ACO Comprehensive Exam Fall 2022

Aug 17, 2022

1 Design and Analysis of Algorithms

In a combinatorial auction there is a set N of $n=|N|$ bidders and a set M of $m=|M|$ items. Bidder $i \in N$ has a monotone valuation $v_{i}(\cdot)$ where $v_{i}(S)$ is their value for item set $S \subseteq M$ (here "monotone" means that $v_{i}(S \cup T) \geq v_{i}(S)$ for all $\left.S, T \subseteq M\right)$. The goal of this problem is to find a disjoint set of subsets where bidder i gets subset A_{i} of items $\left(A_{i} \cap A_{k}=\emptyset\right.$ for $i \neq k)$ to maximize the total welfare $\sum_{i \in N} v_{i}\left(A_{i}\right)$.

1. (Configuration LP, 2 points) Prove that the value of the following linear program (called the configuration $L P$) gives an upper bound on the total welfare of the optimal allocation.

$$
\begin{array}{ll}
\max & \sum_{i \in N} \sum_{S \subseteq M} v_{i}(S) \cdot x_{i, S} \\
\text { s.t. } & \forall i \in N, \quad \sum_{S \subseteq M} x_{i, S}=1 \\
& \forall j \in M, \quad \sum_{S \ni j} \sum_{i \in N} x_{i, S} \leq 1 \\
& \forall i \in N, \forall S \subseteq M, \quad x_{i, S} \geq 0
\end{array}
$$

2. (XOS Function, 3 points) A monotone set function $v(\cdot): 2^{M} \rightarrow \mathbb{R}_{\geq 0}$ is called an XOS function if there exist monotone linear set functions $a_{k}(\cdot): 2^{M} \rightarrow \mathbb{R}_{\geq 0}$ s.t. for all $S \subseteq M$ we have $v(S)=\max _{k} a_{k}(S)$ (i.e., $v(\cdot)$ can be written as the maximum of linear functions where a function $a_{k}(\cdot)$ is linear if it satisfies $a_{k}(S \cup T)=a_{k}(S)+a_{k}(T)$ for all disjoint $S, T \subseteq M$). Given a set $S \subseteq M$, prove that if we select a random subset $R \subseteq S$ from a probability distribution that contains each item in S with probability at least p (different items could be correlated), then the expected value of $v(R)$ is at least $p \cdot v(S)$.
3. (Rounding) Suppose we are given an optimal (fractional) solution $x_{i, S}^{*}$ to the configuration LP^{1}. To "round" this fractional solution to integral allocations A_{i}, each bidder

[^0]$i \in N$ first chooses a random tentative item set T_{i} independent of other bidders, where $T_{i}=S$ with probability $x_{i, S}^{*}$ (the LP constraint $\sum_{S \subseteq M} x_{i, S}^{*}=1$ ensures that this is a valid probability distribution). Since in this tentative allocation an item j might appear in multiple tentative sets, in the final allocation $\left\{A_{i}\right\}_{i}$ we allocate each item $j \in M$ to one of the tentative bidders (i.e., bidders i with $j \in T_{i}$) chosen uniformly at random.
(a) (3 points) Prove that conditioned on T_{i}, bidder i receives each item $j \in T_{i}$ with at least a constant probability, where the probability is taken over the random tentative sets T_{k} chosen by other bidders $k \neq i$.
(b) (2 points) Using (2), prove that if all valuations v_{i} are monotone XOS then the expected welfare of this rounded solution is at least a constant fraction of the optimal LP value $\sum_{i \in N} \sum_{S \subseteq M} v_{i}(S) \cdot x_{i, S}^{*}$, and so we get a constant factor approximation to the optimal welfare.

2 Combinatorial Optimization

Let $\mathcal{M}=(U, \mathcal{I})$ be a matroid with rank function $r: 2^{U} \rightarrow \mathbb{R}$ and let B and B^{\prime} be two disjoint bases of \mathcal{M}. Let Y_{1} and Y_{2} be a partition of B. The problem is to prove the following statement:

There exists a partition Z_{1} and Z_{2} of B^{\prime} such that $Y_{1} \cup Z_{1}$ and $Y_{2} \cup Z_{2}$ are both bases of \mathcal{M}.
To show this statement, prove the following steps (or give an alternative direct proof).

1. (1 point) We can assume without loss of generality that $U=B \cup B^{\prime}$.
2. (2 points) Let $\mathcal{M}_{1}=\left(\mathcal{M} \backslash Y_{1}\right) / Y_{2}$ and $\mathcal{M}_{2}=\left(\mathcal{M}^{\star} \backslash Y_{1}\right) / Y_{2}$. Here \mathcal{M}^{\star} is the dual matroid of \mathcal{M} and \mathcal{M} / Y denotes the matroid obtained by contracting elements in Y. What are the rank functions of \mathcal{M}_{1} and \mathcal{M}_{2} and, in particular, what are the ranks of these matroids?
3. (5 points) Show that there is a common independent set Z of size $\left|Y_{1}\right|$ of both these matroids.
4. (2 points) Show that $Z_{2}=Z$ suffices to prove the statement.

3 Probabilistic Combinatorics

(10 points)
For a graph G, let $\operatorname{maxcut}(G)$ denote the maximum number of edges in a cut in G. Let $G \sim \mathbb{G}(n, p)$ be the Erdős-Rényi random graph with edge probability $p=p(n) \in[0,1]$ (so the edge probability is a function of n). Show that

$$
\left|\mathbb{E}[\operatorname{maxcut}(G)]-\frac{p n^{2}}{4}\right|=O\left(\sqrt{p} n^{3 / 2}\right) .
$$

(The implied constants in the big-O notation should not depend on p.)
Remark. You may receive partial credit if you prove the result for only some range of values of p.

[^0]: ${ }^{1}$ This can be computed in polynomial time using a "demand oracle" but we will assume that it is given.

