
ACO Comprehensive Exam Fall 2022

Aug 17, 2022

1 Design and Analysis of Algorithms

In a combinatorial auction there is a set N of n = |N | bidders and a set M of m = |M |
items. Bidder i ∈ N has a monotone valuation vi(·) where vi(S) is their value for item set
S ⊆ M (here “monotone” means that vi(S ∪ T ) ≥ vi(S) for all S, T ⊆ M). The goal of this
problem is to find a disjoint set of subsets where bidder i gets subset Ai of items (Ai∩Ak = ∅
for i ̸= k) to maximize the total welfare

∑
i∈N vi(Ai).

1. (Configuration LP, 2 points) Prove that the value of the following linear program
(called the configuration LP) gives an upper bound on the total welfare of the optimal
allocation.

max
∑
i∈N

∑
S⊆M

vi(S) · xi,S

s.t. ∀i ∈ N,
∑
S⊆M

xi,S = 1

∀j ∈ M,
∑
S∋j

∑
i∈N

xi,S ≤ 1

∀i ∈ N, ∀S ⊆ M, xi,S ≥ 0

2. (XOS Function, 3 points) A monotone set function v(·) : 2M → R≥0 is called an XOS
function if there exist monotone linear set functions ak(·) : 2M → R≥0 s.t. for all
S ⊆ M we have v(S) = maxk ak(S) (i.e., v(·) can be written as the maximum of linear
functions where a function ak(·) is linear if it satisfies ak(S ∪ T ) = ak(S) + ak(T ) for
all disjoint S, T ⊆ M). Given a set S ⊆ M , prove that if we select a random subset
R ⊆ S from a probability distribution that contains each item in S with probability
at least p (different items could be correlated), then the expected value of v(R) is at
least p · v(S).

3. (Rounding) Suppose we are given an optimal (fractional) solution x∗
i,S to the configu-

ration LP1. To“round” this fractional solution to integral allocations Ai, each bidder

1This can be computed in polynomial time using a “demand oracle” but we will assume that it is given.
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i ∈ N first chooses a random tentative item set Ti independent of other bidders, where
Ti = S with probability x∗

i,S (the LP constraint
∑

S⊆M x∗
i,S = 1 ensures that this is

a valid probability distribution). Since in this tentative allocation an item j might
appear in multiple tentative sets, in the final allocation {Ai}i we allocate each item
j ∈ M to one of the tentative bidders (i.e., bidders i with j ∈ Ti) chosen uniformly at
random.

(a) (3 points) Prove that conditioned on Ti, bidder i receives each item j ∈ Ti with
at least a constant probability, where the probability is taken over the random
tentative sets Tk chosen by other bidders k ̸= i.

(b) (2 points) Using (2), prove that if all valuations vi are monotone XOS then the
expected welfare of this rounded solution is at least a constant fraction of the
optimal LP value

∑
i∈N

∑
S⊆M vi(S) · x∗

i,S, and so we get a constant factor ap-
proximation to the optimal welfare.
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2 Combinatorial Optimization

Let M = (U, I) be a matroid with rank function r : 2U → R and let B and B′ be two dis-
joint bases of M. Let Y1 and Y2 be a partition of B. The problem is to prove the following
statement:

There exists a partition Z1 and Z2 of B
′ such that Y1 ∪Z1 and Y2 ∪Z2 are both bases of M.

To show this statement, prove the following steps (or give an alternative direct proof).

1. (1 point) We can assume without loss of generality that U = B ∪B′.

2. (2 points) Let M1 = (M \ Y1)/Y2 and M2 = (M⋆ \ Y1)/Y2. Here M⋆ is the dual
matroid of M and M/Y denotes the matroid obtained by contracting elements in Y .
What are the rank functions of M1 and M2 and, in particular, what are the ranks of
these matroids?

3. (5 points) Show that there is a common independent set Z of size |Y1| of both these
matroids.

4. (2 points) Show that Z2 = Z suffices to prove the statement.
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3 Probabilistic Combinatorics

(10 points)
For a graph G, let maxcut(G) denote the maximum number of edges in a cut in G. Let
G ∼ G(n, p) be the Erdős–Rényi random graph with edge probability p = p(n) ∈ [0, 1] (so
the edge probability is a function of n). Show that∣∣∣∣E[maxcut(G)]− pn2

4

∣∣∣∣ = O(
√
p n3/2).

(The implied constants in the big-O notation should not depend on p.)
Remark. You may receive partial credit if you prove the result for only some range of values
of p.

4 Solution: Algorithms

1. (a) Since this is a maximization LP, to prove the upper bound it suffices to show
a feasible solution to the LP with value equal to the optimal welfare. Suppose
in the optimal allocation bidder i gets item set A∗

i and the optimal welfare is∑
i∈N vi(A

∗
i ). Now consider the fractional solution x′

i,S where x′
i,S = 1 if S = A∗

i

and x′
i,S = 0 otherwise. This xi, S ′ is feasible for the configuration LP since by

definition
∑

S⊆M x′
i,S = 1 for all i ∈ N and since {A∗

i }i is an item partitioning we
have

∑
S∋j

∑
i∈N x′

i,S ≤ 1 for all j ∈ M . The objective value of this solution is∑
i∈N

∑
S⊆M vi(S) · x′

i,S =
∑

i∈N vi(A
∗
i ), which equals the optimal welfare.

(b) We know v(S) = maxk ak(S). Consider the linear function aℓ(·) that achieves this
maximum for S, i.e., aℓ(S) = v(S). We know by definition of XOS function that
v(T ) ≥ aℓ(T ) for every set T ⊆ M . Hence, to prove that E[v(R)] ≥ p · v(S), it
suffices to show that E[aℓ(R)] ≥ p · v(S) = p · aℓ(S). This last inequality is true
by linearity of expectation since aℓ(·) is a linear function and each element in S
appears in R with probability at least p.

(c) i. The expected number of bidders k ̸= i that contain item j ∈ Ti in their
tentative set equals

∑
k ̸=i

∑
S∋j x

∗
kS ≤ 1. So, by Markov’s inequality, the

probability that at least 2 bidders contain item j is at most 1/2, so with
probability at least 1/2 at most one bidder k ̸= i contains item j, in which
case i receives item j with probability at least 1/2 in the uniformly random al-
location. Overall, bidder i receives item j ∈ Ti with probability at least Pr[≤
1 tentative bidder k ̸= i for j]×Pr[i gets item j |≤ 1 tentative bidder k ̸= i for j] ≥
1/2× 1/2 = 1/4.

ii. We first observe that if each bidder is assigned the random tentative set Ti,
the expected welfare of bidder i equals E[vi(Ti)] =

∑
S⊆M x∗

i,Svi(S), and the
total expected welfare equals the optimal LP value. However, {Ti}i is not a
valid allocation since an item j ∈ M might appear in multiple Ti. In our final
allocation {Ai}i we uniformly randomly allocate any item j ∈ Ti to one of the
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tentative bidders. So, by (2), to prove that we get least a constant fraction
of the LP value, it suffices to prove after conditioning on Ti that bidder i
receives each item j ∈ Ti with at least 1/4 probability, which we have proved
above.

5 Solution: Combinatorial Optimization

1. Removing elements not in B ∪B′ does not affect the statement of the result.

2. First observe that the ground set of both M1 and M2 are exactly B′. For any set
Z ⊆ B′, we have

r1(Z) = rM\Y1(Z ∪ Y2)− rM\Y1(Y2) = r(Z ∪ Y2)− r(Y2) = r(Z ∪ Y2)− |Y2|.

Similarly, we have

r2(Z) = rM⋆\Y1(Z ∪ Y2)− rM⋆\Y1(Y2)

= rM⋆(Z ∪ Y2)− rM⋆(Y2)

= |Z ∪ Y2|+ r(U \ (Y2 ∪ Z))− r(U)− (|Y2|+ r(U \ Y2)− r(U))

= |Z|+ r(Y1 ∪ (B′ \ Z))− r(Y1 ∪B′)

= r(Y1 ∪ (B′ \ Z))− |B′ \ Z|

where we have used the formula for the rank function of a contracted matroid, dual
matroid and Observe that r1(B

′) = r(B′ ∪ Y2)− |Y2| = |B′| − |Y2| = |Y1| where we use
the fact that |Y1|+ |Y2| = |B| = |B′|.
Also, we have r2(B

′) = r(Y1) = |Y1|. Thus the rank of both matroids is |Y1|.

3. We show there is a common independent set of size |Y1| for these matroids. The maxi-
mum size of the common independent set ofM1 andM2 is exactly the minZ⊆B′ r1(Z)+
r2(B

′ \ Z). But for any Z ⊆ B′ we have

r1(Z) + r2(B
′ \ Z) = r(Z ∪ Y2)− |Y2|+ r(Y1 ∪ Z)− |Z|

≥ r(Z ∪ Y1 ∪ Y2) + r(Z)− |Y2| − |Z|
= |Y1|+ |Y2|+ |Z| − |Y2| − |Z|
= |Y1|

as required.

4. Let Z be the maximum common independent set of M1 and M2. We claim Y2 ∪ Z is
a basis of M. Indeed we have Z ∈ M1 implies that Z ∪ Y2 is independent in M\ Y1

and thus in M. Moreover, Z is independent in M2 and thus Z ∪ Y2 is independent in
M⋆ \ Y1 and thus in M⋆. In particular U \ (Z ∪ Y2) = Y1 ∪ (U \ Z) is independent in
M as required.
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6 Solution: Probabilistic Combinatorics

To establish a lower bound on E[maxcut(G)], we recall that maxcut(G) ≥ |E(G)|/2 for every
graph G, and hence

E[maxcut(G)] ≥ 1

2
E[|E(G)|] = p

2

(
n

2

)
≥ pn2

4
−O(pn).

Since pn ≤ √
pn3/2, this gives the right lower bound.

In the sequel we bound E[maxcut(G)] from above.
Case 1: p ≤ 1600/n. (Of course, 1600 here is just an arbitrary large constant.) In this case
we make the trivial observation that maxcut(G) ≤ |E(G)|, which implies that

E[maxcut(G)] ≤ E[|E(G)|] = p

(
n

2

)
= O(pn2).

It follows that the desired upper bound holds, since pn2 ≤ 40
√
pn3/2 for p ≤ 1600/n.

Case 2: p > 1600/n. For a partition V (G) = A⊔B, let e(A,B) denote the number of edges
of G joining A to B. Then maxcut(G) is the maximum of e(A,B) taken over all partitions
of V (G).

Claim. P
[
maxcut(G) >

pn2

4
+ 10

√
p n3/2

]
< e−50n.

Proof. Consider any partition V (G) = A ⊔ B. Notice that e(A,B) is a binomial random
variable with |A||B| trials and success probability p. Since |A||B| ≤ n2/4, the Chernoff
bound yields

P
[
e(A,B) > (1 + δ)

pn2

4

]
≤ exp

(
−δ2

3

pn2

4

)
for all 0 ≤ δ ≤ 1.

Taking δ = 40/
√
pn (note that δ < 1 since p > 1600/n) yields

P
[
e(A,B) >

pn2

4
+ 10

√
p n3/2

]
≤ exp

(
−400

3
n

)
< e−100n.

There are 2n−1 ways to partition V (G) into two subsets, so the union bound gives

P
[
maxcut(G) >

pn2

4
+ 10

√
p n3/2

]
≤ 2n−1 · e−100n < e−50n,

as desired.
Since maxcut(G) ≤ n2/4 for all G, we can use the above claim to write

E[maxcut(G)] ≤ pn2

4
+ 10

√
p n3/2 +

n2

4
· e−50n =

pn2

4
+O(

√
p n3/2),

which completes the solution.
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