
ACO Comprehensive Exam 9 October 2007 Student code A

1. Graph Theory

Prove that there exist no simple planar triangulation T and two distinct adjacent vertices x, y ∈ V (T )
such that x and y are the only vertices of T of odd degree. Do not use the Four-Color Theorem. (Simple
means no loops or parallel edges.)

Solution: Let G be obtained from T by deleting the edge xy. Then every vertex of G has even degree,
and hence the dual is bipartite. Thus the faces of G may be colored using colors 1 and 2 such that every
edge is incident with a face of either color. Let a be the number of faces colored 1, and let b be the
number of faces colored 2. From the symmetry we may assume that the unique face of G of size four is
colored 1. Since every face of G colored 2 is a triangle, we deduce that |E(G)| = 3b. Since every face of
G colored 1 is a triangle, except for precisely one face of size four, we deduce that |E(G)| = 3(a−1)+4.
But the equation 3a + 1 = 3b has no integral solution, and hence no such triangulation exists.
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2. Probability

Let X,X1, X2, . . . be independent identically distributed random variables. Denote

Sn := X1 + · · · + Xn.

(a) If X ≥ 0 a.s. and EX = +∞, then

Sn

n
→ +∞ as n → ∞ a.s.

(b) If E|X| = +∞, then

lim sup
n→∞

|Sn|

n
= +∞ a.s.

Solution: (a) Denote Xc
j = XjI(Xj ≤ c), c > 0. Then, by the SLLN, for all c > 0,

Sn

n
≥

Xc
1 + · · · + Xc

n

n
→ EXc

1 as n → ∞ a.s.

Hence

lim inf
n→∞

Sn

n
≥ sup

c>0
EXc

1 = EX = +∞ a.s.,

implying (a).
(b) We have

+∞ = E|X| =

∫ +∞

0
P{|X| ≥ t}dt ≤ c

∞
∑

n=0

P{|X| ≥ cn}.

Hence, for all c > 0,
∞
∑

n=0

P{|Xn| ≥ cn} =

∞
∑

n=0

P{|X| ≥ cn} = +∞.

By Borel-Cantelli lemma, this implies that for all c > 0 with probability 1

|Xn| ≥ cn i.o..

Therefore,

lim sup
n→∞

|Xn|

n
= +∞ a.s. (∗)

It follows from the zero-one law that the probability of the event
{

lim sup
n→∞

|Sn|

n
= +∞

}

is either 0 or 1. If it is equal to 0, then with probability 1 the sequence {Sn/n} is bounded implying
that the same is true for the sequence {Sn−1/n}, and, as a consequence, for {Xn/n}. This contradicts
(∗). Therefore

lim sup
n→∞

|Sn|

n
= +∞

with probability 1.
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3. Analysis of Algorithms

Suppose we would like to find a collection of matchings such that every edge of the graph is a member
of (at least) one of the matchings we selected. The goal is to pick the minimum number of matchings for
our collection. Give an O(log n)-approximation for this problem that runs in polynomial time, where n
is the number of vertices of the input graph.

Solution: Let the m edges of the input graph be the elements of our universe, and let each matching
of the graph be a subset of this universe. The minimum number of matchings for our collection is then
just a minimum set cover.

The greedy algorithm gives a (log m + 1)-approximation algorithm for set cover that proceeds by
iteratively choosing the set that covers the maximum number of elements that have not yet been covered.
We can implement this efficiently by finding a maximum matching on the thus far unvisited edges, taking
O(n2m) time to find the matching. Since we remove at least one edge in each step, the total running
time is at most O(n2m2) and this yields an O(log n)-approximation algorithm.
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4. Theory of Linear Inequalities

Let C ⊆ Rn be a finitely-generated cone of full dimension and let H be an integral Hilbert basis for
C. Suppose wT x ≥ 0 is a facet-defining inequality for C such that the components of w are relatively
prime integers. Show that there exists a vector h ∈ H such that wT h = 1.

Solution available upon request.
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5. Combinatorial Optimization

Consider an assignment problem (AP)

max
∑

i∈N

∑

j∈N cijxij
∑

j∈N xij = 1 for i ∈ N
∑

i∈N xij = 1 for j ∈ N
xij = 0 or 1 for i, j ∈ N

where N = {1, . . . , n}.
Note: You should be able to answer (1)-(5) quickly, which is preliminary to (6). (6) is the part of this
question that counts the most.

(1) State a property of the constraint matrix from which it can be deduced that all of the extreme
points of the LP relaxation are integral.

(2) Let x(I, J) =
∑

i∈I

∑

j∈J xij where ∅ ⊂ I, J ⊆ N . Suppose |I| + |J | = n + k, k ≥ 1. Prove that
if x is a feasible solution, then x(I, J) ≥ k.

(3) Now consider a constrained AP called CAP where we require x2k−1,2k−1 − x2k,2k = 0 for k =
1, . . . ,m. Suppose we have a fractional point say

x =





1/2 0 1/2
1/2 1/2 0
0 1/2 1/2



 for n = 3,m = 1.

What is required of such a point to conclude that the LP relaxation of CAP is not integral? Does
this point x suffice?

(4) Let n = 5,m = 2 in CAP. Prove that

x11 − (x34 + x43 + x44) ≤ 0

is a valid inequality.
(5) Given ∅ ⊂ I, J ⊆ N with |I| + |J | = n − 1, let

K = {2r − 1 : {2r − 1, 2r} ⊆ I ∩ J, r ≤ m}

K̂ = {2r − 1 : {2r − 1, 2r} ⊆ (N\I) ∩ (N\J), r ≤ m}.

Show that the inequality in (4) is of the form

∑

i∈K∪K̂

xii − x(I, J) ≤ 0 (∗)

with I = J = {3, 4}.
(6) Prove in general that (∗) is a valid inequality for CAP if |I| + |J | = n − 1 and |K̂| ≥ 1.
(7) Describe how you would prove that (∗) with the condition given in (6) is a facet of the convex

hull of CAP. An actual proof is not required.
(8) Give the form of (∗) with the condition given in (6) for m = 1. In this case, the assignment

constraints, side constraints, nonnegativity and (∗) give the convex hull. Describe how you could prove
this. An actual proof is not required.

(9) Suggest an idea for separating (∗) with m = 1.

Solution not yet available.
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6. Algebra

Suppose G is a group of order 255. Prove that G is cyclic. (Hint: First show G has a normal subgroup
of order 17 and that G has a normal cyclic subgroup of order 85.)

Solution: Let n17 be the number of Sylow 17 subgroup of G. We know n17 divides 15 and is congruent
to 1 mod 17. Thus n17 = 1 and there is a unique Sylow 17 subgroup, call it P. Now G/P is a group of
order 15. If we look at the number of Sylow 5 subgroups of G/P we see this number must divide 3 and
be congruent to 1 mod 5. Thus there is just one such subgroup Q′ and it must be normal. By the fourth
isomorphism theorem we know there is a subgroup Q in G such that Q/P = Q′ in G/P. This subgroup
will be normal and of order 85. (You could alternately argue that if P ′ was any Sylow 5 subgroup of
G then PP ′ is a subgroup of G of order 85 and since its index is the smallest prime dividing the order
of G we can conclude it is normal.) Clearly P ≤ Q is normal and since 5 + 1, 10 + 1 and 15 + 1 does
not divide 17 the Sylow 5 subgroup R of Q is normal in Q. So Q = PR,P ∩ R = {1} and P and Q are
both normal in Q. Thus Q = P × Q and since P and Q have prime orders we know they are cyclic.
Thus Q = (Z/17Z) × (Z/5Z) ∼= Z/85Z is a cyclic subgroup of G. Now if n3 is the number of Sylow
3 subgroups then n3 divides 85 and is congruent to 1 mod 3. The only way for this to happen is for
n3 = 1 (since 4, 7, 10, 13, 16 and 19 do not divide 85). Thus the Sylow 3 subgroup S of G is normal in
G. Since G = QS,Q ∩ S = {1} and Q and S are normal subgroups of G we see G = Q × S = Z/255Z.
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7. Randomized Algorithms

Recall for a pair of distributions µ and ν on a finite set Ω, their variation distance is

dTV(µ, ν) =
1

2

∑

z∈Ω

|µ(z) − ν(z)|

Consider an ergodic Markov chain on state space Ω, transition matrix P and unique stationary distri-
bution π. Let P t(x, ·) denote the t-step distribution of the Markov chain starting from x ∈ Ω. Recall
the mixing time is defined to be

T (ε) = max
x∈Ω

Tx(ε)

where
Tx(ε) = min

{

t : dTV(P t(x, ·), π) ≤ ε
}

For the purposes of this problem we consider the following notion of intersection time. For x, y ∈ Ω,
define their intersection time as

T ∗

x,y = min
{

t : dTV

(

P t(x, ·), P t(y, ·)
)

≤ 1/2
}

and let
T ∗ = max

x,y∈Ω
T ∗

x,y

Prove that T (ε) ≤ T ∗dlog(1/ε)e, where the log is base 2.

Solution. We will prove the inequality using the coupling technique. For x ∈ Ω, consider 2 copies (X t)
and (Yt) of the Markov chain of interest where the initial states are X0 = x and Y0 is chosen according
to π. Thus Yt is distributed according to π for all t ≥ 0.

The coupling is defined in segments of T ∗ steps. From Xt, Yt, we couple the 2 chains as follows:

1. Run Xt for T ∗ steps.

2. If Xt = Yt, then we use the identity coupling for these T ∗ steps, i.e., let Yt+1 = Xt+1, . . . , Yt+T ∗ =
Xt+T ∗ .

3. Otherwise, independently of what happened for Xt, run Yt for T ∗ steps.

4. Repeat the process from Xt+T ∗ , Yt+T ∗ .

By the definition of T ∗, from any 2 initial states, if the 2 chains run independently for T ∗ steps, then
with probability ≥ 1/2 the 2 chains reach the same state. Thus, for any integer i ≥ 1, for all x ′, y′ ∈ Ω,
we have

Pr(XiT ∗ 6= YiT ∗ |X(i−1)T ∗ = x′, Y(i−1)T ∗ = y′) ≤ 1/2

The coupling is defined so that if the 2 chains reach the same state at the end of a round of T ∗ steps
then they always stay in the same state, therefore we have that

Pr(XiT ∗ 6= YiT ∗) ≤ (1/2)i

By the coupling lemma, since Yt is distributed according to π we have for t = iT ∗:

dTV(P t(x, ·), π) ≤ (1/2)i

Setting i = dlog(1/ε)e, and since the above holds for all initial states x, this proves the inequality.


