14 October 2008

1. Graph Theory

Let G be a simple graph with maximum degree d. Prove that E(G) can be decomposed into pairwise disjoint (possibly empty) matchings M_1, \ldots, M_{d+1} such that $-1 \leq |M_i| - |M_j| \leq 1$ for all $1 \leq i, j \leq d+1$.

2. Probability

Assume that a Markov text $X_0, X_1, X_2, X_3, \ldots, X_n$ with letters from the alphabet $S = \{a, b, c\}$ has its transition probabilities given in the following transition matrix:

($p_{a \rightarrow a}$	$p_{a \rightarrow b}$	$p_{a \to c}$		(0.5)	0.2	0.3
	$p_{b \to a}$	$p_{b \to b}$	$p_{b \to c}$	=	0.1	0.8	0.1
ĺ	$p_{c \to a}$	$p_{c \rightarrow b}$	$p_{c \to c}$ /		$\setminus 0.3$	0.2	0.5

a) What are the stationary probabilities $\pi(a), \pi(b), \pi(c)$ equal to? (i.e. what are the long term frequencies of the *a*'s, *b*'s and *c*'s in the text?)

b) Given that we start in state a, what is the expected time until we visit state b for the first time?

3. Analysis of Algorithms

Given an undirected graph G = (V, E), let C be a coloring of G where each vertex is colored either red, green, or blue. We say that an edge is monochromatic in C if the colors on its endpoints agree, and bichromatic if they disagree. An *ideal coloring* is any coloring that maximizes the number of bichromatic edges. Unfortunately finding an ideal coloring is NP-hard.

(a) Let M(G) be the number of monochromatic edges in an ideal coloring. Show that it is NP-hard to approximate M(G) to within a factor of 10^{100} .

(b) Let B(G) be the number of bichromatic edges in an ideal coloring. Give a randomized algorithm that outputs a coloring such that the expected number of bichromatic edges is at least $\frac{2}{3}B(G)$.

4. Combinatorial Optimization

Let A be an integral $m \times n$ matrix and let b and c be integral m-dimensional vectors. Show that there exists an integral vector x with $Ax \in \{b, c\}$ if and only if there does not exist a vector y such that $y^T A$ is integral, $y^T b$ is not an integer, and $y^T c$ is not an integer.

5. Theory of Linear Inequalities

Let $P = \{x : Ax \leq b, \ \mathbf{0} \leq x \leq \mathbf{1}\}$ be a rational polytope of dimension d, where A is an $m \times n$ matrix, b is an m-dimensional vector, and $\mathbf{0}$ and $\mathbf{1}$ represent n-dimensional vectors with all components 0 and 1, respectively. Suppose P does not contain any integer vectors. Show that the Chvátal rank of P is no greater than d.

6. Algebra

Let G be a finite group acting on a set X, and let H be a normal subgroup of G. If $x \in X$, show that the G-orbit of x is a union of at most [G:H] H-orbits of X, each having the same cardinality.

7. Randomized Algorithms

Consider the following scheme for shuffling a deck of n cards labelled c_1, c_2, \ldots, c_n . For $i = 1, \ldots, n$, let $X_t(i)$ denote the card in the *i*-th position at time t. Let X_0 be an arbitrary ordering of the cards. For $t \ge 1$, given X_{t-1} define X_t as follows:

- Choose position *i* uniformly at random from $\{1, \ldots, n\}$ and card c_j uniformly at random from $\{c_1, \ldots, c_n\}$.
- Swap the card in position *i* with card c_j . I.e., let $X_{t+1}(i) = c_j$ and let $X_{t+1}(k) = X_t(i)$ where $k = X_t^{-1}(c_j)$ is the position of card c_j in X_t .
- For $\ell \notin \{i, k\}$, let $X_{t+1}(\ell) = X_t(\ell)$.

Show a coupling argument to upper bound the mixing time of this Markov chain, within a constant factor of optimal is fine. Recall, the mixing time is defined to be the number of steps (from the worst initial state) to get within variation distance $\leq 1/4$ of the uniform distribution.

7. Approximation Algorithms

Consider the following modification to the metric uncapacitated facility location problem. Define the cost of connecting city j to facility i to be c_{ij}^2 . The c_{ij} 's still satisfy the triangle inequality (but the new connection costs, of c_{ij}^2 , do not). Show that factor 3 primal-dual algorithm (given below), which uses the usual LP-relaxation and dual for the facility location problem, achieves an approximation guarantee of factor 9 for this case.

Phase 1

Raise the dual variable α_j for each unconnected city j uniformly at unit rate, i.e., α_j will grow by 1 in unit time. When $\alpha_j = c_{ij}$ for some edge (i, j), the algorithm will declare this edge to be *tight*. Henceforth, dual variable β_{ij} will be raised uniformly, and it goes towards paying for facility i. Each edge (i, j) such that $\beta_{ij} > 0$ is declared *special*. Facility i is said to be *paid for* if $\sum_j \beta_{ij} = f_i$. If so, the algorithm declares this facility *temporarily open*. Furthermore, all unconnected cities having tight edges to this facility are declared *connected* and facility i is declared the *connecting witness* for each of these cities. In the future, as soon as an unconnected city j gets a tight edge to i, j will also be declared connected and i will be declared the connecting witness for j. When all cities are connected, the first phase terminates.

Phase 2

Let F_t denote the set of temporarily open facilities and T denote the subgraph of G consisting of all special edges. Let T^2 denote the graph that has edge (u, v) iff there is a path of length at most 2 between u and v in T, and let H be the subgraph of T^2 induced on F_t . Find any maximal independent set in H, say I.

All facilities in the set I are declared *open*. For city j, define $\mathcal{F}_j = \{i \in F_t \mid (i, j) \text{ is special}\}$. Since I is an independent set, at most one of the facilities in \mathcal{F}_j is opened. If there is a facility $i \in \mathcal{F}_j$ that is

ACO Comprehensive Exam

14 October 2008

opened, then set $\phi(j) = i$. Otherwise, consider tight edge (i', j) such that i' was the connecting witness for j. If $i' \in I$, again set $\phi(j) = i'$. In the remaining case that $i' \notin I$, let i be any neighbor of i' in graph H such that $i \in I$. Set $\phi(j) = i$.