ACO Comprehensive Exam Fall 2022

Aug 17, 2022

1 Design and Analysis of Algorithms

In a combinatorial auction there is a set N of n = |N| bidders and a set M of m = |M|items. Bidder $i \in N$ has a monotone valuation $v_i(\cdot)$ where $v_i(S)$ is their value for item set $S \subseteq M$ (here "monotone" means that $v_i(S \cup T) \ge v_i(S)$ for all $S, T \subseteq M$). The goal of this problem is to find a disjoint set of subsets where bidder i gets subset A_i of items $(A_i \cap A_k = \emptyset$ for $i \neq k$) to maximize the total welfare $\sum_{i \in N} v_i(A_i)$.

1. (Configuration LP, 2 points) Prove that the value of the following linear program (called the *configuration* LP) gives an upper bound on the total welfare of the optimal allocation.

$$\max \sum_{i \in N} \sum_{S \subseteq M} v_i(S) \cdot x_{i,S}$$
s.t. $\forall i \in N, \quad \sum_{S \subseteq M} x_{i,S} = 1$
 $\forall j \in M, \quad \sum_{S \ni j} \sum_{i \in N} x_{i,S} \le 1$
 $\forall i \in N, \forall S \subseteq M, \quad x_{i,S} \ge 0$

- 2. (XOS Function, 3 points) A monotone set function $v(\cdot) : 2^M \to \mathbb{R}_{\geq 0}$ is called an XOS function if there exist monotone linear set functions $a_k(\cdot) : 2^M \to \mathbb{R}_{\geq 0}$ s.t. for all $S \subseteq M$ we have $v(S) = \max_k a_k(S)$ (i.e., $v(\cdot)$ can be written as the maximum of linear functions where a function $a_k(\cdot)$ is linear if it satisfies $a_k(S \cup T) = a_k(S) + a_k(T)$ for all disjoint $S, T \subseteq M$). Given a set $S \subseteq M$, prove that if we select a random subset $R \subseteq S$ from a probability distribution that contains each item in S with probability at least p (different items could be correlated), then the expected value of v(R) is at least $p \cdot v(S)$.
- 3. (Rounding) Suppose we are given an optimal (fractional) solution $x_{i,S}^*$ to the configuration LP¹. To "round" this fractional solution to integral allocations A_i , each bidder

¹This can be computed in polynomial time using a "demand oracle" but we will assume that it is given.

 $i \in N$ first chooses a random *tentative* item set T_i independent of other bidders, where $T_i = S$ with probability $x_{i,S}^*$ (the LP constraint $\sum_{S \subseteq M} x_{i,S}^* = 1$ ensures that this is a valid probability distribution). Since in this tentative allocation an item j might appear in multiple tentative sets, in the final allocation $\{A_i\}_i$ we allocate each item $j \in M$ to one of the tentative bidders (i.e., bidders i with $j \in T_i$) chosen uniformly at random.

- (a) (3 points) Prove that conditioned on T_i , bidder *i* receives each item $j \in T_i$ with at least a constant probability, where the probability is taken over the random tentative sets T_k chosen by other bidders $k \neq i$.
- (b) (2 points) Using (2), prove that if all valuations v_i are monotone XOS then the expected welfare of this rounded solution is at least a constant fraction of the optimal LP value $\sum_{i \in N} \sum_{S \subseteq M} v_i(S) \cdot x_{i,S}^*$, and so we get a constant factor approximation to the optimal welfare.

2 Combinatorial Optimization

Let $\mathcal{M} = (U, \mathcal{I})$ be a matroid with rank function $r : 2^U \to \mathbb{R}$ and let B and B' be two disjoint bases of \mathcal{M} . Let Y_1 and Y_2 be a partition of B. The problem is to prove the following statement:

There exists a partition Z_1 and Z_2 of B' such that $Y_1 \cup Z_1$ and $Y_2 \cup Z_2$ are both bases of \mathcal{M} .

To show this statement, prove the following steps (or give an alternative direct proof).

- 1. (1 point) We can assume without loss of generality that $U = B \cup B'$.
- 2. (2 points) Let $\mathcal{M}_1 = (\mathcal{M} \setminus Y_1)/Y_2$ and $\mathcal{M}_2 = (\mathcal{M}^* \setminus Y_1)/Y_2$. Here \mathcal{M}^* is the dual matroid of \mathcal{M} and \mathcal{M}/Y denotes the matroid obtained by contracting elements in Y. What are the rank functions of \mathcal{M}_1 and \mathcal{M}_2 and, in particular, what are the ranks of these matroids?
- 3. (5 points) Show that there is a common independent set Z of size $|Y_1|$ of both these matroids.
- 4. (2 points) Show that $Z_2 = Z$ suffices to prove the statement.

3 Probabilistic Combinatorics

(10 points)

For a graph G, let $\max(G)$ denote the maximum number of edges in a cut in G. Let $G \sim \mathbb{G}(n, p)$ be the Erdős–Rényi random graph with edge probability $p = p(n) \in [0, 1]$ (so the edge probability is a function of n). Show that

$$\left|\mathbb{E}[\mathsf{maxcut}(G)] - \frac{pn^2}{4}\right| \,=\, O(\sqrt{p}\,n^{3/2}).$$

(The implied constants in the big-O notation should not depend on p.) *Remark.* You may receive partial credit if you prove the result for only some range of values of p.