ACO Comprehensive Exam Fall 2022

Aug 17, 2022

1 Design and Analysis of Algorithms

In a combinatorial auction there is a set N of n = |N| bidders and a set M of m = |M|items. Bidder $i \in N$ has a monotone valuation $v_i(\cdot)$ where $v_i(S)$ is their value for item set $S \subseteq M$ (here "monotone" means that $v_i(S \cup T) \ge v_i(S)$ for all $S, T \subseteq M$). The goal of this problem is to find a disjoint set of subsets where bidder i gets subset A_i of items $(A_i \cap A_k = \emptyset$ for $i \neq k$) to maximize the total welfare $\sum_{i \in N} v_i(A_i)$.

1. (Configuration LP, 2 points) Prove that the value of the following linear program (called the *configuration* LP) gives an upper bound on the total welfare of the optimal allocation.

$$\max \sum_{i \in N} \sum_{S \subseteq M} v_i(S) \cdot x_{i,S}$$
s.t. $\forall i \in N, \quad \sum_{S \subseteq M} x_{i,S} = 1$
 $\forall j \in M, \quad \sum_{S \ni j} \sum_{i \in N} x_{i,S} \le 1$
 $\forall i \in N, \forall S \subseteq M, \quad x_{i,S} \ge 0$

- 2. (XOS Function, 3 points) A monotone set function $v(\cdot) : 2^M \to \mathbb{R}_{\geq 0}$ is called an XOS function if there exist monotone linear set functions $a_k(\cdot) : 2^M \to \mathbb{R}_{\geq 0}$ s.t. for all $S \subseteq M$ we have $v(S) = \max_k a_k(S)$ (i.e., $v(\cdot)$ can be written as the maximum of linear functions where a function $a_k(\cdot)$ is linear if it satisfies $a_k(S \cup T) = a_k(S) + a_k(T)$ for all disjoint $S, T \subseteq M$). Given a set $S \subseteq M$, prove that if we select a random subset $R \subseteq S$ from a probability distribution that contains each item in S with probability at least p (different items could be correlated), then the expected value of v(R) is at least $p \cdot v(S)$.
- 3. (Rounding) Suppose we are given an optimal (fractional) solution $x_{i,S}^*$ to the configuration LP¹. To "round" this fractional solution to integral allocations A_i , each bidder

¹This can be computed in polynomial time using a "demand oracle" but we will assume that it is given.

 $i \in N$ first chooses a random *tentative* item set T_i independent of other bidders, where $T_i = S$ with probability $x_{i,S}^*$ (the LP constraint $\sum_{S \subseteq M} x_{i,S}^* = 1$ ensures that this is a valid probability distribution). Since in this tentative allocation an item j might appear in multiple tentative sets, in the final allocation $\{A_i\}_i$ we allocate each item $j \in M$ to one of the tentative bidders (i.e., bidders i with $j \in T_i$) chosen uniformly at random.

- (a) (3 points) Prove that conditioned on T_i , bidder *i* receives each item $j \in T_i$ with at least a constant probability, where the probability is taken over the random tentative sets T_k chosen by other bidders $k \neq i$.
- (b) (2 points) Using (2), prove that if all valuations v_i are monotone XOS then the expected welfare of this rounded solution is at least a constant fraction of the optimal LP value $\sum_{i \in N} \sum_{S \subseteq M} v_i(S) \cdot x_{i,S}^*$, and so we get a constant factor approximation to the optimal welfare.

2 Combinatorial Optimization

Let $\mathcal{M} = (U, \mathcal{I})$ be a matroid with rank function $r : 2^U \to \mathbb{R}$ and let B and B' be two disjoint bases of \mathcal{M} . Let Y_1 and Y_2 be a partition of B. The problem is to prove the following statement:

There exists a partition Z_1 and Z_2 of B' such that $Y_1 \cup Z_1$ and $Y_2 \cup Z_2$ are both bases of \mathcal{M} .

To show this statement, prove the following steps (or give an alternative direct proof).

- 1. (1 point) We can assume without loss of generality that $U = B \cup B'$.
- 2. (2 points) Let $\mathcal{M}_1 = (\mathcal{M} \setminus Y_1)/Y_2$ and $\mathcal{M}_2 = (\mathcal{M}^* \setminus Y_1)/Y_2$. Here \mathcal{M}^* is the dual matroid of \mathcal{M} and \mathcal{M}/Y denotes the matroid obtained by contracting elements in Y. What are the rank functions of \mathcal{M}_1 and \mathcal{M}_2 and, in particular, what are the ranks of these matroids?
- 3. (5 points) Show that there is a common independent set Z of size $|Y_1|$ of both these matroids.
- 4. (2 points) Show that $Z_2 = Z$ suffices to prove the statement.

3 Probabilistic Combinatorics

(10 points)

For a graph G, let $\max(G)$ denote the maximum number of edges in a cut in G. Let $G \sim \mathbb{G}(n, p)$ be the Erdős–Rényi random graph with edge probability $p = p(n) \in [0, 1]$ (so the edge probability is a function of n). Show that

$$\left|\mathbb{E}[\mathsf{maxcut}(G)] - \frac{pn^2}{4}\right| \,=\, O(\sqrt{p}\,n^{3/2}).$$

(The implied constants in the big-O notation should not depend on p.) *Remark.* You may receive partial credit if you prove the result for only some range of values of p.

4 Solution: Algorithms

- 1. (a) Since this is a maximization LP, to prove the upper bound it suffices to show a feasible solution to the LP with value equal to the optimal welfare. Suppose in the optimal allocation bidder *i* gets item set A_i^* and the optimal welfare is $\sum_{i \in N} v_i(A_i^*)$. Now consider the fractional solution $x'_{i,S}$ where $x'_{i,S} = 1$ if $S = A_i^*$ and $x'_{i,S} = 0$ otherwise. This xi, S' is feasible for the configuration LP since by definition $\sum_{S \subseteq M} x'_{i,S} = 1$ for all $i \in N$ and since $\{A_i^*\}_i$ is an item partitioning we have $\sum_{S \ni j} \sum_{i \in N} x'_{i,S} \leq 1$ for all $j \in M$. The objective value of this solution is $\sum_{i \in N} \sum_{S \subseteq M} v_i(S) \cdot x'_{i,S} = \sum_{i \in N} v_i(A_i^*)$, which equals the optimal welfare.
 - (b) We know $v(S) = \max_k a_k(S)$. Consider the linear function $a_\ell(\cdot)$ that achieves this maximum for S, i.e., $a_\ell(S) = v(S)$. We know by definition of XOS function that $v(T) \ge a_\ell(T)$ for every set $T \subseteq M$. Hence, to prove that $\mathbb{E}[v(R)] \ge p \cdot v(S)$, it suffices to show that $\mathbb{E}[a_\ell(R)] \ge p \cdot v(S) = p \cdot a_\ell(S)$. This last inequality is true by linearity of expectation since $a_\ell(\cdot)$ is a linear function and each element in S appears in R with probability at least p.
 - (c) i. The expected number of bidders $k \neq i$ that contain item $j \in T_i$ in their tentative set equals $\sum_{k \neq i} \sum_{S \ni j} x_{kS}^* \leq 1$. So, by Markov's inequality, the probability that at least 2 bidders contain item j is at most 1/2, so with probability at least 1/2 at most one bidder $k \neq i$ contains item j, in which case i receives item j with probability at least 1/2 in the uniformly random allocation. Overall, bidder i receives item $j \in T_i$ with probability at least $Pr[\leq 1$ tentative bidder $k \neq i$ for $j] \times Pr[i$ gets item $j \mid \leq 1$ tentative bidder $k \neq i$ for $j] \geq 1/2 \times 1/2 = 1/4$.
 - ii. We first observe that if each bidder is assigned the random tentative set T_i , the expected welfare of bidder i equals $\mathbb{E}[v_i(T_i)] = \sum_{S \subseteq M} x_{i,S}^* v_i(S)$, and the total expected welfare equals the optimal LP value. However, $\{T_i\}_i$ is not a valid allocation since an item $j \in M$ might appear in multiple T_i . In our final allocation $\{A_i\}_i$ we uniformly randomly allocate any item $j \in T_i$ to one of the

tentative bidders. So, by (2), to prove that we get least a constant fraction of the LP value, it suffices to prove after conditioning on T_i that bidder *i* receives each item $j \in T_i$ with at least 1/4 probability, which we have proved above.

5 Solution: Combinatorial Optimization

- 1. Removing elements not in $B \cup B'$ does not affect the statement of the result.
- 2. First observe that the ground set of both \mathcal{M}_1 and \mathcal{M}_2 are exactly B'. For any set $Z \subseteq B'$, we have

$$r_1(Z) = r_{\mathcal{M}\setminus Y_1}(Z \cup Y_2) - r_{\mathcal{M}\setminus Y_1}(Y_2) = r(Z \cup Y_2) - r(Y_2) = r(Z \cup Y_2) - |Y_2|.$$

Similarly, we have

$$\begin{aligned} r_2(Z) &= r_{\mathcal{M}^* \setminus Y_1}(Z \cup Y_2) - r_{\mathcal{M}^* \setminus Y_1}(Y_2) \\ &= r_{\mathcal{M}^*}(Z \cup Y_2) - r_{\mathcal{M}^*}(Y_2) \\ &= |Z \cup Y_2| + r(U \setminus (Y_2 \cup Z)) - r(U) - (|Y_2| + r(U \setminus Y_2) - r(U)) \\ &= |Z| + r(Y_1 \cup (B' \setminus Z)) - r(Y_1 \cup B') \\ &= r(Y_1 \cup (B' \setminus Z)) - |B' \setminus Z| \end{aligned}$$

where we have used the formula for the rank function of a contracted matroid, dual matroid and Observe that $r_1(B') = r(B' \cup Y_2) - |Y_2| = |B'| - |Y_2| = |Y_1|$ where we use the fact that $|Y_1| + |Y_2| = |B| = |B'|$.

Also, we have $r_2(B') = r(Y_1) = |Y_1|$. Thus the rank of both matroids is $|Y_1|$.

3. We show there is a common independent set of size $|Y_1|$ for these matroids. The maximum size of the common independent set of \mathcal{M}_1 and \mathcal{M}_2 is exactly the $\min_{Z \subseteq B'} r_1(Z) + r_2(B' \setminus Z)$. But for any $Z \subseteq B'$ we have

$$r_1(Z) + r_2(B' \setminus Z) = r(Z \cup Y_2) - |Y_2| + r(Y_1 \cup Z) - |Z|$$

$$\geq r(Z \cup Y_1 \cup Y_2) + r(Z) - |Y_2| - |Z|$$

$$= |Y_1| + |Y_2| + |Z| - |Y_2| - |Z|$$

$$= |Y_1|$$

as required.

4. Let Z be the maximum common independent set of \mathcal{M}_1 and \mathcal{M}_2 . We claim $Y_2 \cup Z$ is a basis of \mathcal{M} . Indeed we have $Z \in \mathcal{M}_1$ implies that $Z \cup Y_2$ is independent in $\mathcal{M} \setminus Y_1$ and thus in \mathcal{M} . Moreover, Z is independent in \mathcal{M}_2 and thus $Z \cup Y_2$ is independent in $\mathcal{M}^* \setminus Y_1$ and thus in \mathcal{M}^* . In particular $U \setminus (Z \cup Y_2) = Y_1 \cup (U \setminus Z)$ is independent in \mathcal{M} as required.

6 Solution: Probabilistic Combinatorics

To establish a lower bound on $\mathbb{E}[\mathsf{maxcut}(G)]$, we recall that $\mathsf{maxcut}(G) \ge |E(G)|/2$ for every graph G, and hence

$$\mathbb{E}[\mathsf{maxcut}(G)] \, \geq \, \frac{1}{2} \mathbb{E}[|E(G)|] \, = \, \frac{p}{2} \binom{n}{2} \, \geq \, \frac{pn^2}{4} - O(pn).$$

Since $pn \leq \sqrt{pn^{3/2}}$, this gives the right lower bound.

In the sequel we bound $\mathbb{E}[\mathsf{maxcut}(G)]$ from above.

Case 1: $p \leq 1600/n$. (Of course, 1600 here is just an arbitrary large constant.) In this case we make the trivial observation that $\mathsf{maxcut}(G) \leq |E(G)|$, which implies that

$$\mathbb{E}[\mathsf{maxcut}(G)] \le \mathbb{E}[|E(G)|] = p\binom{n}{2} = O(pn^2)$$

It follows that the desired upper bound holds, since $pn^2 \leq 40\sqrt{p}n^{3/2}$ for $p \leq 1600/n$.

Case 2: p > 1600/n. For a partition $V(G) = A \sqcup B$, let $\mathbf{e}(A, B)$ denote the number of edges of G joining A to B. Then $\mathsf{maxcut}(G)$ is the maximum of $\mathbf{e}(A, B)$ taken over all partitions of V(G).

Claim. $\mathbb{P}\left[\max(G) > \frac{pn^2}{4} + 10\sqrt{p} n^{3/2}\right] < e^{-50n}.$

Proof. Consider any partition $V(G) = \tilde{A} \sqcup B$. Notice that $\mathbf{e}(A, B)$ is a binomial random variable with |A||B| trials and success probability p. Since $|A||B| \leq n^2/4$, the Chernoff bound yields

$$\mathbb{P}\left[\mathsf{e}(A,B) > (1+\delta)\frac{pn^2}{4}\right] \le \exp\left(-\frac{\delta^2}{3}\frac{pn^2}{4}\right) \quad \text{for all } 0 \le \delta \le 1.$$

Taking $\delta = 40/\sqrt{pn}$ (note that $\delta < 1$ since p > 1600/n) yields

$$\mathbb{P}\left[\mathsf{e}(A,B) > \frac{pn^2}{4} + 10\sqrt{p}\,n^{3/2}\right] \le \exp\left(-\frac{400}{3}n\right) < e^{-100n}$$

There are 2^{n-1} ways to partition V(G) into two subsets, so the union bound gives

$$\mathbb{P}\left[\max(G) > \frac{pn^2}{4} + 10\sqrt{p} n^{3/2}\right] \le 2^{n-1} \cdot e^{-100n} < e^{-50n},$$

as desired.

Since $maxcut(G) \le n^2/4$ for all G, we can use the above claim to write

$$\mathbb{E}[\mathsf{maxcut}(G)] \, \leq \, \frac{pn^2}{4} + 10\sqrt{p}\,n^{3/2} \, + \, \frac{n^2}{4} \cdot e^{-50n} \, = \, \frac{pn^2}{4} + O(\sqrt{p}\,n^{3/2}),$$

which completes the solution.