
ACO Comprehensive Exam Spring 2025

Jan 5, 2025

1 Algorithms
We are given three arrays A[0...n−1], B[0...m−1], M [0...m−1] with m ≤ n and M [i] ∈ [0, 1]
for all i. For vectors v ∈ Rm we define the mask-norm

∥v∥2
M :=

m−1∑
k=0

M [k] · v2
k

i.e., the classical L2-norm but we weight entries by M [k] ∈ [0, 1]. So array M functions as a
“mask” and each entry M [k] specifies how important the entry is on a scale from 0 to 1.
For any index i, we interpret A[i...i + m − 1], B[0...m − 1] ∈ Rm as m-dimensional vectors.
We want to find index i where A[i...i + m − 1] is “closest” to B[0...m − 1] with respect to
the mask-norm. That is, find i that minimizes

∥A[i...i + m − 1] − B[0...m − 1]∥2
M =

m−1∑
k=0

M [k] · (A[i + k] − B[k])2.

(For example, array B may be a picture of some object, array M is a mask that separates
the object from the background in picture B, and we try to find the object within picture
A.)
1. (2 points) Show that for any two vectors u, v ∈ Rm, we have

∥u − v∥2
M = ∥u∥2

M − 2
(

m−1∑
k=0

uk · vk · M [k]
)

+ ∥v∥2
M .

2. (4 points) Design and analyze an algorithm that, given arrays C[0...n − 1], D[0...m − 1],
computes in O(n log n) time the array E[0...n − m] with

E[i] =
m−1∑
k=0

C[i + k] · D[k]

(Hint: Use FFT in O(n log n) time for polynomial multiplication.)

3. (4 points) Design and analyze an algorithm that, given arrays A[0...n − 1], B[0...m − 1],
M [0...m−1], returns in O(n log n) time an index i where ∥A[i...i+m−1]−B[0...m−1]∥2

M

is as small as possible. (You may use 2. even if you have not solved it.)

1

2 Graph Theory
Question. Show that for every positive integer k there exists a positive integer ck with the
following property: If G is a ck-vertex-connected graph for which there exists S ⊆ V (G)
with |S| = k such that

(1) G − S is a bipartite graph with partition sets V1, V2, and

(2) for every T ⊆ S and for each i ∈ [2], |NG(T) ∩ Vi| ≥ |T |,

then G contains k odd cycles that are pairwise vertex disjoint. Give a sufficient bound on ck

as a function of k alone.

Page 2

3 Linear Inequalities
A sequence of positive integers {aj}j∈[n] is called super-increasing if ∑k

j=1 aj < ak+1 for all
k ∈ [n − 1]. For example, the sequence aj = 2j−1 for j ∈ [n] is super-increasing. Consider a
knapsack set with coefficients being super-increasing:

S :=

x ∈ {0, 1}n

∣∣∣∣∣∣
n∑

j=1
ajxj ≤ b

 ,

where we assume an ≤ b and there exists I ⊆ [n] such that ∑j∈I aj = b. For j ∈ [n] \ I,
define the set: Ij := {j} ∪ {i ∈ I | i > j}.

(a.) (3 pt) Show that if x̂ ∈ S, then it satisfies the inequalities:∑
i∈Ij

x̂i ≤ |Ij| − 1, (1)

for all j ∈ [n] \ I.

(b.) (3 pt) Show that if x̂ ∈ {0, 1}n \ S, then there exists j′ ∈ [n] \ I such that x̂ does not
satisfy (1) corresponding to j′.

(c.) (4 pt) Show that P := {x ∈ [0, 1]n | (1), ∀j ∈ [n] \ I } is an integral polytope, thus
establishing that conv(S) = P .

Page 3

4 Solutions

4.1 Algorithms

Let M1/2u be the entry-wise product, i.e., (M1/2u)i = M [i]1/2 · ui. Then

∥u − v∥2
M = ∥M1/2u − M1/2v∥2 = ∥M1/2u∥2 − 2⟨M1/2u, M1/2v⟩ + ∥Mv∥2

= ∥u∥2
M − 2

(∑
i

M [i] · ui · vi

)
+ ∥v∥2

M .

Algorithm: The algorithm first construct two polynomials f(x) = ∑
i C[i]xi, g(x) =∑

i D[m − i − 1]xi, and computes the product h(x) = f(x)g(x) via FFT. The array E
are the coefficients of h, when ignoring the first m terms. That is, E[i] is the coefficient
of xi+m in h.
Complexity Constructing the polynomials f, g is O(n) time. The polynomial prod-
ucts via FFT take O(n log n) time. So overall complexity is O(n log n).
Correctness The polynomial h(x) has as coefficient of xi

m−1∑
k=0

fi−kgk =
m−1∑
k=0

C[i − k]D[m − k − 1]

=
m−1∑
k=0

C[i − m + 1 + k]D[k]

In other words, the coefficient in h(x) of xi+(m−1) is∑
k

C[i + k]D[k]

So by ignoring the first m coefficients of h, and only keeping the coefficients of xi+(m−1)

for i = 0...n − m, we get the desired sums for E[i].

Page 4

Algorithm We compute ∥B∥2
M = ∑m−1

i=0 B[i]2 ∗ M [i]. Then we construct arrays
A′, B′ with

A′[i] = A[i]2

B′[i] = B[i] · M [i]

for i = 0...m − 1. Then we compute arrays C, D with

C[i] =
m−1∑
k=0

A[i + k] · B′[k]

D[i] =
m−1∑
k=0

A′[i + k] · M [k]

via the algorithm of Q2. Finally, for i = 0...n−m−1 we set E[i] = ∥B∥2
M +D[i]−2C[i],

and return the index i with largest E[i].
Complexity Computing ∥B∥2

M takes O(n) time. Constructing A′, B′ takes O(n)
time. Computing C,D takes O(n log n) by Q2, and the last for-loop also takes O(n)
time. Thus overall time complexity is O(n log n).
Correctness Correctness follows directly from Q1 and the values computed in Q2:

∥A[i...i + m − 1] − B[0..m − 1]∥2
M

Q1= ∥A[i...i + m − 1]∥2
M − 2

(∑
k

A[i + k] · B[k] · M [k]
)

+ ∥B[0...m − 1]∥2
M

=
(

m−1∑
k=0

A[i + k]2 · M [k]
)

− 2
(∑

k

A[i + k] · B[k] · M [k]
)

+ ∥B[0...m − 1]∥2
M

= D[i] − 2 · C[i] + ∥B∥2
M .

Page 5

4.2 Graph Theory

Solution. Choose ck to be sufficiently large, such that (ck −k)-connected graphs are k-linked.
Note such ck exists by a theorem of Larmen and Mani and independently Jung. (Indeed, we
may take ck = 11k by a theorem of Thomas and Wollan.)

For i ∈ [2], let Gi be the subgraph of G induced by the edges of G from S to Vi. Then
condition (2) allows us to apply Hall’s theorem to conclude that Gi has a complete matching
from S to Vi. For i ∈ [2], let {sjv

i
j : j ∈ [k]} denote such a matching, where S = {s1, . . . , sk}

and {vi
1, . . . , vi

k} ⊆ Vi.

Since G is ck-connected, G − S is (ck − k)-connected; hence, G − S is k-linked. Therefore,
G − S has k pairwise disjoint paths Pj from v1

j to v2
j , j ∈ [k]. Since G − S is bipartite, Pj

has odd length. Let Cj be the cycle obtained from Pj by adding the path v1
j sjv

2
j . Clearly,

C1, . . . , Ck are pairwise disjoint odd cycles.

Page 6

4.3 Linear Inequalities
(1): Assume by contradiction∑i∈Ij

x̂i = |Ij|, that is x̂i = 1 for all i ∈ Ij for some j ∈ [n]\I.
In that case ∑

i∈[n]
aix̂i ≥

∑
i∈Ij

aix̂i = aj +
∑

i∈I:i>j

ai >
∑

i∈I:i<j

ai +
∑

i∈I:i>j

ai = b, (2)

where the strict inequality follows from the fact the sequence is super increasing. (2) con-
tradicts x̂ ∈ S.

(2): Let j′ := argmax{i ∈ [n] \ I | x̂i = 1}. Note that if i′ > j′, i′ ∈ I, then x̂i′ = 1.
Otherwise, if xi′ = 0, then ...∑

i∈[n]
aix̂i ≤

∑
i∈[j′]

ai +
∑

i∈I:i>j′,i ̸=i′
ai <

∑
i∈I:i>j′

ai ≤ b,

contradicting x̂ ̸∈ S. We used the super increasing property for the second (strict) inequality
Thus, x̂i = 1 for all i ∈ Ij′ , hence it does not satisfy (1) corresponding to j′.

(3): It is clear that P ∩ {0, 1}n = S. We will show that left-hand-side of the constraint
matrix of P is totally unimodular (TU). As the right-hand-side is an integral vector, this
will show that P is integral.

In class, we have shown that if A is TU, then so is

 A
I

−I

 where I is the identity matrix.

Thus, it is sufficient to show that the left-hand-side of the inequalities (1) is TU. Note now
that by rearranging the columns, for example, by first writing the columns corresponding to
variables in I and then followed by the columns corresponding to variables in [n] \ I, the
constraint matrix can be seen to be of the form [C I] where C is an interval matrix and I
is the identity matrix. Thus the left-hand-side of the inequalities (1) is TU, completing the
proof.

Page 7

	Algorithms
	Graph Theory
	Linear Inequalities
	Solutions
	Algorithms
	Graph Theory
	Linear Inequalities

