
ACO Comprehensive Exam Spring 2023

Jan 5, 2023

1 Algorithms

Problem (Super Mario Secret Level)

Super Mario unlocked a new world, where he runs with Bowser on a weighted, directed graph.
Each directed edge has two positive weights (me, be) corresponding to Mario and Bowser,
respectively. When the arch-enemies traverse an edge, they multiply their respective number
of coins by the weight for them on that edge. For example, if they are at vertex u and they
each have ten coins, when traversing edge e = u → v with weights (2, 1.5) Mario ends at
vertex v with 20 coins and Bowser gets there with 15 coins. They always run together.
You are given the directed graph {G = (V,E), (me, be), e ∈ E}. Both Mario and Bowser are
at vertex s ∈ V , and have one coin each.

(a) (1 points) Let ℓe = log(be) − log(me). Show that if Mario and Bowser take the path
P = {e1, e2, e3, . . . , ek} ending at vertex v ∈ V , then

Number of coins Bowser has at vertex v

Number of coins Mario has at vertex v
= 2

∑k
i=1 ℓi .

(b) (3 points) You are told that be > 1 for all e ∈ E (i.e., Bowser will always increase his
number of coins!). Mario will be able to rescue the princess only if Bowser gets to the
special vertex t ∈ V with less than 100 coins. Design an algorithm that takes as input
the weighted graph G and outputs whether or not Mario can rescue the princess.

(c) (6 points) In the bonus level, you are given a graph with positive edge weights, not
necessarily bigger than one. This time, Mario will rescue the princess iff there is an
infinite path such that the ratio of the number of coins of Mario gets to the number of
coins Bowser gets tends to infinity. Design an algorithm to decide if it is possible for
Mario to rescue the princess.

To earn full credit, you must describe your algorithm in detail and justify its correctness.
You should also state and analyze its runtime, which should be polynomial in the size of the
graph.
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Solution:
(a) After traversing P , Mario will have Πk

i=1mi many coins, and Bowser will have Πk
i=1bi.

Thus,

Number of coins Bowser has at vertex v

Number of coins Mario has at vertex v
=

Πk
i=1mi

Πk
i=1bi

= 2
∑k

i=1 ℓi .

(b) We want a path P from s to t such that Πe∈Pbe < 100. This is equivalent to∑
e∈P

log(be) < log(100).

which is a standard min-path problem. Note that the weights satisfy be > 1 so log(be) > 1
so we can use Dijkstra’s algorithm. Mario will be able to rescue the princess if and only if
the length of the shortest path from s to t is less than 100.

(c) Now we set edge weights equal to ℓe = log(me)− log(be). Using the result from part (a),
we need to find an infinite path P such that∑

P

ℓi → −∞

which is equivalent to finding a cycle of negative weight! We can, e.g., run Bellman-Ford on
G to check for such a cycle.
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2 Graph Theory

Question. For positive integers s, t, let R(s, t) denote the least integer n such that any graph
on n vertices contains an independent set of size s or a clique of order t. For a family of
graphs F we say that a graph G is F -free if no induced subgraph of G is isomorphic to a
member of F . For parts (1) and (2), let s, t be integers with s ≥ 3 and t ≥ 3.

(1) Let G be a {K1,s, Kt+1}-free graph. Show that χ(G) ≤ R(s, t)− 1.
(Hint: first show that ∆(G) ≤ R(s, t)− 1.)

(2) Show that there exists {K1,s, Kt+1}-free graph G such that χ(G) ≥ R(s,t+1)−1
s−1

.

(3) Suppose G is {K1,3, K4,W5}-free, where W5 denote the wheel on 6 vertices. Show
χ(G) ≤ 4.
(W5 is the graph containing a 5-cycle and one additional vertex connected to all vertices
of the 5-cycle).

Solution. (1) First, we show that ∆(G) ≤ R(s, t)− 1. Let x ∈ V (G). If d(x) ≥ R(s, t), then
by definition of R(s, t), the subgraph of G induced by N(x) contains an independent set S
of size s or a clique T of order t. Now G[S ∪ {x}] is isomorphic to K1,s or G[V (T ) ∪ {x}] is
a clique of order t+ 1, a contradiction.
Thus, by Brooks’ theorem, χ(G) ≤ R(s, t), with equality iff G ∼= KR(s,t) or G is an odd cycle.
If G ∼= KR(s,t) then G contains Kt+1 (as R(s, t) > t + 1), a contradiction. If G is an odd
cycle then χ(G) = 3 < R(s, t). Hence, χ(G) ≤ R(s, t)− 1.

(2) By definition of R(s, t + 1), there exists a graph G of order R(s, t + 1) − 1 with no
independent set of size s (i.e. α(G) ≤ s − 1) and no clique of order t + 1. Thus G is
{K1,s, Kt+1}-free and

χ(G) ≥ |V (G)|
α(G)

≥ R(s, t+ 1)− 1

s− 1
.

(3) Note that R(3, 3) = 6; so by the proof of (1), ∆(G) ≤ 5. Further note that C5 is the only
graph on 5 vertices with no independent set of size 3 and no clique of order 3. Thus, if x is a
vertex of degree 5 in G, then G[N [x]] ∼= W5, a contradiction. Hence, ∆(G) ≤ 4. By Brooks’
theorem, χ(G) ≤ 4 unless G ∼= K5 or G is an odd cycle. But G ̸∼= K5 as G is K4-free, and if
G is an odd cycle then χ(G) = 3 < 4.
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3 Linear Inequalities

Suppose we have a collection of closed, finite intervals of the real line I = {I1, I2, . . . , Ik},
with Ii ⊂ R.

(i) (3 points) We want to find the maximum cardinality sub-collection of intervals that are
disjoint, i.e., each point on the real line lines in at most one interval in the collection in
which there is at most one of the chosen intervals. Write a linear program for this so
that the extreme points of the feasible region are exactly subsets of disjoint intervals.

(ii) (7 points) Suppose that every point on the real line lies in at most k intervals in I.
Show that I can be partitioned into I1, I2, . . . , Ik such that each Ik is a collection of
non-overlapping intervals.

Solution.

(i) Write the constraint matrix where each column represents an interval, and each row
represents a member of the partition of R created by intersecting all the intervals.
Every column will have a consecutive set of ones. The constraint for selecting a set
of non-intersecting columns can be written as: Mx ≤ 1, x ∈ {0, 1}. But note that
M is a TU matrix, using the Ghouila-Houri condition to partition the rows of this
constraint matrix (and, therefore this can be solved in polynomial time). The extreme
points of the linear program are therefore integral as well, each representing a subset
of non-overlapping intervals.

(ii) We can derive this using the integer decomposition property. Consider P = {x|x ≥
0,Mx ≤ 1}. We note that x′ = 1

k
is feasible for this polytope, since each point p has

at most k intervals overlapping it. But M is TU, and P has the integer decomposition
property. Therefore, y = kx′ = 1, we have My ≤ k1. Therefore, y can be written
as x1 + . . . + xk where xi is integral ∀1 ≤ i ≤ k and xi ∈ P . This gives the desired
decomposition.
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