree, and bichromatic if they disagree. An *ideal coloring* is any coloring that maximizes the number of bichromatic edges. Unfortunately finding an ideal coloring is NP-hard.

(a) Let M(G) be the number of monochromatic edges in an ideal coloring. Show that it is NP-hard to approximate M(G) to within a factor of 10^{100} .

(b) Let B(G) be the number of bichromatic edges in an ideal coloring. Give a randomized algorithm that outputs a coloring such that the expected number of bichromatic edges is at least $\frac{2}{3}B(G)$.

Solution: (a) If a graph is 3-colorable, then M(G) is 0 and if it is not 3-colorable then $M(G) \ge 1$. Any approximation algorithm that estimates M(G) within a constant factor would output x > 0 if the graph is 3-colorable and x = 0 if it is not, thus deciding whether the graph is 3-colorable. Therefore we can conclude that approximating M(G) within any factor is NP-hard.

(b) Assign each vertex a random color from the set {Red, Blue, Green}. Each edge has a 2/3 chance of being bichromatic, so the expected number of bichromatic edges is $\frac{2}{3}|E| \ge \frac{2}{3}B(G)$.

4. Combinatorial Optimization

Let A be an integral $m \times n$ matrix and let b and c be integral m-dimensional vectors. Show that there exists an integral vector x with $Ax \in \{b, c\}$ if and only if there does not exist a vector y such that $y^T A$ is integral, $y^T b$ is not an integer, and $y^T c$ is not an integer.

Solution. A solution is available upon request.

5. Theory of Linear Inequalities

Let $P = \{x : Ax \leq b, \ \mathbf{0} \leq x \leq \mathbf{1}\}$ be a rational polytope of dimension d, where A is an $m \times n$ matrix, b is an m-dimensional vector, and $\mathbf{0}$ and $\mathbf{1}$ represent n-dimensional vectors with all components 0 and 1, respectively. Suppose P does not contain any integer vectors. Show that the Chvátal rank of P is no greater than d.

Solution. A solution is available upon request.

14 October 2008

6. Algebra

Let G be a finite group acting on a set X, and let H be a normal subgroup of G. If $x \in X$, show that the G-orbit of x is a union of at most [G:H] H-orbits of X, each having the same cardinality.

Solution: Replacing X by the orbit of x, we may assume that G acts transitively on X. Let $H \cdot x_1, \ldots, H \cdot x_k$ be the distinct H-orbits. For each i, choose $g_i \in G$ such that $g_i \cdot x_1 = x_i$. We claim that:

(a) If $i \neq j$ then the left cosets $g_i H$ and $g_j H$ are different.

(b) The action of g_i induces a bijection $H \cdot x_1 \to H \cdot x_i$.

Claim (a) implies that the number of *H*-orbits is at most |G/H|, and Claim (b) implies that each *H*-orbit has the same size. So it remains to prove the two claims.

For (a), first note that since H is normal in G, left cosets are the same as right cosets. If $g_i H = g_j H$ with $i \neq j$, then $hg_i = g_j$ for some $h \in H$. Thus $(hg_i) \cdot x_1 = h \cdot x_i = g_j \cdot x_1 = x_j$. Therefore $x_j = h \cdot x_i$, contradicting our assumption that x_i and x_j live in different H-orbits.

For (b), note that if $h \cdot x_1 \in H \cdot x_1$, then

 $g_i \cdot (h \cdot x_1) = (g_i h) \cdot x_1$ = $(h'g_i) \cdot x_1$ for some $h' \in H$ = $h' \cdot x_i \in H \cdot x_i$,

so the action of g_i induces a map $\psi : H \cdot x_1 \to H \cdot x_i$. The action of g_i^{-1} gives an inverse to this map, so ψ must be a bijection.

7. Randomized Algorithms

Consider the following scheme for shuffling a deck of n cards labelled c_1, c_2, \ldots, c_n . For $i = 1, \ldots, n$, let $X_t(i)$ denote the card in the *i*-th position at time t. Let X_0 be an arbitrary ordering of the cards. For $t \ge 1$, given X_{t-1} define X_t as follows:

- Choose position *i* uniformly at random from $\{1, \ldots, n\}$ and card c_j uniformly at random from $\{c_1, \ldots, c_n\}$.
- Swap the card in position *i* with card c_j . I.e., let $X_{t+1}(i) = c_j$ and let $X_{t+1}(k) = X_t(i)$ where $k = X_t^{-1}(c_j)$ is the position of card c_j in X_t .
- For $\ell \notin \{i, k\}$, let $X_{t+1}(\ell) = X_t(\ell)$.

Show a coupling argument to upper bound the mixing time of this Markov chain, within a constant factor of optimal is fine. Recall, the mixing time is defined to be the number of steps (from the worst initial state) to get within variation distance $\leq 1/4$ of the uniform distribution.

Solution. Consider an arbitrary pair X_0, Y_0 . Couple the evolution of this pair of processes using the identity coupling so that in every time step both chains choose the same position *i* and card c_j for the update.

Let D_t denote the number of positions where the chains X_t and Y_t differ. Note, after the coupled move we have $X_{t+1}(i) = Y_{t+1} = c_j$. Thus, if we choose a position *i* where they differ (i.e., $X_t(i) \neq Y_t(i)$) and a card c_j which is in different positions in the two chains then after the coupled move we have $D_{t+1} \leq D_t - 1$. In the other 3 scenarios (depending on whether $X_t(i) = Y_t(i)$ and/or card c_j is in the same position in X_t and Y_t), it is easy to check that $D_{t+1} \leq D_t$. Therefore,

$$\mathbf{Pr}(D_{t+1} \le D_t - 1) \ge (D_t/n)^2$$

Hence the expected time t until $D_t = 0$ is $O(n^2)$. By Markov's inequality, it follows that $\Pr(X_t \neq Y_t) \leq \Pr(D_t = 0) < 1/8$ for $t = O(n^2)$.

7. Approximation Algorithms

Consider the following modification to the metric uncapacitated facility location problem. Define the cost of connecting city j to facility i to be c_{ij}^2 . The c_{ij} 's still satisfy the triangle inequality (but the new connection costs, of c_{ij}^2 , do not). Show that factor 3 primal-dual algorithm (given below), which uses the usual LP-relaxation and dual for the facility location problem, achieves an approximation guarantee of factor 9 for this case.

Phase 1

Raise the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time. When $\alpha_j = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*. Henceforth, dual variable β_{ij} will be raised uniformly, and it goes towards paying for facility i. Each edge (i, j) such that $\beta_{ij} > 0$ is declared *special*. Facility i is said to be *paid for* if $\sum_j \beta_{ij} = f_i$. If so, the algorithm declares this facility *temporarily open*. Furthermore, all unconnected cities having tight edges to this facility are declared *connected* and facility i is declared the *connecting witness* for each of these cities. In the future, as soon as an unconnected city j gets a tight edge to i, j will also be declared connected and i will be declared the connecting witness for j. When all cities are connected, the first phase terminates.

Phase 2

Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges. Let T^2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T^2 induced on F_t . Find any maximal independent set in H, say I.

All facilities in the set I are declared *open*. For city j, define $\mathcal{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}$. Since I is an independent set, at most one of the facilities in \mathcal{F}_j is opened. If there is a facility $i \in \mathcal{F}_j$ that is opened, then set $\phi(j) = i$. Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j. If $i' \in I$, again set $\phi(j) = i'$. In the remaining case that $i' \notin I$, let i be any neighbor of i' in graph H such that $i \in I$. Set $\phi(j) = i$.

Solution. At the end of Phase 1 the algorithm clearly produces an integral feasible primal solution and a feasible dual solution to the LP relaxation of the facility location problem, with costs c_{ij} . Throughout the analysis that follows, the variables a_j and b_{ij} refer to the ones developed in Phase 1.

We will establish the performance quarantee by showing that

$$\sum_{i \in I} f_i + \sum_{j \in C} c_{\phi j, j} \le 9 \sum_{j \in C} \alpha_j \le 9 \text{OPT} \quad (*)$$

Let a_j be the dual variable for a city j. If city j is connected to facility $\phi(j) \in I$ during Phase 2, and facility $\phi(j)$ was also a connecting witness for city j at the end of Phase 1, then city j is called *directly connected* to $\phi(j)$. Let C_D denote the set cities directly connected to facilities. If city j is connected to facility $\phi(j) \in I$ during Phase 2, but facility $\phi(j)$ was not a connecting witness for city j at the end of Phase 1, then city j is called *indirectly connected* to $\phi(j)$. Let $\overline{C_D}$ be the set of cities indirectly connected to facilities.

Fact 1: If city $j \in C_D$, then, for all facilities $i \in I$ such that j was temporarily connected to i during Phase 1, $a_{ij} = c_{ij} + b_{ij}$.

Proof: By the definition of temporary connectivity in Phase 1.

14 October 2008

Fact 2: If city $j \in \overline{C}_D$, then, for all facilities $i \in I$, $b_{ij} = 0$. Proof: By the definition of indirect connectivity.

Fact 3: For all open facilities $i \in I$ $f_i = \sum_{i \in C_D} b_{ij}$. Proof: By the structure imposed during Phase 1, and by Facts 1 and 2 above.

Fact 4: If city $j \in \overline{C}_D$, and $\phi(j) = i \in I$, then, there is a city i' and a facility j', such that $\sqrt{c_{ij}} \leq \sqrt{c_{i'j}} + \sqrt{c_{i'j'}} + \sqrt{c_{ij'}}$ and $\max\{c_{i'j}, c_{i'j'}, c_{ij'}\} \leq a_j$.

Proof: Let i' be a connecting witness for city j. Since j is indirectly connected to i, (i, i') must be an edge in H. In turn, there must be a city, say j', such that (i, j') and (i', j') are both special edges. Let t_1 and t_2 be the times at which i and i' were declared temporarily open during Phase 1. Since edge (i', j) is tight,

$$c_{i'j} \leq \alpha_j$$

We will also show that

$$c_{ij'} \leq \alpha_j \quad and \quad c_{i'j'} \leq a_j.$$

The rest of the fact follows by triangular inequality. Since edges (i', j') and (i, j') are tight, $\alpha_{j'} \ge c_{ij'}$ and $\alpha_{j'} \ge c_{i'j'}$. Since both these edges are special, they must both have gone tight before either *i* or *i'* is declared temporarily open. Consider the time $\min(t_1, t_2)$. Clearly, $\alpha_{j'}$ cannot be growing beyond this time. Therefore, $\alpha_{j'} \le \min(t_1, t_2)$. Finally, since *i'* is the connecting witness for *j*, $\alpha_j \ge t_2$. Therefore, $\alpha_j \ge \alpha_{j'}$, and the required inequalities follow.

Fact 5: If city $j \in \overline{C}_D$ and phi(j) = i, then, $c_{\phi(j),j} \leq 9a_j$. Proof: By Fact 4,

$$c_{\phi(j),j} = \left(\sqrt{c_{i'j}} + \sqrt{c_{i'j'}} + \sqrt{c_{ij'}}\right) 2$$

$$\leq (3\sqrt{a_j}) 2$$

$$= 9a_j$$

We are now ready to establish (*):

$$\sum_{i \in I} f_i + \sum_{j \in C} c_{\phi j, j} = \sum_{j \in C_D} b_{ij} + \sum_{j \in C} c_{\phi j, j} \text{ by Fact 3}$$
$$= \sum_{j \in C_D} b_{ij} + \sum_{j \in C_D} c_{\phi j, j} + \sum_{j \in \bar{C}_D} c_{\phi j, j}$$
$$= \sum_{j \in C_D} a_j + \sum_{j \in \bar{C}_D} c_{\phi j, j} \text{ by Fact 1}$$
$$\leq \sum_{j \in C_D} a_j + 9 \sum_{j \in C_D} a_j \text{ by Fact 5}$$
$$\leq 9 \sum_{j \in C} a_j \leq 9 \text{OPT}$$