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Aug 17, 2022

1 Design and Analysis of Algorithms

In a combinatorial auction there is a set N of n = |N | bidders and a set M of m = |M |
items. Bidder i ∈ N has a monotone valuation vi(·) where vi(S) is their value for item set
S ⊆ M (here “monotone” means that vi(S ∪ T ) ≥ vi(S) for all S, T ⊆ M). The goal of this
problem is to find a disjoint set of subsets where bidder i gets subset Ai of items (Ai∩Ak = ∅
for i ̸= k) to maximize the total welfare

∑
i∈N vi(Ai).

1. (Configuration LP, 2 points) Prove that the value of the following linear program
(called the configuration LP) gives an upper bound on the total welfare of the optimal
allocation.

max
∑
i∈N

∑
S⊆M

vi(S) · xi,S

s.t. ∀i ∈ N,
∑
S⊆M

xi,S = 1

∀j ∈ M,
∑
S∋j

∑
i∈N

xi,S ≤ 1

∀i ∈ N, ∀S ⊆ M, xi,S ≥ 0

2. (XOS Function, 3 points) A monotone set function v(·) : 2M → R≥0 is called an XOS
function if there exist monotone linear set functions ak(·) : 2M → R≥0 s.t. for all
S ⊆ M we have v(S) = maxk ak(S) (i.e., v(·) can be written as the maximum of linear
functions where a function ak(·) is linear if it satisfies ak(S ∪ T ) = ak(S) + ak(T ) for
all disjoint S, T ⊆ M). Given a set S ⊆ M , prove that if we select a random subset
R ⊆ S from a probability distribution that contains each item in S with probability
at least p (different items could be correlated), then the expected value of v(R) is at
least p · v(S).

3. (Rounding) Suppose we are given an optimal (fractional) solution x∗
i,S to the configu-

ration LP1. To“round” this fractional solution to integral allocations Ai, each bidder

1This can be computed in polynomial time using a “demand oracle” but we will assume that it is given.
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i ∈ N first chooses a random tentative item set Ti independent of other bidders, where
Ti = S with probability x∗

i,S (the LP constraint
∑

S⊆M x∗
i,S = 1 ensures that this is

a valid probability distribution). Since in this tentative allocation an item j might
appear in multiple tentative sets, in the final allocation {Ai}i we allocate each item
j ∈ M to one of the tentative bidders (i.e., bidders i with j ∈ Ti) chosen uniformly at
random.

(a) (3 points) Prove that conditioned on Ti, bidder i receives each item j ∈ Ti with
at least a constant probability, where the probability is taken over the random
tentative sets Tk chosen by other bidders k ̸= i.

(b) (2 points) Using (2), prove that if all valuations vi are monotone XOS then the
expected welfare of this rounded solution is at least a constant fraction of the
optimal LP value

∑
i∈N

∑
S⊆M vi(S) · x∗

i,S, and so we get a constant factor ap-
proximation to the optimal welfare.
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2 Combinatorial Optimization

Let M = (U, I) be a matroid with rank function r : 2U → R and let B and B′ be two dis-
joint bases of M. Let Y1 and Y2 be a partition of B. The problem is to prove the following
statement:

There exists a partition Z1 and Z2 of B
′ such that Y1 ∪Z1 and Y2 ∪Z2 are both bases of M.

To show this statement, prove the following steps (or give an alternative direct proof).

1. (1 point) We can assume without loss of generality that U = B ∪B′.

2. (2 points) Let M1 = (M \ Y1)/Y2 and M2 = (M⋆ \ Y1)/Y2. Here M⋆ is the dual
matroid of M and M/Y denotes the matroid obtained by contracting elements in Y .
What are the rank functions of M1 and M2 and, in particular, what are the ranks of
these matroids?

3. (5 points) Show that there is a common independent set Z of size |Y1| of both these
matroids.

4. (2 points) Show that Z2 = Z suffices to prove the statement.
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3 Probabilistic Combinatorics

(10 points)
For a graph G, let maxcut(G) denote the maximum number of edges in a cut in G. Let
G ∼ G(n, p) be the Erdős–Rényi random graph with edge probability p = p(n) ∈ [0, 1] (so
the edge probability is a function of n). Show that∣∣∣∣E[maxcut(G)]− pn2

4

∣∣∣∣ = O(
√
p n3/2).

(The implied constants in the big-O notation should not depend on p.)
Remark. You may receive partial credit if you prove the result for only some range of values
of p.
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