ACO Comprehensive Exam Fall 2022

Aug 17, 2022

1 Design and Analysis of Algorithms

In a combinatorial auction there is a set N of $n=|N|$ bidders and a set M of $m=|M|$ items. Bidder $i \in N$ has a monotone valuation $v_{i}(\cdot)$ where $v_{i}(S)$ is their value for item set $S \subseteq M$ (here "monotone" means that $v_{i}(S \cup T) \geq v_{i}(S)$ for all $\left.S, T \subseteq M\right)$. The goal of this problem is to find a disjoint set of subsets where bidder i gets subset A_{i} of items $\left(A_{i} \cap A_{k}=\emptyset\right.$ for $i \neq k)$ to maximize the total welfare $\sum_{i \in N} v_{i}\left(A_{i}\right)$.

1. (Configuration LP, 2 points) Prove that the value of the following linear program (called the configuration $L P$) gives an upper bound on the total welfare of the optimal allocation.

$$
\begin{array}{ll}
\max & \sum_{i \in N} \sum_{S \subseteq M} v_{i}(S) \cdot x_{i, S} \\
\text { s.t. } & \forall i \in N, \quad \sum_{S \subseteq M} x_{i, S}=1 \\
& \forall j \in M, \quad \sum_{S \ni j} \sum_{i \in N} x_{i, S} \leq 1 \\
& \forall i \in N, \forall S \subseteq M, \quad x_{i, S} \geq 0
\end{array}
$$

2. (XOS Function, 3 points) A monotone set function $v(\cdot): 2^{M} \rightarrow \mathbb{R}_{\geq 0}$ is called an XOS function if there exist monotone linear set functions $a_{k}(\cdot): 2^{M} \rightarrow \mathbb{R}_{\geq 0}$ s.t. for all $S \subseteq M$ we have $v(S)=\max _{k} a_{k}(S)$ (i.e., $v(\cdot)$ can be written as the maximum of linear functions where a function $a_{k}(\cdot)$ is linear if it satisfies $a_{k}(S \cup T)=a_{k}(S)+a_{k}(T)$ for all disjoint $S, T \subseteq M$). Given a set $S \subseteq M$, prove that if we select a random subset $R \subseteq S$ from a probability distribution that contains each item in S with probability at least p (different items could be correlated), then the expected value of $v(R)$ is at least $p \cdot v(S)$.
3. (Rounding) Suppose we are given an optimal (fractional) solution $x_{i, S}^{*}$ to the configuration LP^{1}. To "round" this fractional solution to integral allocations A_{i}, each bidder

[^0]$i \in N$ first chooses a random tentative item set T_{i} independent of other bidders, where $T_{i}=S$ with probability $x_{i, S}^{*}$ (the LP constraint $\sum_{S \subseteq M} x_{i, S}^{*}=1$ ensures that this is a valid probability distribution). Since in this tentative allocation an item j might appear in multiple tentative sets, in the final allocation $\left\{A_{i}\right\}_{i}$ we allocate each item $j \in M$ to one of the tentative bidders (i.e., bidders i with $j \in T_{i}$) chosen uniformly at random.
(a) (3 points) Prove that conditioned on T_{i}, bidder i receives each item $j \in T_{i}$ with at least a constant probability, where the probability is taken over the random tentative sets T_{k} chosen by other bidders $k \neq i$.
(b) (2 points) Using (2), prove that if all valuations v_{i} are monotone XOS then the expected welfare of this rounded solution is at least a constant fraction of the optimal LP value $\sum_{i \in N} \sum_{S \subseteq M} v_{i}(S) \cdot x_{i, S}^{*}$, and so we get a constant factor approximation to the optimal welfare.

2 Combinatorial Optimization

Let $\mathcal{M}=(U, \mathcal{I})$ be a matroid with rank function $r: 2^{U} \rightarrow \mathbb{R}$ and let B and B^{\prime} be two disjoint bases of \mathcal{M}. Let Y_{1} and Y_{2} be a partition of B. The problem is to prove the following statement:

There exists a partition Z_{1} and Z_{2} of B^{\prime} such that $Y_{1} \cup Z_{1}$ and $Y_{2} \cup Z_{2}$ are both bases of \mathcal{M}.
To show this statement, prove the following steps (or give an alternative direct proof).

1. (1 point) We can assume without loss of generality that $U=B \cup B^{\prime}$.
2. (2 points) Let $\mathcal{M}_{1}=\left(\mathcal{M} \backslash Y_{1}\right) / Y_{2}$ and $\mathcal{M}_{2}=\left(\mathcal{M}^{\star} \backslash Y_{1}\right) / Y_{2}$. Here \mathcal{M}^{\star} is the dual matroid of \mathcal{M} and \mathcal{M} / Y denotes the matroid obtained by contracting elements in Y. What are the rank functions of \mathcal{M}_{1} and \mathcal{M}_{2} and, in particular, what are the ranks of these matroids?
3. (5 points) Show that there is a common independent set Z of size $\left|Y_{1}\right|$ of both these matroids.
4. (2 points) Show that $Z_{2}=Z$ suffices to prove the statement.

3 Probabilistic Combinatorics

(10 points)
For a graph G, let maxcut (G) denote the maximum number of edges in a cut in G. Let $G \sim \mathbb{G}(n, p)$ be the Erdős-Rényi random graph with edge probability $p=p(n) \in[0,1]$ (so the edge probability is a function of n). Show that

$$
\left|\mathbb{E}[\operatorname{maxcut}(G)]-\frac{p n^{2}}{4}\right|=O\left(\sqrt{p} n^{3 / 2}\right)
$$

(The implied constants in the big-O notation should not depend on p.)
Remark. You may receive partial credit if you prove the result for only some range of values of p.

4 Solution: Algorithms

1. (a) Since this is a maximization LP, to prove the upper bound it suffices to show a feasible solution to the LP with value equal to the optimal welfare. Suppose in the optimal allocation bidder i gets item set A_{i}^{*} and the optimal welfare is $\sum_{i \in N} v_{i}\left(A_{i}^{*}\right)$. Now consider the fractional solution $x_{i, S}^{\prime}$ where $x_{i, S}^{\prime}=1$ if $S=A_{i}^{*}$ and $x_{i, S}^{\prime}=0$ otherwise. This $x i, S^{\prime}$ is feasible for the configuration LP since by definition $\sum_{S \subseteq M} x_{i, S}^{\prime}=1$ for all $i \in N$ and since $\left\{A_{i}^{*}\right\}_{i}$ is an item partitioning we have $\sum_{S \ni j} \sum_{i \in N} x_{i, S}^{\prime} \leq 1$ for all $j \in M$. The objective value of this solution is $\sum_{i \in N} \sum_{S \subseteq M} v_{i}(S) \cdot x_{i, S}^{\prime}=\sum_{i \in N} v_{i}\left(A_{i}^{*}\right)$, which equals the optimal welfare.
(b) We know $v(S)=\max _{k} a_{k}(S)$. Consider the linear function $a_{\ell}(\cdot)$ that achieves this maximum for S, i.e., $a_{\ell}(S)=v(S)$. We know by definition of XOS function that $v(T) \geq a_{\ell}(T)$ for every set $T \subseteq M$. Hence, to prove that $\mathbb{E}[v(R)] \geq p \cdot v(S)$, it suffices to show that $\mathbb{E}\left[a_{\ell}(R)\right] \geq p \cdot v(S)=p \cdot a_{\ell}(S)$. This last inequality is true by linearity of expectation since $a_{\ell}(\cdot)$ is a linear function and each element in S appears in R with probability at least p.
(c) i. The expected number of bidders $k \neq i$ that contain item $j \in T_{i}$ in their tentative set equals $\sum_{k \neq i} \sum_{S \ni j} x_{k S}^{*} \leq 1$. So, by Markov's inequality, the probability that at least 2 bidders contain item j is at most $1 / 2$, so with probability at least $1 / 2$ at most one bidder $k \neq i$ contains item j, in which case i receives item j with probability at least $1 / 2$ in the uniformly random allocation. Overall, bidder i receives item $j \in T_{i}$ with probability at least $\operatorname{Pr}[\leq$ 1 tentative bidder $k \neq i$ for $j] \times \operatorname{Pr}[i$ gets item $j \mid \leq 1$ tentative bidder $k \neq i$ for $j] \geq$ $1 / 2 \times 1 / 2=1 / 4$.
ii. We first observe that if each bidder is assigned the random tentative set T_{i}, the expected welfare of bidder i equals $\mathbb{E}\left[v_{i}\left(T_{i}\right)\right]=\sum_{S \subseteq M} x_{i, S}^{*} v_{i}(S)$, and the total expected welfare equals the optimal LP value. However, $\left\{T_{i}\right\}_{i}$ is not a valid allocation since an item $j \in M$ might appear in multiple T_{i}. In our final allocation $\left\{A_{i}\right\}_{i}$ we uniformly randomly allocate any item $j \in T_{i}$ to one of the
tentative bidders. So, by (2), to prove that we get least a constant fraction of the LP value, it suffices to prove after conditioning on T_{i} that bidder i receives each item $j \in T_{i}$ with at least $1 / 4$ probability, which we have proved above.

5 Solution: Combinatorial Optimization

1. Removing elements not in $B \cup B^{\prime}$ does not affect the statement of the result.
2. First observe that the ground set of both \mathcal{M}_{1} and \mathcal{M}_{2} are exactly B^{\prime}. For any set $Z \subseteq B^{\prime}$, we have

$$
r_{1}(Z)=r_{\mathcal{M} \backslash Y_{1}}\left(Z \cup Y_{2}\right)-r_{\mathcal{M} \backslash Y_{1}}\left(Y_{2}\right)=r\left(Z \cup Y_{2}\right)-r\left(Y_{2}\right)=r\left(Z \cup Y_{2}\right)-\left|Y_{2}\right| .
$$

Similarly, we have

$$
\begin{aligned}
r_{2}(Z) & =r_{\mathcal{M}^{\star} \backslash Y_{1}}\left(Z \cup Y_{2}\right)-r_{\mathcal{M}^{\star} \backslash Y_{1}}\left(Y_{2}\right) \\
& =r_{\mathcal{M}^{\star}}\left(Z \cup Y_{2}\right)-r_{\mathcal{M}^{\star}}\left(Y_{2}\right) \\
& =\left|Z \cup Y_{2}\right|+r\left(U \backslash\left(Y_{2} \cup Z\right)\right)-r(U)-\left(\left|Y_{2}\right|+r\left(U \backslash Y_{2}\right)-r(U)\right) \\
& =|Z|+r\left(Y_{1} \cup\left(B^{\prime} \backslash Z\right)\right)-r\left(Y_{1} \cup B^{\prime}\right) \\
& =r\left(Y_{1} \cup\left(B^{\prime} \backslash Z\right)\right)-\left|B^{\prime} \backslash Z\right|
\end{aligned}
$$

where we have used the formula for the rank function of a contracted matroid, dual matroid and Observe that $r_{1}\left(B^{\prime}\right)=r\left(B^{\prime} \cup Y_{2}\right)-\left|Y_{2}\right|=\left|B^{\prime}\right|-\left|Y_{2}\right|=\left|Y_{1}\right|$ where we use the fact that $\left|Y_{1}\right|+\left|Y_{2}\right|=|B|=\left|B^{\prime}\right|$.
Also, we have $r_{2}\left(B^{\prime}\right)=r\left(Y_{1}\right)=\left|Y_{1}\right|$. Thus the rank of both matroids is $\left|Y_{1}\right|$.
3. We show there is a common independent set of size $\left|Y_{1}\right|$ for these matroids. The maximum size of the common independent set of \mathcal{M}_{1} and \mathcal{M}_{2} is exactly the $\min _{Z \subseteq B^{\prime}} r_{1}(Z)+$ $r_{2}\left(B^{\prime} \backslash Z\right)$. But for any $Z \subseteq B^{\prime}$ we have

$$
\begin{array}{rlrl}
r_{1}(Z)+r_{2}\left(B^{\prime} \backslash Z\right) & = & r\left(Z \cup Y_{2}\right)-\left|Y_{2}\right|+r\left(Y_{1} \cup Z\right)-|Z| \\
& \geq & r\left(Z \cup Y_{1} \cup Y_{2}\right)+r(Z)-\left|Y_{2}\right|-|Z| \\
& = & \left|Y_{1}\right|+\left|Y_{2}\right|+|Z|-\left|Y_{2}\right|-|Z| \\
& = & & \left|Y_{1}\right| \tag{1}
\end{array}
$$

as required.
4. Let Z be the maximum common independent set of \mathcal{M}_{1} and \mathcal{M}_{2}. We claim $Y_{2} \cup Z$ is a basis of \mathcal{M}. Indeed we have $Z \in \mathcal{M}_{1}$ implies that $Z \cup Y_{2}$ is independent in $\mathcal{M} \backslash Y_{1}$ and thus in \mathcal{M}. Moreover, Z is independent in \mathcal{M}_{2} and thus $Z \cup Y_{2}$ is independent in $\mathcal{M}^{\star} \backslash Y_{1}$ and thus in \mathcal{M}^{\star}. In particular $U \backslash\left(Z \cup Y_{2}\right)=Y_{1} \cup(U \backslash Z)$ is independent in \mathcal{M} as required.

6 Solution: Probabilistic Combinatorics

To establish a lower bound on $\mathbb{E}[\operatorname{maxcut}(G)]$, we recall that $\operatorname{maxcut}(G) \geq|E(G)| / 2$ for every graph G, and hence

$$
\mathbb{E}[\operatorname{maxcut}(G)] \geq \frac{1}{2} \mathbb{E}[|E(G)|]=\frac{p}{2}\binom{n}{2} \geq \frac{p n^{2}}{4}-O(p n)
$$

Since $p n \leq \sqrt{p} n^{3 / 2}$, this gives the right lower bound.
In the sequel we bound $\mathbb{E}[\operatorname{maxcut}(G)]$ from above.
Case 1: $p \leq 1600 / n$. (Of course, 1600 here is just an arbitrary large constant.) In this case we make the trivial observation that $\operatorname{maxcut}(G) \leq|E(G)|$, which implies that

$$
\mathbb{E}[\operatorname{maxcut}(G)] \leq \mathbb{E}[|E(G)|]=p\binom{n}{2}=O\left(p n^{2}\right)
$$

It follows that the desired upper bound holds, since $p n^{2} \leq 40 \sqrt{p} n^{3 / 2}$ for $p \leq 1600 / n$.
Case 2: $p>1600 / n$. For a partition $V(G)=A \sqcup B$, let $\mathrm{e}(A, B)$ denote the number of edges of G joining A to B. Then maxcut (G) is the maximum of $\mathrm{e}(A, B)$ taken over all partitions of $V(G)$.
Claim. $\mathbb{P}\left[\operatorname{maxcut}(G)>\frac{p n^{2}}{4}+10 \sqrt{p} n^{3 / 2}\right]<e^{-50 n}$.
Proof. Consider any partition $V(G)=A \sqcup B$. Notice that $\mathrm{e}(A, B)$ is a binomial random variable with $|A||B|$ trials and success probability p. Since $|A||B| \leq n^{2} / 4$, the Chernoff bound yields

$$
\mathbb{P}\left[\mathrm{e}(A, B)>(1+\delta) \frac{p n^{2}}{4}\right] \leq \exp \left(-\frac{\delta^{2}}{3} \frac{p n^{2}}{4}\right) \quad \text { for all } 0 \leq \delta \leq 1
$$

Taking $\delta=40 / \sqrt{p n}$ (note that $\delta<1$ since $p>1600 / n$) yields

$$
\mathbb{P}\left[\mathrm{e}(A, B)>\frac{p n^{2}}{4}+10 \sqrt{p} n^{3 / 2}\right] \leq \exp \left(-\frac{400}{3} n\right)<e^{-100 n}
$$

There are 2^{n-1} ways to partition $V(G)$ into two subsets, so the union bound gives

$$
\mathbb{P}\left[\operatorname{maxcut}(G)>\frac{p n^{2}}{4}+10 \sqrt{p} n^{3 / 2}\right] \leq 2^{n-1} \cdot e^{-100 n}<e^{-50 n}
$$

as desired.
Since $\operatorname{maxcut}(G) \leq n^{2} / 4$ for all G, we can use the above claim to write

$$
\mathbb{E}[\operatorname{maxcut}(G)] \leq \frac{p n^{2}}{4}+10 \sqrt{p} n^{3 / 2}+\frac{n^{2}}{4} \cdot e^{-50 n}=\frac{p n^{2}}{4}+O\left(\sqrt{p} n^{3 / 2}\right)
$$

which completes the solution.

[^0]: ${ }^{1}$ This can be computed in polynomial time using a "demand oracle" but we will assume that it is given.

