## 1. Graph Theory

Prove that there exist no simple planar triangulation $T$ and two distinct adjacent vertices $x, y \in V(T)$ such that $x$ and $y$ are the only vertices of $T$ of odd degree. Do not use the Four-Color Theorem. (Simple means no loops or parallel edges.)

## 2. Probability

Let $X, X_{1}, X_{2}, \ldots$ be independent identically distributed random variables. Denote

$$
S_{n}:=X_{1}+\cdots+X_{n} .
$$

(a) If $X \geq 0$ a.s. and $\mathbb{E} X=+\infty$, then

$$
\frac{S_{n}}{n} \rightarrow+\infty \text { as } n \rightarrow \infty \text { a.s. }
$$

(b) If $\mathbb{E}|X|=+\infty$, then

$$
\limsup _{n \rightarrow \infty} \frac{\left|S_{n}\right|}{n}=+\infty \text { a.s. }
$$

## 3. Analysis of Algorithms

Suppose we would like to find a collection of matchings such that every edge of the graph is a member of (at least) one of the matchings we selected. The goal is to pick the minimum number of matchings for our collection. Give an $\mathrm{O}(\log n)$-approximation for this problem that runs in polynomial time, where $n$ is the number of vertices of the input graph.

## 4. Theory of Linear Inequalities

Let $C \subseteq R^{n}$ be a finitely-generated cone of full dimension and let $H$ be an integral Hilbert basis for $C$. Suppose $w^{T} x \geq 0$ is a facet-defining inequality for $C$ such that the components of $w$ are relatively prime integers. Show that there exists a vector $h \in H$ such that $w^{T} h=1$.

## 5. Combinatorial Optimization

Consider an assignment problem (AP)

$$
\begin{array}{lll}
\max & \sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j} & \\
& \sum_{j \in N} x_{i j}=1 & \text { for } i \in N \\
& \sum_{i \in N} x_{i j}=1 & \text { for } j \in N \\
& x_{i j}=0 \text { or } 1 & \text { for } i, j \in N
\end{array}
$$

where $N=\{1, \ldots, n\}$.
Note: You should be able to answer (1)-(5) quickly, which is preliminary to (6). (6) is the part of this question that counts the most.
(1) State a property of the constraint matrix from which it can be deduced that all of the extreme points of the LP relaxation are integral.
(2) Let $x(I, J)=\sum_{i \in I} \sum_{j \in J} x_{i j}$ where $\emptyset \subset I, J \subseteq N$. Suppose $|I|+|J|=n+k, k \geq 1$. Prove that if $x$ is a feasible solution, then $x(I, J) \geq k$.
(3) Now consider a constrained AP called CAP where we require $x_{2 k-1,2 k-1}-x_{2 k, 2 k}=0$ for $k=$ $1, \ldots, m$. Suppose we have a fractional point say

$$
x=\left(\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2
\end{array}\right) \text { for } n=3, m=1
$$

What is required of such a point to conclude that the LP relaxation of CAP is not integral? Does this point $x$ suffice?
(4) Let $n=5, m=2$ in CAP. Prove that

$$
x_{11}-\left(x_{34}+x_{43}+x_{44}\right) \leq 0
$$

is a valid inequality.
(5) Given $\emptyset \subset I, J \subseteq N$ with $|I|+|J|=n-1$, let

$$
\begin{aligned}
& K=\{2 r-1:\{2 r-1,2 r\} \subseteq I \cap J, r \leq m\} \\
\hat{K}= & \{2 r-1:\{2 r-1,2 r\} \subseteq(N \backslash I) \cap(N \backslash J), r \leq m\} .
\end{aligned}
$$

Show that the inequality in (4) is of the form

$$
\begin{equation*}
\sum_{i \in K \cup \hat{K}} x_{i i}-x(I, J) \leq 0 \tag{*}
\end{equation*}
$$

with $I=J=\{3,4\}$.
(6) Prove in general that $(*)$ is a valid inequality for CAP if $|I|+|J|=n-1$ and $|\hat{K}| \geq 1$.
(7) Describe how you would prove that $(*)$ with the condition given in (6) is a facet of the convex hull of CAP. An actual proof is not required.
(8) Give the form of $(*)$ with the condition given in (6) for $m=1$. In this case, the assignment constraints, side constraints, nonnegativity and ( $*$ ) give the convex hull. Describe how you could prove this. An actual proof is not required.
(9) Suggest an idea for separating $(*)$ with $m=1$.

## 6. Algebra

Suppose $G$ is a group of order 255 . Prove that $G$ is cyclic. (Hint: First show $G$ has a normal subgroup of order 17 and that $G$ has a normal cyclic subgroup of order 85.)

## 7. Randomized Algorithms

Recall for a pair of distributions $\mu$ and $\nu$ on a finite set $\Omega$, their variation distance is

$$
d_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{z \in \Omega}|\mu(z)-\nu(z)|
$$

Consider an ergodic Markov chain on state space $\Omega$, transition matrix $P$ and unique stationary distribution $\pi$. Let $P^{t}(x, \cdot)$ denote the $t$-step distribution of the Markov chain starting from $x \in \Omega$. Recall the mixing time is defined to be

$$
T(\epsilon)=\max _{x \in \Omega} T_{x}(\epsilon)
$$

where

$$
T_{x}(\epsilon)=\min \left\{t: d_{\mathrm{TV}}\left(P^{t}(x, \cdot), \pi\right) \leq \epsilon\right\}
$$

For the purposes of this problem we consider the following notion of intersection time. For $x, y \in \Omega$, define their intersection time as

$$
T_{x, y}^{*}=\min \left\{t: d_{\mathrm{TV}}\left(P^{t}(x, \cdot), P^{t}(y, \cdot)\right) \leq 1 / 2\right\}
$$

and let

$$
T^{*}=\max _{x, y \in \Omega} T_{x, y}^{*}
$$

Prove that $T(\epsilon) \leq T^{*}[\log (1 / \epsilon)\rceil$, where the $\log$ is base 2 .

