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SUMMARY

Spin systems, or undirected graphical models, are important tools for modeling joint

distributions of discrete random variables, and are broadly used in statistical physics, ma-

chine learning, and theoretical computer science. One of the most important computational

tasks for spin systems is to generate random samples approximately from the equilibrium

distribution of the model called the Gibbs distribution. The approximate sampling problem

could be challenging in the high-dimensional setting, where the dimension is the number

of variables and the state space is exponentially large in dimension. We study the single-

site update Markov chain known as the Glauber dynamics or Gibbs sampling for sampling

from the Gibbs distribution. In each step, the dynamics picks a single variable uniformly at

random and updates it conditional on all other variables. The Glauber dynamics is widely

used in many practical situations due to its simplicity and efficiency. Despite its popularity,

theoretical guarantees of the convergence rate of the Glauber dynamics are only known in

a few special cases.

We prove optimal mixing time of the Glauber dynamics in a variety of settings. As

an application of our results, for the hardcore model (weighted independent sets) on any

n-vertex graph of constant maximum degree, we establish O(n log n) mixing time of the

Glauber dynamics when the fugacity (vertex weight) lies in the tree uniqueness region.

For the Ising model, and more generally any antiferromagnetic 2-spin system, we prove

O(n log n) mixing time of the Glauber dynamics on any bounded degree graph in the cor-

responding tree uniqueness region. Our results apply more broadly; for example, we also

obtain O(n log n) mixing for q-colorings on graphs of maximum degree ∆ when the num-

ber of colors satisfies q > (11
6
− ε0)∆ where ε0 ≈ 10−5, and O(n log n) mixing for the

monomer-dimer model (weighted matchings) and weighted partial even subgraphs (corre-

sponding to the ferromagnetic Ising model with nonzero external fields) on any graph with

bounded degrees.

x



Our work presents an improved version of the spectral independence approach of Anari,

Liu, and Oveis Gharan (2020). Roughly speaking, a distribution is said to be spectrally

independent if the maximum eigenvalues of the associated influence matrices are upper

bounded. We show O(n log n) mixing time of the Glauber dynamics for spectrally inde-

pendent spin systems on any n-vertex graph of bounded degrees. Furthermore, we prove

optimal mixing results for arbitrary heat-bath block dynamics and (for ferromagnetic Ising

and Potts models) the Swendsen-Wang dynamics. We also show that spectral independence

can be established using current algorithmic tools of approximate sampling and counting,

including coupling of Markov chain Monte Carlo (MCMC) methods, correlation decay

approach, and polynomial interpolation approach. This in particular demonstrates the im-

portance and power of spectral independence for connecting different aspects in the study

of spin systems.
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CHAPTER 1

INTRODUCTION

In many scientific settings we often use a statistical model to describe the dependencies

among a set of variables. This can be represented by a graph which contains a set of nodes

corresponding to the variables of the system and a set of edges connecting pairs of nodes

which represent the interrelationship between these variables; these models are known as

spin systems or undirected graphical models. Spin systems arise in a wide variety of sci-

entific fields; for example they correspond to phylogenetic trees in evolutionary biology

and are used in network science for community detection. More recently, spin systems are

extensively applied in machine learning and data science, such as the restricted Boltzmann

machine and Bayesian network.

Despite the wide usage of spin systems, many technical questions remain open even

for the basic ones. One fundamental task in the study of spin systems is to simulate the

equilibrium state of the system; more specifically, to sample from the corresponding Gibbs

distribution of the model. The Markov chain Monte Carlo (MCMC) method is a standard

and popular approach for sampling from the equilibrium distribution. In every step, the

algorithm will update the current configuration randomly under appropriate rules, such that

the distribution will eventually converge to the desired Gibbs distribution. The mixing time

of a MCMC dynamics is defined to be the number of steps it takes to be sufficiently close

to the stationary distribution in total variation distance.

MCMC methods are usually simple, elegant, and very efficient in practice for sampling

Gibbs distributions of spin systems. However, few rigorous guarantees are known in the

literature on the convergence rate of MCMC, and typically heuristic arguments are used to

measure convergence with no assurance on the statistical accuracy. The main contribution

of this thesis is to establish a well-known conjecture that the Glauber dynamics converges
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very quickly to its stationary distribution in the tree uniqueness region, i.e., decay of cor-

relations region. The Glauber dynamics is the quintessential example of a local Markov

chain, and its convergence rate is of great interest due to its simplicity and wide applicabil-

ity.

Our setting is the general framework of spin systems. Spin systems capture many com-

binatorial models of interest, including the hardcore model on weighted independent sets,

the Ising model, and colorings, and are equivalent to undirected graphical models. For in-

teger q ≥ 2, a q-state spin system is defined by a q × q interaction matrix A. For a given

graph G = (V,E) with n = |V | vertices, the configurations of the model are the collection

Ω of assignments σ : V → [q] of spins to the vertices of the graph. Each configuration

σ ∈ Ω has an associated weight w(σ) defined by the pairwise interactions weighted by the

interaction matrix A, see Section 2.1 for a detailed definition.

The Gibbs distribution µ is the probability distribution over the collection Ω of config-

urations and is defined as µ(σ) = w(σ)/Z where Z =
∑

σ w(σ) is the normalizing factor

known as the partition function. Approximately sampling from the Gibbs distribution is

polynomial-time equivalent to approximating the partition function [79, 122]. Given an

ε > 0 and δ > 0, a fully polynomial-time randomized approximation scheme (FPRAS) for

the partition function outputs a (1±ε)-relative approximation of the partition function with

probability ≥ 1 − δ, whereas a fully polynomial-time approximation scheme (FPTAS) is

the deterministic analog (i.e., it achieves δ = 0).

The canonical example of a spin system in statistical physics is the Ising model. The

Ising model is a 2-spin system (i.e., q = 2); the spin space is denoted as {+,−} and

the configurations of the model are the 2n assignments of spins {+,−} to the vertices of

the underlying graph. In the simpler case without an external field the Ising model has a

single parameter β > 0 corresponding to the inverse temperature. A configuration σ ∈ Ω

has weight w(σ) = βm(σ) where m(σ) = |{(u, v) ∈ E : σ(u) = σ(v)}| is the number

of monochromatic edges in σ. When β > 1 then the model is ferromagnetic as the two

2



fully monochromatic configurations have maximum weight, whereas when β < 1 then the

model is antiferromagnetic.

The hardcore model is a natural combinatorial example of an antiferromagnetic 2-spin

system. The model is parameterized by a fugacity λ > 0. For a graph G = (V,E),

configurations of the model are the collection Ω of independent sets of G, and the weight

of an independent set σ is w(σ) = λ|σ|.

In general, a 2-spin system is defined by three parameters β, γ ≥ 0 and λ > 0. A

spin configuration σ ∈ {0, 1}V is assigned weight: w(σ) = βm1(σ)γm0(σ)λn1(σ), where, for

s ∈ {0, 1}, ms(σ) is the number of edges where both endpoints receive spin s and ns(σ) is

the number of vertices assigned spin s. Note the Ising model corresponds to the case β = γ

where λ is the external field, and the hardcore model corresponds to β = 0, γ = 1. The

model is ferromagnetic when βγ > 1 and antiferromagnetic when βγ < 1 (the model is

trivial when βγ = 1).

The Glauber dynamics is a simple Markov chain (Xt) designed for sampling from the

Gibbs distribution µ. The transitions Xt → Xt+1 update a randomly chosen vertex as

follows: (i) select a vertex v uniformly at random; (ii) for all u 6= v, set Xt+1(u) = Xt(u);

and (iii) choose Xt+1(v) from the marginal distribution for the spin at v conditional on the

configuration Xt+1(N(v)) on the neighbors N(v) of v. It is straightforward to verify that

the chain is ergodic (in the cases considered here, see the definition of totally-connected in

Section 2.1) and the unique stationary distribution is the Gibbs distribution.

The mixing time is the number of transitions, for the worst initial state X0, to guarantee

that Xt is within total variation distance ≤ 1/4 of the Gibbs distribution; for a formal

statement, see Eq. (2.1). We say the chain is rapidly mixing when the mixing time is

polynomial in n = |V |. Hayes and Sinclair [71] established that the mixing time of the

Glauber dynamics is Ω(n log n) for a family of bounded-degree graphs, and hence we say

that the Glauber dynamics has optimal mixing time when the mixing time is O(n log n).

The computational complexity of approximating the partition function is closely con-

3



nected to statistical physics phase transitions. For ∆ ≥ 3, consider the tree T` of height `

where all of the internal vertices have degree ∆, and let r denote its root. The uniqueness

vs non-uniqueness phase transition captures whether the leaves influence the root, in the

limit as the height grows.

The uniqueness/non-uniqueness phase transition is nicely illustrated for the Ising model

which has two extremal boundaries: the all + boundary and all − boundary. For s ∈

{+,−}, let ps` denote the marginal probability that the root has spin + in the Gibbs dis-

tribution on T` conditional on all leaves having spin s. The model is in the uniqueness

phase iff lim`→∞ p
+
` = lim`→∞ p

−
` . For the Ising model (without an external field) the

uniqueness/non-uniqueness phase transition occurs at βc(∆) = (∆− 2)/∆ for the antifer-

romagnetic case and βc(∆) = ∆/(∆ − 2) for the ferromagnetic case. For the hardcore

model, the critical fugacity is λc(∆) := (∆ − 1)∆−1/(∆ − 2)∆. This phase transition on

the ∆-regular tree is connected to the complexity of approximating the partition function

on graphs of maximum degree ∆.

For the hardcore model, for constant ∆, for any δ > 0, Weitz [127] presented an FPTAS

for the partition function on graphs of maximum degree ∆ when λ < (1 − δ)λc(∆). In

contrast, when λ > λc(∆), Sly [120] (see also [121, 58]) showed that, unless NP = RP,

there is no FPRAS for approximating the partition function on graphs of maximum degree

∆. Sinclair, Srivastava, and Thurley [119] extended Weitz’s correlation decay algorithmic

approach to the antiferromagnetic Ising model in the tree uniqueness region, and Li, Lu,

and Yin [89] further generalized it to all antiferromagnetic 2-spin systems when the system

is up-to-∆ unique. One important caveat to these correlation decay approaches is that the

running time depends exponentially on log ∆ and 1/δ.

Despite the algorithmic successes of the correlation decay approach, establishing rapid

mixing of the Glauber dynamics in the same tree uniqueness region was a vexing open

problem. Anari, Liu, and Oveis Gharan [4] introduced the spectral independence approach

based on the theory of high-dimensional expanders [80, 49, 82, 108, 1], and established

4



rapid mixing of the Glauber dynamics for the hardcore model on any graph of maximum

degree ∆ when λ < (1 − δ)λc(∆) for δ > 0. However, while the mixing time had poly-

nomial dependence on ∆, it also had doubly exponential dependence on 1/δ. In [44] the

authors established rapid mixing for all antiferromagnetic 2-spin systems when the system

is up-to-∆-unique with gap δ and improved the mixing time to an exponential dependence

on 1/δ. Here, roughly speaking, up-to-∆ uniqueness with gap δ means (multiplicative) gap

δ from the uniqueness threshold on the ∆-regular tree for all d ≤ ∆; see Section 5.3 for a

precise statement, and [89] for more discussion.

In this thesis, we not only establish a fixed polynomial upper bound on the mixing time,

but we also prove optimal mixing of the Glauber dynamics. Our approach holds for general

spin systems. The spectral independence approach, first introduced for 2-spins in [4] and

subsequently extended to q-spins in [43, 55], considers the qn × qn influence matrix. For

spins i, j ∈ [q] and vertices u, v ∈ V , the entry ((u, i), (v, j)) of the influence matrix

measures the effect of vertex u having spin i on the marginal probability that vertex v has

spin j, see Definition 2.1.3 for a precise statement. Here we prove that if the maximum

eigenvalue of the influence matrix is upper bounded and the marginal probabilities are

lower bounded then the mixing time is O(n log n) where the only dependence on 1/δ and

∆ is in the constant factor captured by the big-O notation.

We establish optimal mixing time of O(n log n) by proving that the Glauber dynamics

contracts relative entropy (with respect to the Gibbs distribution) at a constant rate. This

is analogous to establishing a modified log-Sobolev constant for the Glauber dynamics;

there are several recent results in other contexts also proving entropy decay for various

Markov chains [47, 37, 24]. In contrast, previous works utilizing the spectral independence

approach [4, 44] and related works on high-dimensional expanders [80, 49, 108, 82, 1]

consider the spectral gap (or analogously, decay of variance); such an approach is unable

to establish optimal mixing time.

We give our main results in Section 1.1 regarding optimal mixing of Glauber dynamics
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for many classes of spin systems. In Section 1.2, we introduce the notion of spectral inde-

pendence, discuss its implications for MCMC, and show various methods of establishing

spectral independence. The structure of this thesis can be found in Section 1.3.

1.1 Optimal Mixing of Glauber Dynamics

The application of our results is nicely illustrated for the particular case of antiferromag-

netic 2-spin systems. We prove O(n log n) mixing time of the Glauber dynamics when

the system is up-to-∆-unique. This is the same region where the correlation decay re-

sults of [89] and the rapid mixing results of [44] hold, which matches the hardness results

of [121]. Note, a mixing time of O(n log n) implies an Õ(n2) time FPRAS for approxi-

mating the partition function [122, 83]. For the case of the hardcore model we have the

following result.

Theorem 1.1.1 (Hard-core Model). Let ∆ ≥ 3 be an integer and let δ ∈ (0, 1) be a real.

For every n-vertex graph G of maximum degree ∆ and every 0 < λ ≤ (1 − δ)λc(∆), the

mixing time of the Glauber dynamics for the hardcore model on G with fugacity λ is at

most Cn log n where C = C(∆, δ) is a constant independent of n.

For the case of the Ising model in both the antiferromagnetic and ferromagnetic case,

we obtain optimal mixing whenever β is between the two thresholds βc(∆) = ∆−2
∆

and

βc(∆) = ∆
∆−2

.

Theorem 1.1.2 (Ising model). Let ∆ ≥ 3 be an integer and let δ ∈ (0, 1) be a real. For

every n-vertex graphG of maximum degree ∆, every β ∈ [∆−2+δ
∆−δ ,

∆−δ
∆−2+δ

], and every λ > 0,

the mixing time of the Glauber dynamics for the Ising model on G with edge activity β and

external field λ is at most Cn log n where C = C(∆, δ) is a constant independent of n.

Recall that the above results are tight as there is no efficient approximation algorithm

in the tree non-uniqueness region which corresponds to λ > λc(∆) for the hardcore model

and β < βc(∆) for the antiferromagnetic Ising model. The only analog of the above results
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establishing optimal mixing time in the entire tree uniqueness region was the work of Mos-

sel and Sly [106] for the ferromagnetic Ising model. Their proof utilizes the monotonicity

properties of the ferromagnetic Ising model which allows the use of the censoring inequal-

ity of Peres and Winkler [111]. The algorithm of Jerrum and Sinclair [77] gives an FPRAS

for the ferromagnetic Ising model for any β and any G, but the polynomial exponent is a

large constant.

Both Theorems 1.1.1 and 1.1.2 are special cases of the following optimal mixing result

for general antiferromagnetic 2-spin systems in the entire tree uniqueness region. For gen-

eral 2-spin systems the appropriate tree phase transition is more complicated as there are

models where the tree uniqueness threshold is not monotone in ∆. Hence the appropriate

notion is “up-to-∆ uniqueness” as considered by [89]. Roughly speaking, we say unique-

ness with gap δ ∈ (0, 1) holds on the d-regular tree if for every integer ` ≥ 1, all vertices at

distance ` from the root have total “influence” . (1 − δ)` on the marginal of the root. We

say up-to-∆ uniqueness with gap δ holds if uniqueness with gap δ holds on the d-regular

tree for all 1 ≤ d ≤ ∆; see Section 5.3 for the precise definition.

Theorem 1.1.3 (Antiferromagnetic 2-Spin Systems). Let ∆ ≥ 3 be an integer and let

δ ∈ (0, 1) be a real. Let (β, γ, λ) with 0 ≤ β ≤ γ, γ > 0, βγ < 1 and λ > 0 be parameters

specifying an antiferromagnetic 2-spin system which is up-to-∆ unique with gap δ. For

every n-vertex graph G of maximum degree ∆, the mixing time of the Glauber dynamics

for the antiferromagnetic 2-spin system on G with parameters (β, γ, λ) is at most Cn log n

where C = C(∆, δ, β, γ, λ) is a constant independent of n.

For general ferromagnetic 2-spin systems the existing picture is not as clear as for

antiferromagnetic systems. Our work extends to ferromagnetic 2-spin systems, proving

O(n log n) mixing time for the same range of parameters as the previously best known

bounds [67, 118, 44]. In particular, we recover Theorems 26 and 27 in [44] withO(n log n)

mixing time.

Our results hold for multi-spin systems as well. The most notable example of a multi-
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spin system is the q-colorings problem, namely, proper vertex q-colorings. Given a graph

G = (V,E) of maximum degree ∆, can we approximate the number of q-colorings of G,

or generate a q-coloring of G approximately uniformly at random? Jerrum [74] proved

O(n log n) mixing time of the Glauber dynamics whenever q > 2∆. This was further

improved in [42, 125] toO(n2) mixing time when q > (11/6−ε0)∆ for some small ε0 > 0.

There are several further improvements with various assumptions on the girth or maximum

degree, c.f. [51]. On the hardness side, Galanis et al. [57] proved that unless NP = RP

there is no FPRAS for approximating the number of q-colorings when q is even and q < ∆.

For triangle-free graphs, a recent pair of works [55, 43] extended the spectral independence

approach to establish rapid mixing of the Glauber dynamics when q > (α∗ + δ)∆ for any

δ > 0 where α∗ ≈ 1.763; however the polynomial exponent in the mixing time depends on

1/δ in these results.

We prove O(n log n) mixing time of the Glauber dynamics under the same conditions

as previous results mentioned above.

Theorem 1.1.4 (Colorings). Let ∆ ≥ 3 be an integer and let δ > 0 be a real. For every

n-vertex graph G of maximum degree ∆ and every integer q ≥ 3, if one of the following

holds:

(1) q ≥ (11
6
− ε0 + δ)∆ where ε0 ≈ 10−5 is a universal constant given in [42];

(2) G is triangle-free and q ≥ (α∗ + δ)∆ where α∗ ≈ 1.763 is the unique solution to

x = exp(1/x);

then the mixing time of the Glauber dynamics for sampling uniformly random q-colorings

of G is at most Cn log n where C = C(∆, δ) is a constant independent of n.

We prove optimal mixing time bounds for the monomer-dimer model on all matchings

of a graph with constant maximum degree. Given a graphG = (V,E) and a fugacity λ > 0,

the Gibbs distribution µ for the monomer-dimer model is defined on the collectionM of

all matchings of G where µ(M) = w(M)/Z for w(M) = λ|M |. The Glauber dynamics for
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the monomer-dimer model adds or deletes a random edge in each step. In particular, from

Xt ∈ M, choose an edge e uniformly at random from E and let X ′ = Xt ⊕ e. If X ′ ∈ M

then letXt+1 = X ′ with probabilityw(X ′)/(w(X ′)+w(Xt)) and otherwise letXt+1 = Xt.

We prove O(n log n) mixing time for the Glauber dynamics for sampling matchings on

bounded-degree graphs with n vertices. A classical result of Jerrum and Sinclair [76] yields

rapid mixing of the Glauber dynamics for any graph even with unbounded degrees, but the

best mixing time bound was O(n2m log n) [75] where m is the number of edges.

Theorem 1.1.5 (Monomer-Dimer Model). Let ∆ ≥ 3 be an integer and let λ > 0 be a

real. For every n-vertex graph G of maximum degree ∆, the mixing time of the Glauber

dynamics for the monomer-dimer model on G with fugacity λ is at most Cn log n where

C = C(∆, λ) is a constant independent of n.

We also establish optimal mixing time of the Glauber dynamics for sampling random

weighted (partial) even subgraphs, which corresponds to the Gibbs distribution for the high-

temperature expansion of the ferromagnetic Ising model. Let G = (V,E) be a graph. The

Gibbs distribution µ for weighted even subgraphs is defined on all subsets of edges. For

λ > 0 and ρ ∈ [0, 1], every subset S ⊆ E has probability density µ(S) ∝ ρ|odd(S)|λ|S|

where odd(S) is the set of odd-degree vertices in the subgraph (V, S). The weighted even

subgraphs model corresponds to the ferromagnetic Ising model by the relations βIsing =

1+λ
1−λ and λIsing = 1+ρ

1−ρ , for which one can easily transform a subset of edges from µ to a

sample from µIsing [64]. Notice that for ρ = 0 one obtains the ferromagnetic Ising model

without external fields (i.e., λIsing = 1).

In [77], an MCMC algorithm is presented to sample weighted even subgraphs of an

arbitrary (unbounded-degree) graph in time O(m3poly(1/ρ)) where m is the number of

edges of the graph. Here, we prove that the Glauber dynamics converges in O(n log n)

steps for bounded-degree graphs when ρ > 0; unfortunately the constant hidden in the

big-O notation depends exponentially on 1/ρ.
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Theorem 1.1.6 (Weighted Even Subgraphs; Ferromagnetic Ising Model). Let ∆ ≥ 3 be

an integer and let λ > 0, ρ ∈ (0, 1] be reals. For every n-vertex graph G of maximum

degree ∆, the mixing time of the Glauber dynamics for sampling random weighted even

subgraphs of G with parameters (λ, ρ) is at most Cn log n where C = C(∆, λ, ρ) is a

constant independent of n. In particular, we get an approximate sampling algorithm with

running time O(n log n) for the ferromagnetic Ising model with edge activity βIsing = 1+λ
1−λ

and external field λIsing = 1+ρ
1−ρ .

Finally, we mention that our techniques imply asymptotically optimal bounds (up to

constant factors) on both the standard and modified log-Sobolev constants of the Glauber

dynamics for spin systems on bounded degree graphs in all of the regimes mentioned above.

This also applies for certain problems where prior works have obtained rapid mixing via

other techniques such as path coupling and canonical paths.

1.2 Spectral Independence: A Powerful Tool for Analyzing MCMC

The central tool for establishing optimal mixing time bounds for the Glauber dynamics is

the notion of spectral independence, which was first proposed by Anari, Liu, and Oveis

Gharan [4] building upon techniques for high-dimensional expanders [1].

1.2.1 Implications of Spectral Independence

To introduce spectral independence, we consider the hardcore model as a representative

example and refer to Section 2.1 for general settings and definitions. Recall that, for a

graph G = (V,E) and a real λ > 0, the Gibbs distribution µG of the hardcore model on

G with fugacity λ is a distribution over I(G), the collection of all independent sets of G.

Every independent set I ∈ I(G) is assigned probability density µG(I) = λ|I|/ZG where

the normalizing constant ZG =
∑

I∈I(G) λ
|I| is called the partition function.

Spectral independence describes how much vertices interact among each other under

the Gibbs distribution µG in a global and spectral manner. Let I be a random (weighted)
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independent set generated from µG. For two distinct vertices u, v ∈ V , we define the

(pairwise) influence of u on v to be

ΨG(u, v) = µG(v ∈ I | u ∈ I)− µG(v ∈ I | u /∈ I);

in other words, ΨG(u, v) is the difference of the probabilities of v ∈ I given that u is

contained in I or not. Intuitively, the influence becomes small when the graph distance

between u and v is large, and it is maximized when u, v are adjacent. We further let

ΨG(v, v) = 0 for each v ∈ V . The influence matrix ΨG is a |V | × |V | square matrix with

entries given as above. It is not hard to check that all eigenvalues of ΨG are real; see [4].

Roughly speaking, η-spectral independence means that the maximum eigenvalue of the

influence matrix ΨG, denoted by λ1(ΨG), is upper bounded by η. To understand this, one

may consider the infinity norm ‖ΨG‖∞ = maxu∈V
∑

v∈V |ΨG(u, v)| which is no less than

the maximum eigenvalue. If ‖ΨG‖∞ = O(1), then one has O(1)-spectral independence.

Therefore, spectral independence holds with an O(1) constant if, for every vertex u, the

sum of absolute influences of u on all other vertices is small, which happens when µG

is close to a product distribution or satisfies the decay of correlations. In fact, in many

applications we establish spectral independence by upper bounding ‖ΨG‖∞.

To be more precise, for spectral independence we also need to consider the distribution

under pinnings. For the hardcore model, this means that we will fix some vertices to be

included in I and some to be excluded, and consider the distribution conditioned on this

event. For hardcore, this is convenient for us, since fixing v /∈ I is equivalent to removing

v from G and fixing v ∈ I corresponds to removing both v and all its neighbors. Hence,

we only need to consider all induced subgraphs of G. For U ⊆ V , let H = G[U ] be the

subgraph induced by U . We consider the hardcore model on H with fugacity λ. The Gibbs

distribution is denoted by µH and the influence matrix is denoted by ΨH . We say µG is

η-spectrally independent if for every U ⊆ V and H = G[U ], one has λ1(ΨH) ≤ η.
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For our main result we also require a bound on marginals at every vertex under arbitrary

pinnings. We say µG is b-marginally bounded if for every U ⊆ V and H = G[U ], one has

min{µH(v ∈ I), µH(v /∈ I)} ≥ b for all v ∈ U . This marginal boundedness condition is

easily satisfied for spin systems defined on bounded-degree graphs.

Our main result is that if the Gibbs distribution on a bounded-degree graph is both

marginally bounded and spectrally independent, then the Glauber dynamics satisfies the

modified log-Sobolev inequality with constant Ω(1/n) (see Definition 2.2.3) and mixes in

O(n log n) steps, where n is the number of vertices of the graph.

Theorem 1.2.1. Let ∆ ≥ 3 be an integer and b, η > 0 be reals. Suppose that G = (V,E)

is an n-vertex graph of maximum degree at most ∆ and µ is a totally-connected Gibbs

distribution of some spin system on G. If µ is both b-marginally bounded and η-spectrally

independent, then the Glauber dynamics for sampling from µ satisfies the modified log-

Sobolev inequality with constant 1
C1n

where

C1 =

(
∆

b

)O( ηb+1)
.

Furthermore, the mixing time of the Glauber dynamics satisfies

Tmix(PGL, ε) =

(
∆

b

)O( ηb+1)
×O

(
n log

(n
ε

))
.

Previous results [4, 1] could only obtain poly(∆)×nη+2 mixing but without the assump-

tion of marginal boundedness. In the setting of spin systems, we always have b-marginal

boundedness with b depending only on the parameters of the spin system and the maximum

degree ∆ of the graph, and so our results supersede those of [4, 1] in the bounded degree

regime.

We further show that spectral independence implies optimal mixing of arbitrary heat-

bath block dynamics and for ferromagnetic Ising/Potts models the Swendsen-Wang dy-
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namics; see Chapter 4 for definitions and results.

1.2.2 Establishing Spectral Independence

For approximate sampling and counting in the setting of spin systems, there are three dis-

parate algorithmic methods: MCMC, correlation decay, and polynomial interpolation. In

this thesis, we show that tools and properties establishing these methods can also be used

to establish spectral independence and thus optimal mixing time results of the Glauber

dynamics.

The correlation decay method was presented in [127] to obtain an FPTAS for approx-

imating the partition function of the hardcore model up to the tree uniqueness threshold.

It was extended to the antiferromagnetic Ising model [119] and to all antiferromagnetic

2-spin systems [89] in the corresponding tree uniqueness regions. These results build upon

a key property of the Gibbs distribution known as strong spatial mixing (SSM) or corre-

lation decay. We do not formally define SSM in this thesis since it is not explicitly used.

Roughly speaking, for SSM we consider the effect of a pair of boundary conditions on the

marginal distribution of a specified vertex, and at a high level this is analogous to spectral

independence. SSM can be proved by showing that the tree recursion is contracting with

a carefully chosen potential function. In Chapter 5, we establish spectral independence for

2-spin systems in the uniqueness region by combining the potential function method [89]

and the self-avoiding walk tree identity [127]. For the monomer-dimer model (matchings)

and colorings on triangle-free graphs, we also prove spectral independence by modifying

proofs of SSM, see Chapter 6.

Theorem 1.2.2 (Informal Version of Theorem 5.2.2; Spectral Independence by Strong Spa-

tial Mixing Approach). If there exists a “good” potential function such that the tree recur-

sion, equipped with the potential function, is contractive (from which one can deduce strong

spatial mixing property), then µ is O(1)-spectrally independent.

Rapid mixing of MCMC algorithms can also be proved through coupling arguments,
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especially by the path coupling method [30]. A distribution is said to be contractive for a

Markov chain if, roughly speaking, the distance of two configurations contracts in expecta-

tion after one step of the chain; see Chapter 7 for details. We show spectral independence

for contractive distributions with respect to some local Markov chain, and thus establish

optimal mixing time for the Glauber dynamics. This result allows us to transfer coupling

arguments for some local dynamics to optimal mixing results of the Glauber dynamics.

One example is sampling random q-colorings on graphs of maximum degree ∆ where

q > (11/6− ε0)∆: the uniform distribution over all colorings was known to be contractive

with respect to the flip dynamics [125, 42]; however, previously it was not known how to

deduce optimal mixing results for the Glauber dynamics in this parameter regime.

Theorem 1.2.3 (Informal Version of Theorem 7.2.3; Spectral Independence by Coupling

Methods). If µ is contractive with respect to some “local” Markov chainM by (path) cou-

pling arguments (from which one can get optimal mixing ofM but not Glauber dynamics),

then µ is O(1)-spectrally independent.

The study of zero-free regions of the partition function has a long and rich history in

the analysis of phase transitions in statistical physics models. The well-known work of

Lee and Yang [86] utilizes zeros of the partition function to study phase transitions for

the ferromagnetic Ising model. The polynomial interpolation method was introduced by

Barvinok [10] and refined by Patel and Regts [110]. This approach utilizes the absence of

zeros of the partition function in the complex plane to efficiently approximate a suitable

transformation of the logarithm of the partition function using Taylor approximation. For

a spin system on a graph with n vertices and constant maximum degree ∆, the polynomial

interpolation method yields a running time of O(nC) where the constant C depends on ∆

and parameters of the model and is usually pretty large. In Chapter 8, we prove that a

zero-free region of the partition function implies spectral independence. This immediately

yields several new optimal mixing results for MCMC methods with significantly improved

running times.
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Theorem 1.2.4 (Informal Version of Theorem 8.2.1; Spectral Independence by Zero-Free

Results). If the multivariate partition function of the external fields is nonzero in a “large”

region on the complex plane (from which one can apply the polynomial interpolation

method for approximate counting), then µ is O(1)-spectrally independent.

1.3 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 we give necessary definitions

and well-known facts that are used in this thesis. In Chapter 3 we show optimal mixing of

the Glauber dynamics for spin systems that are spectrally independent. We further show

optimal mixing results for arbitrary block dynamics and the Swendsen-Wang dynamics

in Chapter 4. We establish spectral independence for antiferromagnetic 2-spin systems

in Chapter 5, and for the monomer-dimer model and colorings on triangle-free graphs in

Chapter 6, by modifying the proofs of correlation decay. In Chapter 7, we show how to

deduce spectral independence from a coupling result for any local Markov chain and in

particular establish spectral independence for colorings on any bounded degree graph. In

Chapter 8 we relate spectral independence and zero-free region of the partition function; as

applications we prove spectral independence for weighted edge covers and weighted even

subgraphs.
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CHAPTER 2

PRELIMINARIES

2.1 Spin Systems

Let q ≥ 2 be an integer and [q] = {1, . . . , q}. Given a graph G = (V,E), we consider

the q-spin system on G parameterized by a symmetric interaction matrix A ∈ Rq×q
≥0 repre-

senting “interaction strengths” and a field vector B ∈ Rq
>0 representing “external fields”.

A configuration σ ∈ [q]V is an assignment of spins to vertices. The Gibbs distribution

µ = µG,A,B over all configurations is given by

µ(σ) =
1

ZG(A,B)

∏
{u,v}∈E

A(σu, σv)
∏
v∈V

B(σv), ∀σ ∈ [q]V

where

ZG(A,B) =
∑
σ∈[q]V

∏
{u,v}∈E

A(σu, σv)
∏
v∈V

B(σv)

is called the partition function.

We recall some classical examples of spin system.

1. The Ising/Potts model at inverse temperature β ∈ R corresponds to the interaction

A(a, a′) = exp (β1(a = a′)) and B(a) = exp (h(a)) where h ∈ Rq is a vector of

external fields, with q = 2 for the Ising model and q ≥ 3 for the Potts model.

2. The hardcore (or independent sets) model with parameter λ > 0 is obtained with

q = 2, A(a, a′) = 0 if a = a′ = 1 and A(a, a′) = 1 otherwise, and B(a) = λ if a = 1

and B(a) = 1 if a = 2.

3. The q-colorings model corresponds to A(a, a′) = 1(a 6= a′) and B(a) = 1.
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2.1.1 Pinnings and Conditional Distributions

Let µ be an arbitrary distribution over [q]V . A configuration σ ∈ [q]V is said to be feasible

with respect to µ if µ(σ) > 0. Let Ω = Ω(µ) denote the collection of all feasible config-

urations (we omit µ when it is clear from the context); namely, Ω is the support of µ. For

U ⊆ V , we use the notation σU = (σu)u∈U and let ΩU = {τ ∈ [q]U : ∃σ ∈ Ω, σU = τ}

be the set of all possible pinnings on U . Observe that ΩV = Ω. Note, for u ∈ V , Ωu is

the set of feasible spin assignments for vertex u. Denote the collection of all pinnings by

T = ∪U⊆V ΩU and denote the set of all feasible vertex-spin pairs by P = {(u, j) : u ∈

V, j ∈ Ωu}. For τ ∈ T , let µτ denote the conditional Gibbs distribution µ(· |σU = τ).

For a pinning τ ∈ ΩU for U ⊆ V , let Ωτ = {σ ∈ Ω : σU = τ} denote the corresponding

state space; i.e., Ωτ is the support of µτ . We also define Ωτ
W = {φ ∈ [q]W : ∃σ ∈ Ωτ , σW =

φ} for W ⊆ V \ U and Pτ = {(u, j) : u ∈ V \ U, j ∈ Ωτ
u}. We say Ωτ is connected if

the graph on Ωτ with edges connecting pairs at Hamming distance 1 is connected. The

distribution µ over Ω is said to be totally-connected if for every τ ∈ T , the set Ωτ is

connected. Throughout this thesis, we will assume the distribution µ is totally-connected

as this is necessary for the Glauber dynamics to be ergodic for all conditional measures µτ .

We remark that all soft-constraint models (i.e., A(i, j) > 0 for all i, j ∈ [q]) are

totally-connected spin systems and common hard-constraint models, including the hard-

core model, q-colorings when q ≥ ∆ + 2, matchings, and other models studied in this

thesis, all satisfy this assumption as well.

The marginal bound for a distribution µ over [q]V is the minimum nonzero marginal

probability of a vertex receiving a spin under any pinning.

Definition 2.1.1 (Bounded Marginals). We say a distribution µ over [q]V is b-marginally

bounded if for every Λ ( V and τ ∈ ΩΛ, it holds for every v ∈ V \ Λ and i ∈ Ωτ
v that,

µ(σv = i | σΛ = τ) ≥ b.
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2.1.2 Spectral Independence

The notion of spectral independence was first proposed in [4] for binary product space and

later generalized to multi-state product space in [43, 55].

Definition 2.1.2 (Influence Matrix for q = 2). Let q = 2. Given Λ ( V and τ ∈ ΩΛ, let

Ṽ τ = {u ∈ V \ Λ : µ(σu = 1 | σΛ = τ) > 0, µ(σu = 0 | σΛ = τ) > 0}.

For every u, v ∈ Ṽ τ with u 6= v, we define the (pairwise) influence of u on v conditioned

on τ by

Ψτ
µ

(
u, v
)

= µ(σv = 1 | σu = 1, σΛ = τ)− µ(σv = 1 | σu = 0, σΛ = τ).

Furthermore, let Ψτ
µ

(
v, v
)

= 0 for v ∈ Ṽ τ . We call Ψτ
µ the (pairwise) influence matrix

conditioned on τ .

Definition 2.1.3 (Influence Matrix for q ≥ 3). Let q ≥ 3. Given Λ ( V and τ ∈ ΩΛ, let

Ṽ τ = {(u, i) : u ∈ V \ Λ, µ(σu = i | σΛ = τ) > 0}.

For every (u, i), (v, j) ∈ Ṽ τ with u 6= v, we define the (pairwise) influence of (u, i) on

(v, j) conditioned on τ by

Ψτ
µ

(
(u, i), (v, j)

)
= µ(σv = j | σu = i, σΛ = τ)− µ(σv = j | σΛ = τ).

Furthermore, let Ψτ
µ

(
(v, i), (v, j)

)
= 0 for all (v, i), (v, j) ∈ Ṽ τ . We call Ψτ

µ the (pairwise)

influence matrix conditioned on τ .

Note that all eigenvalues of the influence matrix Ψτ
µ are real; see [4, 43, 23].
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Definition 2.1.4 (Spectral Independence). We say a distribution µ over [q]V is η-spectrally

independent if for every Λ ( V and τ ∈ ΩΛ, the largest eigenvalue λ1(Ψτ
µ) of the influence

matrix Ψτ
µ satisfies

λ1(Ψτ
µ) ≤ η.

The work of [55] defined another version of influence matrix by

Ψτ
µ(u, v) = max

i,j∈Ωτu
‖µ(σv = · | σu = i, σΛ = τ)− µ(σv = · | σu = j, σΛ = τ)‖TV ,

and the spectral independence correspondingly. We remark that Definition 2.1.4 is weaker

than the notion of spectral independence given in [55], and for all current applications here

in this thesis, both definitions work.

2.2 Markov Chains

2.2.1 Glauber Dynamics

The Glauber dynamics, also known as the Gibbs sampling, is a simple, natural, and popular

Markov chain for sampling from a distribution µ over [q]V . The dynamics starts with

some (possibly random) configuration X0. For every t ≥ 1, a new random configuration

Xt+1 is generated from Xt as follows: pick a coordinate v ∈ V uniformly at random, set

Xt+1(u) = Xt(u) for all u ∈ V \{v}, and sampleXt+1(v) from the conditional distribution

µ(σv = · | σV \{v} = Xt(V \ {v})). Denote the transition matrix of the Glauber dynamics

by PGL. If µ is totally-connected, then the Glauber dynamics is ergodic (i.e., irreducible

and aperiodic) and has stationary distribution µ.

Let P be the transition matrix of an ergodic Markov chain (Xt) on a finite state space

Ω with stationary distribution µ. For t ≥ 0 and σ ∈ Ω, let P t(σ, ·) denote the distribution

of Xt when starting the chain with X0 = σ. For ε ∈ (0, 1), the mixing time of P is defined
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as

Tmix(P, ε) = max
σ∈Ω

min
{
t ≥ 0 :

∥∥P t(σ, ·)− µ
∥∥

TV
≤ ε
}
. (2.1)

In particular, we write Tmix(P ) = Tmix(P, 1/4).

2.2.2 Expectation, Variance, and Entropy

In the following definition, we assume the underlying distribution µ is fixed and omit it

from the subscript.

Definition 2.2.1. Let Ω be a finite set and µ be a distribution over Ω. For all functions

f, g : Ω→ R:

(a) The expectation of f is defined as µ(f) =
∑

x∈Ω µ(x)f(x);

(b) The variance of f is defined as Var(f) = µ[(f − µ(f))2] = µ(f 2)− µ(f)2;

(c) The covariance of f and g is defined as Cov(f, g) = µ[(f − µ(f))(g − µ(g))] =

µ(fg)− µ(f)µ(g);

(d) If f ≥ 0, the entropy of f is defined as Ent(f) = µ
[
f log

(
f

µ(f)

)]
= µ(f log f) −

µ(f) log µ(f) with the convention that 0 log 0 = 0.

For two distributions µ, ν over a finite set Ω, the Kullback–Leibler divergence (KL

divergence), also called relative entropy, is defined as

DKL(ν ‖ µ) =
∑
x∈Ω

ν(x) log

(
ν(x)

µ(x)

)
.

Let f = ν/µ be the relative density of ν with respect to µ; i.e., f(x) = ν(x)/µ(x) for all

x ∈ Ω. Then Ent(f) = DKL(ν ‖ µ). The following is a well-known fact; see, e.g., [50].
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Fact 2.2.2 (Donsker-Varadhan’s Variational Representation). For two distributions µ, ν

over a finite set Ω, the KL divergence admits the following variational formula:

DKL(ν ‖ µ) = sup
f :Ω→R

{
ν(f)− log µ(ef )

}
.

2.2.3 Functional Inequalities for Markov Chains

We now review some standard functional inequalities, and refer to [25, 105] for further

background.

Definition 2.2.3. Let Ω be a finite set and µ be a distribution over Ω. Let P denote the

transition matrix of an ergodic, reversible Markov chain on Ω with stationary distribution

µ.

(a) The Dirichlet form of P is defined as for every f, g : Ω→ R,

EP (f, g) =
1

2

∑
x,y∈Ω

µ(x)P (x, y)(f(x)− f(y))(g(x)− g(y)).

In particular, if Ω ⊆ [q]V and P = PGL is the Glauber dynamics for µ, then we can

write

EPGL (f, g) =
1

n

∑
v∈V

µ[Covv(f, g)].

(b) We say the Poincaré inequality holds with constant λ if for every f : Ω→ R,

λVar(f) ≤ EP (f, f).

The spectral gap of P is λ(P ) = inf
{
EP (f,f)
Var(f)

∣∣∣ f : Ω→ R,Var(f) 6= 0
}

.

(c) We say the standard log-Sobolev inequality holds with constant ρ if for every f : Ω→

R≥0,

ρEnt(f) ≤ EP (
√
f,
√
f).
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The standard log-Sobolev constant of P is

ρ(P ) = inf
{EP (

√
f,
√
f)

Ent(f)

∣∣∣f : Ω→ R≥0,Ent(f) 6= 0
}
.

(d) We say the modified log-Sobolev inequality holds with constant ρ0 if for every f : Ω→

R≥0,

ρ0 Ent(f) ≤ EP (f, log f).

The modified log-Sobolev constant of P is ρ0(P ) = inf
{
EP (f,log f)

Ent(f)

∣∣∣ f : Ω →

R≥0,Ent(f) 6= 0
}

.

(e) We say the relative entropy decays with rate α if for every distribution ν over Ω,

DKL(νP ‖ µ) ≤ (1− α)DKL(ν ‖ µ).

We recall some well known facts about its relation to the other two inequalities and its

implications for mixing times.

Lemma 2.2.4. If (P, µ) satisfies the standard LSI with constant s then it satisfies the MLSI

with constant ρ = 2s. If it satisfies the discrete time relative entropy decay with rate δ > 0,

then it satisfies the MLSI with constant ρ = δ. Finally, if it satisfies the discrete time relative

entropy decay with rate δ > 0, then

Tmix(P ) ≤ 1 + δ−1[log(8) + log log(1/µ∗)] , (2.2)

where µ∗ = minσ∈Ω µ(σ).

We refer to e.g. [24, Section 2] for a proof. Note that we have not assumed reversibility

of P in the above lemma. If (P, µ) is reversible, then one can additionally show that the

standard LSI with constant s implies the discrete time relative relative entropy decay with

rate δ = s.
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Next, we consider the case that Ω ⊆ [q]V for a finite set V . Let S ⊆ V and τ ∈ ΩV \S .

Recall that for every function f : Ω → R≥0, we write µτS(f) and EntτS(f) = EntµτS(f)

for the expectation and entropy of f under the conditional distribution µτS(·) = µ(σS =

· | σV \S = τ), where f = fτ is understood as a function of the configuration on S with

τ fixed outside S. We think of µτS(f) and EntτS(f) as functions of τ , and we will use, for

example, Ent[µS(f)] to represent the entropy of µτS(f) under µ, and µ[EntS(f)] for the

expectation of EntτS(f). We give below a useful property of the expectation and entropy;

see, e.g., [100] for proofs.

Fact 2.2.5. Let S ⊆ V and τ ∈ ΩV \S . For every function f : Ω→ R≥0, we have

µ(f) = µ[µS(f)] and Ent(f) = µ[EntS(f)] + Ent[µS(f)].

2.3 Entropy Tensorization and Factorization

2.3.1 Approximate Tensorization of Entropy

The notion of approximate tensorization of entropy is formally defined as follows.

Definition 2.3.1 (Approximate Tensorization). We say that a distribution µ over [q]V satis-

fies the approximate tensorization of entropy (with constant C1) if for all f : Ω→ R≥0 we

have

Ent(f) ≤ C1

∑
v∈V

µ[Entv(f)]. (2.3)

Approximate tensorization can be understood as closeness of µ to a product distribution,

or weak dependency of variables. In fact, if µ is exactly a product distribution (e.g., the

Gibbs distribution on an empty graph), then approximate tensorization holds with constant

C1 = 1; e.g., see [41, 36]. If µ satisfies approximate tensorization with a constant C1

independent of n, then the Glauber dynamics for sampling from µ mixes in O(n log n)

steps. In fact, given approximate tensorization, one can deduce tight bounds on all of the

following quantities: the spectral gap, both standard and modified log-Sobolev constants,
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relative entropy decay rate, mixing time, and concentration bounds. We summarize here

a few corollaries of approximate tensorization of entropy for arbitrary distributions over

discrete product spaces.

Fact 2.3.2. Let V be a set of size n and µ be a distribution over [q]V . If µ satisfies the

approximate tensorization of entropy with constant C1, then the Glauber dynamics for µ

satisfies all of the following:

(1) The Poincaré inequality holds with constant λ = 1
C1n

;

(2) The modified log-Sobolev inequality holds with constant ρ0 = 1
C1n

;

(3) The relative entropy decays with rate α = 1
C1n

;

(4) The mixing time of the Glauber dynamics satisfies

Tmix(PGL, ε) ≤
⌈
C1n

(
log log

1

µmin

+ log
1

2ε2

)⌉

where µmin = minσ∈Ω µ(σ); If furthermore µ is b-marginally bounded, then we have

µmin ≥ bn and thus

Tmix(PGL, ε) ≤
⌈
C1n

(
log n+ log log

1

b
+ log

1

2ε2

)⌉
;

(5) For every f : Ω → R which is c-Lipschitz with respect to the Hamming distance on

[q]V and every a ≥ 0, we have the concentration inequality

Pr
σ∼µ

[|f(σ)− µ(f)| ≥ a] ≤ 2 exp

(
− a2

2c2C1n

)
;

(6) If furthermore µ is b-marginally bounded, then the standard log-Sobolev inequality

holds with constant ρ = 1−2b
log(1/b−1)

· 1
C1n

when b < 1
2
, or ρ = 1

2C1n
when b = 1

2
.
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The implications in Fact 2.3.2 are all known and have been widely used, often implic-

itly. In the proof below, we give references where explicit statements or direct proofs are

available.

Proof of Fact 2.3.2. Item 1 and Item 2 are proved in [36, Proposition 1.1]. To show Item 3,

let Pv be the transition matrix corresponding to updating the spin at v conditioned on all

other vertices. Thus, we have the decomposition

PGL =
1

n

∑
v∈V

Pv.

Let f = ν/µ be the relative density of ν with respect to µ. Then we get

DKL(νPGL ‖ µ) = DKL

(
1

n

∑
v∈V

νPv

∥∥∥∥∥ µ
)
≤ 1

n

∑
v∈V

DKL(νPv ‖ µ) =
1

n

∑
v∈V

Ent(Pvf)

=
1

n

∑
v∈V

Ent[µv(f)] =
1

n

∑
v∈V

Ent(f)− µ[Entv(f)] = Ent(f)− 1

n

∑
v∈V

µ[Entv(f)]

≤
(

1− 1

C1n

)
Ent(f) =

(
1− 1

C1n

)
DKL(ν ‖ µ).

Item 4 can be deduced from Item 3 as shown by [24, Lemma 2.4]; see also [25, Corollary

2.8] for the continuous time setting. Item 5 follows from Item 2 and [47, Lemma 15].

Finally, Item 6 follows by an application of [48, Theorem A.1].

2.3.2 General Block Factorization of Entropy

Caputo and Parisi [37] introduced the notion of general block factorization of entropy

which generalizes approximate tensorization, and is useful for analyzing more general

classes of Markov chains. Let α = (αB)B⊆V be an arbitrary probability distribution over

subsets of V , and define the minimum “coverage probability” of a vertex by

δ = δ(α) = min
u∈V

∑
B:B3u

αB. (2.4)
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Definition 2.3.3 (General Block Factorization). We say that a distribution µ over [q]V sat-

isfies the general block factorization of entropy (with constant C) if for all weights α, for

all f : Ω→ R≥0 we have

δ(α)Entf ≤ C
∑
B⊆V

αB µ[EntBf ]. (2.5)

Recall that µ[EntBf ] = µ[f log(f/µBf)] is the expected value of the conditional en-

tropy τ 7→ Ent(f |τ) for τ a spin configuration on V \ B. Entropy tensorization in Defi-

nition 2.3.1 is the special case when αB = 1/n for every block of size 1 and αB = 0 for

larger blocks. The choice of the constant δ(α) in this inequality is motivated by the fact

that when µ is a product measure then (Equation 4.5) holds with C = 1, in which case it is

known as the Shearer inequality; see [36]. The block factorization of entropy is a statement

concerning the equilibrium distribution µ which has deep consequences for several natural

sampling algorithms. In particular, it implies optimal mixing and optimal entropy decay

for arbitrary block dynamics and constitutes a key concept in the proof of Theorems 4.1.1

and 4.1.2.

Fix a probability distribution α over subsets of V and observe that the α-weighted heat

bath block dynamics defined in the introduction is the Markov chain with transition matrix

Pα on Ω such that for any real function f

Pαf =
∑
B⊆V

αB µB(f) . (2.6)

To clarify the above notation, if we evaluate the left hand side at a spin configuration σ ∈ Ω

then each for each B the term µBf in the right hand side is given by µτBf where τ = σV \B.

If αB = n−1 1(|B| = 1), then Eq. (2.6) is the Glauber dynamics for µ.

The α-weighted heat bath block dynamics Eq. (2.6) defines a reversible pair (Pα, µ).
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Moreover, its Dirichlet form satisfies

Dα(f, g) =
∑
B⊆V

αB µ[f(1− µB)g] =
∑
B⊆V

αB µ [CovB(f, g)] , (2.7)

where CovB(f, g) = µB [(f − µBf)(g − µBg)] denotes the covariance functional.

Lemma 2.3.4. If the spin system satisfies the general block factorization with constant C

then for all α the Markov chain (Pα, µ) satisfies

1. the modified log-Sobolev inequality with constant ρ = δ(α)
C

;

2. the discrete time relative entropy decay with rate δ = δ(α)
C

;

3. Tmix(Pα) ≤ 1 + C
δ(α)

[log(8) + log log(1/µ∗)], where µ∗ = minσ∈Ω µ(σ).

Proof. In view of Fact 2.3.2 it is sufficient to prove item 2. We note that the relative entropy

decay with rate δ is equivalent to the entropy contraction

Ent(Pαf) ≤ (1− δ)Ent(f), (2.8)

for all f ≥ 0. By convexity of x 7→ x log x one has

Ent(Pαf) = µ[Pαf log(Pαf)]− µ[f ] log µ[f ]

≤
∑
B

αB µ[µB(f) log(µB(f))]− µ[f ] log µ[f ] =
∑
B

αBEnt(µB(f))]. (2.9)

From the decomposition in Lemma 4.3.1 it follows that

Ent(Pαf) ≤ Ent(f)−
∑
B

αBµ[EntB(f)]. (2.10)

By definition of block factorization we conclude

Ent(Pαf) ≤ (1− δ(α)/C)Ent(f).
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2.4 Simplicial Complexes

A simplicial complex X is a collection of subsets (called faces) of a ground set U which is

downwards closed; that is, if σ ∈ X and τ ⊆ σ then τ ∈ X. The dimension of a face is

its size, and the dimension of X is defined to be the maximum dimension of its faces. We

say an n-dimensional simplicial complex X is pure if every face is contained in a maximal

face of size n. We write X(k) for the collection of faces of size k. For a k-dimensional face

τ ∈ X(k), we can define a pure (n − k)-dimensional simplicial subcomplex Xτ by taking

Xτ = {ξ ⊆ U \ τ : τ ∪ ξ ∈ X}.

For a pure n-dimensional simplicial complex X, consider a positive weight function w :

X(n) → R>0, which induces a distribution πn on X(n) with πn(σ) ∝ w(σ). Furthermore,

we can also define a distribution πk over X(k) for each nonnegative integer k < n via the

following process: sample σ from πn, and select a uniformly random subset of size k. For

τ ∈ X(k), the weight function w induces the weights for the simplicial subcomplex Xτ by

wτ (ξ) = w(τ ∪ ξ) for each ξ ∈ Xτ (n−k). The distribution πτ,j is also defined accordingly

for each nonnegative integer j ≤ n− k.

As noticed in [4], there is a natural way to represent every distribution µ over [q]V with

|V | = n as a pure n-dimensional weighted simplicial complex (X = XΩ, µ), which is

defined as follows. The ground set of X consists of pairs

Ṽ = {(v, i) : v ∈ V, i ∈ Ωv}.

The maximal faces of X consist of collections of n pairs forming a valid configuration

σ ∈ Ω; i.e., every configuration σ ∈ Ω corresponds to a maximal face {(v, σv) : v ∈ V }.

The rest of X is generated by taking downwards closure so that X is pure by construction.

Namely, every U ⊆ V and τ ∈ ΩU corresponds to a face {(v, τv) : v ∈ U}; we shall

denote it by (U, τ) for simplicity. Note that the faces of intermediate dimension can be

thought of as partial configurations. Now, if there is a weight function w : Ω → R>0
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associated with µ such that µ(σ) ∝ w(σ) for each σ ∈ Ω, then it also gives a weight

functionw : X(n)→ R>0 by the one-to-one correspondence between Ω and X(n), and thus

induces the associated distribution πn on X(n). Observe that πn is exactly the distribution µ.

Moreover, for each k < n, the distribution πk on X(k) is given by

πk(U, τ) =
1(
n
k

) µ(σU = τ)

for every U ⊆ V and τ ∈ ΩU .

For simplicial complexes, the global down-up and up-down walks between faces of

distinct dimensions have attracted a lot of attention in recent years [80, 49, 82, 108, 5,

47, 1]. For integers 0 ≤ r < s ≤ n, define the order-(s, r) (global) down-up walk

with transition matrix denoted by P∨s,r to be the following random walk over X(s): in

each step we remove s − r elements, chosen uniformly at random, from the current face

σt ∈ X(s) to obtain a face τt ∈ X(r), and then pick ξt+1 ∈ Xτt(s− r) from the distribution

πτt,s−r and set σt+1 = τt ∪ ξt+1. The stationary distribution of P∨s,r is πs. In particular,

observe that the Glauber dynamics for a distribution µ over [q]V is the same as the order-

(n, n− 1) down-up walk for the weighted simplicial complex (X, µ). Similarly, the order-

(r, s) (global) up-down walk with transition matrix P∧r,s is a random walk over X(r) with

stationary distribution πr: given the current face τt ∈ X(r), sample ξt+1 ∈ Xτt(s− r) from

πτt,s−r, set σt+1 = τt ∪ ξt+1, and finally remove s − r elements from σt+1 uniformly at

random to obtain τt+1 ∈ X(r).

Definition 2.4.1 (Bounded Marginals). We say a pure n-dimensional weighted simplicial

complex (X, w) is (b0, . . . , bn−1)-marginally bounded if for all 0 ≤ k ≤ n − 1, every

τ ∈ X(k), and every i ∈ Xτ (1), we have

πτ,1(i) ≥ bk.

Claim 2.4.2. If a distribution µ over [q]V is b-marginally bounded, then the weighted sim-
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plicial complex (X, µ) is (b0, . . . , bn−1)-marginally bounded with bk = b
n−k for each k.

The proof of Claim 2.4.2 can be found in Section 3.4.1.

The global walks in simplicial complexes can be studied by decomposition into local

walks which we define now. For every 0 ≤ k ≤ n − 2 and every face τ ∈ X(k), the

local walk at τ with transition matrix Pτ is the following random walk over Xτ (1): given

the current element i ∈ Xτ (1), the next element is generated from the distribution πτ∪{i},1.

One can relate mixing properties of the local walks to the mixing properties of the global

walks; see [82, 5, 47, 1]. In nearly all prior works, such a relation was quantified using

the spectral gap of the walks. Like in [47], while our ultimate goal is to show the modified

log-Sobolev inequality of the global walks, we will still need the notion of local spectral

expansion for local walks. Let us now capture this idea using the following definition,

taking after [80, 49, 108, 82, 1, 81].

Definition 2.4.3 (Local Spectral Expansion [1]). We say a pure n-dimensional weighted

simplicial complex (X, w) is a (ζ0, . . . , ζn−2)-local spectral expander if for every 0 ≤ k ≤

n− 2 and every τ ∈ X(k), we have

λ2(Pτ ) ≤ ζk.

Claim 2.4.4. If a distribution µ over [q]V is η-spectrally independent, then the weighted

simplicial complex (X, µ) is a (ζ0, . . . , ζn−2)-local spectral expander with ζk = η
n−k−1

for

each k.

Proof. This is Theorem 8 from [43].

2.5 Complex Analysis

2.5.1 Stability

For n sets Γ1, . . . ,Γn, let
∏n

`=1 Γ` = Γ1 × · · · × Γn denote the Cartesian product of them.
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Definition 2.5.1 (Stability). For an integer n ≥ 1 and K ⊆ Cn, we say a multivariate

polynomial P ∈ C[z1, . . . , zn] isK-stable if P (z1, . . . , zn) 6= 0 whenever (z1, . . . , zn) ∈ K.

In particular, if K =
∏n

`=1 Γ for some Γ ⊆ C, then we simply say P is Γ-stable.

Theorem 2.5.2 (Hurwitz’ Theorem). Let n ≥ 1 be an integer and K ⊆ Cn be an open

connected set. Suppose that {fm}∞m=1 is a sequence of non-vanishing analytic functions on

K that converges to f uniformly on compact subsets of K. Then f is either non-vanishing

on K or else identically zero.

2.5.2 Complex Plane

We refer to subsets of the complex plane as regions. Let Γ ⊆ C be a region. Denote the

complement of Γ by Γc = C \ Γ, its interior by Γo, its closure by Γ, and its boundary by

∂Γ. We say Γ is unbounded if for any M ∈ R+ there exists z ∈ Γ such that |z| > M ;

otherwise it is called bounded. For z ∈ C let dist(z,Γ) = infw∈Γ |w − z| be the distance

from z to Γ on the complex plane.

For a region Γ ⊆ C and z ∈ C, we define Γ + z = {w + z : w ∈ Γ}, zΓ =

{zw : w ∈ Γ}, and Γ−1 = (Γ \ {0})−1 = {w−1 : w ∈ Γ \ {0}}. For Γ1,Γ2 ⊆ C, let

Γ1 · Γ2 = {zw : z ∈ Γ1, w ∈ Γ2} denote their Minkowski product; in particular, for Γ ⊆ C

let Γ2 = Γ·Γ = {zw : z, w ∈ Γ} (note that we write
∏2

`=1 Γ = Γ×Γ = {(z, w) : z, w ∈ Γ}

for the Cartesian product).

For z ∈ C and r ∈ R+, let D(z, r) = {w ∈ C : |w − z| < r} denote the open disk

centered at z with radius r, and let D(z, r) = {w ∈ C : |w − z| ≤ r} denote the closed

disk. For ε ∈ R+, let Hε = {x + iy : x < −ε} and Hε = {x + iy : x ≤ −ε} be open and

closed half-planes.

Let Γ ⊆ C be a non-empty open region on the complex plane. We say w, z ∈ Γ are

(path-)connected in Γ if there exists a continuous map γ : [0, 1] → Γ such that γ(0) = w

and γ(1) = z. Observe that connectivity in Γ is an equivalence relation, and we call

each equivalence class a (path-)connected component of Γ. The region Γ is said to be
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(path-)connected if every two points from Γ are connected in Γ; namely, Γ has a unique

connected component which is itself. If Γ is open then every connected component of Γ is

also open.

A non-empty open connected region Γ ⊆ C is called simply connected if its comple-

ment in the Riemann sphere (C ∪ ∞) is also connected. A Jordan curve (simple closed

curve) is a continuous map γ : [0, 1] → C such that γ(0) = γ(1) and the restriction of γ

to [0, 1) is injective. The Jordan curve theorem states that for a Jordan curve γ, the com-

plement of its image on the complex plane consists of exactly two open connected compo-

nents; one of these components is bounded called the interior and the other is unbounded

called the exterior. A non-empty open connected region Γ ⊆ C is simply connected if and

only if for every Jordan curve γ whose image is contained in Γ, the interior of γ is also

contained in Γ.

2.5.3 Useful Theorems

Throughout this thesis, we select the principal branch for the complex functions z 7→ log z

and z 7→ z1/d.

Theorem 2.5.3 (Schwarz-Pick Theorem). Let f : D(0, 1) → D(0, 1) be a holomorphic

function. Then

|f ′(0)| ≤ 1− |f(0)|2 ≤ 1.

For open regions Γ1,Γ2 ⊆ C, a function f : Γ1 → Γ2 is said to be biholomorphic if f

is a bijective holomorphic function whose inverse is also holomorphic.

Theorem 2.5.4 (Riemann Mapping Theorem). Let Γ ⊆ C be a non-empty open simply

connected region that is not C. Then for any z ∈ Γ there exists a unique biholomorphic

mapping f : Γ→ D(0, 1) such that

f(z) = 0 and f ′(z) ∈ R+.
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Theorem 2.5.5 (Koebe’s One-Quarter Theorem). Let Γ ⊆ C and let f : D(0, 1) → Γ be

an injective holomorphic function. Then

D
(
f(0),

1

4
|f ′(0)|

)
⊆ Γ.

Theorem 2.5.6 (Multivariate Open Mapping Theorem, [84, Theorem 1.8.1]). Let n ≥ 1 be

an integer and let K ⊆ Cn be a non-empty open connected subset of Cn. Let f : K → C

be a non-constant holomorphic function. Then the image of f is an open connected region.
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CHAPTER 3

OPTIMAL MIXING OF GLAUBER DYNAMICS VIA SPECTRAL

INDEPENDENCE

In this chapter, we show that for a spin system defined on a bounded-degree graph with

constant marginal bounds, spectral independence implies asymptotically optimal mixing

time of the Glauber dynamics. This chapter is based on [45].

3.1 Main Result: Optimal Mixing of Glauber Dynamics

Our main result in this chapter is a general statement regarding the Glauber dynamics for

an arbitrary spin system satisfying marginal bounds and spectral independence. We show

that if the Gibbs distribution on a bounded-degree graph is both marginally bounded and

spectrally independent, then the Glauber dynamics satisfies the modified log-Sobolev in-

equality with constant Ω(1/n) and mixes in O(n log n) steps, where n is the number of

vertices of the graph. Note that the mixing time of the Glauber dynamics is Ω(n log n) for

a family of bounded-degree graphs [71].

Theorem 1.2.1. Let ∆ ≥ 3 be an integer and b, η > 0 be reals. Suppose that G = (V,E)

is an n-vertex graph of maximum degree at most ∆ and µ is a totally-connected Gibbs

distribution of some spin system on G. If µ is both b-marginally bounded and η-spectrally

independent, then the Glauber dynamics for sampling from µ satisfies the modified log-

Sobolev inequality with constant 1
C1n

where

C1 =

(
∆

b

)O( ηb+1)
.
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Furthermore, the mixing time of the Glauber dynamics satisfies

Tmix(PGL, ε) =

(
∆

b

)O( ηb+1)
×O

(
n log

(n
ε

))
.

Previous results [4, 44, 43, 55] could obtain poly(∆) × nO(η) mixing but without the

assumption of marginal boundedness. In the setting of spin systems, we always have b-

marginal boundedness with b depending only on the parameters A, h of the spin system

and the maximum degree ∆ of the graph, and so our results supersede those of [4, 44, 43,

55] in the bounded degree regime.

This chapter is organized as follows. In Section 3.2 we outline our proof approach, em-

phasizing the relations between approximate tensorization and uniform block factorization

of entropy, and how spectral independence implies these notions. In Section 3.3, we show

how to reduce approximate tensorization to uniform block factorization with linear-sized

blocks. Finally, Section 3.4 includes the proof of uniform block factorization of entropy as-

suming spectral independence in the more general framework of pure weighted simplicial

complexes and deduce global entropy contraction from local spectral expansion.

3.2 Proof Outline

In this section, we outline our proofs of Theorem 1.2.1.

3.2.1 Approximate Tensorization and Factorization of Entropy

One way of establishing rapid mixing of the Glauber dynamics is to show that the Gibbs

distribution satisfies the approximate tensorization of entropy. This approach has been

(implicitly) used in many literature to establish the log-Sobolev inequalities, from which

one can deduce an optimal bound on the mixing time. Before giving the formal definition,

we first review some standard definitions.

In many cases, especially on the integer lattice Zd, log-Sobolev inequalities for the
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Glauber dynamics are established through the approximate tensorization of entropy, which

is more intuitive and easier to handle; e.g., see [98, 65, 41, 37]. Despite the success on

Zd, there is not much study for spin systems on bounded-degree graphs. The works of [36,

101] considered approximate tensorization for general discrete product spaces, and gave

sufficient conditions to derive it; however, for spin systems these results do not cover the

whole uniqueness region.

One can regard approximate tensorization of entropy as factorizing entropy into all

single vertices. Motivated by tools from high dimensional simplicial complexes [1, 4] and

study on general block factorization of entropy [37] (see Definition 2.3.3), we consider in

this thesis a more general notion of entropy factorization, where the entropy is factorized

into subsets of vertices of a fixed size. The formal definition is given as follows.

Definition 3.2.1 (Uniform Block Factorization). We say that a distribution µ over [q]V

satisfies the `-uniform block factorization of entropy (with constant C) if for all f : Ω →

R≥0 we have
`

n
Ent(f) ≤ C · 1(

n
`

) ∑
S∈(V` )

µ[EntS(f)]. (3.1)

We remark that uniform block factorization of entropy is a special case of block factor-

ization given by equation (1.3) in [37]; there, the entropy factorizes into arbitrary blocks

with arbitrary weights. Also observe that 1-uniform block factorization is the same as

approximate tensorization of entropy. Just as the approximate tensorization corresponds to

the single-site Glauber dynamics, the `-uniform block factorization corresponds to the heat-

bath block dynamics where in each step a subset of vertices of size ` is chosen uniformly

at random and gets updated. Moreover, similar results as in Fact 2.3.2 can be deduced for

this block dynamics.

Our first key result is a reduction from approximate tensorization to uniform block fac-

torization. For b-marginally bounded Gibbs distributions on graphs with maximum degree

≤ ∆, we show that approximate tensorization is implied by `-uniform block factorization
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for ` = dθne and an appropriate constant θ depending on b and ∆. This is given by the

following lemma.

Theorem 3.2.2. Let ∆ ≥ 3 be an integer and b > 0 be a real. Consider the Gibbs

distribution µ on an n-vertex graph G of maximum degree at most ∆ and assume that µ

is b-marginally bounded. Suppose there exist positive reals θ ≤ b2

12∆
and C such that µ

satisfies the dθne-uniform block factorization of entropy with constant C. Then µ satisfies

the approximate tensorization of entropy with constant

C1 =
18 log(1/b)

b4
C.

To see the intuition behind Theorem 3.2.2, we consider the dθne-uniform block dynam-

ics which in each step simultaneously updates dθne distinct vertices chosen uniformly at

random conditioned on the configuration of unpicked vertices. Since the graph is sparse

(maximum degree ∆), when θ � 1/∆ the chosen vertices will, with high probability,

form many connected components, each of which has constant size in expectation. A key

property of spin systems is that given the configuration outside the chosen vertices, the con-

ditional Gibbs distribution is a product over all components. Hence, it suffices to consider

approximate tensorization for each component which is of constant size in expectation. The

proof of Theorem 3.2.2 is given in Section 3.3.

Remark 3.2.3. The notion of approximate tensorization and uniform block factorization

with respect to variance is also meaningful. In fact, for variance these definitions are equiv-

alent to bounding the spectral gap of the corresponding chains. Moreover, Theorem 3.2.2

holds for variance as well, which can already provide a tight bound on the spectral gap of

the Glauber dynamics combining results from [4, 44, 43, 55]. See [45] for details.
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3.2.2 Simplicial Complexes and Entropy Contraction

Our next goal is to establish `-uniform block factorization of entropy for ` = Θ(n), which

relies on the spectral independence property. The following lemma holds for all distribu-

tions over [q]V , not only Gibbs distributions.

Theorem 3.2.4. Let b, η > 0 be reals. Then for every real θ ∈ (0, 1) and every integer

n ≥ 2
θ
(4η
b2

+ 1) the following holds.

Let V be a set of size n and µ be a distribution over [q]V . If µ is both b-marginally

bounded and η-spectrally independent, then µ satisfies dθne-uniform block factorization of

entropy with constant

C =

(
2

θ

) 4η

b2
+1

.

The recent work [4] studied spin systems, and more generally any distribution over [q]V ,

in a novel way by viewing full and partial configurations as a high dimensional simplicial

complex and utilizing tools such as high-dimensional expansion. Subsequent works [44,

43, 55] follow the same path as well. In this chapter we also study spin systems in the

framework of simplicial complexes.

Recall that there is a natural correspondence between a distribution µ over [q]V and

the weighted simplicial complex (X, µ). For general weighted simplicial complexes, one

property studied in [47] is how the entropy of a function defined on faces contracts when

it projects down from higher dimensions to lower. This can be captured by the definition

below. For a pure n-dimensional weighted simplicial complex (X, w) and a nonnegative

integer k < n, let P ↑k denote the |X(k)| × |X(k + 1)| dimensional transition matrix cor-

responding to adding a random element i /∈ τ to some τ ∈ X(k) where i is distributed

as πτ,1. Also for any 0 ≤ r < s ≤ n and any function f (s) : X(s) → R≥0, define

f (r) : X(r)→ R≥0 by f (r) = P ↑r · · ·P
↑
s−1f

(s).

Definition 3.2.5 (Global Entropy Contraction). We say a pure n-dimensional weighted

simplicial complex (X, w) satisfies the order-(r, s) global entropy contraction with rate
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κ = κ(r, s) if for all f (s) : X(s)→ R≥0 we have

Entπr(f
(r)) ≤ (1− κ) Entπs(f

(s)).

It turns out, as a remarkable fact, that uniform block factorization of entropy for a dis-

tribution µ over [q]V is equivalent to global entropy contraction for the weighted simplicial

complex (X, µ).

Lemma 3.2.6. A distribution µ over [q]V satisfies the `-uniform block factorization of en-

tropy with some constant C if and only if the corresponding weighted simplicial complex

(X, µ) satisfies order-(n− `, n) global entropy contraction with rate κ, where Cκ = `/n.

The proof of Lemma 3.2.6 can be found in Section 3.4.1. As a consequence, to prove

Theorem 3.2.4, it suffices to establish global entropy contraction for the weighted simplicial

complex (X, µ).

Just like approximate tensorization and uniform block factorization having many im-

plications for the corresponding single-site and block dynamics (e.g., see Fact 2.3.2), the

notion of global entropy contraction can provide for weighted simplicial complexes mean-

ingful bounds on the spectral gap, modified log-Sobolev constant, relative entropy decay

rate, mixing time, and concentration bounds; see Fact 3.4.2 for details. In Lemma 11

of [47], the authors established order-(r, s) global entropy contraction with rate κ = s−r
s

for simplicial complexes with respect to homogeneous strongly log-concave distributions.

From this, they deduced the modified log-Sobolev inequality for the down-up and up-down

walks and showed rapid mixing of it.

We then show that for an arbitrary weighted simplicial complex (X, w), one can deduce

global entropy contraction from local spectral expansion whenever the marginals of the

induced distributions are nicely bounded. For this, we prove a local-to-global result for

entropy contraction in the spirit of [1]. If we additionally know that the marginals are nicely

bounded, we can further reduce the local entropy contraction to local spectral expansion.

39



Lemma 3.2.7. Let (X, w) be a pure n-dimensional weighted simplicial complex. Suppose

that (X, w) is (b0, . . . , bn−1)-marginally bounded and has (ζ0, . . . , ζn−2)-local spectral ex-

pansion. Then for all 0 ≤ r < s ≤ n, (X, w) satisfies order-(r, s) global entropy contrac-

tion with rate κ = κ(r, s) given as in Theorem 3.2.9 below.

We remark that Lemma 3.2.7 recovers Lemma 11 of [47] for simplicial complexes

corresponding to discrete log-concave distributions, since there one has ζk = 0 for all k as

shown in [5].

We present next the proof of Theorem 3.2.4, which follows directly from Lemmas 3.2.6

and 3.2.7.

Proof of Theorem 3.2.4. From Claims 2.4.2 and 2.4.4 we know that the weighted simplicial

complex (X, µ) corresponding to µ is (b0, . . . , bn−1)-marginally bounded with bk = b
n−k

and has (ζ0, . . . , ζn−2)-local spectral expansion with ζk = η
n−k−1

. Then, Lemma 3.2.7

implies that (X, µ) satisfies order-(n − `, n) global entropy contraction for ` = dθne with

rate

κ =

∑n−1
k=n−` Γk∑n−1
k=0 Γk

where Γ0 = 1, Γk =
∏k−1

j=0 αj , and αk = max
{

1− 4η
b2(n−k−1)

, 1−η/(n−k−1)
4+2 log((n−k)(n−k−1)/(2b2))

}
.

Define an integer R =
⌈

4η
b2

⌉
and observe that n ≥ ` ≥ θn ≥ 2R by our assumption. Thus,

we have

αk ≥ α̂k := max

{
1− R

n− k − 1
, 0

}
.

Notice that κ, when viewed as a function of αk’s, is monotone increasing with each αk.

Thus, to lower bound κ, we can plug in the lower bounds α̂k’s and get

κ ≥
∑n−1

k=n−` Γ̂k∑n−1
k=0 Γ̂k

where Γ̂0 = 1 and Γ̂k =
∏k−1

j=0 α̂j for each k ≥ 1. We will show that for every 0 ≤ k ≤ n−1
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one actually has

Γ̂k =
(n− k − 1)(n− k − 2) · · · (n− k −R)

(n− 1)(n− 2) · · · (n−R)
. (3.2)

For k = 0 we have Γ̂0 = 1 and Eq. (3.2) holds. For 1 ≤ j ≤ n−R− 2 we have

α̂j = max

{
n− j − 1−R
n− j − 1

, 0

}
=
n− j − 1−R
n− j − 1

and thus for 1 ≤ k ≤ n−R− 1

Γ̂k =
k−1∏
j=0

n− j − 1−R
n− j − 1

=
(n− k − 1)(n− k − 2) · · · (n− k −R)

(n− 1)(n− 2) · · · (n−R)
.

Finally, since α̂j = 0 when n−R−1 ≤ j ≤ n−2, we have Γ̂k = 0 for n−R ≤ k ≤ n−1.

Therefore, Eq. (3.2) is true for all k. It then follows that

κ ≥
∑n−1

k=n−`(n− k − 1)(n− k − 2) · · · (n− k −R)∑n−1
k=0(n− k − 1)(n− k − 2) · · · (n− k −R)

=

∑`−1
j=0 j(j − 1) · · · (j −R + 1)∑n−1
j=0 j(j − 1) · · · (j −R + 1)

.

The following is a standard equality which can be proved by induction:

N−1∑
j=0

j(j − 1) · · · (j −R + 1) =
1

R + 1
N(N − 1) · · · (N −R).

Hence, we obtain

κ ≥ `(`− 1) · · · (`−R)

n(n− 1) · · · (n−R)
.

Finally, we deduce from Lemma 3.2.6 that

C ≤ `

n
· 1

κ
≤ (n− 1) · · · (n−R)

(`− 1) · · · (`−R)
≤
(
n−R
`−R

)R
≤
(

2n

`

)R
≤
(

2

θ

) 4η

b2
+1
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where we use our assumption ` ≥ θn ≥ 2R.

3.2.3 Wrapping up: Proof of Main Theorem 1.2.1

Combining Theorems 3.2.2 and 3.2.4, we establish approximate tensorization of entropy

with a constant independent of n, when the Gibbs distribution is marginally bounded and

spectrally independent. This is stated in the following theorem.

Theorem 3.2.8. Let ∆ ≥ 3 be an integer and b, η > 0 be reals. Suppose that G = (V,E)

is an n-vertex graph of maximum degree at most ∆ and µ is a totally-connected Gibbs

distribution of some spin system on G. If µ is both b-marginally bounded and η-spectrally

independent and n ≥ 24∆
b2

(4η
b2

+1), then µ satisfies the approximate tensorization of entropy

with constant

C1 =
18 log(1/b)

b4

(
24∆

b2

) 4η

b2
+1

.

Theorem 1.2.1 then follows immediately from Theorem 3.2.8 and Fact 2.3.2.

Proof of Theorem 1.2.1. Follows from Theorem 3.2.8 and Fact 2.3.2.

3.2.4 Mixing Results for Simplicial Complexes

By Lemma 3.2.7, we obtain new bounds on the mixing time and modified log-Sobolev

constant of the global down-up and up-down walks for arbitrary pure weighted simplicial

complexes.

We establish the modified log-Sobolev inequality and give meaningful bounds on the

mixing time for the down-up and up-down walks for arbitrary weighted simplicial com-

plexes. Our proof utilizes the local-to-global scheme as in [1] and establishes contraction of

entropy extending the result of [47]. Recall that, as we can see from Claims 2.4.2 and 2.4.4,

our requirements of marginal boundedness and spectral independence in Theorem 1.2.1 is

translated from the corresponding conditions needed for simplicial complexes.
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We then show that for any pure weighted simplicial complexes, the modified log-

Sobolev inequality holds for down-up and up-down walks if the marginal probabilities of

the simplicial complex are bounded away from zero and all local walks have good expan-

sion properties. This also bounds the mixing times of these random walks.

Theorem 3.2.9. Let (X, w) be a pure n-dimensional weighted simplicial complex. If (X, w)

is (b0, . . . , bn−1)-marginally bounded and has (ζ0, . . . , ζn−2)-local spectral expansion, then

for every 0 ≤ r < s ≤ n, both the order-(s, r) down-up walk and the order-(r, s) up-down

walk satisfy the modified log-Sobolev inequality with constant κ = κ(r, s) defined as

κ =

∑s−1
k=r Γk∑s−1
k=0 Γk

where: Γ0 = 1; for 1 ≤ k ≤ s− 1, Γk =
∏k−1

j=0 αj; and for 0 ≤ k ≤ s− 2,

αk = max

{
1− 4ζk

b2
k(s− k)2

,
1− ζk

4 + 2 log( 1
2bkbk+1

)

}
.

Furthermore, the mixing time of the order-(s, r) down-up walk is bounded by

Tmix(P∨s,r, ε) ≤
⌈

1

κ

(
log log

1

π∗s
+ log

1

2ε2

)⌉
(3.3)

where π∗s = minσ∈X(s) πs(σ). The mixing time of the order-(r, s) up-down walk is also

bounded by Eq. (3.3) with π∗s replaced by π∗r .

Theorem 3.2.9 follows immediately from Lemma 3.2.7 and Fact 3.4.2.

Theorem 3.2.9 generalizes both the result of [47] for simplicial complexes with respect

to strongly log-concave distributions and the result of [1] for the Poincaré inequality (i.e.,

bounding the spectral gap). It in some sense answers a question of [47] on local-to-global

modified log-Sobolev inequalities in high-dimensional expanders, at least in the bounded

marginals setting.
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Even though Theorem 3.2.9 can give a bound on the mixing time of the Glauber dynam-

ics, which is the order-(n, n − 1) down-up walk in the corresponding weighted simplicial

complex, our main result Theorem 1.2.1 does not follow directly from Theorem 3.2.9. In

fact, we will only consider the order-(n, n − `) down-up walk for ` = Θ(n), which cor-

responds to the heat-bath block dynamics that updates a uniformly random subset of `

vertices in every step. One of our main technical contributions is to compare this block

dynamics with the single-site Glauber dynamics; this is showed in Section 3.2.1. Never-

theless, we find Theorem 3.2.9 interesting of its own and possible for future applications in

other problems.

3.3 Approximate Tensorization via Uniform Block Factorization

In this section we prove Theorem 3.2.2 by showing approximate tensorization given uni-

form block factorization of entropy.

Fix a graph G on n vertices of maximum degree at most ∆, and assume that µ is a

b-marginally bounded Gibbs distribution defined on G satisfying the dθne-uniform block

factorization of entropy with constant C where θ ≤ b2/(4e∆); i.e., for ` = dθne and all

f : Ω→ R≥0 it holds that

`

n
Ent(f) ≤ C · 1(

n
`

) ∑
S∈(V` )

µ[EntS(f)].

We will show that µ also satisfies the approximate tensorization of entropy with constant

Θ(C), which establishes Theorem 3.2.2.

The intuition behind our approach is that for ` as large as θn, if one picks a uniformly

random subset S ⊆ V satisfying |S| = `, then the induced subgraph G[S] of G on vertex

set S is disconnected into many small connected components, each of which has constant

size in expectation and at most O(log n) with high probability. Since the conditional Gibbs

distribution µτS is a product distribution of each connected component, we can use entropy
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factorization for product distributions to reduce approximate tensorization on G to that on

small connected subgraphs of G. This allows us to upper bound the optimal approximate

tensorization constant with a converging series.

Towards fulfilling this intuition, for any S ⊆ V , let C(S) denote the set of connected

components of G[S], with each connected component being viewed as a subset of vertices

of S. Note that C(S) is a partition of S. For any v ∈ S, let Sv denote the (unique) connected

component in C(S) containing v; for v /∈ S, take Sv = ∅. The following is a well-known

fact regarding the factorization of entropy for product measures; see, e.g., [41, 36].

Lemma 3.3.1. For every subset S ⊆ V , every boundary condition τ ∈ ΩV \S , and every

function f : Ωτ
S → R≥0, we have

EntτS(f) ≤
∑

U∈C(S)

µτS[EntU(f)].

Recall that EntU(f) = EntφU(f) is regarded as a function of the boundary condition

φ ∈ Ωτ
S\U on S \ U , and µτS[EntU(f)] is the expectation of it under the conditional Gibbs

measure µτS .

We also need the following crude exponential upper bound on the approximate ten-

sorization constant for a Gibbs distribution with bounded marginals.

Lemma 3.3.2. If µ is b-marginally bounded, then for every subset U ⊆ V , every boundary

condition ξ ∈ ΩV \U , and every function f : Ωξ
U → R≥0, we have

EntξU(f) ≤ 3|U |2 log(1/b)

2b2|U |+2

∑
v∈U

µξU [Entv(f)].

Finally, the lemma below shows that when a uniformly random and sufficiently small

subset of vertices is selected, the size of the connected component containing a given vertex

is small with high probability.
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Lemma 3.3.3. Let G = (V,E) be an n-vertex graph of maximum degree at most ∆. Then

for every k ∈ N+ we have

PS(|Sv| = k) ≤ `

n
· (2e∆θ)k−1,

where the probability P is taken over a uniformly random subset S ⊆ V of size ` = dθne.

Before presenting the proofs of Lemmas 3.3.2 and 3.3.3, we first give the proof of

Theorem 3.2.2.

Proof of Theorem 3.2.2. Combining everything in this section, we deduce that

Ent(f) ≤ C · n
`
· 1(

n
`

) ∑
S∈(V` )

µ[EntS(f)] (`-uniform block factorization)

≤ C · n
`
· 1(

n
`

) ∑
S∈(V` )

∑
U∈C(S)

µ[EntU(f)] (Lemma 3.3.1)

≤ C · n
`
· 1(

n
`

) ∑
S∈(V` )

∑
U∈C(S)

3|U |2 log(1/b)

2b2|U |+2

∑
v∈U

µ[Entv(f)] (Lemma 3.3.2)

=
3C log(1/b)

2b4
· n
`

∑
v∈V

µ[Entv(f)]
∑̀
k=1

PS(|Sv| = k) · k2

b2(k−1)
(rearranging)

≤ 3C log(1/b)

2b4

∑
v∈V

µ[Entv(f)]
∑̀
k=1

k2

(
2e∆θ

b2

)k−1

(Lemma 3.3.3)

≤ 3C log(1/b)

2b4

∑̀
k=1

k2

2k−1

∑
v∈V

µ[Entv(f)] (θ ≤ b2

12∆
)

≤ 18C log(1/b)

b4

∑
v∈V

µ[Entv(f)]. (
∑∞

k=1
k2

2k−1 = 12)

This establishes the lemma.

We next prove Lemma 3.3.2 which gives a crude bound on the approximate tensoriza-

tion constant for any subset and boundary condition.

Proof of Lemma 3.3.2. Fix a subset U ⊆ V of size k ≥ 1 and some boundary condition

46



ξ ∈ ΩV \U . Let C1 = C1(U, ξ) be the optimal constant of approximate tensorization for µξU ;

hence, for every function f : Ωξ
U → R≥0 one has

EntξU(f) ≤ C1

∑
v∈U

µξU [Entv(f)].

Let λ = λ(U, ξ) be the spectral gap of the Glauber dynamics for µξU , and let ρ = ρ(U, ξ) be

the standard log-Sobolev constant. Thus, for every function f : Ωξ
U → R≥0 it holds that

λVarξU(f) ≤ 1

k

∑
v∈U

µξU [Varv(f)];

ρEntξU(f) ≤ 1

k

∑
v∈U

µξU [Varv(
√
f)].

Since Varv(
√
f) ≤ Entv(f), we have

C1 ≤
1

ρk
; (3.4)

see also [36, Proposition 1.1]. Next, [48, Corollary A.4] gives a comparison between the

standard log-Sobolev constant and the spectral gap:

ρ ≥ (1− 2µ∗)

log(1/µ∗ − 1)
λ

where µ∗ = minσ∈ΩξU
µξU(σ). Since µ is b-marginally bounded, we have µ∗ ≥ bk. Also,

notice that |Ωξ
U | = 1 and |Ωξ

U | = 2 corresponds to trivial cases where we have C1 ≤ 1, so

we may assume that |Ωξ
U | ≥ 3 which makes µ∗ ≤ 1/3. It follows that

ρ ≥ λ

3k log(1/b)
. (3.5)

Finally, Cheeger’s inequality yields

λ ≥ Φ2

2
(3.6)
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where Φ is the conductance of the Glauber dynamics defined by

Φ = min
Ω0⊆ΩξU

µξU (Ω0)≤ 1
2

ΦΩ0 , ΦΩ0 =
PGL(Ω0,Ω

ξ
U \ Ω0)

µξU(Ω0)
=

1

µξU(Ω0)

∑
σ∈Ω0

∑
τ∈ΩξU\Ω0

µξU(σ)PGL(σ, τ).

Our assumption that µ is totally-connected guarantees ΦΩ0 > 0 for every Ω0 ⊆ Ωξ
U with

µξU(Ω0) ≤ 1
2
. Furthermore, since µ is b-marginally bounded, for every σ ∈ Ω0 and τ ∈

Ωξ
U \ Ω0 such that PGL(σ, τ) > 0 we have

µξU(σ)PGL(σ, τ) ≥ bk · b
k

=
bk+1

k
.

This gives

Φ ≥ 2bk+1

k
. (3.7)

Combining Eqs. (3.4) to (3.7), we finally conclude that

C1 ≤
3k2 log(1/b)

2b2k+2
,

as claimed.

Finally, we establish Lemma 3.3.3. We use the following lemma concerning the number

of connected induced subgraphs in a bounded degree graph.

Lemma 3.3.4 ([28, Lemma 2.1]). Let G = (V,E) be a graph with maximum degree at

most ∆, and v ∈ V . Then for every k ∈ N+, the number of connected induced subgraphs

of G containing v with k vertices is at most (e∆)k−1.

We then prove Lemma 3.3.3.

Proof of Lemma 3.3.3. If Av(k) denotes the collection of subsets of vertices U ⊆ V such
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that |U | = k, v ∈ U , and G[U ] is connected, then by the union bound, we have

PS(|Sv| = k) ≤ PS(∃U ∈ Av(k) : U ⊆ S)

≤
∑

U∈Av(k)

PS(U ⊆ S)

= |Av(k)| · `
n
· `− 1

n− 1
· · · `− k + 1

n− k + 1

≤ |Av(k)| · `
n
·
(
`− 1

n− 1

)k−1

.

We may assume that n ≥ 2 (when n = 1 the lemma holds trivially), and thus

`− 1

n− 1
≤ θn

n− 1
≤ 2θ.

The lemma then follows immediately from |Av(k)| ≤ (e∆)k−1 by Lemma 3.3.4.

3.4 Uniform Block Factorization via Spectral Independence

In this section, we establish uniform block factorization of entropy in the framework of pure

weighted simplicial complexes. We show that spectral independence, along with suitable

marginal bounds, implies uniform block factorization and thus prove Lemma 3.2.7.

We prove Lemma 3.2.7 by establishing global entropy contraction when the simplicial

complex is a local spectral expander. We give preliminaries in Section 3.4.1 for simplicial

complexes. In Section 3.4.2 we present a very general local-to-global scheme for entropy

contraction. Finally, in Section 3.4.3 we reduce local entropy contraction to local spectral

expansion.

3.4.1 Preliminaries for Simplicial Complexes

Following the definitions and notations from Section 2.4, here we give a few more defi-

nitions, examples, and references, emphasizing on the global and local walks in weighted
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simplicial complexes. The proofs of Claim 2.4.2 and Lemma 3.2.6 are included in Sec-

tion 3.4.1.

Consider a pure n-dimensional weighted simplicial complex (X, w). We say X is n-

partite if the ground set U of X admits a partition U = U1∪ · · ·∪Un such that every face of

X has at most one element from each part U1, . . . ,Un. For a distribution µ over [q]V where

|V | = n, the corresponding weighted simplicial complex (X, µ) is n-partite.

Global Walks

For 0 ≤ k ≤ n, the distribution πk on X(k) is given by for every τ ∈ X(k),

πk(τ) =
1(
n
k

) ∑
σ∈X(n):σ⊇τ

πn(σ)

Moreover, we have the following equality:

πk(τ) =
1

k + 1

∑
σ∈X(k+1):σ⊇τ

πk+1(σ).

We may define simple random walks on X(k) for sampling from the distributions πk given

by “down-up” and “up-down” motions in X. These walks were first introduced in [80], and

further studied in [49, 82] in the context of high-dimensional expanders. Recent works [5,

47, 4, 1, 44, 55, 43] have leveraged these walks to study mixing times of Markov chains.

For each 0 ≤ k ≤ n − 1, define the order-k (global) up operator P ↑k ∈ RX(k)×X(k+1)

and the order-(k + 1) (global) down operator P ↓k+1 ∈ RX(k+1)×X(k) as the row stochastic

matrices with the following entries:

P ↑k (τ, σ) =


πk+1(σ)

(k+1)πk(τ)
, if τ ⊆ σ

0, o.w.
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P ↓k+1(σ, τ) =


1

k+1
, if τ ⊆ σ

0, o.w.

In words, the action of P ↑k can be described as starting with τ ∈ X(k) and adding a random

element i /∈ τ according to the conditional distribution πτ,1(i) = πk+1(τ∪{i})
(k+1)πk(τ)

. In particular,

we have πkP
↑
k = πk+1. Similarly, the action of P ↓k+1 can be described as starting with

σ ∈ X(k + 1) and removing a uniformly random element, and we have πk+1P
↓
k+1 = πk.

From here, for 0 ≤ j < k ≤ n we may define the order-(j, k) (global) up-down walk

on X(j) as P∧j,k = P ↑j · · ·P
↑
k−1P

↓
k · · ·P

↓
j+1 and the order-(k, j) (global) down-up walk on

X(k) as P∨k,j = P ↓k · · ·P
↓
j+1P

↑
j · · ·P

↑
k−1. The stationary distributions of P∧j,k and P∨k,j are πj

and πk respectively.

For example, for any distribution µ over [q]V , the Glauber dynamics for sampling from

µ is precisely the order-(n, n− 1) down-up walk on the corresponding weighted simplicial

complex (X, µ), and the heat-bath block dynamics which updates a random subset of `

vertices in each step is precisely the order-(n, n− `) down-up walk.

Let 0 < k ≤ n and let f (k) : X(k) → R be an arbitrary function. Then for each

0 ≤ j < k we define the function f (j) : X(j) → R by f (j) = P ↑j · · ·P
↑
k−1f

(k). One can

think of f (j) as the projection of f (k) onto X(j).

Local Walks

One of the beautiful properties of simplicial complexes is that they facilitate a nice decom-

position of the global walks into local walks. Recall that for every face τ ∈ X(k) there is a

(n − k)-dimensional weighted simplicial subcomplex (Xτ , wτ ) where Xτ = {ξ ⊆ U \ τ :

τ ∪ ξ ∈ X} and wτ (ξ) = w(τ ∪ ξ) for each ξ ∈ Xτ . The subcomplex is known as the

link of X with respect to the face τ . The induced distribution πτ,n−k over Xτ (n − k) can

be thought of as the distribution of a face σ obtained from πn conditioned on the event that

τ ⊆ σ.
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Again, consider as an example the weighted simplicial complex (X, µ) with respect to

a distribution µ over [q]V . For every U ⊆ V of size k and every τ ∈ ΩU , one can check

that the distribution π(U,τ),n−k over maximal faces of the link (X(U,τ), w(U,τ)) is exactly the

conditional distribution µτV \U over configurations on V \ U .

With the notion of link, we may now define the local walks rigorously. For each 0 ≤

k ≤ n − 2 and τ ∈ X(k), we define the local walk at τ as Pτ = 2P∧τ,1,2 − I where

P∧τ,1,2 = P ↑τ,1P
↓
τ,2 is the order-(1, 2) up-down walk on the link (Xτ , wτ ). More specifically,

for i, j ∈ Xτ (1), we have

Pτ (i, j) =


πτ∪{i},1(j) = πτ,2({i,j})

2πτ,1(i)
, if {i, j} ∈ Xτ (2)

0, o.w.

Note that the stationary distribution of Pτ is πτ,1. One way to think of Pτ is being the

random walk matrix corresponding to the following weighted graph: take the vertices of

the weighted graph to be the elements of Xτ (1), and take the edges to be the vertex-pairs

in Xτ (2), with weights given by πτ,2.

We can establish mixing properties of global walks by decomposing them into local

walks, which are usually easier to study; we refer the readers to [82, 5, 47, 1] for more

details.

Let 0 < k ≤ n and let f : X(k) → R be an arbitrary function. Then for every

0 ≤ j < k and every τ ∈ X(j), we define the function f
(k−j)
τ : Xτ (k − j) → R by

f
(k−j)
τ (ξ) = f (k)(τ ∪ ξ) for each ξ ∈ Xτ (k − j). One can think of f (k−j)

τ as the restriction

of f (k) to the link Xτ (k − j).

Finally, we mention that the notion of global and local walks has a similar flavor as the

restriction-projection framework used in [97, 95, 78] for decomposition of general Markov

chains. For instance, the analog of the “restriction chains” in the setting of simplicial

complexes are the Glauber dynamics of the conditional distributions. However, we note
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that these analogous “restriction chains” significantly overlap, in contrast to the partitioning

condition in [97, 95, 78].

Proofs of Claim 2.4.2 and Lemma 3.2.6

We present here the proofs of Claim 2.4.2 and Lemma 3.2.6.

Proof of Claim 2.4.2. For all 0 ≤ k ≤ n − 1, every τ ∈ X(k), and every i ∈ Xτ (1), we

have

πτ,1(i) =
πk+1(τ ∪ {i})∑

j∈Xτ (1) πk+1(τ ∪ {j})
=
πk+1(τ ∪ {i})
(k + 1)πk(τ)

.

Now, consider the weighted simplicial complex (X, µ) corresponding to a distribution µ

over [q]V . Every face in X(k) is in the form (U, τ) where U ⊆ V , |U | = k, and τ ∈ ΩU ,

and every element i ∈ Xτ (1) is in the form (v, i) for some v ∈ V \ U and i ∈ Ωτ
v . Hence,

the equality above implies that

π(U,τ),1

(
(v, i)

)
=
πk+1

(
(U ∪ {v}, τ ∪ {i})

)
(k + 1)πk

(
(U, τ)

)
=

1

( n
k+1)

µ(σU = τ, σv = i)

(k + 1) · 1

(nk)
µ(σU = τ)

=
1

n− k
µ(σv = i | σU = τ)

≥ b

n− k

where the last inequality follows from the marginal boundedness of µ. This shows the

claim.

From the proof we see that π(U,τ),1

(
(v, i)

)
≤ 1

n−k always holds. This in fact is true for

all weighted simplicial complexes.

To prove Lemma 3.2.6, we need the following entropy decomposition result in [47].

Lemma 3.4.1 (Entropy Decomposition in Simplicial Complexes, [47]). Let (X, w) be a

pure n-dimensional weighted simplicial complex, and let 1 ≤ j < k ≤ n. Then the
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following decomposition of entropy holds: for every f (k) : X(k)→ R≥0,

Entπk(f
(k)) = Entπj(f

(j)) +
∑
τ∈X(j)

πj(τ) · Entπτ,k−j(f
(k−j)
τ ).

Proof. Since πk(f
(k)) = πj(f

(j)) and the equality is scale invariant, we may assume

without loss that πk(f (k)) = πj(f
(j)) = 1; hence Entπk(f

(k)) = πk(f
(k) log f (k)) and

Entπj(f
(j)) = πj(f

(j) log f (j)). Using the law of conditional expectation, we have

πk
(
f (k) log f (k)

)
=

∑
τ∈X(j)

πj(τ) · πτ,k−j
(
f (k−j)
τ log f (k−j)

τ

)
=

∑
τ∈X(j)

πj(τ) · πτ,k−j(f (k−j)
τ )︸ ︷︷ ︸

=f (j)(τ)

log πτ,k−j(f
(k−j)
τ )︸ ︷︷ ︸

=f (j)(τ)

+
∑
τ∈X(j)

πj(τ) · Entπτ,k−j(f
(k−j)
τ )

= πj
(
f (j) log f (j)

)
+
∑
τ∈X(j)

πj(τ) · Entπτ,k−j(f
(k−j)
τ )

as claimed.

Proof of Lemma 3.2.6. Since there is a one-to-one correspondence between Ω and X(n),

every function f : Ω → R≥0 for the spin system is equivalent to a function f (n) : X(n) →

R≥0 for the simplicial complex. Moreover, for every 0 ≤ k ≤ n− 1, every U ⊆ V of size

k, and every τ ∈ ΩU , the function fτ : ΩV \U → R≥0 (restriction of f to configurations on

V \ U with U fixed to be τ ) is the same as the function f (n−k)
(U,τ) : X(U,τ)(n − k) → R≥0 for

the link with respect to (U, τ) ∈ X(k). Thus, we can get

1(
n
`

) ∑
S∈(V` )

µ[EntS(f)] =
∑
S∈(V` )

∑
τ∈ΩV \S

1(
n
`

) · µ(σV \S = τ) · EntτS(f)

=
∑

U∈( V
n−`)

∑
τ∈ΩU

1(
n
`

) · µ(σU = τ) · EntτV \U(fτ )

=
∑

(U,τ)∈X(n−`)

πn−`(U, τ) · Entπ(U,τ),`
(f

(`)
(U,τ))
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= Entπn(f (n))− Entπn−`(f
(n−`))

where the last equality follows from Lemma 3.4.1. The lemma then follows.

Implications of Global Entropy Contraction

We summarize here a few corollaries of global entropy contraction for arbitrary weighted

simplicial complexes.

Fact 3.4.2. Let (X, w) be a pure n-dimensional weighted simplicial complex. If (X, w)

satisfies the order-(r, s) global entropy contraction with rate κ, then the order-(s, r) down-

up walk and order-(r, s) up-down walk satisfy all of the following:

(1) The Poincaré inequality holds with constant λ = κ;

(2) The modified log-Sobolev inequality holds with constant ρ0 = κ;

(3) The relative entropy decays with rate α = κ;

(4) The mixing time of the order-(s, r) down-up walk satisfies

Tmix(P∨s,r, ε) ≤
⌈

1

κ

(
log log

1

π∗s
+ log

1

2ε2

)⌉

where π∗s = minσ∈X(s) πs(σ); The same mixing time bound holds for the order-(r, s)

up-down walk as well with π∗s replaced by π∗r .

(5) For every f : X(s)→ R which is c-Lipschitz w.r.t. the shortest path metric induced by

the order-(s, r) down-up walk on X(s), and every a ≥ 0, we have the concentration

inequality

Pr
σ∼πs

[|f(σ)− µ(f)| ≥ a] ≤ 2 exp

(
−κa

2

2c2

)
.

These implications are shown in [47]. We remark that Fact 2.3.2 can also be viewed

as a consequence of Fact 3.4.2 by Lemma 3.2.6. Technically we can also show a stan-
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dard log-Sobolev inequality under the assumption of marginal boundedness, like Item 6 of

Fact 2.3.2. However, the constant is complicated to state in this setting and so we omit it

here.

Proof. Item 1 can be proved by the linearization argument in the proof of [36, Proposition

1.1]. The remaining results are all shown in [47]: Item 3 follows from [47, Corollary 13];

Item 2 follows by Item 3 and [47, Theorem 7]; Item 4 can be deduced from Item 3 and

the direct proof of [47, Corollary 8]; finally, Item 5 follows from Item 2 and [47, Lemma

15].

3.4.2 Local-to-Global Entropy Contraction

As mentioned earlier, one of the beautiful properties of simplicial complexes is that they

admit a local-to-global phenomenon, where mixing of the local walks Pτ imply mixing

for the global walks in a quantitative sense. For instance, ( C
n−1

, C
n−2

, . . . , C)-local spectral

expansion implies Ω(n−(1+C)) spectral gap for the Glauber dynamics [1] (although we note

weaker results of this type were previously known due to [49, 82]). It turns out this local-

to-global spectral result is completely equivalent to the property that local contraction of

variance implies global contraction of variance; see [45] for more discussion. The goal of

this section is to prove an analogous local-to-global result for entropy. First, we formalize

our notion of local entropy contraction.

Definition 3.4.3 (Local Entropy Contraction). We say a pure n-dimensional weighted

simplicial complex (X, w) satisfies (α0, . . . , αn−2)-local entropy contraction if for every

(global) function f (n) : X(n)→ R≥0, every 0 ≤ k ≤ n− 2, and every τ ∈ X(k), we have

Entπτ,2(f (2)
τ ) ≥ (1 + αk) Entπτ,1(f (1)

τ ).

Recall that f (2)
τ (ξ) = f (k+2)(τ ∪ ξ) = (P ↑k+2 · · ·P

↑
n−1f

(n))(τ ∪ ξ) for each ξ ∈ Xτ (2),

and f (1)
τ is defined similarly.
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One might want to replace the conditions in Definition 3.4.3 with “for every 0 ≤ k ≤

n − 2, every τ ∈ X(k), and every (local) function f
(2)
τ : Xτ (2) → R≥0”, resulting in

a stronger notion of local entropy contraction. Indeed, this is the case for local spectral

expansion or local variance contraction. In contrast, our Definition 3.4.3 only considers

local functions originating from global functions. This is sufficient since in the end we are

only interested in the order-(n, k) down-up walk P∨n,n−` and only need to consider global

functions f (n) : X(n)→ R≥0. Moreover, using this weaker notion makes it easier for us to

deduce local entropy contraction from local spectral expansion in Section 3.4.3.

With the notion of local entropy contraction, we are able to prove the following local-

to-global entropy contraction result.

Theorem 3.4.4 (Local-to-Global Entropy Contraction). Suppose a pure n-dimensional

weighted simplicial complex (X, w) satisfies (α0, . . . , αn−2)-local entropy contraction. For

every function f (n) : X(n)→ R≥0 and all 1 ≤ k ≤ n− 1, we have

Entπk+1
(f (k+1))∑k

i=0 Γi
≥

Entπj(f
(k))∑k−1

i=0 Γi
(3.8)

where Γi =
∏i−1

j=0 αj for 1 ≤ i ≤ n − 1 and Γ0 = 1. In particular, (X, w) satisfies the

order-(k, n) global entropy contraction with rate

κ =

∑n−1
i=k Γi∑n−1
i=0 Γi

.

Remark 3.4.5. After we posted a preliminary version of [45], it was brought to our attention

that Guo and Mousa had also independently obtained this result [68]. The analogous result

for variance, which was presented in [45], was also independently obtained by Kaufman

and Mass [81]. Finally, we mention the recent work [3] which established local-to-global

arguments for any f -divergence in a very general setting.

In [47], the authors showed that the simplicial complexes with respect to homogeneous
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strongly log-concave distributions satisfy (1, . . . , 1)-local entropy contraction; see Lemma

10 of [47]. That is, αk = 1 for all k and thus Γk = 1 for all k. Then Theorem 3.4.4 implies

that for every k we have

Entπk+1
(f (k+1)) ≥ k + 1

k
Entπk(f

(k)),

which recovers Lemma 11 of [47].

Proof of Theorem 3.4.4. We prove Eq. (3.8) by induction. When k = 1, Eq. (3.8) is equiv-

alent to

Entπ2(f (2)) ≥ (1 + α0) Entπ1(f (1)),

which holds by assumption. Now suppose Eq. (3.8) holds for k − 1; i.e.,

Entπk(f
(k))∑k−1

i=0 Γi
≥

Entπk−1
(f (k−1))∑k−2

i=0 Γi
.

By Lemma 3.4.1 we have

Entπk+1
(f (k+1))− Entπk−1

(f (k−1)) =
∑

τ∈X(k−1)

πk−1(τ) · Entπτ,2(f (2)
τ )

≥ (1 + αk−1)
∑

τ∈X(k−1)

πk−1(τ) · Entπτ,1(f (1)
τ )

= (1 + αk−1)
(
Entπk(f

(k))− Entπk−1
(f (k−1))

)
.

It follows that

Entπk+1
(f (k+1)) ≥ (1 + αk−1) Entπk(f

(k))− αk−1 Entπk−1
(f (k−1))

≥ (1 + αk−1) Entπk(f
(k))− αk−1 ·

∑k−2
i=0 Γi∑k−1
i=0 Γi

· Entπk(f
(k)) (Induction)

=

(
1 + αk−1 ·

Γk−1∑k−1
i=0 Γi

)
Entπk(f

(k))
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=

∑k
i=0 Γi∑k−1
i=0 Γi

· Entπk(f
(k)).

This proves the theorem.

3.4.3 Local Entropy Contraction via Local Spectral Expansion

Thanks to Theorem 3.4.4, it remains to show local entropy contraction in order to prove

Lemma 3.2.7. In general, proving local entropy contraction is a difficult task. Our goal

here is to show that one can deduce local entropy contraction from local spectral expansion

if we further enforce certain bounds on the marginals of the distribution.

Theorem 3.4.6. Suppose that (X, w) is a pure n-dimensional weighted simplicial complex

that is (b0, . . . , bn−1)-marginally bounded and has (ζ0, . . . , ζn−2)-local spectral expansion.

Then X satisfies (α0, . . . , αn−2)-local entropy contraction where for 0 ≤ k ≤ n− 2,

αk = max

{
1− 4ζk

b2
k(n− k)2

,
1− ζk

4 + 2 log( 1
2bkbk+1

)

}
. (3.9)

With Theorem 3.4.6, we are able to prove Lemma 3.2.7.

Proof of Lemma 3.2.7. First notice that it suffices to prove the lemma for the case s = n,

since when s < n we can consider the s-dimensional simplicial complex X′ = {σ ∈ X :

|σ| ≤ s} instead. When s = n, the lemma follows immediately from Theorems 3.4.4

and 3.4.6.

The rest of this section aims to prove Theorem 3.4.6. We will show separately the two

bounds in Eq. (3.9) on the rate of local entropy contraction, and we will refer to them as

the first bound and the second bound. The first bound is more subtle and indicates that

αk = 1−Θ(ζk) for the weighted simplicial complex (X, µ) corresponding to a marginally

bounded distribution µ over [q]V (see Claim 2.4.2). The second bound is crude but may

still be helpful when the first bound is bad.
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Proof of the First Bound

We break the proof of it into the following lemmas, which are the essence of our approach.

First we generalize Lemma 10 of [47] as follows.

Lemma 3.4.7. Suppose the local walk P∅ with stationary distribution π1 satisfies λ2(P∅) ≤

ζ . Then for every f (2) : X(2)→ R≥0 and taking f (1) = P ↑1 f
(2), we have

Entπ2(f (2))− 2 Entπ1(f (1)) ≥ −ζ · Varπ1(f (1))

π1(f (1))
.

The following lemma shows that for marginally bounded simplicial complexes, for any

global function f (n), the induced local functions f (1)
τ are “balanced” in the sense that the

values of f (1)
τ cannot be too large compared to the expectation of it.

Lemma 3.4.8. If X is a (b0, . . . , bn−1)-marginally bounded simplicial complex, then for

every function f (n) : X(n) → R≥0, all 0 ≤ k ≤ n − 1, every τ ∈ X(k) such that

f (k)(τ) > 0, and every i ∈ Xτ (1), we have

f
(1)
τ (i)

πτ,1(f
(1)
τ )
≤ 1

bk(n− k)
.

Finally, we show that for “balanced” functions the entropy and variance differ only by

a constant factor after normalization.

Lemma 3.4.9. Let π be a distribution over a finite set Ω, and let f : Ω → R≥0 such that

π(f) > 0. If f(x) ≤ c · π(f) for all x ∈ Ω, then

Varπ(f)

π(f)
≤ 4c2 Entπ(f).

Note that c ≥ 1 and we always have the inequality Entπ(f) ≤ Varπ(f)
π(f)

.

We then show how to use these three lemmas to prove the first bound in Eq. (3.9).
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Proof of the first bound in Eq. (3.9). Let 0 ≤ k ≤ n− 2, τ ∈ X(k) and f (n) : X(n)→ R≥0

be arbitrary. Then applying, Lemma 3.4.7 to the link (Xτ , wτ ) and using λ2(Pτ ) ≤ ζk, we

have the inequality

Entπτ,2(f (2)
τ )− 2 Entπτ,1(f (1)

τ ) ≥ −ζk ·
Varπτ,1(f

(1)
τ )

πτ,1(f
(1)
τ )

(3.10)

where the functions f (2)
τ : Xτ (2) → R≥0 and f (1)

τ : Xτ (1) → R≥0 are derived from f (n).

By Lemma 3.4.8, we have f (1)
τ (i) ≤ 1

bk(n−k)
· πτ,1(f

(1)
τ ) for all i ∈ Xτ (1). It follows by

Lemma 3.4.9 that

Varπτ,1(f
(1)
τ )

πτ,1(f
(1)
τ )

≤ 4

b2
k(n− k)2

· Entπτ,1(f (1)
τ ). (3.11)

Hence, it follows by combining Eqs. (3.10) and (3.11) that

Entπτ,2(f (2)
τ )− 2 Entπτ,1(f (1)

τ ) ≥ − 4ζk
b2
k(n− k)2

· Entπτ,1(f (1)
τ ).

Rearranging, we obtain

Entπτ,2(f (2)
τ ) ≥

(
1 +

(
1− 4ζk

b2
k(n− k)2

))
Entπτ,1(f (1)

τ ).

As this holds for all τ ∈ X(k) and all 0 ≤ k ≤ n− 2, we obtain the first bound.

It remains to prove Lemmas 3.4.7 to 3.4.9. We note that these lemmas are logically

independent of each other.

Proof of Lemma 3.4.7. Observe that the desired inequality is scale invariant, and hence we

may assume without loss that π2(f (2)) = π1(f (1)) = 1. We shall write ij to represent

{i, j} ∈ X(2) for simplicity. Let us rewrite 2 Entπ1(f (1)) in a form which is more conve-
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nient to compare with Entπ2(f (2)). Observe that

Entπ1(f (1)) =
∑
i∈X(1)

π1(i)f (1)(i) log f (1)(i)

=
∑
i∈X(1)

π1(i)

 ∑
j∈X(1):ij∈X(2)

π2(ij)

2π1(i)
· f (2)(ij)

 log f (1)(i)

=
∑
i∈X(1)

∑
j∈X(1):ij∈X(2)

π2(ij)

2
· f (2)(ij) log f (1)(i)

=
1

2

∑
ij∈X(2)

π2(ij) · f (2)(ij) log
(
f (1)(i)f (1)(j)

)
.

By the inequality a log a
b
≥ a− b for any a ≥ 0 and b > 0, we can get

Entπ2(f (2))− 2 Entπ1(f (1)) =
∑

ij∈X(2)

π2(ij) · f (2)(ij)
(
log f (2)(ij)− log

(
f (1)(i)f (1)(j)

))
≥
∑

ij∈X(2)

π2(ij) ·
(
f (2)(ij)− f (1)(i)f (2)(j)

)
=
∑

ij∈X(2)

π2(ij)f (2)(ij)︸ ︷︷ ︸
=π2(f (2))=1

−
∑

ij∈X(2)

π2(ij)f (1)(i)f (1)(j)

= 1− (f (1))>Wf (1)

where W ∈ RX(1)×X(1)
≥0 is the symmetric matrix with entries W (i, j) = π2(ij)

2
whenever

ij ∈ X(2), and W (i, j) = 0 otherwise. Note that W = diag(π1)P∅ since recall that P∅

has entries P∅(i, j) = π2(ij)
2π1(i)

whenever ij ∈ X(2), and P∅(i, j) = 0 otherwise. Now, we

analyze W spectrally assuming knowledge of the spectral gap of P∅. Observe that since

π1(f (1)) = 1, we have that

1− (f (1))>Wf (1) = π1

[
f (1)
]2 − π1

[
(f (1))2

]︸ ︷︷ ︸
−Varπ1 (f (1))

+ π1

[
(f (1))2

]
− (f (1))>diag(π1)P∅f

(1)︸ ︷︷ ︸
=EP∅ (f (1),f (1))

= EP∅(f
(1), f (1))− Varπ1(f (1))
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≥ (1− ζ) · Varπ1(f (1))− Varπ1(f (1))

(Spectral Gap or Poincaré Inequality)

= −ζ · Varπ1(f (1))

π1(f (1))
(π1(f (1)) = 1)

and we are done.

Proof of Lemma 3.4.8. Without loss of generality, we may assume πn(f (n)) = 1, which

also implies that πk(f (k)) = 1 for all k. It follows that if we define νk = f (k)πk for 0 ≤

k ≤ n, then νk is a distribution on X(k). For intuition, note that νk = νnP
↓
n · · ·P

↓
k+1, and

hence we can regard these distributions as from the weighted simplicial complex (X, νn).

We then have

f
(1)
τ (i)

πτ,1(f
(1)
τ )

=
f (k+1)(τ ∪ {i})

f (k)(τ)
=

νk+1(τ∪{i})
(k+1) νk(τ)

πk+1(τ∪{i})
(k+1)πk(τ)

=
ντ,1(i)

πτ,1(i)
.

Trivially we have ντ,1(i) ≤ 1
n−k ; see the proof of Claim 2.4.2 in Section 3.4.1 and the

remark after it. Furthermore, by assumption, we have πτ,1(i) ≥ bk. The claim follows.

Proof of Lemma 3.4.9. Without loss of generality, we may assume that π(f) = 1. Then,

f(x) ≤ c for all x ∈ Ω. Let ν = fπ, so f is the relative density of ν with respect to π. We

need to show that

Varπ(f) ≤ 4c2 Entπ(f).

Fact 2.2.2 implies that for every function g : Ω→ R, we have

ν(g) ≤ DKL(ν ‖ π) + log π(eg) = Entπ(f) + log π(eg).

Let g = t(f − 1) for some parameter t > 0 to be determined. Then

ν(g) = t (ν(f)− 1) = t (π(f 2)− 1) = tVarπ(f).
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Hence, we obtain that

Varπ(f) ≤ 1

t
Entπ(f) +

1

t
log π

(
et(f−1)

)
.

This is known as the entropy inequality [100].

Notice that c ≥ 1 always and Entπ(f) ≤ Varπ(f) when π(f) = 1 (see, e.g., [115]).

Consider first the case that 1 ≤ c ≤ 2. We shall pick

t =

√
Entπ(f)

Varπ(f)
≤ 1.

Then t(f − 1) ≤ c− 1 ≤ 1. Since ex ≤ 1 + x+ x2 when x ≤ 1, we get

log π
(
et(f−1)

)
≤ log π

(
1 + t(f − 1) + t2(f − 1)2

)
= log

(
1 + t2 Varπ(f)

)
≤ t2 Varπ(f).

It follows that

Varπ(f) ≤ 1

t
Entπ(f) + tVarπ(f).

For our choice of t, we obtain

Varπ(f) ≤ 4 Entπ(f) ≤ 4c2 Entπ(f).

Next, consider the case that c > 2. This time we pick

t =

√
Entπ(f)

Varπ(f)
· 2 ln c

c
≤ 2 ln c

c
.

Then t(f − 1) ≤ 2 ln c. For all x ≤ 2 ln c, it holds that ex ≤ 1 + x+ ( c
2 ln c

)2x2. Hence, we
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get

log π
(
et(f−1)

)
≤ log π

(
1 + t(f − 1) +

( c

2 ln c

)2

t2(f − 1)2

)
= log

(
1 + t2

( c

2 ln c

)2

Varπ(f)

)
≤ t2

( c

2 ln c

)2

Varπ(f).

We then deduce that

Varπ(f) ≤ 1

t
Entπ(f) + t

( c

2 ln c

)2

Varπ(f)

=⇒ Varπ(f) ≤
( c

ln c

)2

Entπ(f) ≤ 4c2 Entπ(f).

This establishes the lemma.

Proof of the Second Bound

Here we prove the second bound in Eq. (3.9). We do this by reducing entropy contraction

to bounding the standard log-Sobolev constant. Since the marginals are bounded, a com-

parison inequality between the standard log-Sobolev constant and spectral gap then finishes

the proof.

We will show that for every (local) function f (2) : X(2)→ R≥0, we have

Entπ2(f (2)) ≥ (1 + α0) Entπ1(f (1)), (3.12)

where

α0 =
1− ζ0

4 + 2 log( 1
2b0b1

)
.

This establishes the second bound for the case k = 0 and τ = ∅. For arbitrary 0 ≤ k ≤ n−2

and arbitrary τ ∈ X(k), we can just consider the link (Xτ , wτ ) at τ instead and achieve the

results.
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Recall that for a reversible Markov chain P with stationary distribution π on a finite

state space Ω, the standard logarithmic Sobolev constant is defined as

ρ(P ) = inf

{
EP (
√
f,
√
f)

Entπ(f)

∣∣∣∣ f : Ω→ R≥0, Entπ(f) 6= 0

}
.

We prove Eq. (3.12) by the following two lemmas. First we relate α0 with the standard

log-Sobolev constant of the order-(2, 1) down-up walk P∨2,1.

Lemma 3.4.10. For every (local) function f (2) : X(2)→ R≥0, we have

Entπ1(f (1)) ≤
(
1− ρ(P∨2,1)

)
Entπ2(f (2)).

The following lemma is equation (3.9) from [48] which compares the standard log-

Sobolev constant and the spectral gap.

Lemma 3.4.11 ([48]). For every reversible Markov chain P with stationary distribution π

on a finite state space Ω, we have the inequality

ρ(P ) ≥ λ(P )

2 + log(1/π∗)

where π∗ = minx∈Ω π(x).

We are now ready to prove the second bound of Eq. (3.9).

Proof of the second bound in Eq. (3.9). From Lemma 3.4.10 we deduce that for every (lo-

cal) function f (2) : X(2)→ R≥0,

Entπ2(f (2)) ≥ 1

1− ρ(P∨2,1)
Entπ1(f (1)) ≥

(
1 + ρ(P∨2,1)

)
Entπ1(f (1)). (3.13)

Meanwhile, Lemma 3.4.11 gives

ρ(P∨2,1) ≥
λ(P∨2,1)

2 + log(1/π∗2)
≥ 1− ζ0

4 + 2 log(1/π∗2)
, (3.14)
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where the last inequality follows from

λ(P∨2,1) = λ(P∧1,2) = 1− λ2(P∧1,2) =
1

2
(1− λ2(P∅)) ≥

1− ζ0

2
.

Also, the marginal boundedness of (X, w) implies that for every {i, j} ∈ X(2),

π2({i, j}) = 2 · π1(i) · π{i},1(j) ≥ 2b0b1. (3.15)

Combining Eqs. (3.13) to (3.15), we get Eq. (3.12). The bounds on local entropy contrac-

tion rate for any 0 ≤ k ≤ n−2 and τ ∈ X(k) follows by considering the link (Xτ , wτ ).

Let us now prove Lemma 3.4.10. We follow the proof of [104, Proposition 6], using

the following technical lemma.

Lemma 3.4.12 ([104, Lemma 5]). For real numbers t ≥ 0 and s ≥ −t, we have the

inequality

(t+ s) log(t+ s) ≥ t log t+ s(1 + log t) + (
√
t+ s−

√
t)2.

Proof of Lemma 3.4.10. For convenience, we write P ↑ = P ↑1 , P ↓ = P ↓2 , and P∨ = P∨2,1 =

P ↓2P
↑
1 in the proof. Since π1(f (1)) = π2(f (2)) and the inequality is scale invariant, we may

assume these expectations are 1. Towards proving the desired contraction inequality, we

first prove the following intermediate inequality: for all i ∈ X(1),

(
P ↑f (2) log f (2)

)
(i) ≥

(
P ↑f (2)

)
(i) · log

(
P ↑f (2)

)
(i) +

(
P ↑f (2)

)
(i)−

(
P ↑
√
f (2)
)

(i)2.

(3.16)

Let us first see how to use this inequality to prove the desired contraction inequality. Ob-

serve from Eq. (3.16) that

Entπ1(f (1)) = Entπ1

(
P ↑f (2)

)
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=
∑
i∈X(1)

π1(i) ·
(
P ↑f (2)

)
(i) · log

(
P ↑f (2)

)
(i)

≤
∑
i∈X(1)

π1(i)
(
P ↑1 f

(2) log f (2)
)

(i)−
∑
i∈X(1)

π1(i)
((
P ↑f (2)

)
(i)−

(
P ↑
√
f (2)
)

(i)2
)

=
〈
1, P ↑f (2) log f (2)

〉
π1
−
〈
1, P ↑f (2)

〉
π1

+
〈
P ↑
√
f (2), P ↑

√
f (2)
〉
π1

=
〈
1, f (2) log f (2)

〉
π2
−
〈
1, f (2)

〉
π2

+
〈√

f (2), P∨
√
f (2)
〉
π2

= Entπ2(f (2))− EP∨
(√

f (2),
√
f (2)
)

≤ (1− ρ(P∨)) Entπ2(f (2)).

All that remains is to prove Eq. (3.16). For every i ∈ X(1), taking t =
(
P ↑f (2)

)
(i), we

deduce from Lemma 3.4.12 that

(
P ↑f (2) log f (2)

)
(i)

=
∑
σ∈X(2)

P ↑(i, σ)f (2)(σ) log f (2)(σ)

=
∑
σ∈X(2)

P ↑(i, σ)
(
t+ f (2)(σ)− t

)
log
(
t+ f (2)(σ)− t

)
≥

∑
σ∈X(2)

P ↑(i, σ)

(
t log t+ (f (2)(σ)− t)(1 + log t) +

(√
f (2)(σ)−

√
t

)2
)

=
(
P ↑f (2)

)
(i) log

(
P ↑f (2)

)
(i) +

∑
σ∈X(2)

P ↑(i, σ)

(√
f (2)(σ)−

√
(P ↑f (2)) (i)

)2

︸ ︷︷ ︸
Expand

=
(
P ↑f (2)

)
(i) log

(
P ↑f (2)

)
(i) + 2

(
P ↑f (2)

)
(i)− 2

√
(P ↑f (2)) (i) ·

(
P ↑
√
f (2)
)

(i)︸ ︷︷ ︸
(∗)

.

Let us now lower bound (∗). We observe that

(∗)−
((
P ↑f (2)

)
(i)−

(
P ↑
√
f (2)
)

(i)2
)

=

(√
(P ↑f (2)) (i)−

(
P ↑
√
f (2)
)

(i)

)2

≥ 0.

Eq. (3.16) then follows and we are done.
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CHAPTER 4

OTHER IMPLICATIONS OF SPECTRAL INDEPENDENCE

In this chapter, we show that spectral independence implies optimal mixing time bounds

for, in addition to the single-site Glauber dynamics, arbitrary heat-bath block dynamics

and (for ferromagnetic Ising/Potts models) the Swendsen-Wang dynamics. This chapter is

based on [23].

4.1 Introduction and Our Results

Our results apply broadly to the general class of heat-bath block dynamics. Let B =

{B1, . . . , B`} be any collection of sets (or blocks) such that V = ∪iBi and let α = (αB)B∈B

be a probability distribution on B. A step of the heat-bath block dynamics operates by

choosing a block B with probability αB and updating the configuration in B with a sam-

ple from the Gibbs distribution conditional on the configuration on V \ B. Note that the

Glauber dynamics corresponds to setting the blocks to individual vertices with uniform

weights, and for a bipartite graph the even-odd chain (also known as the alternating scan

dynamics) corresponds to uniform weighting for two blocks corresponding to the two parts.

By extending the weight to αB = 0 if B /∈ B we think of α as a distribution over all subsets

of V and speak of the α-weighted heat-bath block dynamics.

Given α, define the minimum “coverage probability” of a vertex by

δ = δ(α) = min
u∈V

∑
B:B3u

αB. (4.1)

We say that the block dynamics have optimal mixing when there exists a constant C such

that for all weights α the mixing time of the α-weighted heat-bath block dynamics is at

most Cδ(α)−1 log n. Similarly, we say that the block dynamics have optimal entropy decay
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if the modified log-Sobolev constant of the α-weighted heat-bath block dynamics is at least

δ(α)/C. Note that the constant C may depend on the parameters defining the spin system

and on the maximum degree ∆, but it does not depend on n and it is independent of the

choice of weights α. In this generality, these bounds are optimal up to the value of the

constant C. Indeed, for the Glauber dynamics we have δ(α) = 1/n and the mixing time

matches the Ω(n log n) lower bound established by Hayes and Sinclair [71] for bounded-

degree graphs. Moreover, by restricting to test functions of a single spin it is not hard to

check that the spectral gap of the α-weighted block dynamics is always at most δ(α), and

therefore the lower bound δ(α)/C on the modified log-Sobolev constant of the block dy-

namics is optimal up to the multiplicative constant 1/C; see e.g. [25] for standard relations

between spectral gap and modified log-Sobolev constant.

Our first result is a substantial extension of Theorem 1.2.1 to the block dynamics with

arbitrary weighted blocks.

Theorem 4.1.1. For an arbitrary spin system on a graph of maximum degree ∆, if the

system is η-spectrally independent and b-marginally bounded, then general block factor-

ization of entropy (see Definition 2.3.3) holds with constant C = C(b, η,∆). Moreover, all

heat-bath block dynamics have optimal mixing and optimal entropy decay. The constant C

satisfies C =
(

2
b

)O(∆( η
b

+1)).

Recall, for the Glauber dynamics δ(α) = 1/n and hence we recover Theorem 1.2.1 as

a special case of the above result, though with a worse constant. As another example, for

a bipartite graph Theorem 4.1.1 implies O(log n) mixing time of the even-odd dynamics

which updates the two parts of the bipartite graph alternatively.

Recent work of Blanca et al. [24] utilizes block factorization of entropy into the even

and odd sublattices of Zd to obtain tight mixing time bounds for the Swendsen-Wang dy-

namics on boxes of Zd in the high-temperature region. Following the approach presented

in [24], here we prove optimal mixing time of the Swendsen-Wang dynamics when spec-

tral independence holds on arbitrary bounded-degree graphs. This can be formalized in the
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following statement.

Theorem 4.1.2. For the ferromagnetic Ising and Potts models on a graph of maximum

degree ∆, if the system is η-spectrally independent and b-marginally bounded, then there

exists a constantC = C(b, η,∆) such that the mixing time of the Swendsen-Wang dynamics

is at most C log n and the modified log-Sobolev constant is at least C−1. The constant C

satisfies C =
(

2
b

)O(∆(1+ η
b

)).

This chapter is organized as follows. In Section 4.2 we discuss our proof approach and

techniques. We summarize a few key properties of entropy in Section 4.3. In Section 4.4 we

deduce optimal mixing of the block dynamics with arbitrary weighted blocks from spectral

independence. In Section 4.5 we consider the Swendsen-Wang dynamics for ferromagnetic

Ising and Potts model. Finally, in Section 4.6 we present a direct proof of Theorem 3.2.4

without utilizing simplicial complexes.

4.2 Proof Approach and Discussions

The key step in the proof of Theorem 1.2.1 is the implication

Spectral Independence =⇒ Approximate Tensorization of Entropy. (4.2)

Recall that approximate tensorization of entropy says that there exists a constant C ≥ 1,

such that for any function f : Ω→ R+,

Ent(f) ≤ C
∑
u∈V

µ[Entu(f)], (4.3)

where µ[f ] =
∑

σ∈Ω µ(σ)f(σ) and Ent(f) = µ[f log(f/µ[f ])] denote the mean and en-

tropy of f with respect to the measure µ. In particular, Ent(f) is the relative entropy of

the probability measure fµ/µ[f ] with respect to µ, while µ[Entuf ] = µ[f log(f/µu[f ])]

is the expected value according to µ of the conditional entropy τ 7→ Ent(f |τ) for τ a
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spin configuration on V \ {u}. To make some intuitive sense of approximate tensorization,

notice that if µ is a product distribution over V then Eq. (4.3) holds with C = 1. In gen-

eral, approximate tensorization is easily seen to imply the desired bounds on the modified

log-Sobolev constant and the mixing time of the Glauber dynamics; see e.g. [36]. In the

setting of spin systems on the lattice Zd, approximate tensorization estimates are known to

hold under the so-called strong spatial mixing condition; this follows from the logarithmic

Sobolev inequalities established in [123, 99, 41].

We present an alternative proof of some of the key steps for the implication Eq. (4.2) in

Section 4.6; see Theorem 4.6.1. The analogous result Theorem 3.2.4 in Chapter 3 is proved

in the more general framework of simplicial complexes and generalizes the result of [47]

for homogeneous strongly log-concave distributions; see also [72] for related results. Our

proof is completely framed in the setting of spin systems and is devoid of any work on

simplicial complexes. This new approach may be conceptually simpler to some readers,

and it enables us to present a self-contained proof of our main results. As a byproduct we

also obtain an incremental improvement in the resulting mixing time bound improving the

exponent in the constant C from O(1 + η/b2) (see Theorem 1.9 in [45]) to O(1 + η/b) as

stated in Theorem 1.2.1.

One of our results in this chapter is the following substantial extension of Eq. (4.2):

Spectral Independence =⇒ General Block Factorization of Entropy. (4.4)

Caputo and Parisi [37] introduced the notion of general block factorization of entropy

which generalizes approximate tensorization, and is useful for analyzing more general

classes of Markov chains. Let α = (αB)B⊆V be an arbitrary probability distribution over

subsets of V , and set δ(α) = minu∈V
∑

B:B3u αB as in Eq. (4.1). General block factoriza-
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tion of entropy holds with constant C if for all weights α, for all f : Ω→ R+:

δ(α)Entf ≤ C
∑
B⊆V

αB µ[EntBf ], (4.5)

where µ[EntBf ] = µ[f log(f/µBf)] is the expected value of the conditional entropy

τ 7→ Ent(f |τ) for τ a spin configuration on V \ B. Entropy tensorization Eq. (4.3) is

the special case when αB = 1/n for every block of size 1 and αB = 0 for larger blocks.

The choice of the constant δ(α) in this inequality is motivated by the fact that when µ

is a product measure then Eq. (4.5) holds with C = 1, in which case it is known as the

Shearer inequality; see [36]. The block factorization of entropy is a statement concerning

the equilibrium distribution µ which has deep consequences for several natural sampling

algorithms. In particular, it implies optimal mixing and optimal entropy decay for arbitrary

block dynamics.

When the spin system satisfies Eq. (4.5) with α the uniform distribution over all subsets

of a given size ` we refer to this as `-uniform block factorization of entropy or `-UBF for

short. In Chapter 3, an important step in the proof of Theorem 1.2.1 is establishing `-UBF

with ` ∼ θn for some θ ∈ (0, 1). To prove Theorem 4.1.1 for arbitrary blocks we establish

that `-UBF implies general block factorization of entropy, see Theorem 4.4.2 for a detailed

statement.

We turn to a further interesting consequence of spectral independence:

Spectral Independence =⇒ Approximate Subadditivity of Entropy. (4.6)

We say that the approximate subadditivity of entropy holds with constant C if

∑
x∈V

Ent(fx) ≤ CEnt(f), (4.7)

where, for any nonnegative function f , the functions fx are defined by fx(a) = µ(f |σx =
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a). Notice that when µ(f) = 1 then ν = fµ is a probability measure and, if µx denotes

the marginal of µ on x, then fxµx gives the marginal of ν on x. The inequality Eq. (4.7) is

known to be equivalent to a Brascamp-Lieb type inequality for the measure µ [40, 39]. In

particular, it implies that for any collection of functions ϕu : [q] 7→ R, u ∈ V , one has

µ

(∏
u∈V

ϕu(σu)

)
≤
∏
u∈V

µ
(
|ϕu(σu)|C

)1/C
, (4.8)

where C is the same constant as above. For a general discussion of subadditivity of en-

tropy, Brascamp-Lieb type inequalities, and their applications, see for instance [8] and the

references therein. In Theorem 4.6.1 below we shall see that for an arbitrary spin system on

a graph of maximum degree ∆, if the system is η-spectrally independent and b-marginally

bounded, then Eq. (4.7) holds with C = O(1 + η/b). The question of the validity of such

inequalities in the context of high temperature spin systems was raised in [36] but as far as

we know there are no prior results in this direction.

4.3 Basic Properties of Entropy

To compute the relative entropy with respect to a pinned measure µτΛ it is convenient to use

the notation

EntΛ(f) = µΛ [f log (f/µΛ[f ])] , (4.9)

with the understanding that if we evaluate the left hand side at a given pinning τ on Λc =

V \ Λ we then evaluate the expectations in the right hand side with respect to µτΛ. To

emphasize the dependence on the pinning we sometimes write EntτΛ(f). The expectation

µ[EntΛf ] is obtained by averaging with respect to µ over the pinning τ on Λc, and satisfies

µ[EntΛ(f)] =
∑
τ∈ΩΛc

µ(σΛc = τ) EntτΛ(f) = µ [f log (f/µΛ[f ])] . (4.10)
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The following lemma summarizes a standard decomposition of the relative entropy; see

e.g. [37, Lemma 3.1] for a proof.

Lemma 4.3.1. For any Λ ⊆ V , for any f : Ω→ R+:

Ent(f) = µ [EntΛ(f)] + Ent (µΛ[f ]). (4.11)

More generally, for any Λ0 ⊆ Λ1 ⊆ · · · ⊆ Λw ⊆ V , for any f : Ω→ R+:

w∑
i=1

µ
[
EntΛi(µΛi−1

[f ])
]

= µ [EntΛw(µΛ0 [f ])] . (4.12)

The following monotonicity property of the entropy functional is an immediate conse-

quence of the previous lemma.

Lemma 4.3.2. For all A ⊆ B ⊆ V ,

µ[EntA(f)] ≤ µ[EntB(f)] . (4.13)

Next, we recall the definition of general block factorization of entropy from Defini-

tion 2.3.3. The spin system is said to satisfy the general block factorization of entropy with

constant C if for all f ≥ 0, for all probability distribution α over subsets of V ,

δ(α)Entf ≤ C
∑
B⊆V

αB µ[EntBf ], (4.14)

where δ(α) = minx∈V
∑

B:B3x αB.

We will often consider independent sets Λ of V , that is sets of vertices whose induced

subgraph in G has no edge; in those cases, µΛ is a product measure µΛ = ⊗x∈Λµx and the

following lemma will be useful.

Lemma 4.3.3. Fix Λ ⊆ V and suppose that µΛ is a product measure on µΛ = ⊗x∈Λµx.
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Then, for any distribution α over the subsets of Λ, and any f : Ω→ R+:

δ(α) EntΛ(f) ≤
∑
B⊆Λ

αB µΛ[EntB(f)] , (4.15)

that is µΛ satisfies the general block factorization of entropy with constant C = 1.

The above statement is a consequence of the weighted Shearer inequality for the Shan-

non entropy; see Lemma 4.2 in [37]. The following properties will also be used.

Lemma 4.3.4. Let Λ = A ∪B and assume that µΛ is a product µΛ = µA ⊗ µB. Then, for

all f ≥ 0:

EntΛ(µB(f)) = µΛ[EntA(µB(f))], (4.16)

and for all U ⊆ B,

µΛ[EntA(µB(f))] ≤ µΛ[EntA(µU(f))]. (4.17)

Proof. From the decomposition in Lemma 4.3.1 it follows that

EntΛ(µB(f))− µΛ[EntA(µB(f))] = EntΛ(µAµB(f)) = EntΛ(µΛ(f)) = 0.

This proves (Equation 4.16). To prove (Equation 4.17) notice that by definition

µΛ [EntA(µB(f))] = µΛ

[
µB(f) log

(
µB(f)

µAµB(f))

)]
.

For any U ⊆ B, µB(f) = µBµU(f) and the product structure µΛ = µA ⊗ µB implies the

commutation relation µAµBµU = µBµAµU . Therefore,

µΛ [EntA(µB(f))] = µΛ

[
µBµU(f) log

(
µBµU(f)

µBµAµU(f)

)]
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= µΛ

[
µU(f) log

(
µBµU(f)

µBµAµU(f))

)]
= µΛ

[
µA

[
µU(f) log

(
µBµU(f)

µAµBµU(f)

)]]
.

It remains to observe that

µA

[
µU(f) log

(
µBµU(f)

µAµBµU(f)

)]
≤ EntA(µU(f)).

The latter estimate follows from the well known variational principle

EntA(g) = sup {µA(gh) , µA(eh) ≤ 1} (4.18)

valid for any A and any function g ≥ 0; see, e.g. [85, Proposition 2.2].

4.4 Optimal Mixing of Arbitrary Block Dynamics

A key step in the proof of Theorem 4.1.1 is the proof that uniform block factorization

(UBF) implies general block factorization (GBF).

We begin with the formal definition of UBF. For a positive integer ` ≤ n, let
(
V
`

)
denote

the collection of all subsets of V of size `.

Definition 4.4.1 (Uniform Block Factorization (UBF)). We say that the spins system µ

satisfies the `-uniform block factorization (`-UBF) of entropy with constant CUBF if for all

f : Ω→ R+

`

n
Ent(f) ≤ CUBF ·

1(
n
`

) ∑
S∈(V` )

µ[EntS(f)]. (4.19)

In this section, we establish the following theorem.

Theorem 4.4.2. For an arbitrary b-marginally bounded spin system on a graph of max-

imum degree ∆, if dθne-UBF holds with constant CUBF and 0 < θ ≤ b2(∆+1)

4e∆2 , then GBF

holds with constant CGBF = CUBF ×O ((θ b2)−1 log(1/b)∆3).
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In this section we prove Theorem 4.4.2 by establishing general block factorization of

entropy from uniform block factorization.

As it will become apparent in our proof of this theorem, there is a trade-off between

the upper bound for θ and the value we can deduce for CGBF; in particular, we could allow

for UBF to hold for larger θ < 1 (i.e., with a better dependence on ∆) at the expense of an

additional factor depending on ∆ in CGBF.

We turn to the proof of Theorem 4.4.2. Recall that a graph G of maximum degree

∆ is k-partite, with k ≤ ∆ + 1. Let {V1, ..., Vk} denote the independent sets Vi ⊆ V

corresponding to a k-partition ofG. A key step in the proof of Theorem 4.4.2 is to establish

the following factorization statement.

Lemma 4.4.3. Suppose that for an arbitrary b-marginally bounded spin system on a graph

of maximum degree ∆, dθne-UBF holds with constant CUBF and θ ≤ b2(∆+1)

4e∆2 . Then,

Ent(f) ≤ KCUBF

k∑
i=1

µ[EntVi(f)], (4.20)

where the constant K satisfies K = O(∆2(θ b2)−1 log(1/b)).

We refer to Eq. (4.20) as a k-partite factorization of entropy with constantKCUBF. Once

we have Lemma 4.4.3, Theorem 4.4.2 is implied by the following lemma.

Lemma 4.4.4. Suppose that for an arbitrary spin system on a graph of maximum degree

∆, k-partite factorization of entropy holds with constant C. Then, GBF holds with constant

Ck.

We provide next the proofs of Lemmas 4.4.3 and 4.4.4.

Proof of Lemma 4.4.4. Let α = (αB)B⊆V be a probability distribution over the subsets of

V . Observe that for all j = 1, ..., k and all τ ∈ Ω(V \ Vj), µτVj is a product measure

on Ωτ
Vj

. Therefore, we can apply Lemma 4.3.3 with Λ = Vj and α̂ = (α̂U)U⊆Vj , where
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α̂U = ω−1
∑

B⊆V αB1(Vj ∩B = U) and ω =
∑

B⊆V αB1(Vj ∩B 6= ∅) . We get

δ(α̂) EntτVj(f) ≤
∑
U⊆Vj

α̂U µ
τ
Vj

[EntU(f)] = ω−1
∑
B⊆V

αB µ
τ
Vj

[EntVj∩B(f)]. (4.21)

Observe that

ωδ(α̂) = min
x∈Vj

∑
U⊆Vj :U3x

α̂U = min
x∈Vj

∑
B⊆V :B3x

αB ≥ δ(α),

and from Eq. (4.13) we have µ[EntVj∩B(f)] ≤ µ[EntB(f)]. Hence, taking expectation in

Eq. (4.21) with respect to µ we obtain

δ(α)µ[EntVj(f)] ≤
∑
B⊆V

αB µ[EntB(f)].

Summing over j we have, for all f : Ω→ R+,

δ(α)
k∑
j=1

µ[EntVj(f)] ≤
k∑
j=1

∑
B⊆V

αB µ[EntB(f)],

and since by assumption k-partite factorization of entropy holds with constant C, we have

δ(α)Ent(f) ≤ C
k∑
j=1

∑
B⊆V

αB µ[EntB(f)] ≤ C k
∑
B⊆V

αB µ[EntB(f)].

Hence, GBF holds with constant Ck.

The main idea behind the proof of Lemma 4.4.3 can be roughly explained as follows.

The `-UBF assumption with ` ∼ θn is the factorization statement Eq. (4.19). If the set

S in Eq. (4.19) were an independent set, then suitable applications of Lemma 4.3.1 and

Lemma 4.3.4 would yield the desired conclusion. Moreover, the same conclusion would

continue to hold if S were made of bounded connected components. The delicate part

of the argument consists in exploiting the fact that if θ is sufficiently small then one can
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effectively reduce the problem to case of bounded connected components.

Proof of Lemma 4.4.3. Since dθne-UBF holds by assumption, setting C = CUBF one has

Ent(f) ≤ C

θ
E [µ [EntS(f)]] , (4.22)

where S is a random set with uniform distribution over all subsets of V of cardinality dθne,

and E denotes the corresponding expectation.

Let S1, S2, . . . denote the connected components of S in G (taken in some arbitrary

order) and for i > 1 let S<i = ∪i−1
j=1Sj . Then µS<i+1

has the product structure µS<i+1
=

⊗ij=1µSj . By Lemmas 4.3.1 and 4.3.4, one has the decomposition

µ [EntS(f)] =
∑
i≥1

µ
[
EntS<i+1

(µS<i(f))
]

=
∑
i≥1

µ[EntSi(µS<i(f))], (4.23)

where we have used Eq. (4.16) with A = Si and B = S<i. For τ ∈ Ω(V \ Si), let Γ(Si, τ)

be the optimal constant so that

EntτSi(µS<i(f)) ≤ Γ(Si, τ)
k∑
j=1

µτSi
[
EntVj∩Si(µS<i(f))

]
.

Let Γ(Si) = maxτ∈Ω(V \Si) Γ(Si, τ). Then,

µ [EntS(f)] ≤
∑
i≥1

Γ(Si)
k∑
j=1

µ
[
EntVj∩Si(µS<i(f))

]
.

We observe next that for all j = 1, ..., k one has

µ
[
EntVj∩Si(µS<i(f))

]
≤ µ

[
EntVj∩Si(µVj∩S<i(f))

]
. (4.24)

To see this, we apply Lemma 4.3.4 with A = Vj ∩ Si, B = S<i and U = Vj ∩ S<i. Since

µS<i+1
= ⊗ij=1µSj the assumptions for that lemma are satisfied and we obtain Eq. (4.24)
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from Eq. (4.17).

Summarizing, we have obtained

Ent(f) ≤ C

θ

k∑
j=1

E

[∑
i≥1

Γ(Si)µ
[
EntVj∩Si(µVj∩S<i(f))

]]
. (4.25)

We show next that for all j = 1, ..., k

E

[∑
i≥1

Γ(Si)µ
[
EntVj∩Si(µVj∩S<i(f))

]]
≤ C ′µ

[
EntVj(f)

]
, (4.26)

with C ′ = O
(

log(1/b)
b2

∆2
)

. Combined with Eq. (4.25), this concludes the proof of the

lemma.

Let us fix j and let v1, v2, . . . denote an ordering of the sites in Vj ∩ S such that

v1, ..., v|Vj∩S1| is an ordering of Vj∩S1, v|Vj∩S1|+1, ..., v|Vj∩S1|+|Vj∩S2| is an ordering of Vj∩S2

and so on. Since, for all i ≥ 1, µVj∩Si is a product measure, Lemmas 4.3.1 and 4.3.4 (as in

Eq. (4.23)) imply

µ
[
EntVj∩Si(µVj∩S<i(f))

]
=

|Vj∩S1|+···+|Vj∩Si|∑
h=|Vj∩S1|+···+|Vj∩Si−1|+1

µ [Entvh(ρvh(f))] ,

where ρvh is the conditional distribution obtained from µ by freezing the spins at all the

sites outside Vj , together with all the sites vh, vh+1, . . . , v|Vj∩S|.

Using this decomposition and rearranging one finds

E

[∑
i≥1

Γ(Si)µ
[
EntVj∩Si(µVj∩S<i(f))

]]

= E

∑
i≥1

Γ(Si)

|Vj∩S1|+···+|Vj∩Si|∑
h=|Vj∩S1|+···+|Vj∩Si−1|+1

µ [Entvh(ρvh(f))]


= E

[∑
h

µ [Entvh(ρvh(f))] Γ(S(vh))

]
, (4.27)
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where S(vh) denotes the (unique) connected component of S containing vh. Notice that

for each realization of S, µVj∩S is a product measure and so one has from Lemmas 4.3.1

and 4.3.4 that

∑
h

µ [Entvh(ρvh(f))] = µ
[
EntVj∩S(f))

]
≤ µ

[
EntVj(f)

]
;

the inequality follows from Eq. (4.13).

Observe that each term µ[Entvh(ρvh(f))], as well as the sequence {vh}, depends on the

realization S only through Vj ∩ S. Therefore,

E

[∑
h

µ [Entvh(ρvh(f))] Γ(S(vh))

]
= E

[∑
h

µ [Entvh(ρvh(f))]E [Γ(S(vh)) |Vj ∩ S]

]
,

where E [Γ(S(vh)) |Vj ∩ S] is the conditional expectation of Γ(S(vh)) given the realization

Vj ∩ S. Therefore, Eq. (4.26) follows if we prove that

max
W⊆Vj

max
v∈W

E [Γ(S(v)) |Vj ∩ S = W ] ≤ C ′. (4.28)

Now, for a b marginally bounded spin system, it follows from Lemma 4.2 in [45] and

Eq. (4.13) that

Γ(S(v)) ≤ ζ|S(v)|3z|S(v)|,

where ζ = ζ(b) = 3 log(1/b)
2b2

and z = 1/b2. Thus,

max
W⊆Vj

max
v∈W

E [Γ(S(v)) |Vj ∩ S = W ] ≤ ζ · max
W⊆Vj

max
v∈W

E
[
|S(v)|3z|S(v)| | Vj ∩ S = W

]
.

(4.29)

To bound the expectation on the right-hand-side of Eq. (4.29), we consider the graph

G2 with vertex set V and edge set E ∪E2, where E is the edge set of G and E2 is the set of

all pairs of vertices with a common neighbor in G. Note that G2 has maximum degree ∆2.

Let Av(a) be the collection of subsets of vertices U ⊆ V such that |U | ≥ a, v ∈ U and the
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induced subgraph G2[U ] of U in G2 is connected.

Now, let us fix the setW = Vj∩S and the vertex v ∈ W and let S2 := (S(v)∩V6=j) ⊆ S,

where V6=j :=
⋃
i:i 6=j Vi. We claim that when the event {|S(v)| = a} occurs for some

a ∈ N, then S2 ∈ Av( a
∆+1

). Indeed, G2[S2] is connected, since S(v) is connected in G

and removing the vertices in Vj \ {v} from S(v) will not disconnect S2 in G2. Moreover,

∆|S(v) ∩ V6=j| ≥ |S(v) ∩ Vj|, and so

a = |S(v) ∩ Vj|+ |S(v) ∩ V6=j| ≤ (∆ + 1)|S(v) ∩ V6=j|,

which implies that |S2| = |S(v) ∩ V6=j| ≥ a/(∆ + 1). Given S, let T2(v) denote the

connected component of S in G2 containing v, and note that S2 ⊆ T2(v). Then, for any

W ⊆ Vj , v ∈ W and integer a ≥ 1 we get

P (|S(v)| = a |Vj ∩ S = W ) ≤ P
(
∃S2 ∈ Av

(
a

∆ + 1

)
;S2 ⊆ S

)
≤ P

(
|T2(v)| ≥ a

∆ + 1

)
. (4.30)

Next we use Lemma 4.3 from [45], which implies that for any integer m ≥ 1,

P (|T2(v)| = m) ≤ `

n
(2e∆2θ)m−1. (4.31)

Indeed, the only difference with respect to Lemma 4.3 from [45] is that we have maximum

degree ∆2 here instead of ∆. In particular, if 2e∆2θ ≤ 1/2, using `
n
≤ 2θ,

P
(
|T2(v)| ≥ a

∆ + 1

)
≤ 4θ(2e∆2θ)b

a
∆+1
c−1 ≤ ∆−2(2e∆2θ)b

a
∆+1
c. (4.32)

It follows that

E
[
|S(v)|3z|S(v)| |Vj ∩ S = W

]
=
∑
a≥1

a3za · P (|S(v)| = a |Vj ∩ S = W ) (4.33)
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≤ ∆−2
∑
a≥1

a3(2e∆2θz∆+1)b
a

∆+1
c ≤ C1∆2, (4.34)

for some absolute constant C1 provided that 2e∆2θz∆+1 ≤ 1/2. This implies that

max
W⊆Vj

max
v∈W

E
[
|S(v)|3z|S(v)| | Vj ∩ S = W

]
≤ C1∆2.

Hence, Eqs. (4.26) and (4.28) hold with C ′ = C1ζ∆2, and so k-partite factorization holds

with constant CUBFC1ζ∆2/θ.

4.5 Optimal Mixing of Swendsen-Wang Dynamics

In this section, we show that for ferromagnetic Potts models, the k-partite factorization of

entropy, as defined in Eq. (4.20), implies optimal mixing of the Swendsen-Wang (SW) dy-

namics. Since we have already established that, for any spin system, k-partite factorization

is implied by spectral independence, we then deduce Theorem 4.1.2 from the introduction.

We again take G = (V,E) to be an n-vertex graph of maximum degree ∆ and µ to be

the Potts distribution on G with configuration space Ω = [q]V . The SW dynamics takes

a spin configuration, transforms it into a “joint” spin-edge configuration, performs a step

in the joint space, and then drops the edges to obtain a new Potts configuration. Formally,

from a Potts configuration σt ∈ [q]V , a transition σt → σt+1 of the SW dynamics is defined

as follows:

1. Let Mt = M(σt) denote the set of monochromatic edges in σt.

2. Independently for each edge e ∈ Mt, keep e with probability p = 1 − exp(−β) and

remove e with probability 1− p. Let At ⊆Mt denote the resulting subset.

3. In the subgraph (V,At), independently for each connected component C (including

isolated vertices), choose a spin sC uniformly at random from [q] and assign to each

vertex in C the spin sC . This spin assignment defines σt+1.

84



It will be useful for us to consider the “joint” Edwards-Sokal distribution for G with

parameters p ∈ [0, 1] and integer q ≥ 2. Let ΩJ = Ω × {0, 1}E be the set of “joint”

spin-edge configurations (σ,A) consisting of a spin assignment to the vertices σ ∈ Ω and

a subset of edges A ⊆ E. The Edwards-Sokal measure assigns to each (σ,A) ∈ ΩJ a

probability given by

ν(σ,A) =
1

ZJ

p|A|(1− p)|E|−|A|1(σ ∼ A), (4.35)

where σ ∼ A means that A ⊆ M(σ) (i.e., every edge in A is monochromatic in σ) and

ZJ is the corresponding normalizing constant or partition function. When p = 1 − e−β ,

the “spin marginal” of ν is precisely the Potts distribution µ and ZG = ZJ, and the “edge

marginal” of ν corresponds to the random-cluster measure; see, e.g., [56, 63] for extensive

background on these measures.

A key concept in our strategy to prove optimal mixing results for the SW dynamics

is the spin/edge factorization of entropy in the joint space ΩJ. This spin/edge factorization

was shown in [24, Lemma 1.8] to implyO(log n) mixing of the SW dynamics on any graph.

Moreover, in [24] it was proved that for bipartite graphs, even/odd factorization of entropy

for µ implies the desired spin/edge factorization of entropy in the joint space ΩJ. We will

generalize the argument from [24] to general graphs, and show that a k-partite factorization

of entropy for µ implies spin/edge factorization of entropy in the joint space ΩJ, and thus

combined with [24, Lemma 1.8] this will complete the proof of O(log n) mixing of the

SW dynamics. Note, this O(log n) bound is optimal as there are graphs of bounded degree

where the SW dynamics requires Ω(log n) steps to mix.

Before stating our results, we stipulate some notation. For a function f : ΩJ → R+,

we write Entν(f) = ν
[
f log

(
f

ν(f)

)]
for the entropy of f with respect to ν. For a fixed

configuration σ ∈ Ω and subset of edges A ⊆ E, Entν(f |σ) and Entν(f |A) denote the

entropy of f with respect to the conditional measures ν(· |σ) and ν(· |A), respectively.
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More precisely, for a given σ ∈ Ω, ν(· |σ) is the measure ν conditioned on the event that

the spin configuration is equal to σ, and for a given A ⊆ E, ν(· |A) is the measure ν

conditioned on the event that the edge configuration is equal to A. In this way, Entν(f |σ)

and Entν(f |A) are functions of σ and A, respectively, and ν [Entν(f |σ)], ν [Entν(f |A)]

denote the corresponding expectations with respect to ν.

Theorem 4.5.1. Suppose µ satisfies the k-partite factorization of entropy with constant

Cpar; see Eq. (4.20). Then, there exists a constant C = C(Cpar, β,∆) such that for all

f : ΩJ 7→ R+

Entν(f) ≤ C (ν [Entν(f |σ)] + ν[Entν(f |A)]) . (4.36)

The constant C satisfies C = Cpar ×O(β∆2eβ∆).

We call Eq. (4.36) the spin/edge factorization of entropy with constant C for the joint

measure ν. The main motivation for this inequality is the result established in [24, Lemma

1.8] that on any n-vertex graph, approximate spin/edge factorization with constant C im-

plies that the SW dynamics has discrete time entropy decay with rate δ = 1/C, and there-

fore, by Lemma 2.2.4, satisfies Tmix = O(log n). Theorem 4.1.2 from the introduction now

follows immediately.

Proof of Theorem 4.1.2. For the Potts model one has eβ∆ = O(1/b). Therefore, the results

follows from Theorem 4.6.1, Lemma 4.4.3, Theorem 4.5.1 and [24, Lemma 1.8].

Let {V1, ..., Vk} be the k-partition of G, where k ≤ ∆ + 1, as in Section 4.4. For all

j ∈ [k] let ν(· |σVj , A) denote the measure ν conditioned on σVj = {σv, v /∈ Vj} and

A ⊆ E. We use Entν(f |σVj , A) to denote the corresponding conditional entropy and

ν
[
Entν(f |σVj , A)

]
for its expectation with respect to ν. Theorem 4.5.1 will follow from

the following lemmas.
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Lemma 4.5.2. For all f : ΩJ 7→ R+ and all j ∈ [k] we have

ν [Entν(f |A)] ≥ ν
[
Entν(f |σVj , A)

]
.

Lemma 4.5.3. There exists a constant δ1 > 0 such that, for all f : ΩJ 7→ R+ and all

j ∈ [k],

ν [Entν(f |σ)] + ν
[
Entν(f |σVj , A)

]
≥ δ1 ν

[
Entν(f |σVj)

]
.

The constant δ1 satisfies 1/δ1 = O(β∆eβ∆).

Lemma 4.5.4. If µ satisfies the k-partite factorization with constant Cpar, then for all

f : ΩJ 7→ R+,

k∑
j=1

ν
[
Entν(f |σVj)

]
≥ δ2Entν(f),

where δ2 = 1
Cpar

.

Proof of Theorem 4.5.1. By combining the bounds from Lemmas 4.5.2 to 4.5.4 we get

ν [Entν(f |σ) + Entν(f |A)] ≥ δ1δ2

k
Entν(f), (4.37)

and so, using also k ≤ ∆ + 1, the spin/edge factorization holds with constant

C =
k

δ1δ2

= Cpar ×O(β∆2eβ∆).

We briefly discuss next the proof of Lemmas 4.5.2 to 4.5.4, which are the respective

counterparts of Lemmas 4.3, 4.4 and 4.5 in [24] for the bipartite setting.

Proof of Lemma 4.5.2. This is an instance of the same monotonicity that has already been

seen in Lemma 4.3.2. In this particular case, it follows from the argument in the proof of
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Lemma 4.3 in [24] by simply substituting σO with σVj in that proof.

Proof of Lemma 4.5.3. Let us fix j ∈ [k]. To simplify the notation, we shall use xy to

denote the edge {x, y}, and view the edge configuration A as a vector in {0, 1}E . For any

fixed configuration σVj of spins, the conditional probability ν(· |σVj) is a product measure.

That is,

ν(· |σVj) =
⊗
x∈Vj

νx(· |σVj), (4.38)

where, for each x ∈ Vj , νx(· |σVj) is the probability measure on {1, . . . , q} × {0, 1}deg(x)

with deg(x) denoting the degree of x. The distribution νx(· |σVj) can be described s fol-

lows: pick the spin of site x according to the Potts measure on x conditioned on the spin of

its neighbors in V \ Vj; then, independently for every edge xy ∈ E incident to the vertex

x, if σx = σy set Axy = 1 with probability p and set Axy = 0 otherwise; if σx 6= σy, set

Axy = 0.

The measure ν(· |σVj , A), obtained by further conditioning on a valid configuration of

all edge variables A compatible with the fixed spins σVj , is again a product measure:

ν(· |σVj , A) =
⊗
x∈Vj

νx(· |σVj , A), (4.39)

where νx(· |σVj , A) is the probability measure on {1, . . . , q} that is uniform if x has no

incident edges in A, and is concentrated on the unique admissible value given σVj and A

otherwise.

Next, we note that ν(· |σ) is a product of Bernoulli(p) random variables over the set of

all monochromatic edges in σ, while it is concentrated on Ae = 0 on all remaining edges.

Therefore we may write

ν(· |σ) =
⊗
x∈V

νx(· |σ), (4.40)
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where νx(· |σ) is the probability measure on {0, 1}deg(x), which is given by the product of

Bernoulli(p) variables on all edges xy incident to x such that σx = σy and is concentrated

on Axy = 0 if σx 6= σy.

We write Entx(· |σVj), Entx(· |σVj , A), Entx(· |σ) for the entropies with respect to the

distributions νx(· |σVj), νx(· |σVj , A), νx(· |σ) respectively. The first observation is that,

for every site x, there is a local factorization of entropies in the following sense. There

exists a constant δ1 > 0 such that 1/δ1 = O(β∆eβ∆), and such that for all functions f ≥ 0

and all x ∈ Vj ,

νx
[
Entx(f |σ) |σVj

]
+ νx

[
Entx(f |σVj , A) |σVj

]
≥ δ1 Entx(f |σVj); (4.41)

this follows from a direct generalization of Lemma 4.7 from [24] for bipartite graphs; the

proof of such generalization to the k-partite setting is the same as that of Lemma 4.7 and is

thus omitted.

Next, we want to lift Eq. (4.41) to the product measure ν(· |σVj) = ⊗x∈Vjνx(· |σVj).

Let x = 1, . . . , n denote an arbitrary ordering of the sites x ∈ Vj . Let Ax ∈ {0, 1}deg(x)

be the random variable corresponding to the state of the edges incident to x. We write

ξx = (σx, Ax) for the pair of variables corresponding to x. We first observe that

Entν(f |σVj) =
n∑
x=1

ν
[
Entx(gx−1 |σVj) |σVj

]
, (4.42)

where gx = ν
[
f |σVj , ξx+1, . . . , ξn

]
, g0 = f and gn = ν

[
f |σVj

]
. This identity is an

instance of the decomposition in Lemma 4.3.1.

Putting together Eq. (4.41) and Eq. (4.42) yields

δ1 Entν(f |σVj) ≤
n∑
x=1

ν
[
νx
[
Entx(gx−1 |σ) |σVj

]
+ νx

[
Entx(gx−1 |σVj , A) |σVj

]
|σVj

]
=

n∑
x=1

ν
[
Entx(gx−1 |σ) + Entx(gx−1 |σVj , A) |σVj

]
. (4.43)
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Proceeding as in the proof of Lemma 4.8 from [24], we obtain the following two inequali-

ties:

n∑
x=1

ν
[
Entx(gx−1 |σ) |σVj

]
≤ ν

[
Entν(f |σ) |σVj

]
,

n∑
x=1

ν
[
Entx(gx−1 |σVj , A) |σVj

]
≤ ν

[
Entν(f |σVj , A) |σVj

]
.

These two inequalities combined with Eq. (4.43) yields that

δ1 Entν(f |σVj) ≤ ν
[
Entν(f |σ) |σVj

]
+ ν

[
Entν(f |σVj , A) |σVj

]
. (4.44)

The results follows by taking expectations with respect to ν in Eq. (4.44).

Proof of Lemma 4.5.4. From the definition of conditional entropy as well as the fact that

ν(· |σVj , σVj) = ν(· |σ) we get

Entν(f |σVj) = Entν
(
ν [f |σ] |σVj

)
+ ν

[
Entν(f |σ) |σVj

]
. (4.45)

(see eq. (4.5), (4.6) from Lemma 4.5 in [24]). Now, since the function ν [f |σ] depends

only on the spin configuration σ, one has the identity

k∑
j=1

ν
[
Entν(ν[f |σ] |σVj)

]
=

k∑
j=1

µ
[
Ent(ν[f |σ] |σVj)

]
, (4.46)

where the entropy in the right hand side is with respect to µ and not with respect to ν. Since

k-partite factorization holds by assumption,

k∑
j=1

µ
[
Ent(ν[f |σ] |σVj)

]
≥ δ2 Ent (ν [f |σ]) , (4.47)

where δ2 = 1/Cpar. By taking functions depending only on σVj for a single Vj one easily

sees thatCpar must be at least 1. Then, taking expectation and summing over j in Eq. (4.45),
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and combining with Eq. (4.46) and Eq. (4.47), we get

k∑
j=1

ν
[
Entν(f |σVj)

]
≥ δ2 Entν (ν [f |σ]) + k ν [Entν(f |σ)] .

Using the simple decomposition Entν(f) = Entν (ν [f |σ]) + ν [Entν(f |σ)], and the fact

that δ2 ≤ 1 ≤ k, we conclude that

k∑
j=1

ν
[
Entν(f |σVj)

]
≥ δ2 Entν(f).

4.6 Uniform Block Factorization via Spectral Independence: A Direct Approach

In this section, we present a more direct proof of Theorem 3.2.4 which can be interesting

to certain groups. The proof in this section uses a recursive arguments of approximate ten-

sorization and subadditivity of entropy and does not utilize abstract simplicial complexes.

The goal of this section is to reformulate in the setting of spin systems some of the

key facts that were derived in Section 3.4 and the references therein in the more general

framework of simplicial complexes. This specialization yields some minor simplification in

the main proofs, and may be of use for later reference. The approach consists in exploiting a

recursive scheme which allows one to derive a global contraction estimate by analysing the

spectral norm of a local operator. This is reminiscent of the recursive approach developed

in [38, 35, 34], where similar ideas were used to derive spectral gap estimates for a class

of conservative spin systems. The argument here is more robust and, unlike the one in [38,

35, 34], it does not rely on symmetries of the underlying measures.

We first introduce some notation. Let f be a function of the full spin configuration σ,

and U ⊆ V = [n] a subset of vertices. We use the notation µU = µV \U for the conditional

distribution given the spins in U , and write Av|U |=` for the uniform average over all sets

U ⊆ [n] with ` vertices. We are going to prove the following result which is a reformulation

of Theorem 3.2.4.
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Theorem 4.6.1. If the spin system is η-spectrally independent and b-marginally bounded

then there exists a constant C = O(1 + η
b
) such that for any ` = {1, . . . , n− 1} and for all

f ≥ 0:

n

`
Av|U |=` Ent(µUf) ≤ C Entf. (4.48)

Moreover, for any θ ∈ (0, 1], there exists C =
(

1
θ

)O( η
b

) such that for ` = dθne:

`

n
Entf ≤ C Av|Λ|=` µ [EntΛf ] . (4.49)

We remark that Eq. (4.48) is an approximate subadditivity statement, which coincides

with Eq. (4.7) when ` = 1. On the other hand Eq. (4.49) is the uniform block factorization

statement `-UBF with ` = dθne; see Definition 4.4.1. We articulate the proof in two

steps. The first is a recursive scheme which allows one to go from a local inequality to

a global one; see Lemma 4.6.3. The second step is a control of the local inequality; see

Lemma 4.6.4.

4.6.1 Setting up the Recursion

If U ⊆ V , and τ = τU a configuration of spins on U , recall that we use notation µτ =

µ(· | τ) for the conditional distribution µU when the spins on U are given by τ . Moreover,

we write µτ,x = µ(· | τ ∪ σx) if we additionally condition on the spin σx at vertex x /∈ U

and similarly for µτ,x,y = µ(· | τ ∪ σx ∪ σy) for x, y /∈ U , so that e.g. the expression

µτ [Entµτ,x,yf ] indicates the entropy of f with respect to µ(· | τ ∪ σx ∪ σy),

Entµτ,x,yf = µτ,x,y[f log(f/µτ,x,y(f))]
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averaged over the two spins σx, σy sampled according to µτ . Define the constants αk,

k = 0, . . . , n− 2, as the largest numbers such that the inequalities

(1 + αk)Avx/∈U Entµτ (µ
τ,x(f)) ≤ Avx,y /∈U Entµτ (µ

τ,x,y(f)) , (4.50)

hold for all k = 0, . . . , n − 2, for all U ⊆ [n] with |U | = k, for all configurations τ on U

and for all functions f ≥ 0. The symbol Avx/∈U denotes the uniform average over all n− k

vertices x /∈ U , and Avx,y /∈U stands for the uniform average over all (n−k)(n−k−1) pairs

(x, y) with x, y /∈ U and x 6= y. We refer to Eq. (4.50) as the local inequality, since for

each choice of x, y, the distributions involved are concerned with the spins at two vertices

only.

Remark 4.6.2. Fix x, y /∈ U . Using µτ,xf = µτ,xµτ,x,yf , from Lemma 4.3.1 we have the

decomposition

Entµτ (µ
τ,x,y(f)) = Entµτ (µ

τ,x(f)) + µτ [Entµτ,x(µ
τ,x,y(f)] .

In particular, Entµτ (µ
τ,x,y(f)) ≥ Entµτ (µ

τ,x(f)) and therefore Eq. (4.50) is always true

with αk = 0. If µ is a product measure then the subadditivity of entropy for product

measures gives

Entµτ (µ
τ,x,y(f)) ≥ Entµτ (µ

τ,x(f)) + Entµτ (µ
τ,y(f)),

which implies the validity of Eq. (4.50) with αk = 1 for all k = 0, . . . , n− 2.

The recursion is based on the following statement, which rephrases [45, Theorem 5.4].

Lemma 4.6.3. Let αk, k = 0, . . . , n − 2, be defined by Eq. (4.50). Then, for all functions

f ≥ 0,

Av|U |=jEnt(µUf) ≤ (1− κj)Ent(f), j = 1, . . . , n− 1, (4.51)
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where

κj =

∑n−1
i=j Γi∑n−1
i=0 Γi

, Γi =
i−1∏
k=0

αk , Γ0 = 1.

Proof. The claim Eq. (4.51) follows from the fact that for all k = 1, . . . , n− 1:

Av|U |=k Ent(µUf) ≤ δkAv|U |=k+1 Ent(µUf) , δk =

∑k−1
i=0 Γi∑k
i=0 Γi

, (4.52)

since Av|U |=n Ent(µUf) = Ent(f), and δjδj+1 · · · δn−1 = (1− κj).

To prove Eq. (4.52), note that it holds for k = 1 with δ1 = 1/(1 + α0) = Γ0/(Γ0 + Γ1)

by the assumption Eq. (4.50) at τ = ∅. Next, we suppose it holds for 0 < k−1 < n−1 and

show it for k. For any |U | = k+1 andU ′ ⊆ U with |U ′| = k−1, setting {x, y} = U\U ′ and

letting τ = τU ′ be the configuration on U ′, as in Lemma 4.3.1 we have the decomposition

Ent(µUf) = Ent(µ(µUf | τU ′)) + µ
[
Ent(µUf | τU ′)

]
= Ent(µU

′
f) + µ [Entµτ (µ

τ,x,yf) | τU ′ ] . (4.53)

Averaging we obtain

Av|U |=k+1Ent(µUf) = Av|U ′|=k−1Ent(µU
′
f) (4.54)

+ Av|U ′|=k−1Avx,y /∈U ′µ [Entµτ (µ
τ,x,yf) | τU ′ ] . (4.55)

In the same way

Av|U |=kEnt(µUf) = Av|U ′|=k−1Ent(µU
′
f) (4.56)

+ Av|U ′|=k−1Avx/∈U ′µ [Entµτ (µ
τ,xf) | τU ′ ] . (4.57)

From Eq. (4.50),

Av|U |=k+1Ent(µUf)− Av|U ′|=k−1Ent(µU
′
f) (4.58)
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≥ (1 + αk−1)Av|U ′|=k−1Avx/∈U ′µ [Entµτ (µ
τ,xf) | τU ′ ] (4.59)

= (1 + αk−1)
[
Av|U |=kEnt(µUf)− Av|U ′|=k−1Ent(µU

′
f)
]
. (4.60)

Therefore,

Av|U |=k+1Ent(µUf) ≥ (1 + αk−1)Av|U |=kEnt(µUf)− αk−1Av|U ′|=k−1Ent(µU
′
f).

(4.61)

By the inductive assumption Eq. (4.52) at k − 1 we have

Av|U |=k+1Ent(µUf) ≥ (1 + αk−1 − αk−1δk−1)Av|U |=kEnt(µUf)

= δ−1
k Av|U |=kEnt(µUf).

4.6.2 Estimating Local Coefficients

The next step is an estimate on the coefficients αk appearing in Eq. (4.50).

Lemma 4.6.4. If the spin system is η-spectrally independent and b-marginally bounded

then the local inequality Eq. (4.50) holds with

αk ≥ 1− 2η

b(n− k − 1)
. (4.62)

Proof. Fix U ⊆ V , |U | = k ≤ n − 2 and τ = τU . We may assume µτ (f) = 1, which

implies µτ (µτ,x,y(f)) = µτ (µτ,x(f)) = 1 for all x, y /∈ U . For simplicity, we write Avx,y

and Avx for the averages Avx,y /∈U and Avx/∈U . Observe that

Avx,y Entµτ (µ
τ,x,y(f))− 2Avx Entµτ (µ

τ,x(f))

= Avx,y µ
τ [µτ,x,y(f) log µτ,x,y(f)− µτ,x(f) log µτ,x(f)− µτ,y(f) log µτ,y(f)]

(4.63)
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= Avx,y µ
τ

[
µτ,x,y(f) log

µτ,x,y(f)

µτ,x(f)µτ,y(f)

]
. (4.64)

Using a log(a/b) ≥ a− b for all a, b ≥ 0,

Avx,y Entµτ (µ
τ,x,y(f))− 2Avx Entµτ (µ

τ,x(f))

≥ 1− Avx,y µ
τ [µτ,x(f)µτ,y(f)]

= −Avx,y µ
τ [(µτ,x(f)− 1)(µτ,y(f)− 1)] . (4.65)

We may rewrite

Avx,y µ
τ [(µτ,x(f)− 1)(µτ,y(f)− 1)]

=
1

n− k − 1

∑
(x,a)∈P

ν(x, a)ϕ(x, a)[Jτϕ](x, a), (4.66)

where

ϕ(x, a) = µτ (f |σx = a)− 1 = [µτ,x(f)](a)− 1,

P is the set of all pairs (x, a) where x ∈ V \ U (if U is the set where τ = τU is specified)

and a ∈ [q], ν denotes the probability measure on P obtained by setting

ν(x, a) =
1

n− k
µτ (σx = a),

and Jτ : P × P 7→ R denotes the influence matrix from Definition 2.1.4. Note that in the

derivation of Eq. (4.66) we have used the fact that for each fixed y /∈ U one has

∑
a′∈[q]

ν(y, a′)ϕ(y, a′) =
1

n− k
µτ (µτ,y(f)− 1) = 0.
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Observe that Jτ is self-adjoint in L2(P , ν):

ν(x, a)Jτ (x, a; y, a′) = ν(y, a′)Jτ (y, a′;x, a). (4.67)

In particular, its eigenvalues are real. Let η ≥ 0 denote its largest eigenvalue (the eigenvalue

zero always exists since all row sums of Jτ vanish). Letting 〈·, ·〉 denote the scalar product

in L2(P , ν) we have 〈ψ, Jτψ〉 ≤ η〈ψ, ψ〉 for all ψ ∈ L2(P , ν). Therefore,

Avx,y µ
τ [(µτ,x(f)− 1)(µτ,y(f)− 1)]

=
1

n− k − 1
〈ϕ, Jτϕ〉 ≤ η

n− k − 1
〈ϕ, ϕ〉

=
η

n− k − 1
Avx µ

τ
[
(µτ,x(f)− 1)2

]
=

η

n− k − 1
Avx Varµτ (µ

τ,x(f)). (4.68)

Recalling Eq. (4.65) we have shown

Avx,y Entµτ (µ
τ,x,y(f))− 2Avx Entµτ (µ

τ,x(f))

≥ − η

n− k − 1
Avx Varµτ (µ

τ,x(f)). (4.69)

Next, observe that for every fixed x /∈ U , setting hτ (σx) = [µτ,x(f)](σx):

Varµτ (µ
τ,x(f)) =

∑
a

µτ (σx = a)(hτ (a)− 1)2

≤ 1

b

(∑
a

µτ (σx = a)|hτ (a)− 1|

)2

where b = minx/∈U mina µ
τ (σx = a), as in Definition 2.1.1, with the minimum over a

restricted to spin values that are allowed at x, that is such that µτ (σx = a) > 0, and we

have used
∑

i a
2
i ≤ (

∑
i ai)

2 for all ai ≥ 0. Pinsker’s inequality shows that

∑
a

µτ (σx = a)|hτ (a)− 1| ≤
√

2 Entµτ (µτ,x(f)).
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It follows that

Varµτ (µ
τ,x(f)) ≤ 2

b
Entµτ (µ

τ,x(f)). (4.70)

Inserting Eq. (4.70) into Eq. (4.69) concludes the proof.

4.6.3 Proof of Theorem 4.6.1

From Lemma 4.6.3, we see that Eq. (4.48) holds with C = n
`
(1− κ`). From Lemma 4.6.4

if follows that

αk ≥ max{1−R/(n− k − 1), 0}, R = d2η/be.

Using this bound in the definition of the coefficients κ` and rearranging, see Section 2.2 of

[45], it is not hard to see that for any 1 ≤ ` ≤ n− 1:

κ` ≥
(n− `− 1) · · · (n− `−R)

(n− 1) · · · (n−R)
. (4.71)

In particular,
n

`
(1− κ`) ≤

n

`

(
1− (n− `− 1) · · · (n− `−R)

(n− 1) · · · (n−R)

)
.

Remarkably, the expression in the right hand side above is decreasing with `, and therefore

it is always less than R + 1, its value at ` = 1. This shows that Eq. (4.48) holds with

C ≤ R + 1 = O(1 + η
b
).

To prove Eq. (4.49), we start with the decomposition

Av|Λ|=` µ [EntΛf ] = Ent(f)− Av|U |=n−` Ent
[
µUf

]
,

which follows from Lemma 4.3.1. Therefore Lemma 4.6.3 implies that Eq. (4.49) holds
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with C = `
n κn−`

. Using Eq. (4.71) we see that

`

n κn−`
≤ (n− 1) · · · (n−R)

(`− 1) · · · (`−R)
.

In particular, if ` = dθne with θ ∈ (0, 1] fixed, then for all sufficiently large n one has

`
n κn−`

≤ (1
θ
)O(R). This ends the proof of Theorem 4.6.1.
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CHAPTER 5

SPECTRAL INDEPENDENCE VIA STRONG SPATIAL MIXING APPROACH:

2-SPIN SYSTEMS

In this chapter, we establish spectral independence for general 2-spin systems. For the

antiferromagnetic case we show that spectral independence holds when the parameters lie

in the so-called tree uniqueness region; this matches the parameter regime of the strong

spatial mixing properties. This chapter is based on [44].

5.1 Optimal Mixing Results for 2-Spin Systems

Given an n-vertex graph G = (V,E), configurations of the 2-spin model are the 2n assign-

ments of spins 0, 1 to the vertices. A 2-spin system is defined by three parameters: edge

weights β, γ > 0 and a vertex weight λ > 0. Edge parameter β controls the (relative)

strength of interaction between neighboring 1-spins, γ corresponds to neighboring 0-spins,

and λ is the external field applied to vertices with 1-spins.

Every spin configuration σ ∈ {0, 1}V is assigned a weight

wG(σ) = βm1(σ)γm0(σ)λn1(σ),

where, for spin s ∈ {0, 1}, ms(σ) = #{uv ∈ E : σu = σv = s} is the number of

monochromatic edges with spin s, and n1(σ) = #{v ∈ V : σv = 1} is the number

of vertices with spin 1 (as is standard, the parameters are normalized so we can avoid

two additional parameters). The Gibbs distribution over spin configurations is given by

µG(σ) = wG(σ)
ZG(β,γ,λ)

, where ZG(β, γ, λ) =
∑

σ∈{0,1}V β
m1(σ)γm0(σ)λn1(σ) is the partition

function.

There are two examples of particular interest: the hardcore model and the Ising model.
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When β = 0 and γ = 1 then the only configurations with non-zero weight are independent

sets of G and the weight of an independent set σ is w(σ) = λ|σ|; this example is known as

the hardcore model where the parameter λ corresponds to the fugacity.

In the case β = γ then the important quantity is the total number of monochromatic

edges m(σ) = m0(σ) +m1(σ) and the weight of a configuration σ is w(σ) = βm(σ)λn1(σ);

this is the classical Ising model where the parameter β corresponds to the inverse temper-

ature and λ is the external field (λ = 1 means no external field). Note, when β > 1 then

the model is ferromagnetic as neighboring vertices prefer to have the same spin, and β < 1

is the antiferromagnetic Ising model. In the general 2-spin system, the model is ferromag-

netic when βγ > 1 and antiferromagnetic when βγ < 1. (When βγ = 1 we get a trivial

product distribution.)

It was long conjectured that the simple Glauber dynamics is rapidly mixing in the tree

uniqueness region. This was recently proved by Anari, Liu, and Oveis Gharan [4] for

the hardcore model; they proved, for all δ ∈ (0, 1), the mixing time is nO(exp(1/δ)) when-

ever λ ≤ (1 − δ)λc(∆) where λc(∆) = (∆−1)∆−1

(∆−2)∆ is the tree uniqueness/non-uniqueness

phase transition threshold. We improve this result and establish optimal mixing time of the

Glauber dynamics in the uniqueness region.

Theorem 1.1.1 (Hard-core Model). Let ∆ ≥ 3 be an integer and let δ ∈ (0, 1) be a real.

For every n-vertex graph G of maximum degree ∆ and every 0 < λ ≤ (1 − δ)λc(∆), the

mixing time of the Glauber dynamics for the hardcore model on G with fugacity λ is at

most Cn log n where C = C(∆, δ) is a constant independent of n.

The spectral independence bound we obtain here is better than the previous result [4].

Our improved result follows from a simpler, cleaner proof approach which enables us to

extend our result to a wide variety of 2-spin models, matching the key results for the corre-

lation decay algorithm with vastly improved running times.

Our proof approach unifies the three major algorithmic tools for approximate counting:

correlation decay, polynomial interpolation, and MCMC. Most known results for both cor-
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relation decay and polynomial interpolation approach are proved by showing contraction

of a suitably defined potential function on the so-called tree recursions; the tree recursions

arise as a result of Weitz’s self-avoiding walk tree that we will describe in more detail later

in this chapter. A recent work of Shao and Sun [118] unifies these two approaches by show-

ing that the contraction which is normally used to prove efficiency of the correlation decay

algorithm, also implies (under some additional analytic conditions) that the polynomial

interpolation approach is efficient.

Here we prove that this same contraction of a potential function also implies optimal

mixing time of the Glauber dynamics; see Definition 5.2.1 and Theorem 5.2.2 for a detailed

statement. Our proof utilizes several new tools concerning Weitz’s self-avoiding walk tree,

which are detailed in Section 5.4. In particular, we show that the partition function of a

graph G divides the partition function of Weitz’s self-avoiding walk tree; see Lemma 5.4.1.

This result is potentially of independent interest for establishing absence of zeros for the

partition function with complex parameters, as it enables one to consider the self-avoiding

walk tree. This result also yields a new, useful equivalence for bounding the influence in a

graph in terms of the self-avoiding tree, which strengthens the previously known connection

by Weitz [127]; see Lemma 5.4.1 for details.

As an easy consequence we obtain rapid mixing for the Glauber dynamics for the an-

tiferromagnetic Ising model in the tree uniqueness region. In terms of the edge activity,

the two critical points for the Ising model on the ∆-regular tree are at βc(∆) = ∆−2
∆

and

βc(∆) = 1
βc(∆)

= ∆
∆−2

; the first lies in the antiferromagnetic regime, while the second lies

in the ferromagnetic regime. If βc(∆) < β < βc(∆), then uniqueness holds for all external

field λ on the ∆-regular tree.

As mentioned earlier, for the ferromagnetic Ising model, an FPRAS was known for

general graphs [77]. Furthermore, Mossel and Sly [106] proved O(n log n) mixing time of

the Glauber dynamics for the ferromagnetic Ising model when 1 < β < βc(∆). However,

rapid mixing for the antiferromagnetic Ising model in the tree uniqueness region was not
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known.

We provide the following optimal mixing result for the case β > βc(∆). Note, when

β ≤ βc there is an additional uniqueness region for certain values of the external field λ;

this region is covered by Theorem 1.1.3.

Theorem 1.1.2 (Ising model). Let ∆ ≥ 3 be an integer and let δ ∈ (0, 1) be a real. For

every n-vertex graphG of maximum degree ∆, every β ∈ [∆−2+δ
∆−δ ,

∆−δ
∆−2+δ

], and every λ > 0,

the mixing time of the Glauber dynamics for the Ising model on G with edge activity β and

external field λ is at most Cn log n where C = C(∆, δ) is a constant independent of n.

Our results for the hardcore and Ising models fit within a larger framework of general

antiferromagnetic 2-spin systems. Recall that the antiferromagnetic case is when βγ < 1.

For general 2-spin systems the appropriate tree phase transition is more complicated

as there are models where the tree uniqueness threshold is not monotone in ∆. Hence the

appropriate notion is “up-to-∆ uniqueness” as considered by [89]. Roughly speaking, we

say uniqueness with gap δ ∈ (0, 1) holds on the d-regular tree if for every integer ` ≥ 1, all

vertices at distance ` from the root have total “influence” . (1− δ)` on the marginal of the

root. We say up-to-∆ uniqueness with gap δ holds if uniqueness with gap δ holds on the

d-regular tree for all 1 ≤ d ≤ ∆; see Section 5.3 for the precise definition.

Both Theorems 1.1.1 and 1.1.2 are corollaries of the following general optimal mixing

result which holds for general antiferromagnetic 2-spin systems in the entire tree unique-

ness region.

Theorem 1.1.3 (Antiferromagnetic 2-Spin Systems). Let ∆ ≥ 3 be an integer and let

δ ∈ (0, 1) be a real. Let (β, γ, λ) with 0 ≤ β ≤ γ, γ > 0, βγ < 1 and λ > 0 be parameters

specifying an antiferromagnetic 2-spin system which is up-to-∆ unique with gap δ. For

every n-vertex graph G of maximum degree ∆, the mixing time of the Glauber dynamics

for the antiferromagnetic 2-spin system on G with parameters (β, γ, λ) is at most Cn log n

where C = C(∆, δ, β, γ, λ) is a constant independent of n.
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We also match existing correlation decay results [67, 118] for ferromagnetic 2-spin

models; see Section 5.10 for results and proofs.

5.2 Establishing Spectral Independence by the Potential Method

The tree recursion is very useful in the study of approximating counting. Consider a tree

rooted at r. Suppose that r has d children, denoted by v1, . . . , vd. For 1 ≤ i ≤ ∆i we

define Tvi to be the subtree of T rooted at vi that contains all descendant of vi. Let Rr =

µT (σr = 1)/µT (σr = 0) denote the marginal ratio of the root, and Rvi =
µTvi

(σvi=1)

µTvi
(σvi=0)

for

each subtree. The tree recursion is a formula that computes Rr given Rv1 , . . . , Rvd , due to

the independence of Tvi’s. More specifically, we can write Rr = Fd(Rv1 , . . . , Rvd) where

Fd : [0,+∞]d → [0,+∞] is a multivariate function such that for (x1, . . . , xd) ∈ [0,∞]d,

Fd(x1, . . . , xd) = λ
d∏
i=1

βxi + 1

xi + γ
.

In this chapter, however, we pay particular interest in the log of marginal ratios. The

reason is that we will carefully study the pairwise influence matrix ΨG of the Gibbs distri-

bution µG, introduced in [4] and defined as for every r, v ∈ V

ΨG(r → v) = µG(σv = 1 | σr = 1)− µG(σv = 1 | σr = 0).

One crucial observation we make in this chapter is that the influence ΨG(r → v) of r

on v can be viewed as the derivative of logRr with respect to the log external field at v

(see Lemma 5.5.3). Thus, it is more convenient for us to work with the log ratios. To

this end, we rewrite the tree recursion as logRv = Hd(logRv1 , . . . , logRvd) where Hd :

[−∞,+∞]d → [−∞,+∞] is a function such that for (y1, . . . , yd) ∈ [−∞,+∞]d,

Hd(y1, . . . , yd) = log λ+
d∑
i=1

log

(
βeyi + 1

eyi + γ

)
.
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Observe that H = log ◦F ◦ exp. Moreover, we define

h(y) = − (1− βγ)ey

(βey + 1)(ey + γ)

for y ∈ [−∞,+∞], so that ∂
∂yi
Hd(y1, . . . , yd) = h(yi) for each i.

To prove our main results, we use the potential method, which has been widely used

to establish the decay of correlation. By choosing a suitable potential function for the log

ratios, we show that the total influence from a given vertex decays exponentially with the

distance, and thus establish rapid mixing of the Glauber dynamics. Let us first specify

our requirements on the potential. For every integer d ≥ 0, we define a bounded interval

Jd which contains all log ratios at a vertex of degree d. More specifically, we let Jd =[
log(λβd), log(λ/γd)

]
when βγ < 1, and Jd =

[
log(λ/γd), log(λβd)

]
when βγ > 1.

Furthermore, define J =
⋃∆−1
d=0 Jd to be the interval containing all log ratios with degree

less than ∆.

Definition 5.2.1 ((α, c)-Potential function). Let ∆ ≥ 3 be an integer. Let β, γ, λ be reals

such that 0 ≤ β ≤ γ, γ > 0 and λ > 0. Let Ξ : [−∞,+∞] → (−∞,+∞) be a

differentiable and increasing function with image S = Ξ[−∞,+∞] and derivative ψ = Ξ′.

For any α ∈ (0, 1) and c > 0, we say Ξ is an (α, c)-potential function with respect to ∆

and (β, γ, λ) if it satisfies the following conditions:

1. (Contraction) For every integer d such that 1 ≤ d < ∆ and every (ỹ1, . . . , ỹd) ∈ Sd,

we have ∥∥∇HΞ
d (ỹ1, . . . , ỹd)

∥∥
1

=
d∑
i=1

ψ(y)

ψ(yi)
· |h(yi)| ≤ 1− α

where HΞ
d = Ξ ◦Hd ◦ Ξ−1, yi = Ξ−1(ỹi) for 1 ≤ i ≤ d, and y = Hd(y1, . . . , yd).

2. (Boundedness) For every y1, y2 ∈ J , we have

ψ(y2)

ψ(y1)
· |h(y1)| ≤ c

∆
.
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In the definition of (α, c)-potential, one should think of y as the log marginal ratio at

a vertex and the potential function is of logR. The following theorem establishes rapid

mixing of the Glauber dynamics given an (α, c)-potential function.

Theorem 5.2.2. Let ∆ ≥ 3 be an integer. Let β, γ, λ be reals such that 0 ≤ β ≤ γ,

γ > 0 and λ > 0. Suppose that there is an (α, c)-potential with respect to ∆ and (β, γ, λ)

for some α ∈ (0, 1) and c > 0. Then for every n-vertex graph G of maximum degree

∆, the Gibbs distribution of the 2-spin system on G with parameters (β, γ, λ) is spectrally

independent with constant

η =
c

α
.

We outline our proofs in Section 5.4. Note that in both Definition 5.2.1 and Theo-

rem 5.2.2, the constant c is allowed to depend on the maximum degree ∆ and parameters

(β, γ, λ) in general. For example, a straightforward black-box application of the potential

in [89] would give c = Θ(∆) for the Boundedness condition. However, this is undesirable

for graphs with potentially unbounded degrees. One of our contributions is that we show

the Boundedness condition holds for a universal constant c independent of ∆ and (β, γ, λ).

In Section 5.8, we give a slightly more general definition of (α, c)-potentials, which

relaxes the Boundedness condition, and is necessary for our analysis of antiferromagnetic

2-spin systems with 0 ≤ β < 1 < γ. Theorem 5.2.2 still holds for this larger class of

potentials.

We remark that in all previous works of the potential method, results and proofs are

always presented in terms of Fd, the tree recursion of R, and Φ, a potential function of R.

In fact, our results can also be translated into the language of (Fd,Φ). To see this, since

Hd = log ◦Fd◦exp, it is straightforward to check thatHΞ
d = Ξ◦Hd◦Ξ−1 = Φ◦Fd◦Φ−1 =

FΦ
d if we pick Φ = Ξ ◦ log, and thereby ∇HΞ

d = ∇FΦ
d . This implies that the Contraction

condition in Definition 5.2.1 holds for (Hd,Ξ) if and only if the corresponding contraction

condition holds for (Fd,Φ). The Boundedness condition can also be stated equivalently for
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(Fd,Φ). Nevertheless, in this chapter we choose to work with (Hd,Ξ) for the following two

reasons. First, as mentioned earlier, the fact that ΨG(r → v) is a derivative of logRr makes

it natural to consider the tree recursion for the log ratios. Indeed, it is easier and cleaner

to present our results and proofs using (Hd,Ξ) directly rather than switching to (Fd,Φ).

Second, the potential function Ξ we will use is obtained from the exact potential Φ in [89],

by the transformation Ξ = Φ ◦ exp. (To be more precise, we also multiply a constant

factor which only simplifies our calculation and does not matter much; also notice that [89]

denotes the potential function by ϕ and its derivative by Φ = ϕ′.) It is intriguing to notice

that the derivative of this potential is simply ψ =
√
|h|. Then the Contraction condition has

a nice form:
∑d

i=1

√
h(y)h(yi) ≤ 1− α; and the Boundedness condition only involves an

upper bound on h(y). This seems to shed some light on the mysterious potential function

Φ from [89], and also indicates that Hd is a meaningful variant of the tree recursion to

consider. To add one more evidence, for a lot of cases (e.g., ∆−2
∆

<
√
βγ < ∆

∆−2
) where

the potential Φ = log is picked, that just means we can pick Ξ to be the identity function

and Hd itself is contracting without any nontrivial potential.

5.3 Preliminaries for 2-Spin Systems

Here we give relevant definitions for 2-spin systems that are used in this chapter.

Uniqueness Let ∆ ≥ 3 be an integer or ∆ =∞. Let β, γ, λ be reals such that 0 ≤ β ≤ γ,

γ > 0, βγ < 1 and λ > 0. For 1 ≤ d < ∆, define

fd(R) = λ

(
βR + 1

R + γ

)d

and denote the unique fixed point of fd by R∗d. For δ ∈ (0, 1), we say the parameters

(β, γ, λ) are up-to-∆ unique with gap δ if |f ′d(R∗d)| < 1− δ for all 1 ≤ d < ∆.
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Ratio and Influence Consider the 2-spin system on a graph G = (V,E). Let Λ ⊆ V and

σΛ ∈ {0, 1}Λ. For all v ∈ V \Λ, we define the marginal ratio at v to be

RσΛ
G (v) =

µG(σv = 1 | σΛ)

µG(σv = 0 | σΛ)
.

For all u, v ∈ V \Λ, recall that we define the (pairwise) influence of u on v by

ΨσΛ
G (u→ v) = µG(σv = 1 | σu = 1, σΛ)− µG(σv = 1 | σu = 0, σΛ).

Write ΨσΛ
G for the (pairwise) influence matrix whose entries are given by ΨσΛ

G (u→ v).

Weitz’s Self-Avoiding Walk Tree Let G = (V,E) be a connected graph and r ∈ V be a

vertex ofG. The self-avoiding walk (SAW) tree is defined as follows. Suppose that there is a

total ordering of the vertex set V . A self-avoiding walk from r is a path r = v0−v1−· · ·−v`

such that vi 6= vj for all 0 ≤ i < j ≤ `. The SAW tree TSAW(G, r) is a tree rooted at r,

consisting of all self-avoiding walks r = v0 − v1 − · · · − v` with deg(v`) = 1, and those

appended with one more vertex that closes the cycle (i.e., r = v0 − v1 − · · · − v` − vi for

some 0 ≤ i ≤ ` − 2 such that {v`, vi} ∈ E). Note that a vertex of G might have many

copies in the SAW tree, and the degrees of vertices are preserved except for leaves. See

Fig. 5.1 for an example.

We can define a 2-spin system on TSAW(G, r) with the same parameters (β, γ, λ), in

which some of the leaves are fixed to a particular spin. More specifically, for a self-avoiding

walk r = v0−v1−· · ·−v` appended with vi, we fix vi to be spin 1 if vi+1 < v` with respect

to the total ordering on V , and spin 0 if vi+1 > v`. For each v ∈ V we denote the set of

all free (unfixed) copies of v in TSAW(G, r) by Cv. For Λ ⊆ V and a partial configuration

σΛ ∈ {0, 1}Λ, we define the SAW tree with conditioning σΛ by assigning the spin σv to

every copy v̂ of v from Cv and removing all descendants of v̂, for each v ∈ Λ. Note that in

general, different copies of v from Cv can receive different spin assignments. Finally, in the
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Figure 5.1: A graph G and the self-avoiding walk tree TSAW(G, r) rooted at r. Vertices with
the same label in TSAW(G, r) are copies of the same vertex from G. ( /#: fixed to spin
1/0.)

case that every vertex v has a distinct field λv, all copies of v from Cv will have the same

field λv in the SAW tree.

5.4 Proof Outline

In this section, we give an overview of our proof approach.

Self-Avoiding Walk Trees Preserve Influences From standard linear algebra, we know

that the maximum eigenvalue of ΨσΛ
G is upper bounded by both the 1-norm ‖ΨσΛ

G ‖1 =

maxr∈V
∑

v∈V |Ψ
σΛ
G (v → r)|, which corresponds to total influences on a vertex r, and the

infinity-norm ‖ΨσΛ
G ‖∞ = maxr∈V

∑
v∈V |Ψ

σΛ
G (r → v)|, corresponding to total influences

of r. In [4] the authors use ‖ΨσΛ
G ‖1 as an upper bound on λmax(ΨσΛ

G ). Roughly speaking,

they show that the sum of absolute influences on a fixed vertex r, is upper bounded by

the maximum absolute influences on r in the self-avoiding walk tree rooted at r, over all

boundary conditions. Here in this chapter, we will use ‖ΨσΛ
G ‖∞ to upper bound λmax(ΨσΛ

G )

instead. In fact, much more is true if we look at the influences from r in the self-avoiding
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tree. We show that for every vertex v ∈ V , the influence ΨσΛ
G (r → v) in G is preserved

in the self-avoiding walk tree T = TSAW(G, r) rooted at r, in the form of sum of influences

ΨσΛ
T (r → v̂) over all copies v̂ of v.

The way we establish this fact is by viewing the partition function as a polynomial in

λ. In fact, it will be useful to consider the more general case with an arbitrary external

field λv for every v ∈ V . Let λ = {λv : v ∈ V } denote the fields. For Λ ⊆ V and

σΛ ∈ {0, 1}Λ, the weight of σ ∈ {0, 1}V \Λ conditional on σΛ is defined to be wG(σ |

σΛ) = βm1(σ|σΛ)γm0(σ|σΛ)
∏

v∈V \Λ λ
σv
v where mi(· | σΛ) is the number of i-i edges with at

least one endpoint in V \Λ for i = 0, 1. Furthermore, ZσΛ
G =

∑
σ∈{0,1}V \Λ wG(σ | σΛ) is

the partition function conditioned on σΛ. We shall view β and γ as some fixed constants

and think of λ as n = |V | variables. In this sense, we regard the weights wG(σ | σΛ)

as monomials in λ and the partition function ZσΛ
G as a polynomial in λ. Moreover, the

marginal ratios RσΛ
G (v) and the influences ΨσΛ

G (r → v) for r, v ∈ V are all functions in

λ. Our main result is that the partition function of G divides that of TSAW(G, r) for each

r ∈ V . From that, we show that the SAW tree preserves influences of the root, as well as

re-establishing Weitz’s celebrated result [127], see Lemma 5.5.4.

Lemma 5.4.1. Let G = (V,E) be a connected graph, r ∈ V be a vertex and Λ ⊆ V \{r}

such that G\Λ is connected. Let T = TSAW(G, r) be the self-avoiding walk tree of G

rooted at r. Then for every σΛ ∈ {0, 1}Λ, ZσΛ
G divides ZσΛ

T . More precisely, there exists a

polynomial P σΛ
G,r = P σΛ

G,r(λ) independent of λr such that

ZσΛ
T = ZσΛ

G · P
σΛ
G,r. (5.1)

As a corollary, for each vertex v ∈ V ,

IσΛ
G (r → v) =

∑
v̂∈Cv

IσΛ
T (r → v̂), (5.2)

where Cv is the set of all free (unfixed) copies of v in T .
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Remark 5.4.2. We emphasize that for the purposes of bounding the total influence of a ver-

tex in G, only Eq. (5.2) of Lemma 5.4.1 is needed, which can be proved in a purely combi-

natorial fashion. However, we believe the divisibility property Eq. (5.1) of the multivariate

partition function of G and its self-avoiding walk tree may be of independent interest.

We note that a univariate version of the divisibility statement Eq. (5.1) has already

appeared in [20] for the hardcore model and [93] for the zero-field Ising model in the study

of complex roots of the partition function. From Lemma 5.4.1, we can get

∑
v∈V

|ΨσΛ
G (r → v)| ≤

∑
v∈VT

|ΨσΛ
T (r → v)|

for any fixed r. That means, we only need to upper bound the sum of all influences for

trees, in order to get an upper bound on λmax(ΨσΛ
G ).

Decay of Influences Given a Good Potential The tree recursion provides us a great tool

for computing the (log) ratios of vertices recursively for trees. As we show in Lemma 5.5.3,

the influence ΨσΛ
G (r → v) is in fact a version of derivative of the log marginal ratio at r.

Thus, the tree recursion can be used naturally to relate these influences. We then apply

the potential method, which has been widely used in literature to establish the decay of

correlations (strong spatial mixing). The following lemma shows that the sum of absolute

influences to distance k has exponential decay with k, which can be thought of as the decay

of pairwise influences.

Lemma 5.4.3. If there exists an (α, c)-potential function Ξ with respect to ∆ and (β, γ, λ)

where α ∈ (0, 1) and c > 0, then for every Λ ⊆ VT\{r}, σΛ ∈ {0, 1}Λ and all integers

k ≥ 1, ∑
v∈Lr(k)

|IσΛ
T (r → v)| ≤ c · (1− α)k−1

where Lr(k) denote the set of all free vertices at distance k away from r.

Theorem 5.2.2 is then proved by combining Lemma 5.4.1 and Lemma 5.4.3. We leave
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its proof to Section 5.11.

Find a Good Potential As our final step, we need to find an (α, c)-potential function as

defined in Definition 5.2.1. The potential Ξ we choose is exactly the one from [89], adapted

to the log marginal ratios and the tree recursion H (see Section 5.7 for more details). We

show that if the parameters (β, γ, λ) are up-to-∆ unique with gap δ ∈ (0, 1) and either
√
βγ > ∆−2

∆
or γ ≤ 1, then Ξ is an (α, c)-potential.

Lemma 5.4.4. Let ∆ ≥ 3 be an integer. Let β, γ, λ be reals such that 0 ≤ β ≤ γ, γ > 0,

βγ < 1 and λ > 0. Assume that (β, γ, λ) is up-to-∆ unique with gap δ ∈ (0, 1). Define the

function Ξ implicitly by

Ξ′(y) = ψ(y) =

√
(1− βγ)ey

(βey + 1)(ey + γ)
=
√
|h(y)|, Ξ(0) = 0. (5.3)

If
√
βγ > ∆−2

∆
, then Ξ is an (α, c)-potential function with α ≥ δ/2 and c ≤ 1.5. If

√
βγ ≤ ∆−2

∆
and γ ≤ 1, then Ξ is an (α, c)-potential with α ≥ δ/2 and c ≤ 18; we can

further take c ≤ 4 if β = 0.

We deduce Theorem 1.1.3 for the case
√
βγ > ∆−2

∆
or γ ≤ 1 from Theorem 5.2.2 and

Lemma 5.4.4. The proof of it can be found in Section 5.11. The case that
√
βγ ≤ ∆−2

∆

and γ > 1 is trickier. As discussed in Section 5 of [89], when
√
βγ ≤ ∆−2

∆
and γ > 1, for

some λ > 0 the spin system lies in the uniqueness region for arbitrary graphs, even with

unbounded degrees (i.e., up-to-∞ unique). Thus, in this case the total influences of a vertex

can be as large as Θ(∆/δ), resulting in nΘ(∆/δ) mixing time. To deal with this, we consider

a suitably weighted sum of absolute influences of a fixed vertex, which also upper bounds

the maximum eigenvalue of the influence matrix. Definition 5.2.1 and Theorem 5.2.2 are

then modified to a slightly stronger version. The statements and proofs for this case are

presented in Section 5.8.

The rest of the chapter is organized as follows. In Section 5.5 we prove Lemma 5.4.1
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about properties of the SAW tree. In Section 5.6 we establish Lemma 5.4.3 regarding

the decay of influences by the potential method. We verify the Contraction condition in

Section 5.7 for our choice of potential. Section 5.8 is devoted to the case that
√
βγ ≤ ∆−2

∆

and γ > 1, where a more general version of Definition 5.2.1 and Theorem 5.2.2 is required.

In Section 5.9 we verify the Boundedness condition and its generalization for our potential

in all cases. We consider ferromagnetic spin systems in Section 5.10. Finally, we prove all

of our main results in Section 5.11.

5.5 Preservation of Influences for Self-Avoiding Walk Trees

In this section we show that the self-avoiding walk (SAW) tree, introduced in [127] (see

also [117]), maintains all the influence of the root, and thus establishes Lemma 5.4.1. To

do this, we show that the partition function of G, viewed as a polynomial of the external

fields λ, divides that of the SAW tree. From there we prove that the influence of the root

vertex r on another vertex v in G, is exactly equal to that on all copies of v in the SAW

tree. Using our proof approach, we show that the marginal of the root is maintained in the

SAW tree, re-establishing Weitz’s celebrated result [127], and also all pairwise covariances

concerned with v are preserved.

Theorem 5.5.1. Let G = (V,E) be a connected graph, r ∈ V be a vertex and Λ ⊆ V \{r}

such that G\Λ is connected. Let T = TSAW(G, r) be the self-avoiding walk tree of G

rooted at r. Then for every σΛ ∈ {0, 1}Λ, ZσΛ
G divides ZσΛ

T . More precisely, there exists a

polynomial P σΛ
G,r = P σΛ

G,r(λ) such that

ZσΛ
T = ZσΛ

G · P
σΛ
G,r.

Moreover, the polynomial P σΛ
G,r is independent of λr.

Remark 5.5.2. The proof of Theorem 5.5.1 can be adapted to give a purely combinatorial

proof of Eq. (5.2) in Lemma 5.4.1. Like in the proof of [127, Theorem 3.1], one can
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proceed via vertex splitting and telescoping, where instead of telescoping a product of

marginal ratios, one instead telescopes a sum of single-vertex influences.

We remark that [20] proved a univariate version of Theorem 5.5.1 for the hardcore

model, and [93] showed a similar result for the zero-field Ising model with a uniform edge

weight. Our result holds for all 2-spin systems and arbitrary fields for each vertex. We can

also generalize it to arbitrary edge weights for each edge in a straightforward fashion. It

is crucial that the quotient polynomial P σΛ
G,r is independent of the field λr at the root, from

which we can deduce the preservation of marginal and influences of the root immediately.

Before proving Theorem 5.5.1, we first give a few consequences of it. For all u, v ∈

V \Λ, we define the marginal at v as MσΛ
G (v) = µG(v = 1 | σΛ) (henceforth we write v = i

for the event σv = i for convenience), and the covariance of u and v as

KσΛ
G (u, v) = µG(u = v = 1 | σΛ)− µG(u = 1 | σΛ)µG(v = 1 | σΛ).

The following lemma relates the quantities we are interested in with appropriate derivatives

of the (log) partition function. Parts 1 and 2 of the lemma are folklore.

Lemma 5.5.3. For every graph G = (V,E), Λ ⊆ V and σΛ ∈ {0, 1}Λ, the following

holds:

1. For all v ∈ V , (
λv

∂

∂λv

)
logZσΛ

G = MσΛ
G (v);

2. For all u, v ∈ V ,

(
λv

∂

∂λv

)(
λu

∂

∂λu

)
logZσΛ

G =

(
λv

∂

∂λv

)
MσΛ

G (u) = KσΛ
G (u, v);

3. For all u, v ∈ V , (
λv

∂

∂λv

)
logRσΛ

G (u) = ΨσΛ
G (u→ v).
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Proof. The first two parts are standard. We include the proofs of these two facts for com-

pleteness. To see the first equality, we compute directly and get

(
λv

∂

∂λv

)
logZσΛ

G =
1

ZσΛ
G

·
(
λv

∂

∂λv

)
ZσΛ
G

=
1

ZσΛ
G

∑
σ∈{0,1}V \Λ

(
λv

∂

∂λv

)(
βm1(σ)γm0(σ)

∏
w∈V

λσww

)

=
1

ZσΛ
G

∑
σ∈{0,1}V \Λ

σv

(
βm1(σ)γm0(σ)

∏
w∈V

λσww

)

=
∑

σ∈{0,1}V \Λ
σv · µG(σ | σΛ) = MσΛ

G (v).

For Part 2, using the result above, we can also get

(
λv

∂

∂λv

)(
λu

∂

∂λu

)
logZσΛ

G

=

(
λv

∂

∂λv

)(
1

ZσΛ
G

·
(
λu

∂

∂λu

)
ZσΛ
G

)
=

1

ZσΛ
G

·
(
λv

∂

∂λv

)(
λu

∂

∂λu

)
ZσΛ
G −

1

(ZσΛ
G )2

·
(
λv

∂

∂λv

)
ZσΛ
G ·

(
λu

∂

∂λu

)
ZσΛ
G

=
1

ZσΛ
G

·
(
λv

∂

∂λv

) ∑
σ∈{0,1}V \Λ

σu

(
βm1(σ)γm0(σ)

∏
w∈V

λσww

)−MσΛ
G (u) ·MσΛ

G (v)

=
1

ZσΛ
G

∑
σ∈{0,1}V \Λ

σu ·
(
λv

∂

∂λv

)(
βm1(σ)γm0(σ)

∏
w∈V

λσww

)
−MσΛ

G (u) ·MσΛ
G (v)

=
1

ZσΛ
G

∑
σ∈{0,1}V \Λ

σu · σv

(
βm1(σ)γm0(σ)

∏
w∈V

λσww

)
−MσΛ

G (u) ·MσΛ
G (v)

=
∑

σ∈{0,1}V \Λ
σu · σv · µG(σ | σΛ)−MσΛ

G (u) ·MσΛ
G (v)

= KσΛ
G (u, v).
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For Part 3, we deduce from Part 2 that

(
λv

∂

∂λv

)
logRσΛ

G (u) =

(
λv

∂

∂λv

)
log

(
MσΛ

G (u)

1−MσΛ
G (u)

)

=

(
λv

∂
∂λv

)
MσΛ

G (u)

MσΛ
G (u) (1−MσΛ

G (u))

=
KσΛ
G (u, v)

KσΛ
G (u, u)

.

It remains to show that

ΨσΛ
G (u→ v) =

KσΛ
G (u, v)

KσΛ
G (u, u)

,

which actually holds for any two binary random variables. To see this, we first compute

KσΛ
G (u, u) ·ΨσΛ

G (u→ v) by definition:

KσΛ
G (u, u) ·ΨσΛ

G (u→ v)

= µG(u = 1 | σΛ) · µG(u = 0 | σΛ) · [µG(v = 1 | u = 1, σΛ)− µG(v = 1 | u = 0, σΛ)]

= µG(u = 1, v = 1 | σΛ) · µG(u = 0 | σΛ)− µG(u = 1 | σΛ) · µG(u = 0, v = 1 | σΛ)

= µG(u = 1, v = 1 | σΛ) · µG(u = 0, v = 0 | σΛ)

− µG(u = 1, v = 0 | σΛ) · µG(u = 0, v = 1 | σΛ).

Meanwhile, the covariance can be written as

KσΛ
G (u, v) = µG(u = 1, v = 1 | σΛ)− µG(u = 1 | σΛ) · µG(v = 1 | σΛ)

= µG(u = 1, v = 1 | σΛ) · µG(u = 0, v = 0 | σΛ)

− µG(u = 1, v = 0 | σΛ) · µG(u = 0, v = 1 | σΛ).

This shows that ΨσΛ
G (u→ v) = KσΛ

G (u, v)/KσΛ
G (u, u) and thus establishes Part 3.

We deduce Lemma 5.4.1 from Theorem 5.5.1 and the second item of the following

lemma. The proof of Theorem 5.5.1 will be presented soon.

116



Lemma 5.5.4. Let G = (V,E) be a connected graph, r ∈ V be a vertex and Λ ⊆ V \{r}

such that G\Λ is connected. Let T = TSAW(G, r) be the self-avoiding walk tree of G rooted

at r. Then for every σΛ ∈ {0, 1}Λ we have:

1. ([127, Theorem 3.1]) Preservation of marginal of the root r:

MσΛ
G (r) = MσΛ

T (r) and RσΛ
G (r) = RσΛ

T (r);

2. Preservation of covariances and influences of r: for every v ∈ V ,

KσΛ
G (r, v) =

∑
v̂∈Cv

KσΛ
T (r, v̂) and ΨσΛ

G (r → v) =
∑
v̂∈Cv

ΨσΛ
T (r → v̂).

where Cv is the set of all free (unfixed) copies of v in T .

Proof. By Theorem 5.5.1, there exists a polynomial P σΛ
G,r = P σΛ

G,r(λ) such that ZσΛ
T =

ZσΛ
G · P

σΛ
G,r and P σΛ

G,r is independent of λr. Then it follows from Lemma 5.5.3 that

MσΛ
T (r) =

(
λr

∂

∂λr

)
logZσΛ

T

=

(
λr

∂

∂λr

)(
logZσΛ

G + logP σΛ
G,r

)
=

(
λr

∂

∂λr

)
logZσΛ

G

= MσΛ
G (r),

and therefore RσΛ
T (r) = RσΛ

G (r). For the second item, again from Lemma 5.5.3 we get

KσΛ
G (r, v) =

(
λv

∂

∂λv

)
MσΛ

G (r) =

(
λv

∂

∂λv

)
MσΛ

T (r).

Recall that for the spin system on the SAW tree T , every free copy v̂ of v from Cv has the

same external field λv̂ = λv. Then, by the chain rule of derivatives and Lemma 5.5.3, we
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deduce that

KσΛ
G (r, v) =

∑
v̂∈Cv

(
λv̂

∂

∂λv̂

)
MσΛ

T (r) · ∂λv̂
∂λv
· λv
λv̂

=
∑
v̂∈Cv

KσΛ
T (r, v̂).

Finally, we have

ΨσΛ
G (r → v) =

(
λv

∂

∂λv

)
logRσΛ

G (r) =

(
λv

∂

∂λv

)
logRσΛ

T (r) =
∑
v̂∈Cv

ΨσΛ
T (r → v̂),

where the last equality follows as above.

We finish this section with the proof of Theorem 5.5.1. Before presenting our proof, let

us first review the notations and definitions introduced earlier. Denote the set of fields at all

vertices by λ = {λv : v ∈ V }. For Λ ⊆ V and σΛ ∈ {0, 1}Λ, the weight of σ ∈ {0, 1}V \Λ

conditional on σΛ is given by

wG(σ | σΛ) = βm1(σ|σΛ)γm0(σ|σΛ)
∏

v∈V \Λ

λσvv ,

where for i = 0, 1, mi(· | σΛ) denotes the number of edges such that both endpoints receive

the spin i and at least one of them is in V \Λ. The partition function conditional on σΛ is

defined as ZσΛ
G =

∑
σ∈{0,1}V \Λ wG(σ | σΛ). For the SAW tree, we define the conditional

weights and partition function in the same way. In particular, recall that when we fix a

conditioning σΛ on the SAW tree, we also remove all descendants of v̂ ∈ Cv for each

v ∈ Λ.

For every v ∈ V \Λ and i ∈ {0, 1}, we shall write v = i to represent the set of

configurations such that σv = i (i.e., {σ ∈ {0, 1}V \Λ : σv = i}) and let ZσΛ
G (v = i) be

sum of weights of all configurations with v = i. We further extend this notation and write

ZσΛ
G (U = σU) for every U ⊆ V \Λ and σU ∈ {0, 1}U . For the SAW tree we adopt the same

notations as well.
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Proof of Theorem 5.5.1. We will show that there exists a polynomial P σΛ
G,r = P σΛ

G,r(λ), in-

dependent of λr, such that

ZσΛ
T (r = 1) = ZσΛ

G (r = 1) · P σΛ
G,r and ZσΛ

T (r = 0) = ZσΛ
G (r = 0) · P σΛ

G,r. (5.4)

The high-level proof idea of Eq. (5.4) is similar to the corresponding result in [127, The-

orem 3.1]. Let m be the number of edges with at least one endpoint in V \Λ. We use

induction on m. When m = 0 the statement is trivial since T = G. Assume that Eq. (5.4)

holds for all graphs and all conditioning with less than m edges. Suppose that the root r

has d neighbors v1, . . . , vd. Define G′ to be the graph obtained by replacing the vertex r

with d vertices r1, . . . , rd and then connecting {ri, di} for 1 ≤ i ≤ d.

Consider first the case where (G\{r})\Λ is still connected. For each i, letGi = G′−ri.

Define the 2-spin system on Gi with the same parameters (β, γ,λ), plus an additional

conditioning that the vertices r1, . . . , ri−1 are fixed to spin 0 while ri+1, . . . , rd are fixed

to spin 1; we denote this conditioning by σUi with Ui = {v1, . . . , vd}\{vi}. Then, T =

TSAW(G, r) can be generated by the following recursive procedure. Also see Fig. 5.2 for an

illustration.

Algorithm: TSAW(G, r)

1. For each i, let Ti = TSAW(Gi, vi) plus the conditioning σUi;

2. Let T = TSAW(G, r) be the union of r and T1, . . . , Td by connecting {r, vi} for 1 ≤

i ≤ d; output T .

For the purpose of proof, we also consider the 2-spin system on G′ with the same

parameters (β, γ,λ), with an exception that we let the vertices r1, . . . , rd have no fields

(i.e., setting λri = 1 for 1 ≤ i ≤ d instead of λr). We then observe that

ZσΛ
G (r = 1) = λr · ZσΛ

G′ (r1 = 1, . . . , rd = 1),
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TSAW(G, r)

Figure 5.2: A recursive construction of the self-avoiding walk (SAW) tree. Here Ti is the
SAW tree of Gi rooted at vi for i = 1, 2, 3. ( /#: fixed to spin 1/0.)

and the same holds with spin 1 replaced by 0. For 1 ≤ i ≤ d, let σΛi denote the union of

the conditioning σΛ and σUi , where Λi = Λ ∪ Ui. Then for every 1 ≤ i ≤ d we have

ZσΛ

G′ (r1 = 0, . . . , ri−1 = 0, ri = 1, . . . , rd = 1) = β · ZσΛi
Gi

(vi = 1) + Z
σΛi
Gi

(vi = 0).

Notice that both sides are independent of the field λr: for the left side, all ri’s do not

have a field for the spin system on G′; for the right side, recall that we do not count the

weight of fixed vertices for the conditional partition function for each Gi. Now define

QσΛ
G,r = QσΛ

G,r(λ) by

QσΛ
G,r =

d∏
i=2

ZσΛ

G′ (r1 = 0, . . . , ri−1 = 0, ri = 1, . . . , rd = 1),

which is independent of λr. Then we get

ZσΛ
G (r = 1) ·QσΛ

G,r = λr ·
d∏
i=1

ZσΛ

G′ (r1 = 0, . . . , ri−1 = 0, ri = 1, . . . , rd = 1)
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= λr ·
d∏
i=1

(
β · ZσΛi

Gi
(vi = 1) + Z

σΛi
Gi

(vi = 0)
)
.

Using a similar argument, we also have

ZσΛ
G (r = 0) ·QσΛ

G,r =
d∏
i=1

ZσΛ

G′ (r1 = 0, . . . , ri = 0, ri+1 = 1, . . . , rd = 1)

=
d∏
i=1

(
Z
σΛi
Gi

(vi = 1) + γ · ZσΛi
Gi

(vi = 0)
)
.

Since we assume that (G\{r})\Λ is connected, the graph Gi\Λ is also connected for each

i. Then, by the induction hypothesis, for each i there exists a polynomial P
σΛi
Gi,vi

= P
σΛi
Gi,vi

(λ)

such that

Z
σΛi
Ti

(r = 1) = Z
σΛi
Gi

(r = 1) · P σΛi
Gi,vi

and Z
σΛi
Ti

(r = 0) = Z
σΛi
Gi

(r = 0) · P σΛi
Gi,vi

;

these polynomials are independent of λr since the conditional partition functions for Gi’s

do not involve λr. Now if we let

P σΛ
G,r = QσΛ

G,r ·
d∏
i=1

P
σΛi
Gi,vi

,

then it follows from the tree recursion that

ZσΛ
T (r = 1) = λr ·

d∏
i=1

(
β · ZσΛi

Ti
(vi = 1) + Z

σΛi
Ti

(vi = 0)
)

= λr ·
d∏
i=1

(
β · ZσΛi

Gi
(vi = 1) · P σΛi

Gi,vi
+ Z

σΛi
Gi

(vi = 0) · P σΛi
Gi,vi

)
= ZσΛ

G (r = 1) ·QσΛ
G,r ·

d∏
i=1

P
σΛi
Gi,vi

= ZσΛ
G (r = 1) · P σΛ

G,r.

The other equality ZσΛ
T (r = 0) = ZσΛ

G (r = 0) · P σΛ
G,r is established in the same way. This
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completes the proof for the case that (G\{r})\Λ is connected.

If (G\{r})\Λ has two or more connected components, we can construct TSAW(G, r) by

the SAW tree of each component. Recall that G′ is defined by splitting the vertex r into d

copies in the graphG. Suppose thatG′\Λ has k connected component for an integer k ≥ 2.

Let G′(1), . . . , G
′
(k) be the subgraphs induced by each component, along with vertices from

Λ that are adjacent to it. For each j, let G(j) be the graph obtained from G′(j) by contracting

all copies of r into one vertex r(j), and let T(j) = TSAW(G′(j), r(j)). Observe that once we

contract the roots r(1), . . . , r(k) of T(1), . . . , T(k), the resulting tree is TSAW(G, r).

We define the 2-spin system on each G(j) with the same parameters (β, γ,λ), except

that the vertex r(j) does not have a field (i.e., λr(j) = 1 instead of λr). For 1 ≤ j ≤ k, let

Λ(j) = Λ ∩ V (G(j)) and σΛ(j)
be the configuration σΛ restricted on Λ(j). Then G(j)\Λ(j) is

connected for every j and, since k ≥ 2, each G(j) with conditioning σΛ(j)
has fewer than m

edges. Thus, we can apply the induction hypothesis; namely, for 1 ≤ j ≤ k there exists a

polynomial P
σΛ(j)

G(i),r(i)
= P

σΛ(j)

G(i),r(i)
(λ), which is independent of λr, such that

Z
σΛ(j)

T(j)
(r(j) = 1) = Z

σΛ(j)

G(j)
(r(j) = 1) · P

σΛ(j)

G(j),r(j)

and

Z
σΛ(j)

T(j)
(r(j) = 0) = Z

σΛ(j)

G(j)
(r(j) = 0) · P

σΛ(j)

G(j),r(j)
.

We define the polynomial P σΛ
G,r = P σΛ

G,r(λ) to be

P σΛ
G,r =

k∏
j=1

P
σΛ(j)

G(j),r(j)
.

It is then easy to check that

ZσΛ
T (r = 1) = λr ·

k∏
j=1

Z
σΛ(j)

T(j)
(r(j) = 1) = λr ·

k∏
j=1

(
Z
σΛ(j)

G(j)
(r(j) = 1) · P

σΛ(j)

G(j),r(j)

)
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= ZσΛ
G (r = 1) ·

k∏
j=1

P
σΛ(j)

G(j),r(j)
= ZσΛ

G (r = 1) · P σΛ
G,r,

and similarly ZσΛ
T (r = 0) = ZσΛ

G (r = 0) · P σΛ
G,r. The theorem then follows.

5.6 Influence Bounds for Trees

In this section, we study the influences of the root on other vertices in a tree. We give an

upper bound on the total influences of the root on all vertices at a fixed distance away. To

do this, we apply the potential method, which has been used to establish the correlation

decay property (see, e.g., [88, 89, 67]). Given an arbitrary potential function Ξ, our upper

bound is in terms of properties of Ξ, involving bounds on
∥∥∇HΞ

d

∥∥
1

and |ψ| where ψ = Ξ′.

We then deduce Lemma 5.4.3 in the case that Ξ an (α, c)-potential.

Assume that T = (VT , ET ) is a tree rooted at r of maximum degree at most ∆. Let

Λ ⊆ VT\{r} and σΛ ∈ {0, 1}Λ be arbitrary and fixed. Consider the 2-spin system on T

with parameters (β, γ, λ), conditioned on σΛ. We need to bound the influence ΨσΛ
T (r → v)

from the root r to another vertex v ∈ VT . Notice that if v is disconnected from r when Λ

is removed, then ΨσΛ
T (r → v) = 0 by the Markov property of spin systems. Therefore, we

may assume that, by removing all such vertices, Λ contains only leaves of T .

For a vertex v ∈ VT , let Tv = (VTv , ETv) be the subtree of T rooted at v that contains

all descendant of v; note that Tr = T . We will write Lv(k) ⊆ VT\Λ for the set of all free

vertices at distance k away from v in Tv. We pay particular interest in the marginal ratio at

v in the subtree Tv, and write Rv = RσΛ
Tv

(v) for simplicity. The logRv’s are related by the

tree recursionH . If a vertex v has d children, denoted by u1, . . . , ud, then the tree recursion

is given by

logRv = Hd(logRu1 , . . . , logRud),
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where for 1 ≤ d ≤ ∆ and (y1, . . . , yd) ∈ [−∞,∞]d,

Hd(y1, . . . , yd) = log λ+
d∑
i=1

log

(
βeyi + 1

eyi + γ

)
.

Also recall that for y ∈ [−∞,+∞], we define

h(y) = − (1− βγ)ey

(βey + 1)(ey + γ)

and ∂
∂yi
Hd(y1, . . . , yd) = h(yi) for all 1 ≤ i ≤ d ≤ ∆.

The following lemma allows us to bound the sum of all influences from the root to

distance k, using an arbitrary potential function.

Lemma 5.6.1. Let Ξ : [−∞,+∞] → (−∞,+∞) be a differentiable and increasing (po-

tential) function with image S = Ξ[−∞,+∞] and derivative ψ = Ξ′. Denote the degree

of the root r by ∆r. Then for every integer k ≥ 1,

∑
v∈Lr(k)

|IσΛ
T (r → v)| ≤ ∆rAΞBΞ

(
max

1≤d<∆
sup
ỹ∈Sd

∥∥∇HΞ
d (ỹ)

∥∥
1

)k−1

where

AΞ = max
u∈Lr(1)

{
|h(logRu)|
ψ(logRu)

}
and BΞ = max

v∈Lr(k)
{ψ(logRv)} .

Before proving Lemma 5.6.1, we first present two useful properties of the influences

on trees. Firstly, it was shown in [4] that the influences satisfy the following form of chain

rule on trees.

Lemma 5.6.2 ([4, Lemma B.2]). Suppose that u, v, w ∈ VT are three distinct vertices such

that u is on the unique path from v to w. Then

ΨσΛ
T (v → w) = ΨσΛ

T (v → u) ·ΨσΛ
T (u→ w).
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Secondly, for two adjacent vertices on a tree, the influence from one to the other is given

by the function h.

Lemma 5.6.3. Let v ∈ VT and u be a child of v in the subtree Tv. Then

ΨσΛ
T (v → u) = h(logRu).

Proof. The lemma can be proved through an explicit computation of the influence. Here

we present a more delicate proof utilizing Lemma 5.5.3, which gives some insights into

the relation between the influence and the function h. We assume that v has d children in

the subtree Tv, denoted by u1 = u and u2, . . . , ud respectively. We also assume, as a more

general setting than uniform fields, that each vertex w is attached to a field λw of its own.

Then Lemma 5.5.3 and the tree recursion imply that

ΨσΛ
T (v → u) = ΨσΛ

Tv
(v → u) =

(
λu

∂

∂λu

)
logRv

=

(
λu

∂

∂λu

)
Hd(logRu1 , . . . , logRud)

=
d∑
i=1

∂

∂ logRui

Hd(logRu1 , . . . , logRud) ·
(
λu

∂

∂λu

)
logRui

=
d∑
i=1

h(logRui) ·Ψ
σΛ
Tui

(ui → u) = h(logRu),

where the last equality is because ΨσΛ
Tui

(ui → u) = 0 for ui 6= u and ΨσΛ
Tu

(u→ u) = 1.

We are now ready to prove Lemma 5.6.1.

Proof of Lemma 5.6.1. For a vertex v ∈ VT , denote the number of its children by dv; note

that dr = ∆r. Let u1, . . . , u∆r be the children of the root r. We may assume that all these

children of r are free, since if ui is fixed then ΨσΛ
T (r → ui) = 0 by definition. Then by
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Lemma 5.6.2 and Lemma 5.6.3, we get

∑
v∈Lr(k)

|ΨσΛ
T (r → v)| =

∆r∑
i=1

|ΨσΛ
T (r → ui)|

∑
v∈Lui (k−1)

|ΨσΛ
T (ui → v)|

=
∆r∑
i=1

|h(logRui)|
∑

v∈Lui (k−1)

|ΨσΛ
T (ui → v)|

=
∆r∑
i=1

|h(logRui)|
ψ(logRui)

∑
v∈Lui (k−1)

ψ(logRui) |Ψ
σΛ
T (ui → v)| .

Hence, we obtain that

∑
v∈Lr(k)

|ΨσΛ
T (r → v)| ≤ ∆r · max

1≤i≤∆r

{
|h(logRui)|
ψ(logRui)

}

· max
1≤i≤∆r

 ∑
v∈Lui (k−1)

ψ(logRui) |Ψ
σΛ
T (ui → v)|

 . (5.5)

Next, we show by induction that for every vertex u ∈ VT\{r} and every integer k ≥ 0

we have

∑
v∈Lu(k)

ψ(logRu) |ΨσΛ
T (u→ v)| ≤ max

v∈Lu(k)
{ψ(logRv)} ·

(
max
w∈VTu

sup
ỹ∈Sdw

∥∥∇HΞ
dw(ỹ)

∥∥
1

)k

.

(5.6)

Observe that once we establish Eq. (5.6), the lemma follows immediately by plugging

Eq. (5.6) into Eq. (5.5). We will use induction on k to prove Eq. (5.6). When k = 0, if

u ∈ Λ is fixed then Lu(0) = ∅ and there is nothing to show; otherwise, Eq. (5.6) becomes

ψ(logRu) |ΨσΛ
T (u→ u)| ≤ ψ(logRu),

which holds with equality since ΨσΛ
T (u → u) = 1. Now suppose that Eq. (5.6) holds for

some integer k − 1 ≥ 0 (and for every vertex u ∈ VT\{r}). Let u ∈ VT\{r} be arbitrary

and denote the children of u by w1, . . . , wd, where 1 ≤ d < ∆ (if d = 0 then Lu(k) = ∅
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and Eq. (5.6) holds trivially). Again by Lemma 5.6.2 and Lemma 5.6.3 we have

∑
v∈Lu(k)

ψ(logRu) |ΨσΛ
T (u→ v)|

=
d∑
i=1

ψ(logRu) |ΨσΛ
T (u→ wi)|

∑
v∈Lwi (k−1)

|ΨσΛ
T (wi → v)|

=
d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)|

∑
v∈Lwi (k−1)

ψ(logRwi) |Ψ
σΛ
T (wi → v)| .

Using the induction hypothesis, we get

∑
v∈Lu(k)

ψ(logRu) |ΨσΛ
T (u→ v)|

≤
d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)| · max

v∈Lwi (k−1)
{ψ(logRv)}

·

(
max
w∈VTwi

sup
ỹ∈Sdw

∥∥∇HΞ
dw(ỹ)

∥∥
1

)k−1

≤ max
v∈Lu(k)

{ψ(logRv)} ·

(
max

w∈VTu\{u}
sup
ỹ∈Sdw

∥∥∇HΞ
dw(ỹ)

∥∥
1

)k−1

·
d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)|

≤ max
v∈Lu(k)

{ψ(logRv)} ·

(
max
w∈VTu

sup
ỹ∈Sdw

∥∥∇HΞ
dw(ỹ)

∥∥
1

)k

,

where the last inequality follows from that

d∑
i=1

ψ(logRu)

ψ(logRwi)
|h(logRwi)| =

d∑
i=1

∣∣∣∣ ∂

∂Ξ(logRwi)
HΞ
d (Ξ(logRw1), . . . ,Ξ(logRwd))

∣∣∣∣
=
∥∥∇HΞ

d (Ξ(logRw1), . . . ,Ξ(logRwd))
∥∥

1
.

This establishes Eq. (5.6), and thus completes the proof of the lemma.

We then derive Lemma 5.4.3 as a corollary.
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Proof of Lemma 5.4.3. Since Ξ is an (α, c)-potential, the Contraction condition implies

that

max
1≤d<∆

sup
ỹ∈Sd

∥∥∇HΞ
d (ỹ)

∥∥
1
≤ 1− α.

Meanwhile, since the degree of a vertex v ∈ VT\{r} in the subtree Tv is less than ∆, we

have logRv ∈ J . Then the Boundedness condition implies that for all u ∈ Lr(1) and

v ∈ Lr(k),
ψ(logRv)

ψ(logRu)
· |h(logRu)| ≤

c

∆
.

Therefore, we get

∆rAΞBΞ = ∆r · max
u∈Lr(1)

{
|h(logRu)|
ψ(logRu)

}
· max
v∈Lr(k)

{ψ(logRv)} ≤ c.

The lemma then follows immediately from Lemma 5.6.1.

5.7 Verifying a Good Potential: Contraction

In this section, we make a first step for proving Lemma 5.4.4. Let ∆ ≥ 3 be an integer. Let

β, γ, λ be reals such that 0 ≤ β ≤ γ, γ > 0, βγ < 1 and λ > 0. Recall that define our

potential function Ξ : [−∞,+∞]→ (−∞,+∞) through its derivative by

Ξ′(y) = ψ(y) =

√
(1− βγ)ey

(βey + 1)(ey + γ)
, Ξ(0) = 0. (5.7)

The following lemma implies that the potential Ξ given by Eq. (5.3) is well-defined.

Lemma 5.7.1. For all β, γ > 0 such that βγ < 1, we have

∫ +∞

−∞

√
(1− βγ)ey

(βey + 1)(ey + γ)
< +∞.
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Proof. For the +∞ side we have

∫ +∞

0

√
(1− βγ)ey

(βey + 1)(ey + γ)
=

∫ +∞

0

√
1− βγ

βey + γe−y + βγ + 1
<

∫ +∞

0

1√
βey

< +∞.

Similarly, for the −∞ side we have

∫ 0

−∞

√
(1− βγ)ey

(βey + 1)(ey + γ)
<

∫ 0

−∞

1√
γe−y

< +∞.

If (β, γ, λ) is up-to-∆ unique with gap δ ∈ (0, 1), then we show that Ξ satisfies the

Contraction condition for α = δ/2. This holds for all parameters (β, γ, λ) in the uniqueness

region, without requiring that γ ≤ 1. Later in Section 5.9, we establish the Boundedness

condition for Ξ when γ ≤ 1, completing the proof of Lemma 5.4.4. The case of γ > 1 is

more complicated and is left to Section 5.8.

Before giving our proof, we first point out that the potential function Ξ is essentially

the same potential function Φ used in [89] (notice that [89] uses ϕ as the notation of the

potential function and Φ = ϕ′ for its derivative). Recall that the tree recursion for the

marginal ratios is given by the function Fd : [0,+∞]d → [0,+∞] where 1 ≤ d ≤ ∆ such

that for all (x1, . . . , xd) ∈ [0,+∞]d,

Fd(x1, . . . , xd) = λ
d∏
i=1

βxi + 1

xi + γ
.

The potential function Φ : [0,+∞] → (−∞,+∞) from [89] is defined implicitly via its

derivative as

Φ′(x) = ϕ(x) =
1√

x(βx+ 1)(x+ γ)
, Φ(1) = 0.

The follows lemma explains how we obtain our potential Ξ from Φ.

Lemma 5.7.2. We have Ξ =
√

1− βγ · (Φ ◦ exp); namely, Ξ(y) =
√

1− βγ · Φ(ey) for

all y ∈ [−∞,+∞].
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Proof. It is straightforward to check that

ψ(y) =

√
(1− βγ)ey

(βey + 1)(ey + γ)

=
√

1− βγ · ey ·

√
1

ey(βey + 1)(ey + γ)

=
√

1− βγ · eyϕ(ey).

Therefore,

Ξ(y) =

∫ y

0

ψ(t) dt =
√

1− βγ ·
∫ y

0

etϕ(et) dt

=
√

1− βγ ·
∫ ey

1

ϕ(s) ds =
√

1− βγ · Φ(ey).

Combining the results of Lemmas 12, 13 and 14 from [89], we get that the potential

function Φ satisfies the following gradient bound when (β, γ, λ) is in the uniqueness region.

Note that this can be regarded as the Contraction condition but for Φ and Fd.

Theorem 5.7.3 ([89]). Let SΦ = Φ[0,+∞] be the image of Φ. If the parameters (β, γ, λ)

are up-to-∆ unique with gap δ ∈ (0, 1), then for every integer d such that 1 ≤ d < ∆ and

every (x̃1, . . . , x̃d) ∈ SdΦ,

∥∥∇FΦ
d (x̃1, . . . , x̃d)

∥∥
1
≤
√

1− δ

where FΦ
d = Φ ◦ Fd ◦ Φ−1.

Recall our definition from Section 5.2. The tree recursion, in terms of the log marginal

ratios, is described by the function Hd : [−∞,+∞]d → [−∞,+∞] where 1 ≤ d ≤ ∆

such that for every (y1, . . . , yd) ∈ [−∞,+∞]d,

Hd(y1, . . . , yd) = log λ+
d∑
i=1

log

(
βeyi + 1

eyi + γ

)
.
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Observe that Hd = log ◦Fd ◦ exp, since we move from ratios to log ratios. We are now

ready to establish the Contraction condition for Ξ.

Lemma 5.7.4. Let SΞ = Ξ[−∞,+∞] be the image of Ξ. If the parameters (β, γ, λ) are

up-to-∆ unique with gap δ ∈ (0, 1), then for every integer d such that 1 ≤ d < ∆ and

every (ỹ1, . . . , ỹd) ∈ SdΞ,

∥∥∇HΞ
d (ỹ1, . . . , ỹd)

∥∥
1
≤
√

1− δ

where HΞ
d = Ξ ◦Hd ◦ Ξ−1.

Proof. Define the linear function a : R → R to be a(x) =
√

1− βγ · x for x ∈ R. Then

Lemma 5.7.2 gives Ξ = a ◦ Φ ◦ exp, and thereby Ξ ◦ log = a ◦ Φ. It follows that for every

1 ≤ d < ∆,

HΞ
d = Ξ ◦Hd ◦ Ξ−1 = Ξ ◦ log ◦Fd ◦ exp ◦Ξ−1 = a ◦ Φ ◦ Fd ◦ Φ−1 ◦ a−1 = a ◦ FΦ

d ◦ a−1.

That means, for every (ỹ1, . . . , ỹd) ∈ SdΞ we have

HΞ
d (ỹ1, . . . , ỹd) =

√
1− βγ · FΦ

d (x̃1, . . . , x̃d)

where x̃i = ỹi/
√

1− βγ for 1 ≤ i ≤ d. Then, for each i,

∂

∂ỹi
HΞ
d (ỹ1, . . . , ỹd) =

√
1− βγ · ∂

∂x̃i
FΦ
d (x̃1, . . . , x̃d) ·

dx̃i
dỹi

=
∂

∂x̃i
FΦ
d (x̃1, . . . , x̃d).

This implies that ∇HΞ
d (ỹ1, . . . , ỹd) = ∇FΦ

d (x̃1, . . . , x̃d) for all (ỹ1, . . . , ỹd) ∈ SdΞ, and the

lemma then follows from Theorem 5.7.3.
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5.8 Remaining Antiferromagnetic Cases

In this section, we discuss the case where
√
βγ ≤ ∆−2

∆
and γ > 1. As studied in [89], in

this case the uniqueness region is more complicated. For example, there exists a critical

λ∗c > 0 such that the 2-spin system with λ < λ∗c is in the uniqueness region for arbitrary

graphs; namely, (β, γ, λ) is up-to-∞ unique. To deal with large degrees, we need to relax

the Boundedness condition in Definition 5.2.1 and define a more general version of (α, c)-

potentials. We shall see that Theorem 5.2.2 still holds for this general (α, c)-potential. The

reason behind it is that in order to bound the maximum eigenvalue of the influence matrix,

it suffices to consider a vertex-weighted sum of absolute influences of a vertex with large

degree.

Remark 5.8.1. We give more background on the uniqueness region in Section 5.9.1. Note

that in a recent revision of [89], the authors updated the descriptions of the uniqueness

region for the case
√
βγ ≤ ∆−2

∆
and γ > 1, fixing a small error in the previous version.

Statements and proofs in this section and Section 5.9 of this thesis are also adjusted accord-

ingly based on the new version of [89].

Recall that our goal is to bound the maximum eigenvalue of the matrix ΨσΛ
G . We can

do this by upper bounding the absolute row sum
∑

v∈V \Λ |Ψ
σΛ
G (r → v)| for fixed r, thereby

giving us a valid upper bound on λmax(ΨσΛ
G ). However, this approach does not work when

√
βγ ≤ ∆−2

∆
and γ > 1. In this case, the potential Ξ fails to be an (α, c)-potential for a

universal constant c independent of ∆. In fact, no such (α, c)-potentials exist as the absolute

row sum
∑

v∈V \Λ |Ψ
σΛ
G (r → v)| can be as large as Θ(∆). Especially, if the parameters

(β, γ, λ) are up-to-∞ unique, which means the spin system has uniqueness for arbitrary

graphs, then the absolute row sum
∑

v∈V \Λ |Ψ
σΛ
G (r → v)| can be Θ(n) where n = |V |. We

give a specific example where this is the case.

Example 5.8.2. Consider the antiferromagnetic 2-spin system specified by parameters β =

0, γ > 1 and λ > 0 on the star graph centered at r with ∆ leaves. A simple calculation
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reveals that |IG(r → v)| = λ
λ+γ

for any leaf vertex v 6= r. Hence,
∑

v 6=r |IG(r → v)| =

∆ · λ
λ+γ

. Now, since γ > 1, we have

λc = λc(γ,∆) = min
1<d<∆

γd+1dd

(d− 1)d+1
= Θγ(1),

forcing
∑

v 6=r |IG(r → v)| = Θγ(∆) even when λ < λc lies in the uniqueness region.

However, we still have λmax(ΨG) = O(1) since
∑

v 6=r |ΨG(v → r)| = O(1).

To solve this issue, one might want to consider the absolute column sum, involving the

sum of absolute influences on a fixed vertex. However, this will not allow us to use the

beautiful connection between graphs and SAW trees as showed in Lemma 5.4.1. Instead,

we consider here a vertex-weighted version of the absolute row sum of ΨσΛ
G , which also

upper bounds the maximum eigenvalue.

Lemma 5.8.3. Let ρ : V → R+ be a positive weight function of vertices. If there is a

constant ξ > 0 such that for every r ∈ V we have

∑
v∈V \Λ

ρv · |ΨσΛ
G (r → v)| ≤ ξ · ρr, (5.8)

then λmax(ΨσΛ
G ) ≤ ξ.

Proof. Let P = diag{ρv : v ∈ V \Λ}. The assumption is equivalent to ‖P−1ΨσΛ
G P‖∞ ≤ ξ.

It follows that λmax(ΨσΛ
G ) = λmax(P−1ΨσΛ

G P) ≤ ξ.

We then modify our definition of (α, c)-potentials from Definition 5.2.1 which allows

a weaker Boundedness condition. We remark that the only two differences between Defi-

nition 5.8.4 and Definition 5.2.1 is that: we allow ∆ =∞; and the Boundedness condition

is relaxed to what we call General Boundedness. Recall that for every 0 ≤ d < ∆, we let

Jd =
[
log(λβd), log(λ/γd)

]
when βγ < 1, and Jd =

[
log(λ/γd), log(λβd)

]
when βγ > 1.
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Definition 5.8.4 (General (α, c)-potential function). Let ∆ ≥ 3 be an integer or ∆ = ∞.

Let β, γ, λ be reals such that 0 ≤ β ≤ γ, γ > 0 and λ > 0. Let Ξ : [−∞,+∞] →

(−∞,+∞) be a differentiable and increasing function with image S = Ξ[−∞,+∞] and

derivative ψ = Ξ′. For any α ∈ (0, 1) and c > 0, we say Ξ is a general (α, c)-potential

function with respect to ∆ and (β, γ, λ) if it satisfies the following conditions:

1. (Contraction) For every integer d such that 1 ≤ d < ∆ and every (ỹ1, . . . , ỹd) ∈ Sd,

we have ∥∥∇HΞ
d (ỹ1, . . . , ỹd)

∥∥
1

=
d∑
i=1

ψ(y)

ψ(yi)
· |h(yi)| ≤ 1− α

where HΞ
d = Ξ ◦Hd ◦ Ξ−1, yi = Ξ−1(ỹi) for 1 ≤ i ≤ d, and y = Hd(y1, . . . , yd).

2. (General Boundedness) For all integers d1, d2 such that 0 ≤ d1, d2 < ∆, and all reals

y1 ∈ Jd1 , y2 ∈ Jd2 , we have

ψ(y2)

ψ(y1)
· |h(y1)| ≤ 2c

d1 + d2 + 2
.

Notice that General Boundedness is a weaker condition than Boundedness. To see this,

if a potential function Ξ satisfies Boundedness with parameter c, then for every 0 ≤ di < ∆

and every yi ∈ Jdi where i = 1, 2 we have

ψ(y2)

ψ(y1)
· |h(y1)| ≤ c

∆
≤ 2c

d1 + d2 + 2
.

The following theorem generalizes Theorem 5.2.2 and shows that a general (α, c)-potential

function is sufficient to establish rapid mixing of the Glauber dynamics.

Theorem 5.8.5. Let ∆ ≥ 3 be an integer or ∆ = +∞. Let β, γ, λ be reals such that

0 ≤ β ≤ γ, γ > 0 and λ > 0. Suppose that there is a general (α, c)-potential with respect

to ∆ and (β, γ, λ) for some α ∈ (0, 1) and c > 0. Then for every n-vertex graph G of

maximum degree ∆, the Gibbs distribution µ of the 2-spin system on G with parameters
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(β, γ, λ) is spectrally independent with constant

η =
2c

α
.

We then give a counterpart of Lemma 5.4.4, showing that Ξ is a general (α, c)-potential

when
√
βγ ≤ ∆−2

∆
and γ > 1. Theorem 1.1.3 for this case is then obtained from Theo-

rem 5.8.5 and Lemma 5.8.6.

Lemma 5.8.6. Let ∆ ≥ 3 be an integer. Let β, γ, λ be reals such that 0 ≤ β < 1 < γ

and
√
βγ ≤ ∆−2

∆
. Assume that (β, γ, λ) is up-to-∆ unique with gap δ ∈ (0, 1). Then

the function Ξ defined implicitly by Eq. (5.3) is a general (α, c)-potential function with

α ≥ δ/2 and c ≤ 18; we can further take c ≤ 4 if β = 0.

For Lemma 5.8.6, the Contraction condition of Ξ follows from Lemma 5.7.4, and Gen-

eral Boundedness is proved in Section 5.9 together with all other cases.

In the rest of this section, we prove Theorem 5.8.5 in the same way of Theorem 5.2.2,

as outlined in Section 5.4. The major difference here is that we consider a weighted sum

of absolute influences
∑

v∈V \Λ ρv · |Ψ
σΛ
G (r → v)| where ρ : V → R+ is a weight function.

This is sufficient for us to bound the eigenvalue of the influence matrix, as indicated by

Lemma 5.8.3. We will choose the weight of a vertex v to be ρv = ∆v, the degree of v. The

following lemma provides us an upper bound on the weighted sum of absolute influences

to distance k, given a general (α, c)-potential. In particular, it generalizes Lemma 5.4.3.

Lemma 5.8.7. If there exists a general (α, c)-potential function Ξ with respect to ∆ and

(β, γ, λ) where α ∈ (0, 1) and c > 0, then for every Λ ⊆ VT\{r}, σΛ ∈ {0, 1}Λ and all

integers k ≥ 1, ∑
v∈Lr(k)

∆v · |IσΛ
T (r → v)| ≤ 2c · (1− α)k−1 ·∆r

where Lr(k) denote the set of all free vertices at distance k away from r.

To prove Lemma 5.8.7, we first state the following generalization of Lemma 5.6.1 for
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any weight function ρ. The proof of Lemma 5.8.8 is identical to Lemma 5.6.1 and we omit

here.

Lemma 5.8.8. Let Ξ : [−∞,+∞] → (−∞,+∞) be a differentiable and increasing (po-

tential) function with image S = Ξ[−∞,+∞] and derivative ψ = Ξ′. Denote the degree

of the root r by ∆r. Then for every integer k ≥ 1,

∑
v∈Lr(k)

ρv · |IσΛ
T (r → v)| ≤ ∆rAΞB

ρ
Ξ

(
max

1≤d<∆
sup
ỹ∈Sd

∥∥∇HΞ
d (ỹ)

∥∥
1

)k−1

where

AΞ = max
u∈Lr(1)

{
|h(logRu)|
ψ(logRu)

}
and Bρ

Ξ = max
v∈Lr(k)

{ρv · ψ(logRv)} .

We then prove Lemma 5.8.7 and Theorem 5.8.5.

Proof of Lemma 5.8.7. Denote the degree of a vertex v ∈ VT\{r} by ∆v, and the degree

of v in the subtree Tv by dv = ∆v − 1. Pick the weights of vertices to be ρv = ∆v for all

v ∈ VT . Since Ξ is a general (α, c)-potential, the Contraction condition implies that

max
1≤d<∆

sup
ỹ∈Sd

∥∥∇HΞ
d (ỹ)

∥∥
1
≤ 1− α.

Since logRv ∈ Jdv by the definition of Jd, the General Boundedness condition implies that

for all u ∈ Lr(1) and v ∈ Lr(k),

ψ(logRv)

ψ(logRu)
· |h(logRu)| ≤

2c

∆u + ∆v

.

Therefore, we get

∆rAΞB
ρ
Ξ = ∆r · max

u∈Lr(1)

{
|h(logRu)|
ψ(logRu)

}
· max
v∈Lr(k)

{∆v · ψ(logRv)} ≤ 2c ·∆r.
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The lemma then follows immediately from Lemma 5.8.8.

Proof of Theorem 5.8.5. The proof of Theorem 5.8.5 is almost identical to Theorem 5.2.2.

We point out that the only difference here is that we consider the weighted sum of absolute

influences of a given vertex. Since the SAW tree preserve degrees of vertices, we can still

apply Lemma 5.4.1. Then, combining Lemmas 5.4.1, 5.8.3 and 5.8.7, we complete the

proof of the theorem.

5.9 Verifying a Good Potential: Boundedness

In this subsection, we show the Boundedness or General Boundedness condition for our

potential function Ξ defined by Eq. (5.3) in different ranges of parameters. Combining

Lemma 5.7.4, we complete the proofs of Lemma 5.4.4 and Lemma 5.8.6.

In Section 5.9.1 we give background on the uniqueness region of parameters (β, γ, λ),

based on the work of [89]. We then show Boundedness and General Boundedness in Sec-

tion 5.9.2. Proofs of technical lemmas are left to Section 5.9.3.

5.9.1 Preliminaries for the Uniqueness Region

In this section we give a brief description of the uniqueness region of parameters (β, γ, λ).

All the results here, and also their proofs, can be found in Lemma 21 from the latest version

of [89].

Let ∆ ≥ 3 be an integer and β, γ, λ be reals. We assume that 0 ≤ β ≤ γ, γ > 0,

βγ < 1 and λ > 0. For 1 ≤ d ≤ ∆ define

fd(R) = λ

(
βR + 1

R + γ

)d

and denote the unique fixed point of fd by R∗d. Recall that the parameters (β, γ, λ) are

up-to-∆ unique with gap δ ∈ (0, 1) if |f ′d(R∗d)| < 1− δ for all 1 ≤ d < ∆.
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When β = 0, the spin system is called a hard-constraint model. In this case, there

exists a critical threshold for the external field defined as

λc = λc(γ,∆) = min
1<d<∆

γd+1dd

(d− 1)d+1
,

such that the parameters (0, γ, λ) are up-to-∆ unique if and only if λ < λc. In particular,

when γ ≤ 1 the critical field is given by

λc = λc(γ,∆) =
γ∆(∆− 1)∆−1

(∆− 2)∆
.

When β > 0, the spin system is called a soft-constraint model. If
√
βγ > ∆−2

∆
, then

(β, γ, λ) is up-to-∆ unique for all λ > 0. If
√
βγ ≤ ∆−2

∆
the uniqueness region is more

complicated which we now describe. Let

∆ =
1 +
√
βγ

1−
√
βγ
,

so that for every 1 ≤ d < ∆ we have d · 1−
√
βγ

1+
√
βγ

< 1, and for every d ≥ ∆ we have

d · 1−
√
βγ

1+
√
βγ
≥ 1. For every ∆ ≤ d < ∆, we define x1(d) ≤ x2(d) to be the two positive roots

of the quadratic equation
d(1− βγ)x

(βx+ 1)(x+ γ)
= 1.

More specifically, x1(d) and x2(d) are given by

x1(d) =
θ(d)−

√
θ(d)2 − 4βγ

2β
and x2(d) =

θ(d) +
√
θ(d)2 − 4βγ

2β

where

θ(d) = d(1− βγ)− (1 + βγ).
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Notice that θ(d) ≥ 2
√
βγ for all d ≥ ∆. For i = 1, 2 we let

λi(d) = xi(d)

(
xi(d) + γ

βxi(d) + 1

)d
.

Then, the parameters (β, γ, λ) are up-to-∆ unique if and only if λ belongs to the following

regime

A =
⋂

∆≤d<∆

[
(0, λ1(d)) ∪ (λ2(d),∞)

]
. (5.9)

In particular, when γ ≤ 1 there are two critical thresholds 0 < λc < λc such that the

parameters (β, γ, λ) are up-to-∆ unique if and only if λ < λc or λ > λc (i.e., A =

(0, λc) ∪ (λc,∞)), where

λc = λc(β, γ,∆) = min
∆≤d<∆

λ1(d)

and

λc = λc(β, γ,∆) = max
∆≤d<∆

λ2(d) = λ2(∆− 1).

The following bounds on the critical fields are helpful for our proofs later.

Lemma 5.9.1. 1. If β = 0, then for every integer d such that 1 < d < ∆ we have

λc ≤
4γd+1

d− 1
.

2. If β > 0 and
√
βγ ≤ ∆−2

∆
, then for every integer d such that ∆ ≤ d < ∆ we have

λ1(d) ≤ 18γd+1

θ(d)
and λ2(d) ≥ θ(d)

18βd+1

where θ(d) = d(1− βγ)− (1 + βγ).

The proof of Lemma 5.9.1 is postponed to Section 5.9.3.
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5.9.2 Proofs of Boundedness

In this section we complete the proofs of Lemma 5.4.4 and Lemma 5.8.6 by establishing

Boundedness and General Boundedness in the corresponding range of parameters.

Let ∆ ≥ 3 be an integer. Let β, γ, λ be reals such that 0 ≤ β ≤ γ, γ > 0, βγ < 1 and

λ > 0. Recall that the potential function Ξ is defined by

Ξ′(y) = ψ(y) =

√
(1− βγ)ey

(βey + 1)(ey + γ)
=
√
|h(y)|, Ξ(0) = 0. (1)

It is surprising to find out that ψ =
√
|h|, as the potential Ξ is exactly the one from [89]

as indicated by Lemma 5.7.2. This seems not to be a coincidence, and it provides some

intuition why the potential from [89] works. More importantly, the fact that ψ =
√
|h| is

helpful in our proof of Boundedness and General Boundedness. Recall that for 0 ≤ d < ∆

and βγ < 1 we let Jd =
[
log(λβd), log(λ/γd)

]
to be the range of log marginal ratios of a

vertex with d children. Then for every 0 ≤ di < ∆ and yi ∈ Jdi where i = 1, 2, we have

ψ(y2)

ψ(y1)
· |h(y1)| =

√
|h(y1)| · |h(y2)|. (5.10)

The following lemma gives upper bounds on
√
|h(y1)| · |h(y2)|, from which and Eq. (5.10)

we deduce Boundedness and General Boundedness immediately. The brackets in the

lemma indicate which lemma the bound is applied to.

Lemma 5.9.2. Let ∆ ≥ 3 be an integer. Let β, γ, λ be reals such that 0 ≤ β ≤ γ, γ > 0,

βγ < 1 and λ > 0. Assume that the parameters (β, γ, λ) are up-to-∆ unique with gap

δ ∈ (0, 1). Then for all integers d1, d2 such that 0 ≤ d1, d2 < ∆, and all reals yi ∈ Jdi

where i = 1, 2, the following holds:

H. Hard-constraint models: β = 0 and λ < λc.
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H.1. (Lemma 5.4.4) If γ ≤ 1, then

|h(y1)| ≤ 4

∆
.

H.2. (Lemma 5.8.6) If γ > 1, then

√
|h(y1)| · |h(y2)| ≤ 8

d1 + d2 + 2
.

S. Soft-constraint models: β > 0 and λ ∈ A.

S.1. (Lemma 5.4.4) If
√
βγ > ∆−2

∆
, then

|h(y1)| ≤ 1.5

∆
.

S.2. (Lemma 5.4.4) If
√
βγ ≤ ∆−2

∆
and γ ≤ 1, then

|h(y1)| ≤ 18

∆
.

S.3. (Lemma 5.8.6) If
√
βγ ≤ ∆−2

∆
and γ > 1, then

√
|h(y1)| · |h(y2)| ≤ 36

d1 + d2 + 2
.

The following lemma, whose proof can be found in Section 5.9.3, is helpful.

Lemma 5.9.3. For every y ∈ [−∞,+∞] we have

|h(y)| = |1− βγ|ey

(βey + 1)(ey + γ)
≤ |1−

√
βγ|

1 +
√
βγ

.

We present here the proof of Lemma 5.9.2.

Proof of Lemma 5.9.2. We use notations and results from Section 5.9.1.
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H. Hard-constraint models: β = 0 and λ < λc.

H.1. γ ≤ 1.

For every y1 ∈ Jd1 we deduce from Lemma 5.9.1 that

ey1 ≤ λ

γd1
≤ λc
γ∆−1

≤ 4γ

∆− 2
.

Hence,

|h(y1)| = ey1

ey1 + γ
≤

4γ
∆−2

4γ
∆−2

+ γ
=

4

∆ + 2
≤ 4

∆
.

H.2. γ > 1.

Let ȳ = y1+y2

2
and d̄ = d1+d2

2
. Then we get

√
|h(y1)| · |h(y2)| =

√
ey1

ey1 + γ
·
√

ey2

ey2 + γ
=

1√
(1 + γe−y1)(1 + γe−y2)

≤ 1

1 + γe−ȳ
,

where the last inequality follows from the AM–GM inequality by

(1+γe−y1)(1+γe−y2) = 1+γ(e−y1 +e−y2)+γ2e−2ȳ ≥ 1+2γe−ȳ+γ2e−2ȳ = (1+γe−ȳ)2.

Since yi ∈ Jdi for i = 1, 2, we have

eȳ =
√
ey1 · ey2 ≤

√
λ

γd1
· λ
γd2

=
λ

γd̄
.

If d̄ ≥ 2, then we deduce from Lemma 5.9.1 and γ > 1 that

eȳ ≤ λc

γbd̄c
≤ 4γ

bd̄c − 1
.
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It follows that

√
|h(y1)| · |h(y2)| ≤ 1

1 + γe−ȳ
≤ 1

1 + bd̄c−1
4

=
4

bd̄c+ 3
≤ 8

d1 + d2 + 2
.

If d̄ < 2, then it is easy to see that

√
|h(y1)| · |h(y2)| ≤ 1 ≤ 8

d1 + d2 + 2
.

S. Soft-constraint models: β > 0 and λ ∈ A.

S.1.
√
βγ > ∆−2

∆
.

For every y1 ∈ J we deduce from Lemma 5.9.3 that

|h(y1)| ≤ 1−
√
βγ

1 +
√
βγ
≤ 1

∆− 1
≤ 1.5

∆
.

S.2.
√
βγ ≤ ∆−2

∆
and γ ≤ 1.

In this case, we have either λ < λc or λ > λc where λc, λc are the two critical fields.

Consider first λ > λc. For every y1 ∈ Jd1 we deduce from Lemma 5.9.1 and β < 1 that

ey1 ≥ λβd1 ≥ λcβ
∆−1 ≥ θ(∆− 1)

18β

where θ(d) = d(1− βγ)− (1 + βγ). Hence,

|h(y1)| = (1− βγ)ey1

(βey1 + 1)(ey1 + γ)
=

1− βγ
βey1 + γe−y1 + (1 + βγ)

≤ 1− βγ
θ(∆−1)

18
+ (1 + βγ)

=
18(1− βγ)

(∆− 1)(1− βγ) + 17(1 + βγ)
≤ 18

∆
.

Next we consider λ < λc. For every y1 ∈ Jd1 we deduce from Lemma 5.9.1 and γ ≤ 1
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that

ey1 ≤ λ

γd1
≤ λc
γ∆−1

≤ 18γ

θ(∆− 1)
.

Hence,

|h(y1)| = 1− βγ
βey1 + γe−y1 + (1 + βγ)

≤ 1− βγ
θ(∆−1)

18
+ (1 + βγ)

≤ 18

∆
.

S.3.
√
βγ ≤ ∆−2

∆
and γ > 1.

Let ȳ = y1+y2

2
, d̄ = d1+d2

2
, dL = bd̄c, and dR = dd̄e. We first consider some trivial

cases. If d̄ ≤ 2 then it is easy to see that

√
|h(y1)| · |h(y2)| ≤ 1 ≤ 6

d1 + d2 + 2
.

If d̄ > 2 and dL ≤ ∆, then we deduce from Lemma 5.9.3 that

√
|h(y1)| · |h(y2)| ≤ 1−

√
βγ

1 +
√
βγ

=
1

∆
≤ 2

d1 + d2 − 2
≤ 6

d1 + d2 + 2
.

Hence, in the following we may assume that d̄ > 2 and dL > ∆.

Since the parameters (β, γ, λ) are up-to-∆ unique, we have λ ∈ A where the regime A

is given by Eq. (5.9). Observe that

A ⊆ (0, λ1(dL)) ∪ (λ2(dR),∞) ∪ (λ2(dL), λ1(dR))

where the last interval is nonempty only when λ2(dL) < λ1(dR). This means that λ is

contained in at least one of the three intervals. We establish the bound by considering these

three cases separately.

Case 1: λ < λ1(dL). By the Cauchy-Schwarz inequality, we have

√
|h(y1)| · |h(y2)| =

√
1− βγ

βey1 + γe−y1 + (1 + βγ)
·

√
1− βγ

βey2 + γe−y2 + (1 + βγ)
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≤ 1− βγ√
(βey1 + γe−y1)(βey2 + γe−y2) + (1 + βγ)

. (5.11)

Therefore, we get √
|h(y1)| · |h(y2)| ≤ 1− βγ

γe−ȳ + (1 + βγ)
.

Since yi ∈ Jdi for i = 1, 2 and γ > 1, we deduce from Lemma 5.9.1 that

eȳ ≤ λ

γd̄
≤ λ1(dL)

γdL
≤ 18γ

θ(dL)
,

where θ(dL) = dL(1− βγ)− (1 + βγ). It follows that

√
|h(y1)| · |h(y2)| ≤ 1− βγ

γe−ȳ + (1 + βγ)
≤ 1− βγ

θ(dL)
18

+ (1 + βγ)
≤ 36

d1 + d2 + 2
.

Case 2: λ > λ2(dR). Similarly, we obtain from Eq. (5.11) that

√
|h(y1)| · |h(y2)| ≤ 1− βγ

βeȳ + (1 + βγ)
.

Since yi ∈ Jdi for i = 1, 2 and β < 1, we deduce from Lemma 5.9.1 that

eȳ ≥ λβ d̄ ≥ λ2(dR)βdR ≥ θ(dR)

18β
,

where θ(dR) = dR(1− βγ)− (1 + βγ). It follows that

√
|h(y1)| · |h(y2)| ≤ 1− βγ

βeȳ + (1 + βγ)
≤ 1− βγ

θ(dR)
18

+ (1 + βγ)
≤ 36

d1 + d2 + 2
.

Case 3: λ2(dL) < λ < λ1(dR). We may assume that d1 ≥ d2. By Eq. (5.11), we obtain

√
|h(y1)| · |h(y2)| ≤ 1− βγ

√
βγe

y2−y1
2 + (1 + βγ)

.
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Since yi ∈ Jdi for i = 1, 2 and β < 1 < γ, we have

ey2−y1 ≥ βd2γd1 ≥ βdLγdR .

Meanwhile, we deduce from Lemma 5.9.1 that

θ(dL)

18βdL+1
≤ λ2(dL) < λ < λ1(dR) ≤ 18γdR+1

θ(dR)
,

which implies

√
βγe

y2−y1
2 ≥

√
βdL+1γdR+1 ≥

√
θ(dL)θ(dR)

18
≥ θ(dL)

18
.

It follows that

√
|h(y1)| · |h(y2)| ≤ 1− βγ

√
βγe

y2−y1
2 + (1 + βγ)

≤ 1− βγ
θ(dL)

18
+ (1 + βγ)

≤ 36

d1 + d2 + 2
.

5.9.3 Proofs of Technical Lemmas

Proof of Lemma 5.9.1. 1. For every 1 < d < ∆ we have

λc ≤
γd+1dd

(d− 1)d+1
=

γd+1

d− 1

(
d

d− 1

)d
≤ 4γd+1

d− 1
,

where the last inequality follows from that ( d
d−1

)d ≤ 4 for all integer d > 1.

2. For every ∆ ≤ d < ∆ we have

x1(d) =
2γ

θ(d) +
√
θ(d)2 − 4βγ

≤ 2γ

θ(d)
.

Observe that the function x+γ
βx+1

is monotone increasing in x when βγ < 1, and thus we
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deduce that

x1(d) + γ

βx1(d) + 1
≤

2γ
θ(d)

+ γ

2βγ
θ(d)

+ 1
= γ · 2 + d(1− βγ)− (1 + βγ)

2βγ + d(1− βγ)− (1 + βγ)
= γ · d+ 1

d− 1
.

Therefore,

λ1(d) = x1(d)

(
x1(d) + γ

βx1(d) + 1

)d
≤ 2γ

θ(d)
· γd ·

(
d+ 1

d− 1

)d
≤ 18γd+1

θ(d)

where the last inequality follows from that (d+1
d−1

)d ≤ 9 for all integer d > 1.

The second part can be proved similarly. For every ∆ ≤ d < ∆ we have

x2(d) =
θ(d) +

√
θ(d)2 − 4βγ

2β
≥ θ(d)

2β
,

and hence,

x2(d) + γ

βx2(d) + 1
≥

θ(d)
2β

+ γ

θ(d)
2

+ 1
=

1

β
· d(1− βγ)− (1 + βγ) + 2βγ

d(1− βγ)− (1 + βγ) + 2
=

1

β
· d− 1

d+ 1
.

We then conclude that

λ2(d) = x2(d)

(
x2(d) + γ

βx2(d) + 1

)d
≥ θ(d)

2β
· 1

βd
·
(
d− 1

d+ 1

)d
≥ θ(d)

18βd+1
,

where the last inequality again follows from that (d+1
d−1

)d ≤ 9 for all integer d > 1.

Proof of Lemma 5.9.3. We deduce from the AM–GM inequality that

|h(y)| = |1− βγ|
βey + γe−y + 1 + β

≤ |1− βγ|
2
√
βγ + 1 + β

=
|1−
√
βγ|

1 +
√
βγ

,

as claimed.
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5.10 Ferromagnetic Cases

In the ferromagnetic case, the best known correlation decay results are given in [67, 118].

Using the potential functions in [67] and [118], we show the following two results, which

match the known correlation decay results. In fact, the potential function from [118] turns

out to be an (α, c)-potential function for constants α = Θ(δ) and c ≤ O(1).

Theorem 5.10.1. Fix an integer ∆ ≥ 3, positive real numbers β, γ, λ and 0 < δ < 1, and

assume (β, γ, λ) satisfies one of the following three conditions:

1. ∆−2+δ
∆−δ ≤

√
βγ ≤ ∆−δ

∆−2+δ
, and λ is arbitrary;

2.
√
βγ ≥ ∆

∆−2
and λ ≤ (1− δ) γ

max{1,β∆−1}·((∆−2)βγ−∆)
;

3.
√
βγ ≥ ∆

∆−2
and λ ≥ 1

1−δ ·
(∆−2)βγ−∆

β·min{1,1/γ∆−1} .

Then the identity function Ξ(y) = y (based on the potential given in [118]) is an (α, c)-

potential function for α = Θ(δ) and c = O(1). Furthermore, for every n-vertex graph G

of maximum degree ∆, the mixing time of the Glauber dynamics for the 2-spin system on

G with parameters (β, γ, λ) is O(n log n).

Remark 5.10.2. Condition 1 includes both the ferromagnetic case 1 <
√
βγ ≤ ∆−δ

∆−2+δ

and the antiferromagnetic case ∆−2+δ
∆−δ ≤

√
βγ < 1. Note that in both cases (β, γ, λ) is

up-to-∆ unique with gap δ. For the antiferromagnetic case, the identity function Ξ is an

(α, c)-potential with c ≤ 1.5 and a better contraction rate α ≥ δ, compared with the bound

α ≥ δ/2 of the potential Ξ given by Eq. (5.3) in Lemma 5.4.4. For the ferromagnetic case

with β = γ > 1 (Ising model), O(n log n) mixing was previously known in [106].

The potential function from [67] is indeed an (α, c)-potential, but cmust, unfortunately,

depend on ∆. We have the following result, which is weaker than the correlation decay

algorithm in [67] for unbounded-degree graphs.
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Theorem 5.10.3. Fix an integer ∆ ≥ 3, and nonnegative real numbers β, γ, λ satisfying

β ≤ 1 ≤ γ,
√
βγ ≥ ∆

∆−2
, and λ <

(
γ
β

) √
βγ√
βγ−1 . Then for every n-vertex graph G with

maximum degree ∆, the mixing time of the Glauber dynamics for the ferromagnetic 2-spin

system on G with parameters (β, γ, λ) is O(n log n).

Proofs of these theorems are provided below.

Proof of Theorem 5.10.1. Throughout, we use the “trivial” potential function Ξ(y) = y.

Note that then, ψ(y) = 1 is a constant function. Now, we prove Contraction and Bounded-

ness. The mixing result then follows from Theorem 5.2.2 and Theorem 1.2.1. We split into

the three cases.

1. We first prove the Contraction part. By Lemma 5.9.3, for all y ∈ [−∞,+∞] we have

|h(y)| ≤ |1−
√
βγ|

1 +
√
βγ
≤ 1− δ

∆− 1
.

Now let us prove the Boundedness condition. From the above inequality we have

|h(y)| ≤ 1

∆− 1
≤ 1.5

∆

for ∆ ≥ 3.

2. For the Contraction part, by log(λmax{1, 1/γ∆−1}) ≤ yi ≤ log(λmax{1, β∆−1}),

we have

∣∣∣∣∂Hd(y)

∂yi

∣∣∣∣ = |h(yi)| =
βγ − 1

1 + βγ + γe−yi + βeyi
≤ βγ − 1

1 + βγ + γe−yi

≤ βγ − 1

1 + βγ + γ
λmax{1,β∆−1}

.

Since we assumed λ ≤ (1 − δ) γ
max{1,β∆−1}·((∆−2)βγ−∆)

, it follows that we have the
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upper bound

βγ − 1

1 + βγ + (∆−2)βγ−∆
1−δ

= (1− δ) βγ − 1

(∆− 1− δ)βγ − (∆− 1 + δ)

= (1− δ) βγ − 1

(∆− 1− δ)(βγ − 1) + 2δ

≤ 1− δ
∆− 1− δ

≤ (1−Θ(δ))
1

∆− 1
.

Now, we prove the Boundedness condition. Since λ ≤ γ
max{1,β∆−1}·((∆−2)βγ−∆)

, it

follows that y ≤ log(λmax{1, β∆−1}) ≤ log
(

γ
(∆−2)βγ−∆

)
. A simple calculation

reveals that γ
(∆−2)βγ−∆

≤
√

γ
β

and so by Lemma 5.9.3, we have

|h(y)| ≤
∣∣∣∣h(log

(
γ

(∆− 2)βγ −∆

))∣∣∣∣ ≤ (βγ − 1)elog( γ
(∆−2)βγ−∆)

elog( γ
(∆−2)βγ−∆) + γ

= (βγ − 1)
1

1 + (∆− 2)βγ −∆
=

βγ − 1

(∆− 2)(βγ − 1)− 1
≤ O(1/∆).

3. For the Contraction part, by log(λmax{1, 1/γ∆−1}) ≤ yi ≤ log(λmax{1, β∆−1}),

we have

∣∣∣∣∂Hd(y)

∂yi

∣∣∣∣ = |h(yi)| =
βγ − 1

1 + βγ + γe−yi + βeyi
≤ βγ − 1

1 + βγ + βeyi

≤ βγ − 1

1 + βγ + βλmax{1, 1/γ∆−1}
.

Since we assumed λ ≥ 1
1−δ ·

(∆−2)βγ−∆
β·min{1,1/γ∆−1} , it follows that we have the upper bound

βγ − 1

1 + βγ + (∆−2)βγ−∆
1−δ

which is again is upper bounded by (1−Θ(δ)) 1
∆−1

as we calculated in case 2 above.

Now, we prove the Boundedness condition. Note that since λ ≥ (∆−2)βγ−∆
βmin{1,1/γ∆−2 , it

follows that y ≥ log(λmin{1, 1/γ∆−1} ≥ log
(

(∆−2)βγ−∆
β

)
. A simple calculation

150



reveals that (∆−2)βγ−∆
β

≥
√

γ
β

and so by Lemma 5.9.3, we have

|h(y)| ≤
∣∣∣∣h(log

(
(∆− 2)βγ −∆

β

))∣∣∣∣ ≤ (βγ − 1)
1

β · (∆−2)βγ−∆
β

+ 1

=
βγ − 1

(∆− 2)(βγ − 1)− 1
≤ O(1/∆).

Next, we use results from [67] to prove Theorem 5.10.3. Their potential function is

implicitly defined by its derivative for the marginal ratios as

Φ′(R) = φ(R) = min

{
βγ − 1

αγ log λ+γ
βλ+1

,
1

R log λ
R

}

for a constant 0 ≤ α ≤ 1 depending only on β, γ, λ (see [67] for a precise definition). In

our context, the corresponding potential for the log ratios is

Ξ′(y) = ψ(y) = eyφ(ey) = min

{
βγ − 1

αγ log λ+γ
βλ+1

ey,
1

log λ
ey

}

and is bounded by constants depending on β, γ, λ,∆ for log(λ/γ∆−1) ≤ y ≤ log λ.

One of the main technical results in [67] is showing that the tree recursion is contracting

with the potential function Φ, and the derivative φ is bounded in the sense that there exist

positive constants C1, C2 depending only on β, γ, λ such that C1 ≤ φ(R) ≤ C2 for all

0 ≤ R ≤ λ. [67] refer to such a function as a universal potential function.

In our context, we get that Ξ is an (α, c)-potential function which satisfies Defini-

tion 5.2.1, but with a constant c that depends on γ,∆. Indeed, in the worst case, we have

max
y1,y2

ψ(y2)

ψ(y1)
≥ ψ(log λ)

ψ(log(λ/γ∆−1))
=

λ βγ−1

αγ log λ+γ
βλ+1

βγ−1

α log λ+γ
βλ+1

· λ
γ∆

= γ∆−1.

More precisely, we have the following result from [67], stated in terms of the log marginal

ratios.
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Theorem 5.10.4. Assume β, γ, λ are nonnegative real numbers satisfying β ≤ 1 ≤ γ,
√
βγ ≥ 1, and λ <

(
γ
β

) √
βγ√
βγ−1 . Then the function Ξ is an (α, c)-potential function for a

constant 0 < α < 1 depending on β, γ, λ, and a constant c > 0 depending on β, γ, λ,∆.

Combined with Theorem 5.2.2 and Theorem 1.2.1, this gives Cn log n mixing with a

constant C depending only on β, γ, λ,∆. We note this is weaker than the correlation decay

result in [67] when the maximum degree ∆ is unbounded.

5.11 Proofs of Mixing Results

In this section we give the proofs of Theorem 1.1.1, Theorem 1.1.2, Theorem 1.1.3 and

Theorem 5.2.2.

Proof of Theorem 5.2.2. It suffices to bound
∑

v∈V \{r} |I
σΛ
G (r → v)| for all graphs G =

(V,E) with n = |V | vertices and all boundary conditions σΛ on a subset Λ of i vertices.

We deduce that

∑
v∈V \{r}

|IσΛ
G (r → v)| ≤

∑
v∈VT \{r}

|IσΛ
T (r → v)| (Lemma 5.4.1; T = TSAW(G, r))

=
∞∑
k=1

∑
v∈Lr(k)

∣∣IσΛΛ
T (r → v)

∣∣ (split the sum by levels)

≤ c

∞∑
k=1

(1− α)k−1 (Lemma 5.4.3)

=
c

α
.

The theorem then follows.

Proof of Theorem 1.1.3. We leverage Theorem 5.2.2 and Theorem 5.8.5, which shows c
α

-

spectral independence as long as there is an (α, c)-potential, or 2c
α

-spectral independence

if there is a general (α, c)-potential. We use the potential given by Eq. (5.3), which is an

adaptation of the potential function in [89] to the log marginal ratios. When (β, γ, λ) is
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up-to-∆ unique with gap δ ∈ (0, 1), it is an (α, c)-potential or a general (α, c)-potential by

Lemma 5.4.4 and Lemma 5.8.6, with α ≥ δ/2 and c a universal constant specified by the

range of parameters. The theorem then follows from Theorem 1.2.1.

Proof of Theorem 1.1.1. By Claim 5.11.1 given below, λ ≤ (1− δ)λc(∆) implies up-to-∆

uniqueness with gap ≥ δ/4. Since γ ≤ 1, we can again appeal to Lemma 5.4.4 to obtain

an (α, c)-potential with α ≥ δ/8 and c ≤ 4. Theorem 1.1.1 then follows by Theorem 5.2.2

with 32
δ

-spectral independence and Theorem 1.2.1.

Proof of Theorem 1.1.2. By Claim 5.11.2 given below, β ≥ βc(∆) + δ(1− βc(∆)) implies

up-to-∆ uniqueness with gap δ. Again, appealing to Lemma 5.4.4, we obtain an (α, c)-

potential with α ≥ δ/2 and c ≤ 1.5. Theorem 1.1.2 then follows by Theorem 5.2.2 with

3
δ
-spectral independence and Theorem 1.2.1.

Though we technically get 3
δ

by using the [89] potential, we can improve it to 1.5
δ

-

spectral independence by using the trivial identity function as the potential. See the first

case of Theorem 5.10.1 and Remark 5.10.2.

We next state and prove Claim 5.11.1 and Claim 5.11.2, which relate the parameter

gaps with the uniqueness gaps.

Claim 5.11.1 (Hardcore Model; Lemma C.1 from [4]). Fix an integer ∆ ≥ 3, 0 < δ < 1,

and β = 0, γ > 0. If λ ≤ (1− δ)λc(γ,∆), then (β, γ, λ) is up-to-∆ unique with gap δ/4.

Claim 5.11.2 (Large
√
βγ). Fix an integer ∆ ≥ 3, and 0 < δ < 1. If

√
βγ ≥ ∆−2

∆
+

δ
(
1− ∆−2

∆

)
= ∆−2(1−δ)

∆
, then (β, γ, λ) is up-to-∆ unique with gap 0 < δ < 1 for all λ.

Note if β = γ, this is precisely the condition β ≥ βc(∆) + δ(1− βc(∆)).

Proof. Consider the univariate recursion for the marginal ratios with d < ∆ children

fd(R) = λ
(
βR+1
R+γ

)d
. Differentiating, we have

f ′d(R) = dλ

(
βR + 1

R + γ

)d−1

·
(

β

R + γ
− βR + 1

(R + γ)2

)
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= −d(1− βγ)λ

(
βR + 1

R + γ

)d
· 1

(βR + 1)(R + γ)

= −d(1− βγ) · fd(R)

(βR + 1)(R + γ)
.

At the unique fixed point R∗d, we have fd(R∗d) = R∗d so

|f ′d(R∗d)| = d(1− βγ)
R∗d

(βR∗d + 1)(R∗d + γ)
.

By Lemma 5.9.3, we have the upper bound

|f ′d(R∗d)| ≤ d · 1− βγ
(1 +

√
βγ)2

= d · 1−
√
βγ

1 +
√
βγ

.

Since we assumed
√
βγ ≥ ∆−2(1−δ)

∆
, we obtain

d · 1−
√
βγ

1 +
√
βγ
≤ d · ∆− (∆− 2(1− δ))

∆ + (∆− 2(1− δ))
= d · 1− δ

∆− 1 + δ
≤ (1− δ) d

∆− 1
.

As this is at most 1− δ for all d < ∆, we have up-to-∆ uniqueness with gap δ.
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CHAPTER 6

SPECTRAL INDEPENDENCE VIA STRONG SPATIAL MIXING APPROACH:

MATCHINGS AND COLORINGS

In this chapter we establish spectral independence for the monomer-dimer model on ar-

bitrary bounded-degree graphs and for random colorings on bounded-degree triangle-free

graphs. By Theorem 1.2.1 we obtain optimal mixing times of the Glauber dynamics for

these models. Our results match the current best known parameter regimes for strong spa-

tial mixing. We consider the monomer-dimer model for matchings in Section 6.1, which is

based on [45]. Section 6.2, based on [43], is devoted to colorings on triangle-free graphs.

6.1 Optimal Mixing Results for Monomer-Dimer Model

We prove optimal mixing time bounds for the monomer-dimer model on all matchings of

a graph with constant maximum degree. Given a graph G = (V,E) and a fugacity λ > 0,

the Gibbs distribution µ for the monomer-dimer model is defined on the collectionM of

all matchings of G where µ(M) = w(M)/Z for w(M) = λ|M |. The Glauber dynamics

for the monomer-dimer model adds or deletes a random edge in each step. In particular,

from Xt ∈ M, choose an edge e uniformly at random from E and let X ′ = Xt ⊕ e. If

X ′ ∈ M then let Xt+1 = X ′ with probability w(X ′)/(w(X ′) + w(Xt)) and otherwise let

Xt+1 = Xt.

We prove O(n log n) mixing time for the Glauber dynamics for sampling matchings

on bounded-degree graphs with n vertices. A classical result of Jerrum and Sinclair [76]

yields rapid mixing of the Glauber dynamics for any graph even with unbounded degrees,

but the best mixing time bound was O(n2m log n) [75] where m is the number of edges.

Theorem 1.1.5 (Monomer-Dimer Model). Let ∆ ≥ 3 be an integer and let λ > 0 be a
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real. For every n-vertex graph G of maximum degree ∆, the mixing time of the Glauber

dynamics for the monomer-dimer model on G with fugacity λ is at most Cn log n where

C = C(∆, λ) is a constant independent of n.

For the monomer-dimer model, spectral independence was not known previously. Fol-

lowing the proof strategy of Chapter 5 and utilizing the two-step recursion from [19], we

show the following.

Theorem 6.1.1. Let ∆ ≥ 3 be an integer and λ > 0 be a real. Then for every graph

G = (V,E) of maximum degree at most ∆ with m = |E|, the Gibbs distribution µ

of the monomer-dimer model on G with fugacity λ is η-spectrally independent for η =

min
{

2λ∆, 2
√

1 + λ∆
}

.

Our goal in the rest of this section is to obtain spectral independence bounds for the

monomer-dimer model; in particular, we prove Theorem 6.1.1. Fix a graph G = (VG, EG)

and a positive real number λ > 0. We define the monomer-dimer model on G to be

the distribution µG on 2EG supported on all matchings of G, where µG(M) ∝ λ|M |. We

note this model may be identified with the hardcore model on the line graph L(G) with

parameter λ, and hence, may also be viewed as a 2-spin system with spins in {0, 1}. As

above, we also think of the states as being assignments σ : E → {0, 1} such that {e ∈ E :

σ(e) = 0} is a matching.

Recall that we define the pairwise influence as

Ψτ
G(e→ f) = µG(σf = 0 | σe = 0, σΛ = τ)− µG(σf = 0 | σe = 1, σΛ = τ)

for every Λ ⊆ EG, every feasible boundary condition τ : Λ → {0, 1}, and every pair of

distinct edges e, f /∈ Λ. We say the Gibbs distribution µG of the monomer-dimer model

is η-spectrally independent if λ1(Ψτ
G) ≤ η for all Λ ⊆ E and all feasible τ : Λ → {0, 1},

where ΨG is the associated matrix of pairwise influences. We note this notion of spectral

independence is equivalent to Definition 2.1.4; see [4].
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We prove the following. Note that Theorem 6.1.1 is a consequence of it as the maximum

eigenvalue of a matrix is upper bounded by the maximum absolute row sum.

Theorem 6.1.2. Fix an integer ∆ ≥ 3, and a positive real number λ > 0. Then for

every graph G = (VG, EG) of maximum degree at most ∆ with |E| = m, every Λ ⊆ EG,

and every feasible boundary condition τ : Λ → {0, 1}, the Gibbs distribution µ of the

monomer-dimer model on G with fugacity λ satisfies the inequality

∑
f∈EG:f 6=e,f /∈Λ

|Ψτ
G(e→ f)| ≤ min

{
2λ∆, 2

√
1 + λ∆

}

for all edges e ∈ EG. In particular, the Gibbs distribution µG is η-spectrally independent

for

η = min
{

2λ∆, 2
√

1 + λ∆
}
.

Remark 6.1.3. We note [3] independently gave an O(1)-spectral independence bound for

vertex-to-vertex influences using Hurwitz stability which is incomparable to our result here.

Our proof follows the strategy used in Chapter 5. Specifically, we prove Theorem 6.1.2

in two steps. In the first step, we prove a reduction for bounding the total influence of an

edge in G to the total influence of an edge in the associated tree of self-avoiding walks

in G. To do this, we extend known results [60] on the univariate matching polynomial,

following a similar but simpler argument used in [44]. In the second step, we bound the

total influence of an edge in any tree of maximum degree at most ∆ by leveraging the

associated tree recursions. We formalize these in the following two intermediate theorems.

Theorem 6.1.4 (Reduction from Graphs to Trees). Fix a graph G = (VG, EG), r ∈ VG,

e ∼ r incident to r, f ∈ EG, and λ > 0. Then there exists a tree T = TSAW(G, r) =
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(VT , ET ) such that the following inequality holds:

∑
f∈EG

|ΨG(e→ f)| ≤
∑
g∈ET

|ΨT (e→ g)| .

Theorem 6.1.5 (Total Edge Influence in Trees). Let T = (VT , ET ) be any tree of maximum

degree ≤ ∆, e ∈ ET be any edge, and fix λ > 0. Then we have the bound

∑
f∈ET :f 6=e

|ΨT (e→ f)| ≤ min
{

2λ∆, 2
√

1 + λ∆
}
.

Remark 6.1.6. We note that this bound on the total influence of an edge is tight for the

infinite ∆-regular tree. However, it turns out that bounding the maximum eigenvalue of the

influence matrix using the total influence of an edge is not tight for the infinite ∆-regular

tree.

Assuming the truth of these two theorems, we now give a straightforward proof of

Theorem 6.1.2.

Proof of Theorem 6.1.2. Fix G, Λ ⊆ EG and τ : Λ → {0, 1}. Let H = (VH , EH) be the

graph obtained from G by deleting all edges e ∈ Λ such that τ(e) = 1, and deleting all

edges f ∈ Λ along with edges incident to them such that τ(f) = 0. Observe that H is a

subgraph of G with maximum degree at most ∆, and crucially, the conditional distribution

µτG is precisely µH . By Theorems 6.1.4 and 6.1.5, we have the bound

λ1(Ψτ
G) = λ1(ΨH) ≤ min{2λ∆, 2

√
1 + λ∆}.

As G,Λ, τ were arbitrary, the claim follows.

All that remains is to prove Theorems 6.1.4 and 6.1.5. We do this in Sections 6.1.1

and 6.1.2, respectively, noting that the arguments are completely independent of one an-

other.
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6.1.1 Reducing Influences in Graphs to Influences in Trees: Proof of Theorem 6.1.4

Fix a graph G = (VG, EG) with maximum degree ≤ ∆, and a vertex r ∈ VG. Let

TSAW(G, r) denote the self-avoiding walk tree inG rooted at r; in the context of matchings,

this is known as the “path tree” [60], and we refer to Section 5.3 and [60] for formal defi-

nitions. Note that we do not impose any boundary conditions on TSAW(G, r) like in [127].

For every vertex u ∈ VG, we write C(u) to be the set of copies of u in T . Similarly, for

every edge e ∈ EG, we write C(e) to be the set of copies of e in T .

We prove the following more fine-grained relationship between pairwise influences in

G and pairwise influences in T = TSAW(G, r).

Proposition 6.1.7 (Influence in G to Influence in TSAW(G, r)). For every graph G =

(VG, EG), r ∈ VG, e ∼ r, f ∈ EG, and edge activities xe ≥ 0, if we let T = TSAW(G, r) =

(VT , ET ), then we have the identity

ΨG(e→ f) =
∑

f ′∈C(f)

ΨT (e→ f ′).

We note that by the Triangle Inequality, Proposition 6.1.7 immediately implies The-

orem 6.1.4. Hence, it suffices to prove Proposition 6.1.7, which we do by generalizing

properties of the univariate matching polynomial.

Define the following multivariate edge-matching polynomial.

MG(xe : e ∈ ET ) =
∑

M⊆E matching

∏
e∈M

xe.

MG is also the partition function of the monomer-dimer model on G with edge activities

xe ≥ 0. Furthermore, if r ∈ VG is arbitrary, and we denote T = TSAW(G, r), then define

MT (xe : e ∈ EG)
def
= MT (xf : f ∈ ET )
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where xf = xe for all f ∈ C(e) and all e ∈ EG. We note that while MG is always

multiaffine, MT is not. Furthermore, MG is not homogeneous. Finally, note that the

degree of any edge e ∼ r incident to r is 1 inMT since no self-avoiding walk can reuse e

after using e to leave r. We will crucially need the following decomposition ofMG.

Lemma 6.1.8. For every graph G = (VG, EG) and any vertex v ∈ VG, we have the identity

MG(x) =MG−r(x) +
∑
v∼r

xrvMG−r−v(x).

Proof. Group the matchings for which r is not saturated in the term MG−r(x). Simi-

larly, group the matchings for which a fixed edge e = {r, v} incident to r is selected in

MG−r−v(x).

We prove the following, a univariate analog of which was already proved in [60].

Lemma 6.1.9. For every graph G = (VG, EG) and r ∈ VG, taking T = TSAW(G, r), we

have the identity

MG(x)

MG−r(x)
=
MT (x)

MT−r(x)
.

Furthermore, we may write MT (x) = MG(x) · q(x) for some polynomial q which does

not depend on xe for any e ∼ r.

First, let us see how to use Lemma 6.1.9 to prove Proposition 6.1.7.

Proof of Proposition 6.1.7. Fix r ∈ VG, and write T = TSAW(G, r). By Lemma 6.1.9, we

have thatMT (x) =MG(x) · q(x) for a polynomial q which does not depend on xe for all

e ∼ r. It follows that if e ∼ r, then

µT (σe = 0) = (xe∂xe logMT )(x) = (xe∂xe logMG)(x) = µG(σe = 0).
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It then also follows that for any e ∼ r and any edge f ∈ EG, we have the identity

(xfxe · ∂xf∂xe logMT )(x) = (xfxe · ∂xf∂xe logMG)(x).

Now, let us understand the left-hand and right-hand sides separately as influences. For the

right-hand side, we have that

(xfxe · ∂xf∂xe logMG)(x) = xexf · ∂xf
(∂xeMG)(x)

MG(x)

= xfxe ·
(

(∂xf∂xeMG)(x)

MG(x)
−

(∂xfMG)(x) · (∂xeMG)(f)

MG(x)2

)
= µG(σe = 0, σf = 0)− µG(σe = 0) · µG(σf = 0)

= µG(σe = 0) · (µG(σf = 0 | σe = 0)− µG(σf = 0))

= µG(σe = 0) · µG(σe = 1) ·ΨG(e→ f).

For the left-hand side, we have by the Chain Rule that

(xfxe · ∂xf∂xe logMT )(x) = xfxe · ∂xf
(∂xeMT )(x)

MT (x)

=
∑

f ′∈C(f)

xfxe · ∂xf ′
(∂xeMT )(x)

MT (x)

∣∣∣∣∣
x=x

=
∑

f ′∈C(f)

µT (σe = 0) · µT (σe = 1) ·ΨT (e→ f ′).

Since µG(σe = 0) = µT (σe = 0) and µG(σe = 1) = µT (σe = 1), the claim follows.

All that remains is to prove Lemma 6.1.9.

Proof of Lemma 6.1.9. We go by induction on the graph. First, we note that the claim is

trivial in the case where G itself is a tree, since then T = G and MG = MT (i.e. q is
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identically 1). This forms our base case. Now, by Lemma 6.1.8 we may write

MG(x) =MG−r(x) +
∑
v∼r

xrvMG−r−v(x)

where we note the polynomialsMG−r(x),MG−r−v(x) do not depend on any xe for e ∼ r.

Therefore, we deduce that

MG(x)

MG−r(x)
= 1 +

∑
v∼r

xrv ·
MG−r−v(x)

MG−r(x)

= 1 +
∑
v∼r

xrv ·
MTSAW(G−r,v)−v(x)

MTSAW(G−r,v)(x)
(Induction)

= 1 +
∑
v∼r

xrv ·
MTSAW(G,r)−r−v(x)

MTSAW(G,r)−r(x)

(TSAW(G− r, v) ∼= subtree of TSAW(G, r) rooted at v)

=
MTSAW(G,r)−r(x) +

∑
v∼r xrvMTSAW(G,r)−r−v(x)

MTSAW(G,r)−r(x)

=
MTSAW(G,r)(x)

MTSAW(G,r)−r(x)
.

This proves the first claim. For the second claim, we go by induction again. The base case

where G is a tree is again immediate. For the inductive step, we have

MTSAW(G,r)(x) =MG(x) ·
MTSAW(G,r)−r(x)

MG−r(x)

=MG(x) ·
∏

v∼uMTSAW(G−r,v)(x)

MG−r(x)

(Deleting r in TSAW(G, r) disconnects the subtrees TSAW(G− r, v).)

=MG(x) · q(x).

(Induction:MG−r(x) dividesMTSAW(G−r,v)(x) for any v)

This shows the lemma.
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6.1.2 The Total Influence in a Tree: Proof of Theorem 6.1.5

At this point, we can forget self-avoiding walk trees, and just focus on the special case

where G itself is a tree T . Throughout, we assume our tree T has maximum degree at

most ∆. If e ∈ T with endpoints r1, r2, then we may view T as two trees T (r1), T (r2) on

disjoint sets of vertices which are connected by the edge e, with T (r1) being rooted at r1

and T (r2) being rooted at r2. If v is a vertex in T (r1) (resp. T (r2)), we write T (v) for the

subtree of T (r1) (resp. T (r2)) rooted at v. We also write Lv(k) for the set of descendants

of v (in T (v)) at distance exactly k from v. We will let µT (r) to denote the probability that

the vertex r ∈ VT is saturated in a random matching drawn from the Gibbs distribution.

Similarly, we will write µT (r) = 1− µT (r).

We now prove several intermediate technical results which we will use to deduce The-

orem 6.1.5. To state them, we will need the following recursion for the probabilities µG(r)

in the monomer-dimer model on G with fugacity λ ≥ 0:

µG(r) =
1

1 + λ
∑

v∼r µG−r(v)
def
= Fλ(µG−r(v) : v ∼ r).

We note this is immediate from Lemma 6.1.8 and using that µG(r) = MG−r(x)

MG(x)
where we

take x = λ1.

Proposition 6.1.10. Fix a tree T and an edge e ∈ ET with endpoints r1, r2. Then we have

the bound

∑
f∈ET :f 6=e

|ΨT (e→ f)|

≤ 2
∞∑
k=1

max

{
k∏
i=1

µT (ui)(ui)

∣∣∣∣∣ u1 ∈ e, ui+1 ∈ Lui(1), ∀i = 1, . . . , k − 1

}

where we write e = e1, u1, e2, u2, . . . , uk, ek+1 = f for the unique path from e to f such

that edge ei connects vertices ui−1 and ui.

163



Proposition 6.1.11. Consider the potential function Φ(x) = log x with derivative ϕ(x) =

1
x
. Then for every tree T rooted at r and every sequence of vertices r = u1, . . . , uk, we

have the inequality

k∏
i=1

µT (ui)(ui) ≤ min

{(
λ∆

1 + λ∆

)k
, sup

y

∥∥∇(Φ ◦ F ◦2λ ◦ Φ−1)(y)
∥∥bk/2c

1

}

for every k.

Given Proposition 6.1.11, we will also need a bound on the gradient norm. Conve-

niently, this gradient norm was already analyzed in [19] to establish the correlation decay

property.

Lemma 6.1.12 ([19, Lemma 3.3]). Consider the potential function Φ(x) = log x. Then

we have the following bound on the norm of the gradient for the two-step log-marginal

recursion.

sup
y

∥∥∇(Φ ◦ F ◦2λ ◦ Φ−1)(y)
∥∥

1
≤ 1− 2√

1 + λ∆ + 1
.

We now show how to use intermediate technical results to prove Theorem 6.1.5. Im-

mediately following, we will prove Propositions 6.1.10 and 6.1.11.

Proof of Theorem 6.1.5. By combining Propositions 6.1.10 and 6.1.11 and Lemma 6.1.12,

we have the following two bounds

∑
f∈ET :f 6=e

|ΨT (e→ f)| ≤ 2
∞∑
k=1

(
1− 2√

1 + λ∆ + 1

)bk/2c
= −2 + 4

∞∑
k=0

(
1− 2√

1 + λ∆ + 1

)k
= 2
√

1 + λ∆;∑
f∈ET :f 6=e

|ΨT (e→ f)| ≤ 2
∞∑
k=1

(
λ∆

1 + λ∆

)k
= 2

λ∆

1 + λ∆
· 1

1− λ∆
1+λ∆

= 2λ∆.
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This proves the theorem.

Proof of Proposition 6.1.10

The crux of the proof rests on the following factorization of the pairwise influence in trees,

which was already observed in prior work [4, 44] in the context of vertex-spin systems.

Lemma 6.1.13 (Factorization of Pairwise Influence in Trees). Fix two edges e, f ∈ ET .

Let e = e1, u1, e2, u2, . . . , uk, ek+1 = f be the unique path in T from e to f , where edge ei

connects vertices ui−1 and ui. Then we have

ΨT (e→ f) =
k∏
i=1

ΨT (ei → ei+1).

Proof of Lemma 6.1.13. It suffices to show that if g is any edge on the unique path from e

to f , then ΨT (e→ f) = ΨT (e→ g) ·ΨT (g → f); the full claim then follows by induction.

This simpler identity follows immediately from the fact that conditioning on g disconnects

e from f so that they become independent.

Now, we finish the proof of Proposition 6.1.10. Observe that

∑
f∈ET :f 6=e

|ΨT (e→ f)| =
∞∑
k=1

 ∑
f∈ET (r1)

dist(e,f)=k

+
∑

f∈ET (r2)

dist(e,f)=k

 k∏
i=1

|ΨT (ei → ei+1)|

=
∞∑
k=1

 ∑
f∈ET (r1)

dist(e,f)=k

+
∑

f∈ET (r2)

dist(e,f)=k

 k∏
i=1

µT−ei(σei+1
= 0)

≤ 2 max
r∈e

∞∑
k=1

∑
f∈ET (r)

dist(e,f)=k

k∏
i=1

µT−ei(σei+1
= 0)

and hence, to prove the claim, it suffices to show that for each r ∈ e = {r1, r2} and each
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positive integer k, we have

∑
f∈ET (r)

dist(e,f)=k

k∏
i=1

µT−ei(σei+1
= 0)

≤ max

{
k∏
i=1

µT (ui)(ui)

∣∣∣∣∣ u1 = r, ui+1 ∈ Lui(1), ∀i = 1, . . . , k − 1

}
.

To show this, we prove the following more general inequality

∑
f∈ET (r)

dist(e,f)=k

k∏
i=1

µT−ei(σei+1
= 0) ≤

∑
ui+1∈Lui (1)
∀1≤i≤j

j∏
i=1

µT (ui)(σ{ui,ui+1} = 0) · max
ui+1∈Lui (1)
∀j+1≤i≤k

{
k∏

i=j+1

µT (ui)(ui)

}

for all j, by induction. The desired inequality is the special case j = 0 and the base case

j = k holds trivially with equality. Assume the inequality holds for some j + 1 ≤ k. We

now prove that it holds for j. This follows by:

∑
f∈ET (r)

dist(e,f)=k

k∏
i=1

µT−ei(σei+1
= 0)

≤
∑

ui+1∈Lui (1)
∀1≤i≤j+1

j+1∏
i=1

µT (ui)(σ{ui,ui+1} = 0) max
ui+1∈Lui (1)
∀j+2≤i≤k

{
k∏

i=j+2

µT (ui)(ui)

}

=
∑

ui+1∈Lui (1)
∀1≤i≤j

j∏
i=1

µT (ui)(σ{ui,ui+1} = 0)

×
∑

uj+2∈Luj+1 (1)

µT (uj+1)(σ{uj+1,uj+2} = 0) max
ui+1∈Lui (1)
∀j+2≤i≤k

{
k∏

i=j+2

µT (ui)(ui)

}

≤
∑

ui+1∈Lui (1)
∀1≤i≤j

j∏
i=1

µT (ui)(σ{ui,ui+1} = 0)
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× max
ui+1∈Lui (1)
∀j+1≤i≤k

{
k∏

i=j+2

µT (ui)(ui)

} ∑
uj+2∈Luj+1 (1)

µT (uj+1)(σ{uj+1,uj+2} = 0)

︸ ︷︷ ︸
=µT (uj+1)(uj+1)

=
∑

ui+1∈Lui (1)
∀1≤i≤j

j∏
i=1

µT (ui)(σ{ui,ui+1} = 0) max
ui+1∈Lui (1)
∀j+1≤i≤k

{
k∏

i=j+1

µT (ui)(ui)

}
.

This completes the proof of the proposition.

Proof of Proposition 6.1.11

We first prove the upper bound of
(

λ∆
1+λ∆

)k as it is simpler and does not require the use of

the potential function Φ. To see this, observe that

µG(r) =
1

1 + λ
∑

v∼r µG−r(v)
≥ 1

1 + λ∆

and hence µG(r) ≤ λ∆
1+λ∆

. It follows that

k∏
i=1

µT (ui)(ui) ≤
(

λ∆

1 + λ∆

)k

for any path u1, . . . , uk in T starting from the root. Applying Proposition 6.1.10, we have

that the total influence is upper bounded by

2
∞∑
k=1

(
λ∆

1 + λ∆

)k
=

2λ∆

1 + λ∆
· 1

1− λ∆
1+λ∆

= 2λ∆.

It turns out, one may view this simple analysis as a “one-step” version of the proof of

Proposition 6.1.11.

Composing with the recursion Fλ yields the following recursion for the log-marginals
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yi = log pi = Φ(pi):

(Φ ◦ Fλ ◦ Φ−1)(y) = − log

(
1 + λ

d∑
i=1

exp(yi)

)
;

(Φ ◦ F ◦2λ ◦ Φ−1)(y) = − log

(
1 + λ

d∑
i=1

1

1 + λ
∑d

j=1 exp(yij)

)
.

Differentiating and applying the Inverse Function Theorem, we obtain that

(∂piFλ)(p) = − λ(
1 + λ

∑d
j=1 pj

)2 = −λFλ(p)2;

and

∂yi(Φ ◦ Fλ ◦ Φ−1)(y) =
(Φ ◦ Fλ)(p)

Φ(pi)
· (∂piFλ)(p)

= − pi
Fλ(p)

· λFλ(p)2 = −λ · pi · Fλ(p);

and

∂yij(Φ ◦ F ◦2λ ◦ Φ−1)(y) =
(Φ ◦ F ◦2λ )(p)

Φ(pij)
· (∂pijF ◦2λ )(y)

=
pij

F ◦2λ (p)
· ((∂pjFλ) ◦ Fλ)(p) · (∂piFλ)(p)

=
pij

F ◦2λ (p)
·
(
−λ(Fλ ◦ Fλ)(p)2

)
·
(
−λFλ(p)2

)
= (λ · pij · Fλ(p)) ·

(
λ · Fλ(p) · F ◦2λ (p)

)
.

With this, we now write

k∏
i=1

µT (ui)(ui)

=
k∏
i=1

∑
ui+1∈Lui (1)

λ · µT (ui)(ui) · µT (ui+1)(ui+1)
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≤
bk/2c∏
i=1

 ∑
v∈Lu2i−1 (1)

λ · µT (u2i−1)(u2i−1) · µT (v)(v)


·

 ∑
w∈Lu2i (1)

λ · µT (u2i)(u2i) · µT (w)(w)


≤
bk/2c∏
i=1

 ∑
v∈Lu2i−1 (1)

∑
w∈Lv(1)

(
λ · µT (u2i−1)(u2i−1) · µT (v)(v)

)
·
(
λ · µT (v)(v) · µT (w)(w)

)
≤ sup

y

∥∥∇(Φ ◦ F ◦2λ ◦ Φ−1)(y)
∥∥bk/2c

1
,

as claimed.

6.2 Optimal Mixing Results for Colorings on Triangle-free Graphs

Let α∗ ≈ 1.763 be the solution to exp(1/x) = x; this threshold has appeared in several

related results for colorings, though obtaining corresponding algorithms has been challeng-

ing. For example, for α > α∗, Gamarnik, Katz, and Misra [59] proved SSM on triangle-free

graphs when q > α∆ + β for some constant β = β(α); see also [61] for a related result

on amenable graphs. It was not until recently that the SSM result of [59] was converted

to an algorithm for triangle-free graphs by Liu, Sinclair, and Srivastava [92] utilizing the

complex zeros approach; however, just as for 2-spin systems, the polynomial exponent in

the running time depends exponentially on ∆ and the distance of α from α∗.

Our main contribution is to develop the spectral independence approach for colorings,

and analyze Glauber dynamics in the regime q ≥ α∆ + 1 for all α > α∗ on triangle-free

graphs. Our result applies for all ∆ and we show that the bound on spectral indepen-

dence does not depend on ∆ and q, yielding substantially faster randomized algorithms for

sampling/counting colorings than the previous deterministic ones (at the expense of using

randomness). The following result shows the second part of Theorem 1.1.4.

Theorem 6.2.1 (Colorings of Triangle-Free Graphs). Let α∗ ≈ 1.763 denote the solution

to exp(1/x) = x. For all α > α∗, for any triangle-free graph G = (V,E) with maximum
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degree ∆ ≥ 3 and any integer q ≥ α∆ + 1, the mixing time of the Glauber dynamics on G

with q colors is at most Cn log n, where C = C(α,∆) is a constant independent of n.

We remark that the constant C is a function of the gap α− α∗ and is independent of q.

6.2.1 Preliminaries for Colorings and List-Colorings

Let q ≥ 3 be an integer and denote by [q] := {1, . . . , q}. To apply Theorem 1.2.1, we need

to establish the following theorem; Theorem 6.2.1 then follows immediately.

Theorem 6.2.2. Let α∗ ≈ 1.763 denote the solution to exp(1/x) = x. For all α > α∗,

there exists η = η(α) > 0 such that, for any triangle-free graphG = (V,E) with maximum

degree ∆ and any integer q ≥ α∆+1, the uniform distribution µ over all proper q-colorings

of G is η-spectrally independent.

To establish spectral independence for colorings we also need the more general notion

of list-colorings. A list-coloring instance is a pair (G,L) where G = (V,E) is a graph and

L = {L(v)}v∈V prescribes a list L(v) ⊆ [q] of available colors for each v ∈ V ; it will also

be convenient to assume that the vertices of G are ordered by some relation < (the ordering

itself does not matter). A proper list-coloring for the instance (G,L) is an assignment

σ : V → [q] such that σv ∈ L(v) for each v ∈ V and σv 6= σw for each {v, w} ∈ E. The

instance is satisfiable iff such a proper list-coloring exists. Note, q-colorings corresponds

to the special case where L(v) = [q] for each v ∈ V . For a satisfiable list-coloring instance

(G,L), we will denote by UG,L the set {(v, i) | v ∈ V, i ∈ L(v)}, by ΩG,L the set of all

proper list-colorings, and by PG,L the uniform distribution over ΩG,L; we will omit G from

notations when it is clear from context. We typically use σ to denote a random list-coloring

that is distributed according to PG,L.

We will be interested in analyzing the Glauber dynamics on ΩG,L. This is a Markov

chain (Zt)t≥0 of list-colorings which starts from an arbitrary Z0 ∈ ΩG,L and at each time

t ≥ 0 updates the current list-coloring Zt to Zt+1 by selecting a vertex v ∈ V u.a.r. and
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setting Zt+1(v) = c, where c is a color chosen u.a.r. from the set L(v)\Zt(NG(v)); for a

vertex w 6= v, the color of w is unchanged, i.e., Zt+1(w) = Zt(w). The transition matrix of

the Glauber dynamics will be denoted by P = PG,L.

To ensure satisfiability of (G,L) as well as ergodicity of the Glauber dynamics, we will

henceforth assume the well-known condition that |L(v)| ≥ ∆G(v)+2 for all v ∈ V , where

∆G(v) = |NG(v)| and NG(v) is the set of neighbors of v in G. Then, Glauber dynamics

converges to the uniform distribution over ΩG,L.

Remark 6.2.3. To ensure satisfiability, it suffices to have the assumption |L(v)| ≥ ∆G(v)+1

for all v ∈ V ; in fact, for every v ∈ V and i ∈ L(v) there exists a list-coloring σ of (G,L)

with σv = i. The slightly stronger condition |L(v)| ≥ ∆G(v) + 2 for every v ∈ V

ensures that any two list-colorings σ, τ are “connected” by a sequence of list-colorings

where consecutive list-colorings differ at the color of a single vertex. (A clique with q + 1

vertices gives a counterexample to this latter property for q-colorings).

For the spectral independence approach, we will need to consider conditional distribu-

tions of PG,L given a partial list-coloring on a subset of vertices. For a partial list-coloring

τ on a subset S ⊆ V , let (Gτ , Lτ ) be the list-coloring instance on the induced subgraph

G[V \S] with lists obtained from L by removing the unavailable colors that have been as-

signed by τ for each vertex in V \S, i.e., Lτ = {Lτ (v)}v∈V \S where for v ∈ V \S we have

Lτ (v) = L(v)\τ(NG(v) ∩ S).

To capture those instances of list-colorings obtained from an instance of q-colorings by

assigning fixed colors to a subset of vertices, the following notion of (∆, q)-list-colorings

will be useful.

Definition 6.2.4. Let ∆, q be positive integers with ∆ ≥ 3 and q ≥ ∆ + 2. We say that

(G,L) is a (∆, q)-list-coloring instance ifG = (V,E) has maximum degree ∆ and for each

v ∈ V it holds that L(v) ⊆ [q] and |L(v)| ≥ q −∆ + ∆G(v).

In our proofs henceforth, it will be convenient to define the following slightly more

accurate form of the region of (∆, q) where our results apply to.
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Definition 6.2.5 (Parameter Region Λε). Let α∗ ≈ 1.763 denote the solution to exp(1/x) =

x. For ε > 0, define Λε = {(∆, q) ∈ N2 | ∆ ≥ 3, q ≥ α∆ + β} where α = (1 + ε)α∗ and

β = 2− α + α
2(α2−1)

< 0.655.

The core of our argument behind the proof of Theorem 6.2.2 is to establish the following

bound on λ1(Ψ) by studying the list-coloring distribution.

Theorem 6.2.6. Let ε > 0 be arbitrary, and suppose that (G,L) is a (∆, q)-list-coloring

instance with q ≥ (1+ε)α∗∆+1 andG a triangle-free graph. Then, λ1(Ψ) ≤ 8
(

1
ε

+ 1
)

∆
q

where Ψ = ΨG,L is the influence matrix.

Theorem 6.2.2 is a consequence of Theorem 6.2.6 by definitions of spectral indepen-

dence.

6.2.2 Establishing Spectral Independence: Proof of Theorem 6.2.6

Let (G,L) be a (∆, q)-list-coloring instance as in Theorem 6.2.6. Let Ψ = ΨG,L be the

square matrix with indices from the set UG,L, where the entry indexed by (v, i), (w, k) ∈

UG,L is 0 if v = w, and

Ψ
(
(v, i), (w, k)

)
= PG,L(σw = k | σv = i)− PG,L(σw = k), if v 6= w.

Our goal is to bound the spectral radius of the influence matrix ΨG,L. In this section, we

will show that for α > α∗ there exists a constant C = C(α) such that whenever q ≥ α∆+1

it holds that λ1(ΨG,L) ≤ C∆/q.

Henceforth, it will be convenient to extend ΨG,L by setting ΨG,L((v, i), (w, k)) = 0

when k /∈ L(w) or i /∈ L(v). It is well-known that, for any square matrix the spectral

radius is bounded by the maximum of the L1-norms of the rows. In our setting, the bound

on λ1(ΨG,L) will therefore be obtained by showing that, for an arbitrary vertex v of G and
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a color i ∈ L(v), it holds that

∑
w∈V \{v}

∑
k∈[q]

∣∣ΨG,L

(
(v, i), (w, k)

)∣∣ ≤ 8

(
1

ε
+ 1

)
∆

q
. (6.1)

To bound the sum in Eq. (6.1), we introduce the maximum influence, which describes the

maximum difference of the marginal probability at w under all color choices of v.

Definition 6.2.7 (Maximum Influences). Let (G,L) be a (∆, q)-list-coloring instance. Let

v, w be two vertices of G. The maximum influence of v on w is defined to be

ΨG,L[v → w] = max
i,j∈L(v)

max
Q⊆[q]

∣∣PG,L(σw ∈Q | σv = i)− PG,L(σw ∈Q | σv = j)
∣∣.

Lemma 6.2.8. For all distinct v, w ∈ V and i ∈ L(v) we have

∑
k∈[q]

|ΨG,L((v, i), (w, k))| ≤ 2 ·ΨG,L[v → w].

Proof. Let π ∈ Rq such that π(k) = PG,L(σw = k) for each k ∈ [q]. For i ∈ L(v),

let πi ∈ Rq such that πi(k) = PG,L(σw = k | σv = i) for each k ∈ [q]. Finally, let

ν(i) = PG,L(σv = i) for each i ∈ L(v). It then follows that

∑
k∈[q]

|ΨG,L((v, i), (w, k))| =
∑
k∈[q]

|πi(k)− π(k)| = ‖πi − π‖1 .

Meanwhile, by the law of total probability we have π(k) =
∑

j∈L(v) ν(j)πj(k) for all

k ∈ [q]. Hence, π =
∑

j∈L(v) ν(j)πj . We then deduce from the triangle inequality that

‖πi − π‖1 =

∥∥∥∥∥∥
∑
j∈L(v)

ν(j)(πi − πj)

∥∥∥∥∥∥
1

≤
∑
j∈L(v)

ν(j) ‖πi − πj‖1 ≤ max
i,j∈L(v)

‖πi − πj‖1 .
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Notice that

1

2
‖πi − πj‖1 = dTV(πi, πj) = max

Q⊆[q]

∣∣PG,L(σw ∈Q | σv = i)− PG,L(σw ∈Q | σv = j)
∣∣.

The lemma then follows immediately.

Hence, to bound the sum in Eq. (6.1), it suffices to bound the sum
∑

w∈V \{v}ΨG,L[v →

w] instead. Our ultimate goal is to write a recursion for this latter sum, bounding by an

analogous sum for the neighbors of v (in the graph where v is deleted). To get on the right

track, we start by writing a recursion for influences.

Definition 6.2.9. Let (G,L) be a list-coloring instance where G = (V,E) is a graph and

L = {L(v)}v∈V is a collection of color lists. Let v ∈ V . For u ∈ NG(v) and colors

i, j ∈ L(v) with i 6= j, we denote by (Gv, L
ij
u ) the list-coloring instance with Gv = G \ v

and lists Liju = {Liju (w)}w∈V \{v} obtained from L by:

• removing the color i from the lists L(u′) for u′ ∈ NG(v) with u′ < u,

• removing the color j from the lists L(u′) for u′ ∈ NG(v) with u′ > u, and

• keeping the remaining lists unchanged.

The following lemma will be crucial in our recursive approach to bound influences, and

follows by adapting suitably ideas from [59]. The proof of it can be found in Section 6.2.3.

Lemma 6.2.10. Let (G,L) be a (∆, q)-list-coloring instance with G = (V,E) and L =

{L(v)}v∈V . Then, for v ∈ V and arbitrary colors i, j ∈ L(v) with i 6= j, for allw ∈ V \{v}

and k ∈ [q], we have

P(σw = k | σv = i)− P(σw = k | σv = j) =∑
u∈NG(v)

Piju (σu = j)

Piju (σu 6= j)
·Ψij

u

(
(u, j), (w, k)

)
− Piju (σu = i)

Piju (σu 6= i)
·Ψij

u

(
(u, i), (w, k)

)
,

174



where P := PG,L and, for u ∈ NG(v), Piju := PGv ,Liju and Ψij
u := ΨGv ,L

ij
u

.

Recall that we set Ψij
u

(
(u, c), (w, k)

)
= 0 for c /∈ Liju (u). To apply Lemma 6.2.10

recursively, it will be helpful to consider multiple list-coloring instances on the same graph

G. For a collection of lists L = {L1, . . . , Lt}, where each L ∈ L is a set of lists of

all vertices for G, we use (G,L) to denote the collection of |L| list-coloring instances

{(G,L1), . . . , (G,Lt)}. When considering the pair (G,L) or (G,L), we usually omit the

graph G when it is clear from the context.

Definition 6.2.11. Let (G,L) be a collection of list-colorings instances with G = (V,E)

and a collection of lists L on G. For v ∈ V , we define Lv to be the collection of lists for

Gv = G \ v obtained from L by setting

Lv =
{
Liju | L ∈ L, u ∈ NG(v), i, j ∈ L(v) with i 6= j

}
.

Note that (Gv,Lv) consists of |Lv| =
∑

L∈L∆G(v) · |L(v)| · (|L(v)| − 1) list-coloring

instances.

Lemma 6.2.12. If (G,L) is a collection of (∆, q)-list-coloring instances, then for every

vertex v of G, (Gv,Lv) is also a collection of (∆, q)-list-coloring instances.

Proof. Let Lv ∈ Lv be arbitrary, so that Lv is obtained from some L ∈ L. Then, by

definition, for u /∈ NG(v) we have |Lv(u)| = |L(u)| and ∆G\v(u) = ∆G(u), while for

u ∈ NG(v) we have |Lv(u)| ≥ |L(u)| − 1 and ∆Gv(u) = ∆G(u)− 1. This implies that Lv

is (∆, q)-induced.

Definition 6.2.13. Let (G,L) be a collection of (∆, q)-list-coloring instances with G =

(V,E). Fix a vertex v ∈ V and let w ∈ V \{v}. The maximum influence of v on w with

respect to (G,L) is defined to be

ΨG,L[v → w] = max
L∈L

ΨG,L[v → w].
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The total maximum influence of v with respect to (G,L) is defined to be 0 if ∆G(v) = 0,

and

Ψ∗G,L(v) =
1

∆G(v)

∑
w∈V \{v}

ΨG,L[v → w] if ∆G(v) ≥ 1.

The following lemma gives a recursive bound on the total maximum influence.

Lemma 6.2.14. Let (G,L) be a collection of list-coloring instances and v be a vertex of G

with ∆G(v) ≥ 1. Then, with Gv,Lv as in Definition 6.2.11,

Ψ∗G,L(v) ≤ max
u∈NG(v)

{
RGv ,Lv(u)

(
∆Gv(u) ·Ψ∗Gv ,Lv(u) + 1

)}
,

where RGv ,Lv(u) = maxL∈Lv maxc∈L(u)
PGv,L(σu=c)

PGv,L(σu 6=c) for u ∈ NG(v).

Proof. Suppose that G = (V,E). For convenience, we will drop the subscripts G,L from

influences and use the subscript v as a shorthand for the subscriptsGv,Lv of influences and

the quantity R. We will soon show that for every w ∈ V \ {v}, we have

Ψ[v → w] ≤
∑

u∈NG(v)

Rv(u) ·Ψv[u→ w]. (6.2)

Assuming Eq. (6.2) for the moment, we have that

Ψ∗(v) =
1

∆G(v)

∑
w∈V \{v}

Ψ[v → w] ≤ 1

∆G(v)

∑
w∈V \{v}

∑
u∈NG(v)

Rv(u) ·Ψv[u→ w]

=
1

∆G(v)

∑
u∈NG(v)

Rv(u) ·
( ∑
w∈V \{v,u}

Ψv[u→ w] + Ψv[u→ u]

)
≤ max

u∈NG(v)

{
Rv(u)

(
∆Gv(u) ·Ψ∗v(u) + 1

)}
,

which is precisely the desired inequality (observe that Ψv[u → u] = 1 by definition). To

prove Eq. (6.2), consider L ∈ L, i, j ∈ L(v) with i 6= j, and Q ⊆ [q]. For simplicity, let

P := PG,L and, for u ∈ NG(v), Piju := PGv ,Liju , Ψij
u := ΨGv ,L

ij
u

, and Ψij
u = ΨGv ,L

ij
u

. Let also

P ij
w,Q := P(σw ∈Q | σv = i) − P(σw ∈Q | σv = j) and Ψij

u

(
(u, i), (w,Q)

)
:= Piju (σw ∈Q |
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σu = i)− Piju (σw ∈Q), so that from Lemma 6.2.10 we have

P ij
w,Q =

∑
u∈NG(v)

Piju (σu = j)

Piju (σu 6= j)
·Ψij

u

(
(u, j), (w,Q)

)
−Piju (σu = i)

Piju (σu 6= i)
·Ψij

u

(
(u, i), (w,Q)

)
. (6.3)

By the law of total probability, we have

∑
c∈Liju (u)

Piju (σu = c) ·Ψij
u

(
(u, c), (w,Q)

)
=

∑
c∈Liju (u)

Piju (σu = c)
(
Piju (σw ∈Q | σu = c)− Piju (σw ∈Q)

)
= 0;

so we conclude that

mij
u (Q) := min

i′∈Liju (u)
Ψij
u

(
(u, i′), (w,Q)

)
≤ 0, and

M ij
u (Q) := max

j′∈Liju (u)
Ψij
u

(
(u, j′), (w,Q)

)
≥ 0. (6.4)

Observe further that

Ψij
u [u→ w] = max

i′,j′∈Liju (u)
max
Q′⊆[q]

∣∣Piju (σw ∈Q
′ | σu = i′)− Piju (σw ∈Q

′ | σv = j′)
∣∣

≥M ij
u (Q)−mij

u (Q). (6.5)

Combining Eqs. (6.3) to (6.5) we obtain that

P ij
w,Q ≤

∑
u∈NG(v)

Rv(u)
(
M ij

u (Q)−mij
u (Q)

)
≤

∑
u∈NG(v)

Rv(u) ·Ψij
u [u→ w]

≤
∑

u∈NG(v)

Rv(u) ·Ψv[u→ w].
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Since ΨG,L[v → w] = maxi,j∈L(v) maxQ⊆[q] P
ij
w,Q, by taking maximum over i, j ∈ L(v)

and Q ⊆ [q] of the left-hand side, we obtain the same upper for ΨG,L[v → w]. We then

obtain Eq. (6.2) by taking maximum over L ∈ L, and thus finish the proof.

For the bound in Lemma 6.2.14 to be useful, we need to show that the ratio R(u)

defined there is strictly less than 1/∆G(u). The following lemma does this for (∆, q) ∈ Λε,

building on ideas from [61, 59].

Lemma 6.2.15. Let ε > 0 and (∆, q) ∈ Λε. Let (G,L) be a (∆, q)-list-coloring instance

with G a triangle-free graph. Then for every vertex u of G with degree at most ∆− 1 and

every color c ∈ L(u), we have

PG,L(σu = c)

PG,L(σu 6= c)
≤ min

{
1

(1 + ε)∆G(u)
,

4

q

}
.

Remark 6.2.16. We remark that our region Λε is slightly smaller than that of [61], where

similar bounds are shown for q ≥ α∆ − γ for γ ≈ 0.4703. The difference is that the

arguments in [61] upper-bound PL(σu = c) instead of the ratio PL(σu = c)/PL(σu 6= c)

which is relevant here, and which is clearly larger than PL(σu = c). See also the discussion

before the upcoming Lemma 6.2.19.

Note that when ∆G(u) is small, the bound 1/∆G(u) is poor and we shall apply the

simpler crude bound 4/q. The proof of Lemma 6.2.15 can be found in Section 6.2.3.

Combining Lemmas 6.2.14 and 6.2.15, we can now bound the total influence.

Theorem 6.2.17. Let ε > 0 and (∆, q) ∈ Λε. Suppose that (G,L) is a collection of (∆, q)-

list-coloring instances where G is a triangle-free graph. Then for every vertex v of G we

have Ψ∗G,L(v) ≤ 4
q

(
1
ε

+ 1
)
.

Proof. Let v0 = v, G0 = G and L0 = L. For ` ≥ 0, we will define inductively a sequence

of (∆, q)-list-coloring instances (G`,L`) and a vertex v` in G` as follows. Let G`+1 be the

graph obtained from G` by deleting v`, i.e., G`+1 = G`\v` and L`+1 = L`v` . Note that all
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neighbors of v` in G` have degree at most ∆ − 1 in G`+1. Moreover, since by induction

(G`,L`) is a set of (∆, q)-list-coloring instances, by Lemma 6.2.12 so is (G`+1,L`+1).

Since q ≥ (1 + ε)α∆ + 1, combining Lemmas 6.2.14 and 6.2.15, we obtain that

Ψ∗G`,L`(v`) ≤
1

1 + ε
· max
u∈N

G`
(v`)

{
Ψ∗G`+1,L`+1(u)

}
+

4

q
. (6.6)

We let v`+1 be the vertex u ∈ NG`(v`) that attains the maximum of the right-hand side

of Eq. (6.6), so

Ψ∗G`,L`(v`) ≤
1

1 + ε
·Ψ∗G`+1,L`+1(v`+1) +

4

q
. (6.7)

Hence, we obtain a sequence of vertices v0, v1, . . . , vm and a sequence of collections of

lists L0,L1, . . . ,Lm, till when ∆Gm(vm) = 0 and thus Ψ∗Gm,Lm(vm) = 0. From this, and

since Eq. (6.7) holds for all 0 ≤ ` ≤ m − 1, we obtain by solving the recursion that

Ψ∗G,L(v) ≤ 4/q
1−(1+ε)−1 = 4

q

(
1
ε

+ 1
)
, as wanted.

Combining Theorem 6.2.17 with Lemma 6.2.8 and Definition 6.2.13 of total maximum

influence gives Eq. (6.1), which therefore yields the bound λ1(ΨG,L) ≤ 8
(

1
ε

+ 1
)

∆
q

for

any (∆, q)-list-coloring instance (G,L) with (∆, q) ∈ Λε, as claimed at the beginning of

this section and which completes the proof of Theorem 6.2.6.

6.2.3 Proofs of Influence Recursion and Marginal Bounds

In this section, we give the proof of Lemma 6.2.10 and Lemma 6.2.15, which were used in

the proof of Theorem 6.2.6.

Proof of Lemma 6.2.10. For convenience, set P := P(σw = k | σv = j) − P(σw = k |

σv = i).

Let d = ∆G(v) and u1, . . . , ud be the neighbors of v in G in the order prescribed by the

labelling on G. Let N = NG(v) and, for t = 1, . . . , d, let Nt = {u1, . . . ut−1} be the set of
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vertices preceding vt. Then, with Gv = G\v and Lv = {L(u)}u∈V \{v}, we have

P = PGv ,Lv
(
σw = k, j /∈ σN

)
− PGv ,Lv

(
σw = k, i /∈ σN

)
=

d∑
t=1

PGv ,Lv
(
σw = k, i /∈ σNt , j /∈ σN\Nt

)
− PGv ,Lv

(
σw = k, i /∈ σNt+1 , j /∈ σN\Nt+1

)
=

∑
u∈NG(v)

Piju (σw = k | σu 6= j)− Piju (σw = k | σu 6= i).

Now, for u ∈ NG(v), we have that

Piju (σw = k | σu 6= i)− Piju (σw = k)

=


0, if i /∈ L(u),

−Piju (σu = i)

Piju (σu 6= i)
·Ψij

u

(
(u, i), (w, k)

)
, if i ∈ L(u).

Summing this over u ∈ NG(v) yields the equality in the lemma.

Next, we prove Lemma 6.2.15. For integers ∆, q ≥ 3 with q ≥ ∆ + 1, the following

function will be relevant for this section:

Φ(∆, q) =
q − 2

∆− 1
·
[(

1− 1

q −∆ + 1

)q−∆+1
]∆−1
q−2

. (6.8)

The following lemma is implicitly given in [61] in their proof of Lemma 15. Here we

present a more direct proof, combining ideas from both [61] and [59].

Lemma 6.2.18. Suppose that (G,L) is a (∆, q)-list-coloring instance with G = (V,E) a

triangle-free graph. Then for every vertex u ∈ V of degree at most ∆− 1 and every color

c ∈ L(u), we have
PG,L(σu = c)

PG,L(σu 6= c)
≤ 1

Φ(∆, q)
· 1

∆G(u)
.

Proof. By the law of total probability, it suffices to give an upper bound on PGτ ,Lτ (σu=c)

PGτ ,Lτ (σu 6=c)

for an arbitrary partial list-coloring τ on V \(u ∪ NG(u)). In turn, since (Gτ , Lτ ) is also
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a (∆, q)-list-coloring instance and Gτ is a star graph centered at u, it suffices to prove the

lemma when G is a star graph centered at u. Henceforth, for convenience, we drop the

subscript G from notation.

For w ∈ NG(u) and c ∈ L(u) we define δc(w) = 1{c ∈ L(w)}. For any c, c′ ∈ L(u),

we have

PL(σu = c′)

PL(σu = c)
=

∏
w∈NG(u)

|L(w)| − δc′(w)

|L(w)| − δc(w)

≥
∏

w∈NG(u)

(
1− δc′(w)

|L(w)|

)

=
∏

w∈NG(u)

(
1− 1

|L(w)|

)δc′ (w)

.

From this, and using the arithmetic-geometric mean inequality, it follows that

PL(σu 6= c)

PL(σu = c)
=

∑
c′∈L(u)\{c}

∏
w∈NG(u)

(
1− 1

|L(w)|

)δc′ (w)

≥
(
|L(u)| − 1

)( ∏
c′∈L(u)\{c}

∏
w∈NG(u)

(
1− 1

|L(w)|

)δc′ (w)) 1
|L(u)|−1

=
(
|L(u)| − 1

)( ∏
w∈NG(u)

(
1− 1

|L(w)|

)∑
c′∈L(u)\{c} δc′ (w)) 1

|L(u)|−1

≥
(
|L(u)| − 1

)( ∏
w∈NG(u)

(
1− 1

|L(w)|

)|L(w)|) 1
|L(u)|−1

.

Since (1− 1/m)m is an increasing sequence in m and |L(w)| ≥ q −∆ + 1, we get

1

∆G(u)
· PL(σu 6= c)

PL(σu = c)
≥ |L(u)| − 1

∆G(u)
·

[(
1− 1

q −∆ + 1

)q−∆+1
] ∆G(u)

|L(u)|−1

.

Since we have

|L(u)| − 1

∆G(u)
≥ q −∆− 1

∆G(u)
+ 1 ≥ q −∆− 1

∆− 1
+ 1 =

q − 2

∆− 1
,
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we deduce that

1

∆G(u)
· PL(σu 6= c)

PL(σu = c)
≥ q − 2

∆− 1
·

[(
1− 1

q −∆ + 1

)q−∆+1
]∆−1
q−2

= Φ(∆, q).

This shows the lemma.

We then give a lower bound on the key function Φ(∆, q) defined in Lemma 6.2.18

when (∆, q) ∈ Λε. Relevant to Remark 6.2.16, numerical experiments demonstrate that

Φ(∆, q) < 1 when q = α∆ for α very close to α∗, indicating that the current proof approach

cannot go beyond q ≥ α∆.

Lemma 6.2.19. For every ε > 0 and (∆, q) ∈ Λε, we have Φ(∆, q) ≥ 1 +
(
1 + 1

α∗

)
ε.

Proof. Note that the condition q ≥ α∆ + β can be rewritten as

q − 2 ≥ α(∆− 1) +
α

2(α2 − 1)
. (6.9)

First by Lemma 17 (ii) of [61], which can be proved directly by comparing the power series

expansions, we have

−(q −∆ + 1) log

(
1− 1

q −∆ + 1

)
≤ 1 +

1

2(q −∆)
.

Since we have

q −∆ = (q − 2)− (∆− 1) + 1 > (α− 1)(∆− 1),

it follows that

Φ(∆, q) ≥ q − 2

∆− 1
· exp

[
−
(

1 +
1

2(α− 1)(∆− 1)

)
· ∆− 1

q − 2

]
.

Notice that the right-hand side above is monotone increasing in q−2. Plugging in Eq. (6.9),
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we deduce that

Φ(∆, q) ≥ α

(
1 +

1

2(α2 − 1)(∆− 1)

)
· exp

[
− 1

α
·

1 + 1
2(α−1)(∆−1)

1 + 1
2(α2−1)(∆−1)

]

= α

(
1 +

1

2(α2 − 1)(∆− 1)

)
· exp

(
− 1

α
− 1

2(α2 − 1)(∆− 1) + 1

)
≥ αe−

1
α ·
(

1 +
1

2(α2 − 1)(∆− 1)

)
·
(

1− 1

2(α2 − 1)(∆− 1) + 1

)
= αe−

1
α .

Finally, since α = (1 + ε)α∗ and α∗e−1/α∗ = 1, we obtain

Φ(∆, q) ≥ (1 + ε)α∗e−
1
α∗+ ε

α ≥ (1 + ε)
(

1 +
ε

α

)
= 1 +

(
1 +

1

α∗

)
ε.

We are now ready to prove Lemma 6.2.15.

Proof of Lemma 6.2.15. The first upper bound 1
(1+ε)∆G(u)

follows from Lemmas 6.2.18

and 6.2.19. For the second bound, first we have the following crude bound

PL(σu = c) ≤ 1

|L(u)| −∆G(u)
≤ 1

q −∆
.

Therefore,
PL(σu = c)

PL(σu 6= c)
≤ 1

q −∆− 1
.

Since q − 2 ≥ α(∆− 1), we deduce that

q −∆− 1

q
≥ (q − 2)− (∆− 1)

(q − 2) + (∆− 1)
≥ α− 1

α + 1
≥ 1

4
.

It then follows that PL(σu = c)/PL(σu 6= c) ≤ 4/q.
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CHAPTER 7

SPECTRAL INDEPENDENCE VIA COUPLING METHODS

In this chapter, we show spectral independence for contractive distributions. As an applica-

tion, we show that the uniform distribution of all q-colorings on a graph of maximum degree

∆ is spectrally independent when q > (11/6 − ε0)∆ for a universal constant ε0 ≈ 10−5.

This chapter is based on [23].

7.1 Optimal Mixing Results for Colorings and Potts Model

There are two broad approaches for establishing fast convergence of MCMC algorithms:

probabilistic or analytic techniques. Probabilistic techniques primarily utilize the coupling

method; a popular example is the path coupling method which has become a fundamental

tool in theoretical computer science [30]. In contrast, analytic techniques establish decay to

equilibrium by means of functional inequalities such as Poincaré or log-Sobolev inequali-

ties, which correspond to decay of variance and relative entropy respectively. In particular,

the so-called modified log-Sobolev inequality is often a powerful analytic tool in establish-

ing tight bounds on the mixing time, while the weaker Poincaré inequality provides control

on the spectral gap; see, e.g., [48, 98, 25].

These two approaches—probabilistic or analytic—appeared disparate. While coupling

techniques have been used to prove Poincaré inequalities, there are no clear relations be-

tween the probabilistic approach and log-Sobolev inequalities. We establish a strong con-

nection by proving that coupling inequalities in the form of bounds on the Ollivier-Ricci

curvature of the Markov chain imply entropy decay, and hence the associated modified

log-Sobolev inequality holds. In the context of spin systems on bounded-degree graphs,

this settles a remarkable conjecture of Peres and Tetali (see Conjecture 3.1 in [54] and

Remark 7.2.6).
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For q-colorings of graphs with maximum degree ∆, Jerrum [74] proved that the Glauber

dynamics has O(n log n) mixing time when q > 2∆. Jerrum’s result was improved to

q > 11
6

∆ in [125] and further improved to q > (11
6
−ε0)∆ for some small ε0 ≈ 10−5 > 0 by

Chen et al. [42] by analyzing a Markov chain referred to as the flip dynamics; this implied

O(n2) mixing time of the Glauber dynamics. We obtain O(n log n) mixing time of the

Glauber dynamics, which is asymptotically optimal [71], and also obtain optimal bounds

on the log-Sobolev and modified log-Sobolev constants. The following result shows the

first part of Theorem 1.1.4.

Theorem 7.1.1 (Colorings). For q-colorings on an n-vertex graph of maximum degree ∆,

when q > (11
6
− ε0)∆, where ε0 ≈ 10−5 > 0 is a fixed constant, the Glauber dynamics has

mixing time Cn log n where C = C(∆, q) is a constant independent of n.

Moreover, we obtain improved results for the ferromagnetic Potts model. Unlike the

Ising model, for the ferromagnetic Potts model known rapid mixing results for the Glauber

dynamics do not reach the tree uniqueness threshold. The best known results [70, 124,

27] imply that the Glauber dynamics mixes in O(n log n) steps when β < β0 where

β0 = max
{

2
∆
, 1

∆
ln( q−1

∆
)
}

. In addition, [27] showed poly(n) mixing of the Glauber dy-

namics for β < β1 where β1 = (1 − o(1)) ln q
∆−1

, the o(1) term tends to 0 as q → ∞; see

Remark 7.5.10 for more details. These results yield polynomial mixing time bounds for

the Swendsen-Wang dynamics in the corresponding regimes of β. Note the critical point

for the uniqueness threshold on the tree was established by Häggström [69] and it behaves

as βu = ln q
∆−1

+ O(1); see [27]. In both regimes, we prove optimal bounds for the mix-

ing time and (modified) log-Sobolev constant of the Glauber dynamics and also for the

Swendsen-Wang dynamics.

Theorem 7.1.2 (Ferromagnetic Ising/Potts Model). For the ferromagnetic Ising model with

β < βc(∆) on any n-vertex graph of maximum degree ∆ ≥ 3, the Glauber dynamics has

mixing time Cn log n and the Swendsen-Wang dynamics has mixing time C ′ log n, where C
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and C ′ are constants independent of n. For the ferromagnetic Potts model the same results

hold when β < max{β0, β1}.

7.2 Establishing Spectral Independence for Contractive Distributions

We present a series of results showing in a general context that when there exists a contrac-

tive coupling then spectral independence holds.

Let d denote an arbitrary metric on Ω. A simple example is the Hamming metric, which

for configurations σ, τ ∈ Ω is defined to be dH (σ, τ) = |{x ∈ V : σx 6= τx}|. There

are two types of more general metrics that we will consider: those within a constant factor

of the Hamming metric and vertex-weighted Hamming metric for arbitrary weights. For

γ ≥ 1, a metric d on Ω is said to be γ-equivalent to the Hamming metric (or γ-equivalent

for simplicity) if for all σ, τ ∈ Ω,

1

γ
dH (σ, τ) ≤ d(σ, τ) ≤ γdH (σ, τ) ;

that is, a γ-equivalent metric is an arbitrary metric where every distance is within a factor

γ of the Hamming distance. In contrast, we can generalize the Hamming distance by

considering arbitrary weights for the vertices. Let w : V → R+ be an arbitrary positive

weight function. The w-weighted Hamming metric between two configurations σ, τ ∈ Ω is

defined to be

dw(σ, τ) =
∑
x∈V

w(u)1{σu 6= τu}.

In particular, if wu = 1 for all u then dw is just the usual Hamming metric. Note there are

no constraints on the weights except that they are positive; in particular, the weights can be

a function of n.

We will often consider a class P = {P τ : τ ∈ T } of Markov chains associated with µ,

where each P τ is a Markov chain with stationary distribution µτ and τ ∈ T is a pinning;

for example, P can be the family of Glauber dynamics for all µτ ’s. In coupling proofs,
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the goal is to design a coupling so that for an arbitrary pair of states the chains contract

with respect to some distance metric after the coupled transition. Roughly speaking, for

κ ∈ (0, 1), we say that µ is κ-contractive with respect to (w.r.t.) a collection P of Markov

chains and a metric d if one step of every chain P τ contracts the distance by a factor κ in

expectation. This is formalized in the following definition.

Definition 7.2.1 (κ-Contraction). Let P denote a collection of Markov chains associated

with µ and let d be a metric on Ω. For κ ∈ (0, 1) we say that µ is κ-contractive w.r.t. P

and d if for all τ ∈ T , all X0, Y0 ∈ Ωτ , there exists a coupling (X0, Y0)→ (X1, Y1) for P τ

such that:

E[d(X1, Y1)|X0, Y0] ≤ κd(X0, Y0).

The following result shows that spectral independence holds if the Glauber dynamics

has a contractive coupling.

Theorem 7.2.2.

(1) If µ is κ-contractive w.r.t. the Glauber dynamics and an arbitrary w-weighted Ham-

ming metric, then µ is spectrally independent with constant η = 2
(1−κ)n

. In particular,

if κ ≤ 1− ε
n

, then η ≤ 2
ε
.

(2) If the metric in (1) is not a weighted Hamming metric but instead an arbitrary γ-

equivalent metric, then η = 2γ2

(1−κ)n
. In particular, if κ ≤ 1− ε

n
, then η ≤ 2γ2

ε
.

Notice that a κ-contractive coupling for the Hamming distance immediately implies

O(n log n) mixing time of the Glauber dynamics (see, e.g., [30, 87]). But the above the-

orem offers two additional features. First, it allows arbitrary weights w and the resulting

bound on the mixing time is independent of these weights, whereas a coupling argument,

such as utilized in path coupling [30], yields a mixing time bound which depends on the

ratio of maxuw(u)/minuw(u). Second, as discussed in the previous theorems, spectral

independence (together with the easily satisfied marginal boundedness) implies optimal

bounds on the mixing time and entropy decay rate for arbitrary heat-bath block dynamics.
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We can extend Theorem 7.2.2 by replacing the Glauber dynamics with arbitrary Markov

chains. In particular, we consider a general class of Markov chains which we call the

select-update dynamics. In each step, the select-update dynamics picks a block B ∈ B

randomly (with a distribution that may depend on the current configuration), and updates

all vertices in B using the current configuration (and the pinning if there is one). Note that

no assumptions are made on how to pick or update the blocks; the only requirement is that

the dynamics converges to the correct stationary distribution. If the chain selects a block B

from a fixed distribution over B and updates B using the conditional marginal distribution

on B (under the pinning if applicable), then this is the standard heat-bath block dynamics

that we introduced earlier; hence, the select-update dynamics is much more general than

the weighted heat-bath block dynamics. Another example of the select-update dynamics is

the flip dynamics for sampling random colorings of a graph; see Section 7.5.1.

We define M = maxB∈B |B| to be the maximum block size and D to be the maximum

probability of a vertex being selected in any step of the chain.

Theorem 7.2.3. If µ is κ-contractive w.r.t. arbitrary select-update dynamics and an arbi-

trary γ-equivalent metric, then µ is spectrally independent with constant η = 2γ2DM
1−κ .

Theorem 7.2.3 generalizes Theorem 7.2.2(2) sinceM = 1 andD = 1/n for the Glauber

dynamics. If we further assume that the select-update dynamics updates each connected

component of a block independently, then the maximum block size M can be replaced

by the maximum component size of a block; see Remark 7.5.4. See also Theorem 7.5.2

for a stronger statement involving arbitrary Markov chains, where DM is replaced by

the maximum expected distance of two chains when pinning a single vertex. This more

general statement potentially applies to chains with unbounded block sizes, including the

Swendsen-Wang dynamics.

It is worth remarking that, as a corollary of Theorem 7.2.3 we obtain that a coupling

argument for the select-update dynamics where the maximum block size is constant (and

D/(1 − κ) = O(1)) implies O(n log n) mixing time of the Glauber dynamics, together
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with the optimal mixing and optimal entropy decay for arbitrary heat-bath block dynamics.

Moreover, as a corollary of Theorem 7.2.2 we obtain that the Dobrushin uniqueness

condition implies spectral independence. The Dobrushin uniqueness condition is a classical

condition in statistical physics which considers the following dependency matrix.

Definition 7.2.4 (Dobrushin uniqueness condition). The Dobrushin dependency/influence

matrix R ∈ RV×V is defined by R(x, x) = 0 and

R(x, y) = max {dTV (µy(· | σ), µy(· | τ)) : (σ, τ) ∈ Sx,y} for x 6= y

where Sx,y is the set of all pairs of configurations on V \ {y} that can differ only at x. The

Dobrushin uniqueness condition holds if the maximum column sum of R is at most 1 − ε

for some ε > 0.

The Dobrushin dependency matrix for the entry R(x, y) considers the worst case pair

of configurations on the entire neighborhood of y which differ at x. If x is not a neighbor

of y then R(x, y) = 0. Hence, the Dobrushin uniqueness condition states that for all y,∑
x∈N(y) R(x, y) < 1. In contrast, the ALO influence matrix considers the influence of a

disagreement at x on a vertex y (which is not necessarily a neighbor) and no other vertices

are fixed, although one needs to consider all pinnings to establish spectral independence,

so the notions are incomparable at first glance.

Using Theorem 7.2.2 we prove that the Dobrushin uniqueness condition implies spec-

tral independence. Moreover, our result holds under generalizations of the Dobrushin

uniqueness condition. Hayes [70] generalized it to the following spectral condition: if

‖R‖2 ≤ 1− ε for some ε > 0, then the mixing time of the Glauber dynamics is O(n log n).

This was further generalized by Dyer et al. [52] to arbitrary matrix norms. We prove spec-

tral independence when the spectral radius ρ(R) < 1, which is the strongest statement of

this type as the spectral radius is no larger than any matrix norm; see Remark 7.4.1 for a

more detailed discussion.
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Theorem 7.2.5. If the Dobrushin dependency matrix R satisfies ρ(R) ≤ 1 − ε for some

ε > 0, then µ is spectrally independent with constant η = 2/ε.

Previously, Marton [101] (see also [62, 116]) showed that the spectral condition in

Theorem 7.2.5 implies approximate tensorization of entropy and thus optimal bounds on

the modified log-Sobolev constant for the Glauber dynamics. See also [18] for related

results with an alternative technique. However, the approach in these works does not imply

block factorization of entropy as in our case.

Remark 7.2.6. Our definition of κ-contraction is equivalent to the statement that the Markov

chain has coarse Ollivier-Ricci curvature at least 1 − κ > 0 with respect to the metric d

[107]. Combining Theorem 7.2.2 with Theorem 4.1.1 we obtain a proof of the following

version of the Peres-Tetali conjecture: if the Glauber dynamics has Ollivier-Ricci curvature

at least ε/n > 0 then the Glauber dynamics has a modified log-Sobolev constant at least c/n

and any α-weighted heat-bath block dynamics has a modified log-Sobolev constant at least

c δ(α), for some constant c = c(ε, b,∆) > 0, where δ(α) is defined in Eq. (4.1). Replacing

Theorem 7.2.2 with its generalization Theorem 7.2.3 we obtain the same conclusion under

the much milder assumption that there exists some κ-contractive select-update dynamics

satisfying DM/(1 − κ) = O(1). The original Peres-Tetali conjecture in the setting of

random walks on graphs is that if there exists a graph metric d such that the random walk

has Ollivier-Ricci curvature at least λ > 0 with respect to d then the random walk has

modified log-Sobolev constant at least cλ > 0, for some universal constant c > 0; see

Conjecture 3.1 in Eldan et al. [54].

In the rest of this chapter we establish our main results that a contractive distribution is

spectrally independent. These results in particular connect classic probabilistic approach

for establishing fast mixing of Markov chains such as coupling with recent developments

utilizing spectral independence. We first consider a special case of Theorem 7.2.2 con-

cerned with Glauber dynamics and Hamming metric in Section 7.3; this will serve as

a concrete example to illustrate our approach for establishing spectral independence. In
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Section 7.4, we consider arbitrary metric and prove Theorem 7.2.2. Finally, we consider

general Markov chains and metrics in Section 7.5 and prove Theorem 7.2.3.

7.3 Warm-up: Contraction for Glauber Dynamics and Hamming Metric

In this section, we prove a simpler version of Theorem 7.2.2, which already gives the main

idea of our proof approach for establishing spectral independence. We show that, if the

distribution µ is contractive w.r.t. the Glauber dynamics and the Hamming metric, then it is

spectrally independent.

Theorem 7.3.1. If µ is κ-contractive w.r.t. the Glauber dynamics and the Hamming met-

ric for some κ ∈ (0, 1), then µ is spectrally independent with constant η = 2
(1−κ)n

. In

particular, if κ ≤ 1− ε/n, then η ≤ 2/ε.

Remark 7.3.2. In this chapter, the Glauber dynamics P τ
GL for the conditional distribution

µτ with a pinning τ on U ⊆ V is defined as follows: in each step the chain picks a vertex

u ∈ V u.a.r. and updates its spin conditioned on all other vertices and τ . In particular, all

pinned vertices in U are allowed to be selected and when this happens the configuration will

remain the same (no updates will be made). This setting can make our theorem statements

and proofs easier to understand, and will not harm our results since we only consider these

chains for the purpose of analysis rather than actually running them. Alternatively, we can

define the Glauber dynamics P̃ τ
GL for µτ in the following way: in each step an unpinned

vertex u ∈ V \U is selected u.a.r. and updated accordingly. Note that P̃ τ
GL is faster than P τ

GL

and the contraction rate of P̃ τ
GL depends on the number of unpinned vertices. If we assume

µτ is κ`-contractive w.r.t. P̃ τ
GL and dH where ` = |V \ U |, then an analog of Theorem 7.3.1

can show that µ is spectrally independent with

η = max
`=1,...,n

{
2

(1− κ`)`

}
.

However, in actual applications such as under the Dobrushin uniqueness condition in Sec-
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tion 7.4, the contraction rate satisfies κ` ≤ 1 − ε/`, so we eventually get η ≤ 2/ε just as

from Theorem 7.3.1.

Recall that for any pinning τ ∈ T we let µτ be the conditional distribution over Ωτ

given τ , and the ALO influence matrix Ψτ is a square matrix indexed by Pτ and defined as

Ψ(u, j;u, k) = 0 and

Ψτ (u, j; v, k) = µτ (σv = k | σu = j)− µτ (σv = k) for u 6= v.

The distribution µ is said to be η-spectrally independent if λ1(Ψτ ) ≤ η for all pinning τ .

Our goal is to upper bound the maximum eigenvalue of the ALO influence matrix Ψτ

for a given pinning τ . In fact, to make notations simpler we will only consider the case

where there is no pinning; the proof is identical by replacing Ω, µ,Ψ with Ωτ , µτ ,Ψτ when

an arbitrary pinning τ is given. To upper bound λ1(Ψ), a standard approach that has been

applied in previous works [4, 44, 43, 55, 45] is to upper bound the infinity norm of Ψ. More

specifically, for each (u, j) ∈ P we define

S(u, j) =
∑

(v,k)∈P

|Ψ(u, j; v, k)| (7.1)

to be the sum of absolute influences of a given pair (u, j). The quantity S(u, j) can be

thought of as the total influence of (u, j) on all other vertex-spin pairs. If one can show

S(u, j) ≤ η for all (u, j) ∈ P , then it immediately follows that

λ1(Ψ) ≤ ‖Ψ‖∞ = max
(u,j)∈P

S(u, j) ≤ η.

Hence, it suffices to show that S(u, j) = O(1).

Fix (u, j) ∈ P , and define the distribution ν = µ(· | σu = j); namely, ν is the

conditional distribution of µ with the pinning σu = j. The key observation we make here is

that the quantity S(u, j) can be viewed as the difference of the expectation of some function
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f under the two measures µ and ν. More specifically, we define

f(σ) =
∑

(v,k)∈P

t(u, j; v, k)1{σv=k}, (7.2)

where

t(u, j; v, k) = sgn(Ψ(u, j; v, k)) =


+1, Ψ(u, j; v, k) > 0;

−1, Ψ(u, j; v, k) < 0;

0, Ψ(u, j; v, k) = 0.

With this definition it follows that

S(u, j) =
∑

(v,k)∈P

t(u, j; v, k)Ψ(u, j; v, k)

=
∑

(v,k)∈P

t(u, j; v, k)µ(σv = k | σu = j)− t(u, j; v, k)µ(σv = k)

= Eνf − Eµf.

Therefore, the absolute sum of influences S(u, j) describes, in some sense, the “distance”

of the two distributions ν and µ measured by f .

To be more precise about our last statement, we review some standard definitions about

the Wasserstein distance. Let (Ω, d) be a finite metric space. We say a function f : Ω→ R

is L-Lipschitz w.r.t. the metric d if for all σ, τ ∈ Ω we have

|f(σ)− f(τ)| ≤ Ld(σ, τ).

For every function f : Ω→ R, we let Ld(f) be the optimal Lipschitz constant of f w.r.t. the

metric d; i.e., Ld(f) = inf{L ≥ 0 : f is L-Lipschitz w.r.t. d}. For a pair of distributions µ
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and ν on Ω, the 1-Wasserstein distance w.r.t. the metric d between µ and ν is defined as

W1,d(µ, ν) = inf {Eπ[d(σ, τ)] | π ∈ C(µ, ν)}

where C(µ, ν) denotes the set of all couplings of µ, ν (i.e., π(·, ·) ∈ C(µ, ν) is a joint

distribution over Ω×Ω with the marginals on the first and second coordinates being µ and

ν respectively) and (σ, τ) is distributed as π; equivalently, the 1-Wasserstein distance can

be represented as

W1,d(µ, ν) = sup {Eµf − Eνf | f : Ω→ R, Ld(f) ≤ 1} . (7.3)

Observe that, the function f defined by Eq. (7.2) is 2-Lipschitz w.r.t. the Hamming

metric dH; to see this, if σ, τ ∈ Ω and dH (σ, τ) = k then by the definition of f we have

|f(σ)− f(τ)| ≤ 2k. Therefore, we deduce from Eq. (7.3) that

S(u, j) = Eνf − Eµf ≤ LdH
(f)W1,dH

(ν, µ) ≤ 2W1,dH
(ν, µ).

That means, if one can show W1,dH
(ν, µ) = O(1) for µ and ν = µ(· | σu = j) for any pair

(u, j), then λ1(Ψ) = O(1) and spectral independence would follow.

The following lemma, which generalizes previous works [29, 113], will be used to

bound the Wasserstein distance of two distributions and may be interesting of its own.

Roughly speaking, it claims that if µ, ν are the stationary distributions of two Markov

chains P,Q (e.g., Glauber dynamics) respectively, and if µ is contractive w.r.t. P and the

two chains P,Q are “close” to each other in one step, then the Wasserstein distance between

ν and µ is small. The special case where Ω = {+,−}n and P,Q are both the Glauber

dynamics appeared in [29, Theorem 3.1] and [113, Theorem 2.1], but here we do not make

any assumption on the state space or the chains, which is crucial to our applications in

Section 7.5.1.
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Lemma 7.3.3. Let (Ω, d) be a finite metric space. Let µ, ν be two distributions over Ω,

and P,Q be two Markov chains on Ω with stationary distributions µ, ν respectively. If µ is

κ-contractive w.r.t. the chain P and the metric d, then for every f : Ω→ R we have

|Eµf − Eνf | ≤
Ld(f)

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))]

where P (σ, ·) is the distribution after one step of the chain P when starting from σ and

similarly for Q(σ, ·). As a consequence,

W1,d(µ, ν) ≤ 1

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))] .

We remark that Lemma 7.3.3 holds in a very general setting, and (Ω, d) can be any

finite metric space. It shows that if two Markov chains are close to each other, then their

stationary distributions must be close to each other, under the assumption that one of the

chains is contractive.

Proof of Lemma 7.3.3. The proof imitates the arguments from [29, 113]. Assume for now

that P is irreducible; this is a conceptually easier case and we will consider general P later.

Since P is irreducible, let h be the principal solution to the Poisson equation (I−P )h = f̄

where f̄ = f − Eµf ; that is,

h =
∞∑
t=0

P tf̄ . (7.4)

See Lemma 2.1 in [29] and the references in that paper for backgrounds on the Poisson

equation. We then have

Eνf − Eµf = Eν f̄ = Eν [(I − P )h] = Eν [(Q− P )h]

where the last equality is due to ν = νQ. For each σ ∈ supp(ν) ⊆ Ω, we deduce from
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Eq. (7.3) that

((Q− P )h)(σ) = EQ(σ,·)h− EP (σ,·)h ≤ Ld(h)W1,d(Q(σ, ·), P (σ, ·)).

It remains to bound the Lipschitz constant of h. For σ, τ ∈ Ω,

|h(σ)− h(τ)| ≤
∞∑
t=0

∣∣(P tf̄)(σ)− (P tf̄)(τ)
∣∣

=
∞∑
t=0

∣∣EP t(σ,·)f̄ − EP t(τ,·)f̄
∣∣

≤ Ld(f)
∞∑
t=0

W1,d(P
t(σ, ·), P t(τ, ·))

where the last inequality again follows from Eq. (7.3). Since µ is κ-contractive w.r.t. P and

d, for all σ, τ ∈ Ω and every integer t ≥ 1 we have

W1,d(P
t(σ, ·), P t(τ, ·)) ≤ κtd(σ, τ).

We then deduce that

|h(σ)− h(τ)| ≤ Ld(f)
∞∑
t=0

κtd(σ, τ) =
Ld(f)

1− κ
d(σ, τ).

This implies that Ld(h) ≤ Ld(f)/(1− κ) and the lemma then follows.

Next, we show how to remove the assumption that P is irreducible. Observe that in the

proof above we only need the irreducibility of P to guarantee that the function h given by

Eq. (7.4) is well-defined; i.e., the series on the right-hand side of Eq. (7.4) is convergent.

The rest of the proof does not require the irreducibility of P . In fact, one can deduce the

convergence of Eq. (7.4) solely from the contraction of P . Note that for all σ ∈ Ω,

∣∣P tf̄(σ)
∣∣ =

∣∣P tf̄(σ)− EµP tf̄
∣∣
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=

∣∣∣∣∣P tf̄(σ)−
∑
τ∈Ω

µ(τ)P tf̄(τ)

∣∣∣∣∣
≤
∑
τ∈Ω

µ(τ)
∣∣P tf̄(σ)− P tf̄(τ)

∣∣
where the first equality follows from EµP tf̄ = Eµf̄ = 0. Since Ω is finite, to show that

Eq. (7.4) is convergent for all σ ∈ Ω, it suffices to show that for all σ, τ ∈ Ω the series∑∞
t=0

∣∣P tf̄(σ)− P tf̄(τ)
∣∣ is convergent. Actually, our proof before has already showed

that
∞∑
t=0

∣∣P tf̄(σ)− P tf̄(τ)
∣∣ ≤ Ld(f)

1− κ
d(σ, τ) <∞

using only the contraction of P , where we have Ld(f) < ∞ and supσ,τ∈Ω d(σ, τ) < ∞

because Ω is finite. Therefore, the lemma remains true without the assumption of irre-

ducibility of P .

Given Lemma 7.3.3, we can now complete the proof of Theorem 7.3.1.

Proof of Theorem 7.3.1. For every (u, j) ∈ P , we deduce from Lemma 7.3.3 that

S(u, j) = Eνf − Eµf ≤
LdH

(f)

1− κ
Eν [W1,dH

(P (σ, ·), Q(σ, ·))] (7.5)

where S(u, j) is given by Eq. (7.1), f is given by Eq. (7.2), P is the Glauber dynamics for

µ, and Q is the Glauber dynamics for ν = µ(u,j) = µ(· | σu = j) (we use (u, j) to denote

the pinning σu = j). We claim that for every σ ∈ Ω(u,j),

W1,dH
(P (σ, ·), Q(σ, ·)) ≤ 1

n
. (7.6)

To see this, let σ1 and σ2 be the configurations after one step of P and Q respectively

when starting from σ. We can couple σ1 and σ2 by picking the same vertex to update in the

Glauber dynamics. If the picked vertex is not u, then we can make σ1 = σ2; meanwhile, if u

is picked, which happens with probability 1/n, then dH(σ1, σ2) ≤ 1 where the discrepancy
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is caused by the pinning σu = j. Therefore, the 1-Wasserstein distance between σ1 and σ2

is upper bounded by 1/n; this justifies our claim. Combining LdH
(f) ≤ 2 and Eq. (7.6), we

obtain from Eq. (7.5) that S(u, j) ≤ 2
(1−κ)n

for each (u, j); consequently, λ1(Ψ) ≤ 2
(1−κ)n

.

The same argument holds for µτ under any pinning τ as well, and spectral independence

then follows.

7.4 Contraction for Glauber Dynamics and General Metrics

In this section, we generalize the Hamming metric assumption in Theorem 7.3.1 to any

weighted Hamming metric or any metric equivalent to Hamming, which establishes Theo-

rem 7.2.2. We restate it here for convenience.

Theorem 7.2.2.

(1) If µ is κ-contractive w.r.t. the Glauber dynamics and an arbitrary w-weighted Ham-

ming metric, then µ is spectrally independent with constant η = 2
(1−κ)n

. In particular,

if κ ≤ 1− ε
n

, then η ≤ 2
ε
.

(2) If the metric in (1) is not a weighted Hamming metric but instead an arbitrary γ-

equivalent metric, then η = 2γ2

(1−κ)n
. In particular, if κ ≤ 1− ε

n
, then η ≤ 2γ2

ε
.

We prove the two cases of Theorem 7.2.2 separately. We first consider the weighted

Hamming metric. Recall that for a positive weight function w : V → R+, the w-weighted

Hamming metric d = dw is given by

dw(σ, τ) =
∑
u∈V

w(u)1{σu 6= τu} for σ, τ ∈ Ω.

In particular, if w(u) = 1 for all u then d is the usual Hamming metric.

Unfortunately, the proof of Theorem 7.3.1 does not work directly in this scenario. The

reason is that the right-hand side of Eq. (7.5), with dH replaced by d = dw now, can be

as large as O
(
wmax

wmin

)
(more specifically, Ld(f) = O

(
1

wmin

)
and W1,d(P (σ, ·), Q(σ, ·)) =
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O(wmax)), which can be unbounded since we are not making any assumption on w. To

deal with this, we need to take the vertex weights into account when defining the function

f and, more importantly, when defining the absolute sum of influences S(u, j).

Proof of Theorem 7.2.2(1). For ease of notation we may assume that there is no pinning;

the proof remains the same with an arbitrary pinning τ . For fixed (u, j) ∈ P , we define the

w-weighted sum of absolute influences given by

Sw(u, j) =
∑

(v,k)∈P

w(v) |Ψ(u, j; v, k)|. (7.7)

Such weighted sums were considered in [44, Lemma 22] to deduce spectral independence.

We claim that if Sw(u, j) ≤ η w(u) for all (u, j) ∈ P for some η > 0, then λ1(Ψ) ≤ η.

To see this, let w̃ ∈ R|P|+ with w̃(u, j) = w(u) and let W = diag(w̃); the assumption

of the claim then implies that ‖W−1ΨW‖∞ ≤ η and thus λ1(Ψ) = λ1(W−1ΨW ) ≤ η.

Therefore, it suffices to upper bound the ratio Sw(u, j)/w(u).

Let ν = µ(u,j) = µ(· | σu = j) be the conditional distribution with pinning σu = j, and

define

fw(σ) =
∑

(v,k)∈P

w(v) t(u, j; v, k)1{σv=k} (7.8)

where t(u, j; v, k) = sgn(Ψ(u, j; v, k)). Observe that Ld(fw) ≤ 2 and

Sw(u, j) = Eνfw − Eµfw.

It then follows from Lemma 7.3.3 that

Sw(u, j) ≤ 2

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))]
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where P,Q are the Glauber dynamics for µ, ν respectively. For every σ ∈ Ω(u,j) we have

W1,d(P (σ, ·), Q(σ, ·)) ≤ w(u)

n
,

since if we couple the configurations σ1, σ2 after one step of P,Q respectively by picking

the same vertex to update, then d(σ1, σ2) = w(x) only when the site u is picked, and

σ1 = σ2 otherwise. Therefore, we get Sw(u, j) ≤ 2w(u)
(1−κ)n

for every (u, j) ∈ P , implying

that λ1(Ψ) ≤ 2
(1−κ)n

. The same argument works for µτ under any pinning τ as well, which

establishes spectral independence.

Next we consider the second part of Theorem 7.2.2. Recall that a metric d on Ω is said

to be γ-equivalent (to the Hamming metric) for some γ > 1 if for all σ, τ ∈ Ω

1

γ
dH (σ, τ) ≤ d(σ, τ) ≤ γdH (σ, τ) .

To prove the second part, we follow the proof approach for Theorem 7.3.1, and in particular

the right-hand side of Eq. (7.9) below (analogous to Eq. (7.5)) can be upper bounded using

the γ-equivalence.

Proof of Theorem 7.2.2(2). For every (u, j) ∈ P , we deduce from Lemma 7.3.3 that

S(u, j) = Eνf − Eµf ≤
Ld(f)

1− κ
Eν [W1,d(P (σ, ·), Q(σ, ·))] (7.9)

where S(u, j) and f are defined by Eq. (7.1), Eq. (7.2) respectively, and P,Q are the

Glauber dynamics for µ and ν = µ(u,j) = µ(· | σu = j) respectively. Since d is γ-

equivalent, for all σ, τ ∈ Ω we have

|f(σ)− f(τ)| ≤ 2dH (σ, τ) ≤ 2γd(σ, τ);

this shows Ld(f) ≤ 2γ. Meanwhile, by the definition of 1-Wasserstein distance for every
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σ ∈ Ω(u,j) we have

W1,d(P (σ, ·), Q(σ, ·)) = inf {Eπ[d(σ, τ)] | π ∈ C(P (σ, ·), Q(σ, ·))}

≤ γ inf {Eπ[dH(σ, τ)] | π ∈ C(P (σ, ·), Q(σ, ·))} = γW1,dH
(P (σ, ·), Q(σ, ·)) ≤ γ

n

where the last inequality is Eq. (7.6). Thus, we obtain from Eq. (7.9) that S(u, j) ≤ 2γ2

(1−κ)n
.

The rest of the proof is the same as Theorem 7.3.1.

As an application of Theorem 7.2.2(1), we show that the Dobrushin uniqueness condi-

tion, as well as its generalizations [70, 52], implies spectral independence. Recall that the

Dobrushin dependency matrix R is a |V | × |V | matrix defined as R(u, u) = 0 and

R(u, v) = max {dTV (µv(· | σ), µv(· | τ)) : (σ, τ) ∈ Su,v} for x 6= y

where Su,v is the set of pairs of configurations on V \ {v} that differ at most at u. Denote

the spectral radius of a square matrix M by ρ(M). If M is nonnegative, then ρ(M) is

an eigenvalue of M by the Perron-Frobenius theorem. We prove Theorem 7.2.5 from the

introduction.

Theorem 7.2.5. If the Dobrushin dependency matrix R satisfies ρ(R) ≤ 1 − ε for some

ε > 0, then µ is spectrally independent with constant η = 2/ε.

Remark 7.4.1. If ‖R‖∞ < 1, then the Glauber dynamics mixes rapidly by a simple appli-

cation of the path coupling method of Bubley and Dyer [30]. The same is true under the

Dobrushin uniqueness condition, i.e., when ‖R‖1 < 1. Hayes [70] generalized the condi-

tion to the spectral norm ‖R‖2 < 1. Dyer, Goldberg, and Jerrum [52] further improved it

to ‖R‖ < 1 for any matrix norm (where the mixing time depends logarithmly on the norm

of the all-one matrix). Our condition ρ(R) < 1 in Theorem 7.2.5 is technically better than

previous works since for a nonnegative matrixR one has ρ(R) ≤ ‖R‖ for any matrix norm,
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and the inequality can be strict for all norms when R is not irreducible; see [52] for related

discussions. Finally, we point out that if R is symmetric then ρ(R) = ‖R‖2.

It is known that the Glauber dynamics is contractive for some weighted Hamming met-

ric if the weight vector satisfies a spectral condition related to R.

Lemma 7.4.2 ([52, Lemma 20]). If w ∈ RV
+ is a positive vector such that Rw ≤ (1− ε)w

entrywisely, then µ is (1−ε/n)-contractive w.r.t. the Glauber dynamics and thew-weighted

Hamming metric d = dw.

The following fact about nonnegative matrices is helpful.

Lemma 7.4.3 ([103, Example 7.10.2]). If M,N ∈ Rn×n
+ are two nonnegative square ma-

trices such that M ≤ N entrywisely, then ρ(M) ≤ ρ(N).

We give below the proof of Theorem 7.2.5.

Proof of Theorem 7.2.5. Consider first the case that there is no pinning. If the Dobrushin

dependency matrix R is irreducible, then the right principal eigenvector w associated with

the eigenvalue ρ(R) satisfiesRw = ρ(R)w ≤ (1−ε)w and w > 0 by the Perron-Frobenius

theorem. Hence, Lemma 7.4.2 and (the proof of) Theorem 7.2.2(1) immediately yield

λ1(Ψ) ≤ 2/ε. However, if R is reducible, we cannot use the principal eigenvector directly

since it may have zero entries. We instead consider the matrix Rδ = R + δO where O is

the all-one matrix and δ > 0 is a tiny constant. Let wδ be the right principal eigenvector of

Rδ associated with the eigenvalue ρ(Rδ). Since Rδ is irreducible, wδ > 0 by the Perron-

Frobenius theorem. Moreover, Rwδ ≤ Rδwδ = ρ(Rδ)wδ. Since limδ→0Rδ = R, we have

limδ→0 ρ(Rδ) = ρ(R); see, e.g., Remark 3.4 in [2]. Thus, ρ(Rδ) < 1 for sufficiently small

δ. Then by Lemma 7.4.2 and Theorem 7.2.2(1), for δ small enough, we have λ1(Ψ) ≤

2/(1 − ρ(Rδ)). Taking δ → 0 and using the assumption that ρ(R) ≤ 1 − ε, we obtain

λ1(Ψ) ≤ 2/ε.

Next, consider the conditional measure µτ with a pinning τ on a subset U ⊆ V . Let Rτ

be the Dobrushin dependency matrix for µτ ; note that by definition Rτ (u, v) = 0 if u ∈ U
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or v ∈ U , and Rτ (u, v) ≤ R(u, v) for all u, v ∈ V . We deduce from Lemma 7.4.3 that

ρ(Rτ ) ≤ ρ(R) ≤ 1 − ε and thus this is reduced to the no-pinning case. Therefore, we get

λ1(Ψτ ) ≤ 2/ε for all τ and spectral independence then follows.

7.5 Contraction for General Markov Chains and General Metrics

In this section, we generalize Theorem 7.3.1 to arbitrary “local” Markov chains and arbi-

trary metrics close to the Hamming metric. In particular, we prove Theorem 7.2.3.

Consider a collection of Markov chains P = {P τ : τ ∈ T } associated with µ, where

each P τ is a Markov chain on Ωτ with stationary distribution µτ . Intuitively, one can think

of P as the same dynamics applied to all conditional distributions µτ ; for example, P can

be the collection of Glauber dynamics for all µτ ’s. We are particularly interested in local

dynamics; these are Markov chains that make local updates on the configuration in each

step, e.g., Glauber dynamics for spin systems or flip dynamics for colorings. Alternatively,

we can describe local dynamics as those insensitive to pinnings; that is, if the dynamics is

applied to both µ and µ(u,j) with a pinning σu = j, then with high probability there is no

difference in the two chains or the discrepancy caused by the pinning will not propagate.

This motivates the following definition.

Definition 7.5.1. We say a collection P of Markov chains associated with µ is Φ-local

if for any two adjacent pinnings τ ∈ T and τ ′ = τ ∪ (u, j) where (u, j) ∈ Pτ (i.e., τ ′

combines τ and the pinning σu = j), and for all σ ∈ Ωτ ′ , we have

W1,dH
(P τ (σ, ·), P τ ′(σ, ·)) ≤ Φ.

We show that for such local dynamics contraction implies spectral independence.

Theorem 7.5.2. If µ is κ-contractive w.r.t. a Φ-local collection P of Markov chains and a

γ-equivalent metric d for some κ ∈ (0, 1), then µ is spectrally independent with constant

η = 2γ2Φ
1−κ .

203



Proof. The proof is similar to that of Theorem 7.3.1 and Theorem 7.2.2(2). For an arbitrary

pinning τ and (u, j) ∈ Pτ , we define

Sτ (u, j) =
∑

(v,k)∈Pτ
|Ψτ (u, j; v, k)| (7.10)

and

f τ (σ) =
∑

(v,k)∈Pτ
tτ (u, j; v, k)1{σv=k} (7.11)

where tτ (u, j; v, k) = sgn(Ψτ (u, j; v, k)); these definitions are analogous to Eq. (7.1) and

Eq. (7.2) with pinning τ . Let τ ′ = τ ∪ (u, j). Then we deduce from Lemma 7.3.3 that

Sτ (u, j) = Eµτ ′f
τ − Eµτf τ ≤

Ld(f
τ )

1− κ
Eµτ ′

[
W1,d(P

τ (σ, ·), P τ ′(σ, ·))
]
.

As shown in the proof of Theorem 7.2.2(2), since d is γ-equivalent to the Hamming metric

we have Ld(f τ ) ≤ γLdH
(f τ ) ≤ 2γ and for all σ ∈ Ωτ ′ we have

W1,d(P
τ (σ, ·), P τ ′(σ, ·)) ≤ γW1,dH

(P τ (σ, ·), P τ ′(σ, ·)) ≤ γΦ

using the Φ-locality of P . Therefore, we obtain that Sτ (u, j) ≤ 2γ2Φ
1−κ for all (u, j) ∈ Pτ .

This yields λ1(Ψτ ) ≤ 2γ2Φ
1−κ and spectral independence follows.

To better understand local dynamics, we consider a very general type of Markov chains

which we call select-update dynamics; examples include the Glauber dynamics, heat-bath

block dynamics, and flip dynamics. Let B be a collection of blocks associated with the

select-update dynamics and fix some pinning τ . Given the current configuration σt ∈ Ωτ ,

the next configuration σt+1 is generated as follows:

1. SELECT: Select a block B ∈ B from some distribution pt over B;

2. UPDATE: Resample the configuration on B from some distribution νtB.
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We try to make weakest assumptions on the selection rule pt and the update rule νtB: the

selection distribution pt is allowed to depend on the current configuration σt but is inde-

pendent of the pinning τ , and the update distribution νtB is allowed to depend on the whole

current configuration σt and the part of the pinning τ contained in B. In particular, the

heat-bath block dynamics is a special case of the select-update dynamics: the selection rule

pt = α is a fixed distribution over B and the update rule νtB is the marginal distribution on

B conditioned on σt outside B and the pinning τ in B.

Remark 7.5.3. The assumption that the selection rule pt is independent of the pinning τ is

not necessary, but it is helpful for stating and proving our theorems and does not weaken

our results. Roughly speaking, we only require that the collection of the select-update

dynamics is the same dynamics applied to all µτ ’s, and the selection rule pt can be condi-

tioned on containing at least one unpinned vertex. See the discussions in Remark 7.3.2 for

the Glauber dynamics.

We write PB for a collection of select-update dynamics associated with µ. Denote the

maximum block size of B by

M = max
B∈B
|B|,

and the maximum probability of a vertex being selected in Step 1 by

D = max
pt

max
u

∑
B∈B:u∈B

pt(B)

where we maximize over all selection rules pt that can occur. We can show that the select-

update dynamics PB is Φ-local with Φ = DM ; using this and Theorem 7.5.2 we establish

Theorem 7.2.3, which we restate here for convenience.

Theorem 7.2.3. If µ is κ-contractive w.r.t. arbitrary select-update dynamics and an arbi-

trary γ-equivalent metric, then µ is spectrally independent with constant η = 2γ2DM
1−κ .

Proof. It suffices to show that the select-update dynamics PB is Φ-local with Φ = DM ;

the theorem would then follows immediately from Theorem 7.5.2. Consider two adjacent
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pinnings τ and τ ′ = τ ∪ (u, j) where (u, j) ∈ Pτ . For σ ∈ Ωτ ′ , let σ1 and σ2 be the two

configurations obtained from σ after one step of P τ and P τ ′ respectively. We couple σ1

and σ2 by picking the same blockB ∈ B in Step 1 of the select-update dynamics. If u /∈ B,

then we have σ1 = σ2. Meanwhile, if u ∈ B, which happens with probability at most D,

we have dH (σ1, σ2) ≤ |B| ≤M . Therefore,

W1,dH
(P τ (σ, ·), P τ ′(σ, ·)) ≤ DM.

This establishes the (DM)-locality for PB.

Remark 7.5.4. If we further assume that in Step 2 the select-update dynamics resamples

a block independently for each of its components (i.e., the update rule νtB is a product

distribution over all components of the induced subgraph G[B]), then in Theorem 7.2.3 the

maximum block size M can be replaced by the maximum component size of all blocks.

7.5.1 Application: Flip Dynamics for Colorings

In this section we establish spectral independence for colorings utilizing Theorem 7.2.3.

Theorem 7.5.5. Let ε0 ≈ 10−5 > 0 be a fixed constant. Let ∆, q ≥ 3 be integers and

q > (11
6
− ε0)∆. Then there exists η = η(∆, q) > 0 such that the following holds.

Let µ be the uniform distribution over all proper q-colorings of a graph G = (V,E) of

maximum degree at most ∆. Then µ is spectrally independent with constant η.

To apply Theorem 7.2.3, we need a contractive Markov chain for sampling colorings of

a graph. Vigoda considered the flip dynamics [125] and showed that it is contractive for the

Hamming metric when the number of colors q > 11
6

∆. Recently, [42] improved the bound

to q > (11
6
− ε0)∆ for a fixed tiny constant ε0 ≈ 10−5, using variable-length coupling or an

alternative metric. Our result on spectral independence builds upon contraction results for

the flip dynamics.
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We first describe the flip dynamics. Let Ω be the set of all proper q-colorings of G. Fix

a pinning τ on U ⊆ V . For a coloring σ ∈ Ω, a vertex u ∈ V , and a color j ∈ [q], denote

by Lσ(u, j) the bicolored component containing u with colors j and σu; that is, the set of

all vertices which can be reached from u through an alternating (σu, j)-colored path. Given

the coloring σt at time t, the flip dynamics with pinning τ generates the next coloring σt+1

as follows:

1. Pick a vertex u ∈ V u.a.r. and a color j ∈ [q] u.a.r.;

2. If Lσt(u, j) contains a pinned vertex (i.e., Lσt(u, j) ∩ U 6= ∅), then σt+1 = σt;

3. If all vertices in Lσt(u, j) are free (i.e., Lσt(u, j) ∩ U = ∅), then flip the two colors

of Lσt(u, j) with probability ps/s where s = |Lσt(u, j)|.

The flip dynamics is specified by the flip parameters {ps}∞s=1. In [125] and the recent

improvement [42], the flip parameters are chosen in such a way that ps = 0 for all s ≥ 7;

i.e., in each step at most six vertices change their colors. We set the flip parameters as in

Observation 5.1 from [42], where the authors established contraction of the flip dynamics

using the path coupling method.

Lemma 7.5.6 ([42]). Under the assumptions of Theorem 7.5.5, there exists a constant

ε = ε(∆, q) > 0 and a 2-equivalent metric d such that µ is (1− ε/n)-contractive w.r.t. the

flip dynamics and the metric d.

We remark that the pinning τ induces a list coloring instance where each unpinned

vertex has a color list to choose its color from, and the results of [42] generalize naturally

to list colorings. Also, in this chapter we assume that the flip dynamics may pick a pinned

vertex and stay at the current coloring. This does not weaken our results since we only

consider the flip dynamics for analysis rather than actually running it; see Remark 7.3.2

addressing the same issue for the Glauber dynamics and also Remark 7.5.3 for general

select-update dynamics.

We give below the proof of Theorem 7.5.5.
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Proof of Theorem 7.5.5. Note that the flip dynamics belongs to the class of select-update

dynamics, where the associated B is the collection of connected subsets of vertices. Since

the flip parameters satisfy ps > 0 only for s ≤ 6, we have M ≤ 6. Moreover, we

have D ≤ ∆6/n since a vertex u is in the selected bicolored component Lσt(v, j) only

if dist(u, v) ≤ 5, which happens with probability at most ∆6/n. The theorem then follows

from Lemma 7.5.6 and Theorem 7.2.3.

We conclude here with the proof of Theorem 7.1.1.

Proof of Theorem 7.1.1. By Theorem 7.5.5 the uniform distribution µ of proper colorings

is spectrally independent. Then the results follows immediately from Theorem 4.1.1.

7.5.2 Application: Block Dynamics for Potts Model

Here we apply Theorems 7.3.1 and 7.2.3 to the ferromagnetic Potts model to establish

spectral independence.

Theorem 7.5.7. Let ∆ ≥ 3 and q ≥ 2 be integers. Let µ be the Gibbs distribution of

the q-state ferromagnetic Potts model with inverse temperature parameter β on a graph

G = (V,E) of maximum degree at most ∆. Then, the following holds:

1. If β < max
{

2
∆
, 1

∆
ln( q−1

∆
)
}

, then µ is spectrally independent with constant η =

η(β,∆).

2. For any δ > 0 there exists c = c(δ,∆) > 0 such that, if β ≤ ln q−c
∆−1+δ

then µ is

spectrally independent with constant η = η(δ, β,∆).

To prove this theorem, we need the following results from [124] and [27] regarding the

contraction of the Glauber dynamics and of the heat-bath block dynamics with a specific

choice of blocks.

Lemma 7.5.8 ([124, Corollary 2.14] & [27, Proposition 2.2]). Under the assumptions in

Part 1 of Theorem 7.5.7, there exists a constant ε = ε(β,∆) such that µ is (1 − ε
n
)-

contractive w.r.t. the Glauber dynamics and the Hamming metric.
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Lemma 7.5.9 ([27, Theorem 2.7]). Under the assumptions in Part 2 of Theorem 7.5.7,

there exists a collection of blocks B = {Bu}u∈V satisfying u ∈ Bu, |Bu| = O(1/δ) and

G[Bu] connected for all u, such that µ is (1 − 1
2n

)-contractive w.r.t. the α-weighted heat-

bath block dynamics for B and the Hamming metric, where α is the uniform distribution

over B.

Remark 7.5.10. To be more precise, [27] shows that the conclusion of Lemma 7.5.9 is true

when β, q, and the maximum block size M = maxu∈V |Bu| satisfy

β

(
∆− 1 +

1

M

)
+ 3M(ln ∆ + lnM) ≤ ln q. (7.12)

Thus, for any δ > 0, by taking M = dδ−1e and c = 3M(ln ∆ + lnM), our assumption

β ≤ ln q−c
∆−1+δ

in Part 2 of Theorem 7.5.7 implies Eq. (7.12). Moreover, if we take, say,

M ≈
√

ln q (namely, δ ≈ 1/
√

ln q), then c = o(ln q) and our assumption becomes β ≤

(1− o(1)) ln q
∆−1

where o(1) tends to 0 as q →∞; this gives the bound β1 in Theorem 7.1.2

from the introduction.

Theorem 7.5.7 is an immediate consequence of Lemmas 7.5.8 and 7.5.9 and the results

proved in this section.

Proof of Theorem 7.5.7. Part 1 follows directly from Lemma 7.5.8 and Theorem 7.3.1. For

Part 2, we note that the block dynamics from Lemma 7.5.9 corresponds to a select-update

dynamics with M = O(1/δ) and D = ∆O(1/δ)/n; the reason of the latter is that each u is

in at most ∆O(M) blocks. The theorem then follows from Lemma 7.5.9 and Theorem 7.2.3.

We end this section with the proof of Theorem 7.1.2.

Proof of Theorem 7.1.2. For Ising model, spectral independence is known in the whole

uniqueness region [44]. For Potts model, Theorem 7.5.7 establishes spectral independence
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in the corresponding parameter regimes. The theorem then follows from Theorems 4.1.1

and 4.1.2.

210



CHAPTER 8

SPECTRAL INDEPENDENCE VIA STABILITY OF PARTITION FUNCTION

In this chapter we prove, in an almost black-box fashion, that methods for establishing

large zero-free regions needed for the polynomial interpolation method also yield spectral

independence. This chapter is based on [46].

8.1 Optimal Mixing Results for Holant Problems

The polynomial interpolation method is a mathematically elegant approach which works

in the following manner. To approximate a partition function at a positive real value λ, one

needs to prove there is a zero-free region around λ in the complex plane which means that

the partition function has no roots in an open region (in the complex plane) containing the

point λ. This implies that one can approximate the Taylor series of a simple transformation

of the partition function using a logarithmic number of terms, which yields a polynomial-

time algorithm to approximate the partition function at λ.

We prove that a zero-free region implies spectral independence. This immediately

yields several new rapid mixing results for MCMC methods. We also obtain significantly

improved running times in many instances. For a spin system on a graph with n vertices

and constant maximum degree ∆, the polynomial interpolation method [110] yields a run-

ning time of O(nC) where the constant C depends on ∆ and parameters of the model. In

contrast, spectral independence implies an optimal mixing time bound of O(n log n) for

the Glauber dynamics by Theorem 1.2.1 (and more generally optimal mixing for the block

dynamics by Theorem 4.1.1).

We state here three sample applications of our techniques; further applications are stated

later in this section.

For a graph G = (V,E), we say a vertex v is covered by a subset S ⊆ E of edges if v is
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incident to at least one edge in S. The subset S ⊆ E is called an edge cover if all vertices

are covered by S. Note there is always a trivial edge cover by setting S = E. An FPRAS

(fully polynomial randomized approximation scheme) was presented for counting the num-

ber of edge covers for 3-regular graphs [22]. In [90] an FPTAS (deterministic analog of an

FPRAS) for counting edge covers was presented for all graphs using the correlation decay

approach, and the running time was O(m1+log2 6n2) where m is the number of edges and n

is the number of vertices. An FPRAS for all graphs using MCMC was presented in [73].

The correlation decay algorithm of [90] was extended to weighted (partial) edge covers

(with worse running time guarantees) in [91]. In the weighted version, each edge has a

weight λ > 0 and each vertex receives a penalty ρ ∈ [0, 1] for being uncovered. Every

subset S ⊆ E is associated with the weight w(S) = ρ|unc(S)|λ|S|, where unc(S) denotes the

set of vertices that are not covered by S. The Gibbs distribution over all subsets of edges is

given by µ(S) ∝ w(S). Note, the case λ = 1 and ρ = 0 corresponds to uniformly random

exact edge covers.

Finally, an FPTAS using the polynomial interpolation algorithm was presented for

graphs with constant maximum degree [66], see also [21]. Using the zero-free results

in [66] with our new technical contributions we immediately obtain an FPRAS using a

simple MCMC algorithm and with significantly faster running time guarantees.

Theorem 8.1.1 (Weighted Edge Covers). Let ∆ ≥ 3 be an integer and let λ > 0, ρ ∈ [0, 1]

be reals. For every n-vertex graph G of maximum degree ∆, the Glauber dynamics for

sampling random weighted edge covers of G with parameters (λ, ρ) mixes in Cn log n

steps where C = C(∆, λ, ρ) is a constant independent of n.

One of the seminal results in the field of approximate counting is the work of Jerrum

and Sinclair [77] presenting an FPRAS for the partition function of the ferromagnetic Ising

model on any graph. Recall that, the Ising model on a graph G = (V,E) is described by

two parameters, the edge activity βIsing > 0 and the vertex activity λIsing > 0. The Gibbs

distribution of the Ising model is over all {+,−} spin assignments to vertices. Every
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configuration σ : V → {+,−} has density µIsing(σ) ∝ β
m(σ)
Ising λ

|σ−1(+)|
Ising where m(σ) denotes

the number of monochromatic edges in σ and σ−1(+) is the set of vertices assigned spin +.

The model is ferromagnetic when βIsing > 1, in which case neighboring vertices are more

likely to have the same spin.

The central task of the Jerrum-Sinclair algorithm is sampling from the Gibbs distribu-

tion for the high-temperature expansion of the Ising model which is defined on all sub-

sets of edges weighted to prefer subgraphs with more even degree vertices. For a graph

G = (V,E), an edge weight λ > 0, and a vertex penalty ρ ∈ [0, 1], the Gibbs distribu-

tion µ for weighted (partial) even subgraphs is defined on all subsets of edges; a subset

S ⊆ E has weight w(S) = ρ|odd(S)|λ|S| where odd(S) is the set of odd-degree vertices in

the subgraph (V, S), and µ(S) ∝ w(S). The weighted even subgraphs model is related to

the ferromagnetic Ising model by βIsing = 1+λ
1−λ and λIsing = 1+ρ

1−ρ , for which one can easily

transform a subset of edges from µ to a sample from µIsing [64]. Note that if ρ = 0 then µ is

the distribution over all weighted exact even subgraphs, corresponding to the ferromagnetic

Ising model without external fields (i.e., λIsing = 1).

In [77], an MCMC algorithm is presented to sample weighted even subgraphs of an

arbitrary (unbounded-degree) graph in time O(m3poly(1/ρ)) where m is the number of

edges. In another direction, [94] presents an FPTAS for approximating the partition func-

tion of the ferromagnetic Ising model with nonzero fields on bounded-degree graphs, using

Barvinok’s polynomial interpolation method and the Lee-Yang theory. As is common for

this type of approach, the running time of [94] is nC for a constant C depending on the

maximum degree of the graph and the parameters of the Ising model.

Here we use our results relating zero-free regions and spectral independence to obtain

a faster MCMC algorithm for bounded-degree graphs when ρ > 0.

Theorem 1.1.6 (Weighted Even Subgraphs; Ferromagnetic Ising Model). Let ∆ ≥ 3 be

an integer and let λ > 0, ρ ∈ (0, 1] be reals. For every n-vertex graph G of maximum

degree ∆, the mixing time of the Glauber dynamics for sampling random weighted even
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subgraphs of G with parameters (λ, ρ) is at most Cn log n where C = C(∆, λ, ρ) is a

constant independent of n. In particular, we get an approximate sampling algorithm with

running time O(n log n) for the ferromagnetic Ising model with edge activity βIsing = 1+λ
1−λ

and external field λIsing = 1+ρ
1−ρ .

Remark 8.1.2. In [77], the MCMC method can actually be used to obtain a sampler for

ρ = 0 corresponding to weighted exact even subgraphs. This is achieved by taking ρ = 1/n

and using rejection sampling. Notice that the running time of [77] is polynomial in 1/ρ, and

therefore this gives a poly(n) time algorithm for sampling weighted exact even subgraphs

and hence for the ferromagnetic Ising model without fields. Unfortunately, Theorem 1.1.6

cannot be used to obtain a sampler for ρ = 0, since our bound on the mixing time of the

Glauber dynamics (the constant C from Theorem 1.1.6) depends exponentially on 1/ρ.

Finally, we simultaneously generalize [76, 53, 21] to all antiferromagnetic two-spin

edge models, i.e., antiferromagnetic two-spin models on the class of line graphs. Again,

in the bounded-degree regime we obtain optimal mixing times. Before we state the result,

let us recall the definitions of 2-spin systems from Chapter 5. For a graph G = (V,E) and

fixed parameters β ≥ 0, γ > 0, λ > 0, the Gibbs distribution of the corresponding two-spin

edge model on G is given by

µ(σ) ∝ βm1(σ)γm0(σ)λ|σ
−1(1)|, ∀σ ∈ {0, 1}E (8.1)

where mi(σ) denotes the number of pairs of edges e, f sharing a single endpoint such that

σ(e) = σ(f) = i, for each i = 0, 1. We say the system is antiferromagnetic if βγ < 1 and

ferromagnetic if βγ > 1 (note that βγ = 1 corresponds to a trivial product measure). The

case β = 0 and γ = 1 recovers the monomer-dimer model for matchings weighted by λ,

and the case β = γ recovers the Ising model on the line graph of G.

Theorem 8.1.3 (Antiferromagnetic Two-Spin Edge Models). Let ∆ ≥ 3 be an integer and

let β ≥ 0, γ > 0, λ > 0 be reals such that βγ < 1. For every n-vertex graphG of maximum
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degree ∆, the Glauber dynamics for sampling from the antiferromagnetic two-spin edge

model on G with parameters (β, γ, λ) mixes in Cn log n steps where C = C(∆, β, γ, λ) is

a constant independent of n.

We present further applications of our methods in Section 8.6.

8.2 Establishing Spectral Independence in Zero-Free Regions

We need a few preliminary definitions before formally stating our technical results. Our

results hold for an arbitrary distribution on a discrete product space; this general setup

contains spin systems as a special case. Let V be a finite set and we refer to the elements

in V as vertices. For an integer q ≥ 2, the set of spins is Q = {0} ∪ Q1 where Q1 =

{1, . . . , q − 1} and we treat 0 as a special spin. The state space is Ω = QV , the collection

of all spin assignments of vertices. Finally, let w : Ω → R≥0 be a nonnegative weight

function that is not always zero; i.e., w(σ) > 0 for at least one σ ∈ Ω.

Let λ : V ×Q1 → C be a vector of (complex) external fields; each λv,k represents the

weight of vertex v receiving spin k. Spin 0 has no external field. Given w, the partition

function is a multivariate polynomial of λ defined as:

Zw(λ) =
∑
σ∈Ω

w(σ)λσ, where λσ =
∏

v∈V :σv 6=0

λv,σv . (8.2)

If λ is real and positive (i.e., every λv,k ∈ R+), then the Gibbs distribution µ = µw,λ is

given by:

µ(σ) =
w(σ)λσ

Zw(λ)
, ∀σ ∈ Ω. (8.3)

Note that Zw(λ) > 0 since w is not identically zero.

To establish spectral independence we need to consider the model with an arbitrary

“pinning” which is a fixed configuration on an arbitrary subset of vertices. We formally de-

fine pinnings and the associated notions in Section 8.3, and introduce the relevant notation

here.
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A configuration σ ∈ Ω is said to be valid or feasible if w(σ) > 0. For Λ ⊆ V , let ΩΛ

denote the set of pinnings on Λ; this is the set of configurations on Λ which have a valid

extension to the remaining vertices V \ Λ. For Λ ⊆ V and τ ∈ ΩΛ, let V τ = V \ Λ denote

the set of unpinned vertices, let Zτ
w(λ) be the multivariate conditional partition function

under the pinning τ , and let µτ be the corresponding conditional distribution.

We can now define the notion of spectral independence. Let T =
⋃

Λ⊆V ΩΛ be the

collection of all pinnings. For τ ∈ T let Pτ = {(v, k) ∈ V × Q : v ∈ V τ , k ∈ Ωτ
v} be

the collection of feasible vertex-spin pairs under τ , where Ωτ
v represents the set of feasible

spins at v conditioned on τ . Recall that, for fixed τ ∈ T , for every (u, j), (v, k) ∈ Pτ , the

(pairwise) influence of (u, j) on (v, k) under the pinning τ is given by Ψτ
µ(u, j; v, k) = 0

for u = v and

Ψτ
µ(u, j; v, k) = µ(σv = k | σu = j, σΛ = τ)− µ(σv = k | σΛ = τ) for u 6= v.

For a square matrix M with real eigenvalues, let EigMax(M) denote the maximum eigen-

value of M . We say µ is spectrally independent with constant η if for every pinning τ ∈ T

one has

EigMax(Ψτ
µ) ≤ η.

For a non-empty region Γ of the complex plane, we say a multivariate polynomial

P (z1, . . . , zn) is Γ-stable if P (z1, . . . , zn) 6= 0 whenever zj ∈ Γ for all j, see Defini-

tion 2.5.1. We present a sequence of results connecting spectral independence of the dis-

tribution with stability of the partition function. Our first result holds when the zero-free

region of the partition function is sufficiently “large”, e.g., containing the whole positive

real axis. Below for Γ ⊆ C let Γ denote the closure of Γ and let ∂Γ be the boundary of Γ;

for λ ∈ C let dist(λ, ∂Γ) = infz∈∂Γ |z − λ|; see Section 2.5.2.

Theorem 8.2.1. Let Γ ⊆ C be a non-empty open connected region such that Γ is un-

bounded and 0 ∈ Γ. If the multivariate partition function Zw is Γ-stable, then for any
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λ ∈ R+ ∩ Γ the Gibbs distribution µ = µw,λ with the uniform external field λ is spectrally

independent with constant

η =
8

δ

where δ = 1
λ
dist(λ, ∂Γ).

In particular, the statement is true when Γ is a non-empty open connected region con-

taining the positive real axis; i.e., R+ ⊆ Γ.

If we only know that a part of the positive real axis is contained in Γ, then we need to

further assume that all conditional partition functions under pinnings are stable. In this case

our bound on spectral independence depends on the marginal bound of the distribution µ,

which is defined as

b = min
τ∈T

(v,k)∈Pτ
µτ (σv = k).

Note that b > 0 since Pτ contains only feasible vertex-spin pairs.

Theorem 8.2.2. Let λ∗ ∈ R+ and let Γ ⊆ C be a non-empty open connected region such

that (0, λ∗) ⊆ Γ (respectively, (λ∗,∞) ⊆ Γ). If for every pinning τ ∈ T the multivariate

conditional partition function Zτ
w is Γ-stable, then for any λ ∈ (0, λ∗) (respectively, λ ∈

(λ∗,∞)) the Gibbs distribution µ = µw,λ with the uniform external field λ is spectrally

independent with constant

η =
8

δ
min

{
1− b
b

,
λ

b(λ∗ − λ)
+ 1

}
(

respectively, η =
8

δ
min

{
1− b
b

,
λ∗

b(λ− λ∗)
+ 1

})
where b is the marginal bound for µ and δ = 1

λ
dist(λ, ∂Γ).

Remark 8.2.3. The first term (1 − b)/b is better when λ is close to λ∗, while the second

term is better when λ is close to 0 (respectively,∞), because usually b/λ is bounded from

below when λ→ 0 (respectively, bλ is bounded from below when λ→∞).
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Remark 8.2.4. We point out here that Theorem 8.2.2 does not apply to the ferromagnetic

Ising model. The celebrated Lee-Yang theorem states that the partition function for the

ferromagnetic Ising model is D(0, 1)-stable and D(0, 1)c-stable where D(0, 1) denotes the

open unit ball centered at 0 on the complex plane and D(0, 1)c denotes the exterior of

D(0, 1). However, when a pinning is applied, particularly when some vertices are pinned

to + and some are −, we do not have either D(0, 1)-stability or D(0, 1)c-stability for the

conditional partition function. To see this, notice that such a pinning can result in inconsis-

tent external fields; some fields are < 1 (hence in D(0, 1)) while others are > 1 (hence in

D(0, 1)c), and the Lee-Yang theorem does not apply.

Meanwhile, one should not expect spectral independence to hold for the ferromagnetic

Ising model at all temperatures and for all external fields, since the Glauber dynamics is

slow mixing when the parameters lie in the tree non-uniqueness region.

If limited information about the zero-free region is given, then spectral independence

still holds with a worse bound.

Theorem 8.2.5. Let Γ ⊆ C be a non-empty open connected region. If for every pinning τ ∈

T the multivariate conditional partition function Zτ
w is Γ-stable, then for any λ ∈ R+ ∩ Γ

the Gibbs distribution µ = µw,λ with the uniform external field λ is spectrally independent

with constant

η =
2

bδ2

where b is the marginal bound for µ and δ = 1
λ
dist(λ, ∂Γ).

Our results Theorems 8.2.1, 8.2.2 and 8.2.5 also hold for non-uniform external fields,

i.e., each pair (v, k) is assigned a distinct field λv,k, and the zero-free regions are allowed

to be distinct for different pairs. See Theorem 8.4.2 for a formal statement.

Our work builds upon the recent work of Anari et al. [3]. Theorem 16 of [3] established

spectral independence for any distribution over {0, 1}V assuming that the generating poly-

nomial is sector-stable (that is, Γ-stable where Γ = {z ∈ C : |Arg(z)| ≤ θ} is a sector for
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some θ ∈ (0, π/2)). Our results Theorems 8.2.1, 8.2.2 and 8.2.5 strengthen theirs in two

ways. First we consider an arbitrary discrete product space Ω = QV for a finite label set Q,

rather than binary domains. Second and more importantly, we do not have any restriction

on the zero-free region Γ and the results hold for any open connected region. This allows

us to apply our results in a much broader setting. See Section 8.4 for more details.

To establish zero-free regions for our main applications, we utilize the approach in [66],

which reduces the problem via Asano-Ruelle contractions [7, 114] to showing a sufficiently

large zero-free region for a collection of bounded-degree univariate polynomials, one for

each vertex of the input graph. These univariate polynomials are referred to as the local

polynomials, since they only depend on the configuration restricted to edges incident to

the given vertex. We note a very similar idea was also used in [126, 21] to establish zero-

free regions, although their methods do not go through Asano-Ruelle contractions. See

Section 8.5 for more details.

It was also shown in a sequence of papers [11, 16, 17, 12, 13, 112] that one can es-

tablish large zero-free regions via an inductive approach based on conditioning the distri-

bution. This method of establishing zero-free regions also works nicely for us, as spectral

independence requires a bound on the pairwise influences for all conditional distributions.

We show that one can deduce rapid mixing of the Glauber dynamics in a nearly black-box

fashion from these zero-free methods for several problems in Section 8.6.

Algorithmically, our results have several advantages over prior works utilizing zero-free

regions. In particular, the polynomial interpolation method pioneered by Barvinok [10]

typically only yields quasi-polynomial time algorithms in general, and polynomial time

algorithms with exponent depending on the maximum degree for problems arising from

graphs [110]. In contrast, we obtain fast algorithms for sampling and counting. Another

feature of our approach is that we only need the zero-free region to be sufficiently large.

This is in contrast to the polynomial interpolation technique, which needs the zero-free

region to also contain a point at which the partition function is easily computable.
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8.3 Preliminaries for Pinnings

In this section we give more details on pinnings and conditional distributions. Note that

our setting in this chapter is more general than previous chapters as described in Chapter 2,

mostly because here we consider an arbitrary weight function on configurations which

is independent of the external fields, and we view the fields as variables of the partition

function.

Let q ≥ 2 be an integer and write q1 = q − 1. Let V be a finite set of vertices and

let Q = {0} ∪ Q1 be the set of spins where Q1 = {1, . . . , q1}. Every spin assignment

σ : V → Q is called a configuration. The state space Ω = QV is the collection of all

configurations and let w : Ω→ R≥0 be a nonnegative weight function that is not identically

zero. A configuration σ ∈ Ω is said to be valid or feasible if w(σ) > 0. For Λ ⊆ V , define

set of pinnings on Λ by

ΩΛ =
{
τ ∈ QΛ : ∃ valid σ ∈ Ω s.t. σΛ = τ

}
.

Note ΩV is the set of all valid configurations. Let T =
⋃

Λ⊆V ΩΛ be the collection of all

pinnings.

For a pinning τ ∈ T , let V τ denote the set of unpinned vertices; so if τ ∈ ΩΛ then

V τ = V \ Λ. For v ∈ V τ , let Ωτ
v be the set of valid spins at v under τ :

Ωτ
v = {k ∈ Q : ∃ valid σ ∈ Ω s.t. σΛ = τ and σv = k} .

Define the collection of feasible vertex-spin pairs under τ by Pτ = {(v, k) ∈ V ×Q : v ∈

V τ , k ∈ Ωτ
v}, and the collection of pairs with nonzero spins by Pτ1 = {(v, k) ∈ Pτ : k 6=

0}. We write Ωv, P , and P1 when no pinning is applied.

Let λ : P1 → C be a vector of complex external fields. Given a pinning τ ∈ T

on Λ ⊆ V with U = V τ = V \ Λ, the conditional partition function Zτ
w under τ is a
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multivariate polynomial of λ defined as

Zτ
w(λ) =

∑
σ∈Ω:σΛ=τ

w(σ)λσU , where λσU =
∏

v∈U :σv 6=0

λv,σv .

When there is no pinning, this matches Eq. (8.2) from the introduction. Observe that Zτ
w

depends only on the variables {λv,k : (v, k) ∈ Pτ1 }, and that Zτ
w is not identically zero since

τ is a pinning. Ifλ is real and positive, thenZτ
w(λ) > 0 and we obtain the conditional Gibbs

distribution:

µτ (σ) = µ(σ | σΛ = τ) =
w(σ)λσU

Zτ
w(λ)

, ∀σ ∈ Ω s.t. σΛ = τ.

Again this matches Eq. (8.3) when there is no pinning.

8.4 Proofs of Spectral Independence via Stability

In this section, we deduce spectral independence of a distribution from the stability of the

associated partition function, and thus prove Theorems 8.2.1, 8.2.2 and 8.2.5.

We first show that pinning preserves stability of the partition function if the zero-free

region is unbounded and contains 0 in its closure. Intuitively, the pinning σv = k for k 6= 0

corresponds to taking λv,k = ∞ (which is achieved by taking derivative with respect to

λv,k), and the pinning σv = 0 corresponds to taking λv,k = 0 for all k ∈ Q1. Hence, under

an arbitrary pinning the conditional partition function is just the original partition function

specialized at∞ and 0 for specific external fields, and the fact that the closure of the zero-

free region contains∞ (i.e., unboundedness) and 0 guarantees that after specialization the

resulted partition function is still stable. This is formalized by the following lemma.

Lemma 8.4.1. Let {Γv,k ⊆ C : (v, k) ∈ P1} be a collection of non-empty open connected

regions such that for every (v, k) ∈ P1 the region Γv,k is unbounded and 0 ⊆ Γv,k. If the

multivariate partition function Zw is
(∏

(v,k)∈P1
Γv,k

)
-stable, then for every pinning τ ∈ T
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the multivariate conditional partition function Zτ
w is

(∏
(v,k)∈Pτ1

Γv,k
)
-stable.

Next, we show the following grand theorem in the multivariate setting, from which one

can deduce the bounds on spectral independence given in Theorems 8.2.1, 8.2.2 and 8.2.5.

Theorem 8.4.2. Let {Γv,k ⊆ C : (v, k) ∈ P1} be a collection of non-empty open con-

nected regions, and let λ : P1 → R+ such that λv,k ∈ R+ ∩ Γv,k for each (v, k) ∈ P1.

Suppose that for every pinning τ ∈ T the multivariate conditional partition function Zτ
w

is
(∏

(v,k)∈Pτ1
Γv,k

)
-stable. Then the Gibbs distribution µ = µw,λ with external fields λ is

spectrally independent with constant

η =
2

bδ2
, (8.4)

where b is the marginal bound for µ and

δ = min
(v,k)∈P1

1

λv,k
dist(λv,k, ∂Γv,k).

Furthermore:

1. For each v ∈ V , let Γv ⊆ C be the connected component of the intersection region⋂
k∈Q1

1
λv,k

Γv,k which contains 1 (note that 1 ∈ 1
λv,k

Γv,k for all (v, k)). If for every

v ∈ V the region Γv is unbounded and 0 ∈ Γv, then spectral independence holds

with constant

η =
8

δ
.

In particular, the statement is true if R+ ⊆ Γv,k for each (v, k) ∈ P1.

2. If there exists λ∗ ∈ R+ such that λv,k ∈ (0, λ∗) ⊆ Γv,k for every (v, k) ∈ P1, then

spectral independence holds with constant

η =
8

δ
min

{
1− b
b

,
λmax

b(λ∗ − λmax)
+ 1

}
,
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where λmax = max(v,k)∈P1 λv,k.

3. If there exists λ∗ ∈ R+ such that λv,k ∈ (λ∗,∞) ⊆ Γv,k for every (v, k) ∈ P1, then

spectral independence holds with constant

η =
8

δ
min

{
1− b
b

,
λ∗

b(λmin − λ∗)
+ 1

}
,

where λmin = min(v,k)∈P1 λv,k.

We prove Theorem 8.4.2 by upper bounding the absolute row sum of the influence

matrix Ψτ
µ for any pinning τ ∈ T ; namely, for each (u, j) ∈ Pτ we bound the sum of

absolute values of the influences from (u, j) to all other pairs (v, k) ∈ Pτ , see Lemma 8.4.4.

We accomplish this by greatly strengthening and generalizing the proof strategy in [3].

At a high level, the work [3] views the sum of absolute influences as the derivative of

some function f produced by the conditional partition functions. The variables of f are

just the external fields of the partition function which lie in some zero-free region Γ and the

stability of the conditional partition functions guarantees that the image of f is contained

in some nice region Γ′. In [3], the authors study sector-stability of the partition function

for the binary state space {0, 1}V ; in particular, both the zero-free region Γ and the region

Γ′ containing the image are sectors for their choice of f . Then, by applying conformal

mappings between the sector and the unit disk, the derivative of f can be upper bounded

using the Schwarz-Pick Theorem (Theorem 2.5.3).

However, here we are facing a more challenging situation since we try to establish

spectral independence from an arbitrary zero-free region Γ for any discrete product space

QV . In fact, for us the regions Γ and Γ′ are in abstract forms and to apply the Schwarz-

Pick Theorem we need to design good mappings from Γ and Γ′ to the unit disk. This

is achieved by both carefully describing these regions and utilizing tools from complex

analysis, especially the Riemann Mapping Theorem (Theorem 2.5.4). See Section 8.4.3

for details of this part.
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We now provide the proofs of Theorems 8.2.1, 8.2.2 and 8.2.5 from the introduction.

Proof of Theorem 8.2.1. Follows from Lemma 8.4.1 and Item 1 of Theorem 8.4.2.

Proof of Theorem 8.2.2. Follows from Items 2 and 3 of Theorem 8.4.2.

Proof of Theorem 8.2.5. Follows from Eq. (8.4) of Theorem 8.4.2.

After proving Lemma 8.4.1 in Section 8.4.1, we prove Theorem 8.4.2 in Section 8.4.2

and prove Lemma 8.4.4, a central lemma for bounding the absolute sum of influences, in

Section 8.4.3.

8.4.1 Preservation of Stability under Pinnings

In this subsection we present the proof of Lemma 8.4.1.

Let τ ∈ T be an arbitrary pinning on Λ ⊆ V and let U = V τ = V \ Λ be the set of

unpinned vertices. We consider the conditional partition function Zτ
w under the pinning τ .

As discussed earlier, one can view Zτ
w as obtained from the original partition function Zw

by specializing at 0 and taking derivatives for certain variables provided by the pinning τ .

To be more precise, we define Λ0 = {v ∈ Λ : τv = 0} to be the set of vertices pinned to

spin 0, and let Λ1 = {v ∈ Λ : τv 6= 0} be those pinned to nonzero spins. We also define

τ1 = τΛ1 to be the pinning restricted to vertices with nonzero spins. The key observation

here is that

Zτ
w(λ) =

(
∂

∂λΛ1,τ1

Zw(λ)

) ∣∣∣∣∣
λΛ0

=0

(8.5)

where λΛ0 = 0 represents plugging in λv,k = 0 for all v ∈ Λ0 and k ∈ Q1, and ∂
∂λΛ1,τ1

represents taking derivatives ∂
∂λv,τv

for all v ∈ Λ1. Hence, to establish Lemma 8.4.1 it

suffices to show that specialization at 0 and differentiation preserves Γ-stability if the zero-

free region Γ is unbounded and 0 ∈ Γ. This is actually true for any multi-affine polynomial,

which is a polynomial whose monomials are all square-free.
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Lemma 8.4.3. Let n ≥ 1 be an integer and let Γ1, . . . ,Γn ⊆ C be non-empty open con-

nected regions. Let P ∈ C[z1, . . . , zn] be a multi-affine polynomial and assume that P is

(
∏n

`=1 Γ`)-stable. Then:

1. (Inversion) The polynomial

P1(z1, z2, . . . , zn) = z1P (
1

z1

, z2, . . . , zn)

is (Γ−1
1 ×

∏n
`=2 Γ`)-stable;

2. (Specialization) If 0 ∈ Γ1, then the polynomial

P2(z2, . . . , zn) = P (0, z2, . . . , zn)

is either (
∏n

`=2 Γ`)-stable or identically zero;

3. (Differentiation) If Γ1 is unbounded, then the polynomial

P3(z2, . . . , zn) =
∂

∂z1

P (z1, z2, . . . , zn)

is either (
∏n

`=2 Γ`)-stable or identically zero.

Proof. Consider first the inversion. Suppose for sake of contradiction that P1 is not (Γ−1
1 ×∏n

`=2 Γ`)-stable. Then there exists w1 ∈ Γ−1
1 and z` ∈ Γ` for 2 ≤ ` ≤ n such that

P1(w1, z2, . . . , zn) = 0. Note that w1 = 1/z1 for some z1 ∈ Γ1 \ {0}. It follows that

0 = z1P1(w1, z2, . . . , zn) = z1w1P

(
1

w1

, z2, . . . , zn

)
= P (z1, z2, . . . , zn),

contradicting to the stability of P . Hence, we have the desired stability for P1.

Next consider specialization. Since Γ1 is open and 0 ∈ Γ1, there exists a sequence of

complex numbers {ζm}∞m=1 such that ζm ∈ Γ1 and limm→∞ ζm = 0. Let fm(z2, . . . , zn) =
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P (ζm, z2, . . . , zn) be a polynomial of degree ≤ deg(P ) for each m. Then fm is (
∏n

`=2 Γ`)-

stable by the stability assumption of P . Furthermore, the sequence {fm}∞m=1 converges

to P2 coefficient-wisely, and hence uniformly on compact subsets; see, e.g., Lemma 33 in

[3]. Hurwitz’ Theorem (Theorem 2.5.2) then implies that P2 is either (
∏n

`=2 Γ`)-stable or

identically zero, as claimed.

Last we consider differentiation. Since Γ1 is open and unbounded, we deduce that the

region Γ−1
1 = {1/z : z ∈ Γ1 \ {0}} is open and satisfies 0 ∈ Γ−1

1 . Recall that we have

shown the inversion P1(z1, z2, . . . , zn) = z1P ( 1
z1
, z2, . . . , zn) is (Γ−1

1 ×
∏n

`=2 Γ`)-stable.

Now observe that, for a multi-affine polynomial P , the derivative P3 of P with respect to

z1 is the same as the specialization of P1 at z1 = 0:

P3(z2, . . . , zn) =
∂

∂z1

P (z1, z2, . . . , zn) = P1(0, z2, . . . , zn).

Hence, we immediately conclude from previous results that P3 is either (
∏n

`=2 Γ`)-stable

or identically zero.

Lemma 8.4.1 is an immediate consequence of Lemma 8.4.3.

Proof of Lemma 8.4.1. Observe that the partition function Eq. (8.2) is multi-affine. The

lemma then follows from Eq. (8.5) and Lemma 8.4.3. Notice that the conditional partition

functions are never identically zero since pinnings are extendable to valid full configura-

tions.

8.4.2 Bounds on Spectral Independence

In this subsection we prove Theorem 8.4.2.

An important observation is that it is sufficient to assume 1 ∈ Γv,k for every (v, k) ∈ P1

and consider the Gibbs distribution with the all-one external fields 1. In general, given the
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external field λv,k ∈ Γv,k for each (v, k), we may reweight the configurations by

w̃(σ) = w(σ)
∏

v∈V :σv 6=0

λv,σv , ∀σ ∈ Ω (8.6)

and the new partition function is

Zw̃(λ) =
∑
σ∈Ω

w̃(σ)λσ. (8.7)

In particular, Zw(λ) = Zw̃(1) and µw,λ = µw̃,1 for the given λ = (λv,k). In other words,

we hide the external fields into the weight of configurations and under the new weights

we are interested in the all-one external fields. This will simplify the notations. Note

that, if for τ ∈ T the multivariate conditional partition function Zτ
w is

(∏
(v,k)∈Pτ1

Γv,k
)
-

stable, then the reweighted conditional partition function Zτ
w̃ is

(∏
(v,k)∈Pτ1

Γ̃v,k
)
-stable

where Γ̃v,k = 1
λv,k

Γv,k for each (v, k) ∈ P1.

In the rest of this section, we assume that 1 ∈ Γv,k and consider the case of all-one

external fields. The following lemma is an important step towards deducing Theorem 8.4.2;

it builds upon the proof strategy of [3] while generalizing their result to a great extent.

Lemma 8.4.4. Consider the Gibbs distribution µ = µw,1 with the all-one external fields

1. Let τ ∈ T be a fixed pinning and let {Γv,k ⊆ C : (v, k) ∈ Pτ1 } be a collection of non-

empty open connected regions such that 1 ∈ Γv,k for each (v, k) ∈ Pτ1 . For every v ∈ V τ

let Γv ⊆ C be the connected component of the intersection
⋂

06=k∈Ωτv
Γv,k that contains 1.

If the multivariate conditional partition function Zτ
w is

(∏
(v,k)∈Pτ1

Γv,k
)
-stable, then the

influence matrix Ψτ
µ under the pinning τ satisfies

EigMax(Ψτ
µ) ≤

∥∥Ψτ
µ

∥∥
∞ ≤ min

 2

bδ2
,
8

δ
max
τ∈T

(v,k)∈Pτ
dist

(
1, Cτv,k

) ,
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where: b is the marginal bound for µ;

δ = min
(v,k)∈Pτ1

dist (1, ∂Γv,k) ; pτv,k = µτ (σv = k);

Cτv,k = − 1

pτv,k
(Γv,k − 1)−1 =

{
− 1

pτv,k(z − 1)
: z ∈ Γv,k \ {1}

}
, for k 6= 0;

Cτv,0 =
1

pτv,0

(
(Γv − 1)−1 + 1

)
=

{
z

pτv,0(z − 1)
: z ∈ Γv \ {1}

}
.

The following two lemmas are helpful for bounding the distance dist(1, Cτv,k) which is

given in Lemma 8.4.4.

Lemma 8.4.5. Let τ ∈ T and (v, k) ∈ Pτ1 .

1. If Γv,k is unbounded, then

dist
(
1, Cτv,k

)
≤ 1.

2. Let αv,k = inf (Γv,k ∩ R+) and βv,k = sup (Γv,k ∩ R+). Then

dist
(
1, Cτv,k

)
≤ min

{
αv,k

pτv,k(1− αv,k)
+

1− pτv,k
pτv,k

,
1

pτv,k(βv,k − 1)
+ 1

}
,

with the convention that 1
∞ = 0 if βv,k =∞.

Lemma 8.4.6. Let τ ∈ T and (v, 0) ∈ Pτ .

1. If 0 ∈ Γv, then

dist
(
1, Cτv,0

)
≤ 1.

2. Let αv = inf (Γv ∩ R+) and βv = sup (Γv ∩ R+). Then

dist
(
1, Cτv,0

)
≤ min

{
αv

pτv,0(1− αv)
+ 1,

1

pτv,0(βv − 1)
+

1− pτv,0
pτv,0

}
,

with the convention that 1
∞ = 0 if βv =∞.

228



Combining Lemmas 8.4.4 to 8.4.6, we are able to establish Theorem 8.4.2.

Proof of Theorem 8.4.2. As discussed at the beginning of this subsection, we can reweight

the configurations by Eq. (8.6) and consider the all-one external fields under the new

weights, so that Lemma 8.4.4 applies. In particular, for an arbitrary pinning τ ∈ T the

reweighted conditional partition function Zτ
w̃ given by Eq. (8.7) is

(∏
(v,k)∈Pτ1

Γ̃v,k
)
-stable

where Γ̃v,k = 1
λv,k

Γv,k for each (v, k) ∈ P1. Thus, the first upper bound in Lemma 8.4.4

implies that the Gibbs distribution µ = µw,λ = µw̃,1 is spectrally independent with constant

η = 2/(bδ2) where b is the marginal bound for µ and

δ = min
(v,k)∈P1

dist
(

1, ∂Γ̃v,k

)
= min

(v,k)∈P1

1

λv,k
dist (λv,k, ∂Γv,k)

as claimed.

For each v ∈ V , let Γ̃v = Γv ⊆ C be the connected component of the intersection⋂
k∈Q1

Γ̃v,k =
⋂
k∈Q1

1
λv,k

Γv,k that contains 1. Then we further have the following.

1. If for every v ∈ V the region Γ̃v is unbounded and 0 is contained in the closure of

Γ̃v, then the first part of Lemmas 8.4.5 and 8.4.6 implies that dist(1, Cτv,k) ≤ 1 for all

τ ∈ T and (v, k) ∈ Pτ . Hence, by the second upper bound in Lemma 8.4.4 spectral

independence holds with constant η = 8/δ.

If R+ ⊆ Γv,k for each (v, k) ∈ P1, then by definition Γ̃v is unbounded and 0 is

contained in the closure of Γ̃v for every v ∈ V ; therefore, spectral independence

holds with η = 8/δ.

2. If there exists λ∗ ∈ R+ such that λv,k ∈ (0, λ∗) ⊆ Γv,k for every (v, k) ∈ P1, then

one has

αv,k = inf
(

Γ̃v,k ∩ R+

)
= 0, βv,k = sup

(
Γ̃v,k ∩ R+

)
≥ λ∗

λv,k
,

αv = inf
(

Γ̃v ∩ R+

)
= 0, βv = sup

(
Γ̃v ∩ R+

)
≥ λ∗

λv,max

,
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where λv,max = maxk∈Q1 λv,k. Thus, we deduce from the second part of Lem-

mas 8.4.5 and 8.4.6 that for all τ ∈ T and (v, k) ∈ Pτ ,

dist
(
1, Cτv,k

)
≤ min

{
1− pτv,k
pτv,k

,
λv,k

pτv,k(λ
∗ − λv,k)

+ 1

}

≤ min

{
1− b
b

,
λmax

b(λ∗ − λmax)
+ 1

}
, for k 6= 0;

dist
(
1, Cτv,0

)
≤ min

{
1,

λv,max

pτv,0(λ∗ − λv,max)
+

1− pτv,0
pτv,0

}
≤ 1.

The second bound in Lemma 8.4.4 then yields the desired bound on spectral inde-

pendence. Note that we may assume µ is supported on at least two configurations

so that (1 − b)/b ≥ 1, namely b ≤ 1/2; otherwise µ is concentrated on a single

configuration and spectral independence holds with constant 0.

3. If there exists λ∗ ∈ R+ such that λv,k ∈ (λ∗,∞) ⊆ Γv,k for every (v, k) ∈ P1, then

one has

αv,k = inf
(

Γ̃v,k ∩ R+

)
≤ λ∗

λv,k
, βv,k = sup

(
Γ̃v,k ∩ R+

)
=∞,

αv = inf
(

Γ̃v ∩ R+

)
≤ λ∗

λv,min

, βv = sup
(

Γ̃v ∩ R+

)
=∞,

where λv,min = mink∈Q1 λv,k. Thus, we deduce from the second part of Lem-

mas 8.4.5 and 8.4.6 that for all τ ∈ T and (v, k) ∈ Pτ ,

dist
(
1, Cτv,k

)
≤ min

{
λ∗

pτv,k(λv,k − λ∗)
+

1− pτv,k
pτv,k

, 1

}
≤ 1, for k 6= 0;

dist
(
1, Cτv,0

)
≤ min

{
λ∗

pτv,0(λv,min − λ∗)
+ 1,

1− pτv,0
pτv,0

}
≤ min

{
λ∗

b(λmin − λ∗)
+ 1,

1− b
b

}
.

The second bound in Lemma 8.4.4 then yields the desired bound on spectral inde-

pendence.
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Remark 8.4.7. For Item 2 of Theorem 8.4.2 our proof actually yields a more complicated

but stronger constant for spectral independence:

η =
8

δ
max

1, max
τ∈T

(v,k)∈Pτ1

{
min

{
1− pτv,k
pτv,k

,
λv,k

pτv,k(λ
∗ − λv,k)

+ 1

}} .

For Item 3, the constant is:

η =
8

δ
max

1, max
τ∈T

(v,0)∈Pτ

{
min

{
1− pτv,0
pτv,0

,
λ∗

pτv,0(λv,min − λ∗)
+ 1

}} .

These two bounds are more robust in the sense of Remark 8.2.3, namely, when some exter-

nal fields are close to λ∗ while others are close to 0 (respectively,∞).

We end this subsection with the proofs of Lemmas 8.4.5 and 8.4.6. The proof of

Lemma 8.4.4 is presented in Section 8.4.3.

Proof of Lemma 8.4.5. By definition we have

dist
(
1, Cτv,k

)
= inf

1 6=z∈Γv,k

∣∣∣∣∣− 1

pτv,k(z − 1)
− 1

∣∣∣∣∣ .
If Γv,k is unbounded, then there exists a sequence {zn} such that 1 6= zn ∈ Γv,k and

limn→∞ |zn| =∞. Therefore,

dist
(
1, Cτv,k

)
≤ lim inf

n→∞

∣∣∣∣∣− 1

pτv,k(zn − 1)
− 1

∣∣∣∣∣ ≤ 1 + lim inf
n→∞

1

pτv,k|zn − 1|
= 1.

This shows the first part.

For the second part, observe that αv,k < 1 < βv,k since Γv,k is open and 1 ∈ Γv,k.

Hence, we obtain

dist
(
1, Cτv,k

)
≤ inf

x∈Γv,k∩(0,1)

∣∣∣∣∣− 1

pτv,k(x− 1)
− 1

∣∣∣∣∣
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=
1

pτv,k(1− αv,k)
− 1

=
αv,k

pτv,k(1− αv,k)
+

1− pτv,k
pτv,k

,

and also

dist
(
1, Cτv,k

)
≤ inf

x∈Γv,k∩(1,∞)

∣∣∣∣∣− 1

pτv,k(x− 1)
− 1

∣∣∣∣∣ =
1

pτv,k(βv,k − 1)
+ 1.

The second part follows.

Proof of Lemma 8.4.6. By definition we have

dist
(
1, Cτv,0

)
= inf

16=z∈Γv

∣∣∣∣ z

pτv,0(z − 1)
− 1

∣∣∣∣ .
If 0 ∈ Γv, then there exists a sequence {zn} such that 1 6= zn ∈ Γv,k and limn→∞ zn = 0.

Therefore,

dist
(
1, Cτv,0

)
≤ lim inf

n→∞

∣∣∣∣ zn
pτv,0(zn − 1)

− 1

∣∣∣∣ ≤ 1 + lim inf
n→∞

|zn|
pτv,0|zn − 1|

= 1.

This shows the first part.

For the second part, observe that αv < 1 < βv since Γv is open and 1 ∈ Γv,k. Hence,

we obtain

dist
(
1, Cτv,0

)
≤ inf

x∈Γv∩(0,1)

∣∣∣∣ x

pτv,0(x− 1)
− 1

∣∣∣∣ =
αv

pτv,0(1− αv)
+ 1,

and also

dist
(
1, Cτv,0

)
≤ inf

x∈Γv∩(1,∞)

∣∣∣∣ x

pτv,0(x− 1)
− 1

∣∣∣∣
=

βv
pτv,0(βv − 1)

− 1
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=
1

pτv,0(βv − 1)
+

1− pτv,0
pτv,0

.

The second part follows.

8.4.3 Bounding the Absolute Sum of Influences: Proof of Lemma 8.4.4

Let τ ∈ T be an arbitrary pinning and fix τ . We will give an upper bound on the absolute

row sum of the associated influence matrix Ψτ
µ under τ , which then provides an upper

bound on the maximum eigenvalue of Ψτ
µ. In particular, for (u, j) ∈ Pτ we define

S̃τµ(u, j) =
∑

(v,k)∈Pτ

∣∣Ψτ
µ(u, j; v, k)

∣∣ =
∑

(v,k)∈Pτ :v 6=u

|µτ (σv = k | σu = j)− µτ (σv = k)|

to be the absolute sum of influences in the row (u, j), and define

Sτµ(u, j) =
∑

(v,k)∈Pτ1

∣∣Ψτ
µ(u, j; v, k)

∣∣ =
∑

(v,k)∈Pτ1 :v 6=u

|µτ (σv = k | σu = j)− µτ (σv = k)|

to be the partial absolute sum of influences for pairs (v, k) with k 6= 0 in the row (u, j).

Notice that one has S̃τµ(u, j) ≤ 2Sτµ(u, j), because for each (v, 0) ∈ Pτ it follows from the

triangle inequality that

|µτ (σv = 0 | σu = j)− µτ (σv = 0)| ≤
∑

k∈Ωτv\{0}

|µτ (σv = k | σu = j)− µτ (σv = k)| .

Hence,

EigMax(Ψτ
µ) ≤

∥∥Ψτ
µ

∥∥
∞ = max

(u,j)∈Pτ
S̃τµ(u, j) ≤ 2 max

(u,j)∈Pτ
Sτµ(u, j). (8.8)

The rest of the proof aims to bound Sτµ(u, j) for a fixed (u, j) ∈ Pτ . We consider two

cases j 6= 0 and j = 0 separately, and prove the following.
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Lemma 8.4.8. For j 6= 0 we have

Sτµ(u, j) ≤ min

{
1

bδ2
,
4

δ
dist

(
1, Cτu,j

)}
.

Lemma 8.4.9. For j = 0 we have

Sτµ(u, 0) ≤ min

{
1

bδ2
,
4

δ
dist

(
1, Cτu,0

)}
.

Lemma 8.4.4 follows immediately from these two lemmas.

Proof of Lemma 8.4.4. Combining Eq. (8.8) and Lemmas 8.4.8 and 8.4.9.

Proof of Lemma 8.4.8

Fix (u, j) ∈ Pτ1 . We follow the proof approach of [3] and view Sτµ(u, j) as the derivative

of certain function related to the partition function; the lemma then follows from an appli-

cation of the Schwarz-Pick Theorem (Theorem 2.5.3) for bounding the derivative. For ease

of notation we write

P ′ = {(v, k) ∈ Pτ1 : v 6= u} and K =
∏

(v,k)∈P ′
Γv,k.

Define the multivariate complex function f : K → C as

f(λ) =
1

pτu,j

Z
τ∪(u,j)
w (λ)

Zτ
w(λ ∪ 1u)

, for λ ∈ K (8.9)

where τ ∪ (u, j) ∈ T is the pinning that combines τ and σu = j, and λ ∪ 1u is the vector

of external fields that combines λ and the all-one fields 1u at u (i.e., λu,j′ = 1 for all

0 6= j′ ∈ Ωτ
u); notice that

Zτ
w(λ ∪ 1u) =

∑
j′∈Ωτu

Zτ∪(u,j′)
w (λ).
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Note that f is well-defined since by our assumption Zτ
w(λ∪1u) 6= 0 whenever each λv,k ∈

Γv,k. The following claim summarizes several important properties of the function f .

Claim 8.4.10. Let f : K → C be the multivariate complex function defined by Eq. (8.9).

1. The function f is well-defined and holomorphic on K, and f(1) = 1.

2. For every (v, k) ∈ P ′,
∂f

∂λv,k

∣∣∣∣
λ=1

= Ψτ
µ(u, j; v, k).

3. Suppose that f 6≡ 1. Let A ⊆ C be an open region defined as

A = − 1

pτu,j
(Γu,j − 1)−1 .

Then 1 /∈ A. Let A1 be the connected component of Ac
which contains 1. Then A1

is open and simply connected, and

image(f) ⊆ A1.

If f ≡ 1, then Item 2 of Claim 8.4.10 implies that Ψτ
µ(u, j; v, k) = 0 for all (v, k) ∈ P ′,

and hence Sτµ(u, j) = 0. In the rest of the proof we assume that f 6≡ 1.

Given Claim 8.4.10, in order to bound Sτµ(u, j) it suffices to bound ‖∇f(1)‖1. We do

this by taking holomorphic functions ϕ : D(0, 1)→ K, ψ : A1 → D(0, 1) and considering

their composition with the function f . The bound on ‖∇f(1)‖1 would then follow from

the Schwarz-Pick Theorem which bounds the derivative of a holomorphic function from

the open unit dist into itself.

We now formalize this idea. Let ϕ : D(0, 1) → K be a holomorphic vector-valued

function such that for every (v, k) ∈ P ′, the (v, k)-coordinate function ϕv,k : D(0, 1) →

Γv,k is holomorphic and satisfies ϕv,k(0) = 1 and ϕ′v,k(0) ∈ R+ if Ψτ
µ(u, j; v, k) ≥ 0 while

ϕ′v,k(0) ∈ R− if Ψτ
µ(u, j; v, k) ≤ 0. Hence, ϕ(0) = 1 and ϕ′v,k(0)Ψτ

µ(u, j; v, k) ≥ 0 for all
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(v, k). Meanwhile, for the regionA1 given in Item 3 of Claim 8.4.10, let ψ : A1 → D(0, 1)

be a holomorphic function such that ψ′(1) ∈ R+. We will specify our choice of ϕ and ψ

soon. Also, we point out here that our assumptions ϕ′v,k(0) ∈ R+/R− and ψ′(1) ∈ R+

would not cause strong restrictions; they can be easily satisfied by considering rotations

ϕ(eiθz) and eiθψ(z).

Given such ϕ and ψ, we define the holomorphic function F : D(0, 1) → D(0, 1) given

by F = ψ ◦ f ◦ ϕ. Notice that F (0) = ψ(1). The derivative F ′(0) at 0 is real and can be

bounded by

F ′(0) = ψ′(1)
∑

(v,k)∈P ′
ϕ′v,k(0)

∂f

∂λv,k

∣∣∣∣
λ=1

= ψ′(1)
∑

(v,k)∈P ′
ϕ′v,k(0)Ψτ

µ(u, j; v, k)

≥ ψ′(1) min
(v,k)∈P ′

{∣∣ϕ′v,k(0)
∣∣}Sτµ(u, j), (8.10)

where the second equality follows from Item 2 of Claim 8.4.10 and the inequality is due to

our assumption that ϕ′v,k(0)Ψτ
µ(u, j; v, k) ≥ 0 for each (v, k). The Schwarz-Pick Theorem

(Theorem 2.5.3) implies that F ′(0) ≤ 1, and hence we obtain

Sτµ(u, j) ≤ 1

ψ′(1)

(
min

(v,k)∈P ′

∣∣ϕ′v,k(0)
∣∣)−1

. (8.11)

It remains to choose ϕ and ψ. Consider first the function ϕ. For each (v, k) ∈ P ′ we let

δv,k = dist (1, ∂Γv,k) and χv,k = sgn(Ψτ
µ(u, j; v, k)) =


+1, Ψτ

µ(u, j; v, k) ≥ 0;

−1, Ψτ
µ(u, j; v, k) < 0.

We then define ϕv,k : D(0, 1)→ Γv,k by

ϕv,k(z) = 1 + χv,kδv,kz. (8.12)
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Observe that ϕ is holomorphic, ϕ(0) = 1, and ϕ′v,k(z) = χv,kδv,k has the same sign as

Ψτ
µ(u, j; v, k) for each (v, k). Recall that δ = min(v,k)∈P1 dist (1, ∂Γv,k), and thus

min
(v,k)∈P ′

∣∣ϕ′v,k(0)
∣∣ = min

(v,k)∈P ′
δv,k ≥ δ. (8.13)

Next, we decide ψ. We will actually give two choices of ψ, denoted by ψ1 and ψ2

respectively, which correspond to the two bounds in Lemma 8.4.8.

We first consider the simpler choice ψ1. Let δu,j = dist (1, ∂Γu,j) ≥ δ, and so

D(1, δu,j) ⊆ Γu,j . Then, the region A from Item 3 of Claim 8.4.10 satisfies

A = − 1

pτu,j
(Γu,j − 1)−1 ⊇ − 1

pτu,j
(D(1, δu,j)− 1)−1 =

1

pτu,jδu,j
D(0, 1)c.

It follows that

A1 ⊆ A
c ⊆ 1

pτu,jδu,j
D (0, 1) .

We can define ψ1 : A1 → D(0, 1) as

ψ1(z) = pτu,jδu,jz.

Then, ψ1 is holomorphic, ψ′1(z) = pτu,jδu,j ∈ R+, and

1

ψ′1(1)
=

1

pτu,jδu,j
≤ 1

bδ
. (8.14)

Combining Eqs. (8.11), (8.13) and (8.14), we obtain

Sτµ(u, j) ≤ 1

bδ2
.

This shows the first bound in Lemma 8.4.8.

Next, we define ψ2. Since ∅ 6= A1 ( C is open and simply connected by Item 3 of
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Claim 8.4.10, the Riemann Mapping Theorem (Theorem 2.5.4) implies that there exists a

(unique) biholomorphic mapping ψ2 : A1 → D(0, 1) such that ψ2(1) = 0 and ψ′2(1) ∈ R+.

Write h = ψ−1
2 , which is a bijective holomorphic function from D(0, 1) to A1 satisfying

h(0) = 1. Then, Koebe’s One-Quarter Theorem (Theorem 2.5.5) shows that

1

4
|h′(0)| ≤ dist(1, ∂A1) ≤ dist(1,A) = dist

(
1, Cτu,j

)
.

It follows that
1

ψ′2(1)
= h′(0) ≤ 4dist

(
1, Cτu,j

)
. (8.15)

Combining Eqs. (8.11), (8.13) and (8.15), we get

Sτµ(u, j) ≤ 4

δ
dist

(
1, Cτu,j

)
,

which is the second bound in Lemma 8.4.8.

Remark 8.4.11. The proof of Lemma 8.4.8 (and also Lemma 8.4.9 in Section 8.4.3) leaves

the possibility of further improvements on the spectral independence bounds for specific

problems. Here in the proof we are given regions K and A1 in abstract forms and the

choices of ϕ and ψ may not be optimal for specific instances; in particular, the Riemann

Mapping Theorem only shows the existence of a biholomorphic mapping and there is no

guarantees that such a choice is the best possible. Hence, for specific problems and specific

zero-free regions, one may be able to pick ϕ and ψ in a smarter way to achieve a better

bound on spectral independence.

It remains to prove Claim 8.4.10. The following lemma is helpful to us.

Lemma 8.4.12. Let S ⊆ C be a non-empty open connected region such that S is un-

bounded and S 6= C. If S1 is a connected component of Sc
, then S1 is open and simply

connected.

Proof. Clearly S1 is open and connected. If S1 is not simply connected, then there exists a
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Jordan curve (simple closed curve) γ in S1 whose interior region contains a point z0 /∈ S1.

Note that we can actually find a point z from the interior of γ such that z ∈ S; if not,

then the whole interior of γ is contained in Sc
and thus z0 /∈ S1 is connected to S1 in Sc

,

contradicting to the assumption that S1 is a connected component of Sc
. Since the interior

of γ is open, this further implies that the interior of γ contains a point z ∈ S. Meanwhile,

since S is unbounded the exterior of γ contains a point w ∈ S . Now, as S is connected

there exists a path p in S connecting z and w. Note that pmust intersect with γ, because the

interior and exterior of γ are disconnected. This yields a contradiction since γ ⊆ S1 ⊆ Sc

while p ⊆ S.

We complete the proof of Lemma 8.4.8 with the proof of Claim 8.4.10.

Proof of Claim 8.4.10. 1. Since Zτ
w(λ∪1u) 6= 0 whenever λ ∈ K by our stability assump-

tion, the function f is well-defined and holomorphic on K. Also, by definition we have

f(1) = 1.

2. Let (v, k) ∈ P ′. Then one has

∂f

∂λv,k
=

1

pτu,j

(
1

Zτ
w(λ ∪ 1u)

(
∂

∂λv,k
Zτ∪(u,j)
w (λ)

)
− Z

τ∪(u,j)
w (λ)

Zτ
w(λ ∪ 1u)2

(
∂

∂λv,k
Zτ
w(λ ∪ 1u)

))
.

Suppose τ is a pinning on Λ ⊆ V and let U = V τ∪(u,j) = V \Λ\{u} be the set of unpinned

vertices under the pinning τ ∪ (u, j). We deduce that,

∂

∂λv,k
Zτ∪(u,j)
w (λ) =

∑
σ∈Ω:σΛ=τ,σu=j

w(σ) · ∂

∂λv,k
λσU

=
∑

σ∈Ω:σΛ=τ,σu=j,σv=k

w(σ)λσU\{v}

= Zτ∪(u,j)∪(v,k)
w (λ).
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Similarly,
∂

∂λv,k
Zτ
w(λ ∪ 1u) = Zτ∪(v,k)

w (λ ∪ 1u).

We then get

∂f

∂λv,k

∣∣∣∣
λ=1

=
1

pτu,j

(
Z
τ∪(u,j)∪(v,k)
w (1)

Zτ
w(1)

− Z
τ∪(u,j)
w (1) · Zτ∪(v,k)

w (1)

Zτ
w(1)2

)

=
1

µτ (σu = j)
(µτ (σu = j, σv = k)− µτ (σu = j)µτ (σv = k))

= Ψτ
µ(u, j; v, k),

as claimed.

3. We first show that image(f) ⊆ Ac. Suppose for sake of contradiction that f(λ) ∈ A for

some λ ∈ K. Then there exists 1 6= y ∈ Γu,j such that

− 1

pτu,j(y − 1)
= f(λ) =

1

pτu,j

Z
τ∪(u,j)
w (λ)

Zτ
w(λ ∪ 1u)

.

It follows that

Zτ
w(λ ∪ λu) = yZτ∪(u,j)

w (λ) +
∑

j 6=j′∈Ωτu

Zτ∪(u,j′)
w (λ) = 0,

where λu is the vector of external fields at u defined by λu,j = y and λu,j′ = 1 for j′ ∈

Ωτ
u \ {0, j}. This contradicts to our stability assumption that Zτ

w(λ ∪ λu) 6= 0. Therefore,

we have shown that image(f) ⊆ Ac.

Now, since K is open and connected and f is a non-constant holomorphic function, the

Open Mapping Theorem (Theorem 2.5.6) implies that image(f) is open and connected.

Thus, we have image(f) ⊆ (Ac)o = Ac
; note that in particular 1 ∈ Ac

. Furthermore,

since image(f) is connected one has image(f) ⊆ A1, the connected component of Ac

containing 1. The region A1 is open and connected by definition. It remains to show that

A1 is simply connected, which follows immediately from Lemma 8.4.12 and the fact that
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A is connected and unbounded.

Proof of Lemma 8.4.9

The proof of Lemma 8.4.9 is similar to that of Lemma 8.4.8. We will use the same notations

and only emphasize a few key steps that differ.

Recall that

P ′ = {(v, k) ∈ Pτ1 : v 6= u} and K =
∏

(v,k)∈P ′
Γv,k.

Define the multivariate complex function g : K → C as

g(λ) =
1

pτu,0

Z
τ∪(u,0)
w (λ)

Zτ
w(λ ∪ 1u)

, for λ ∈ K (8.16)

where τ ∪ (u, 0) ∈ T is the pinning combining τ and σu = 0, and λ ∪ 1u is the vector of

external fields that combines λ and 1u. The following claim is analogous to Claim 8.4.10

and summarizes key properties of the function g.

Claim 8.4.13. Let g : K → C be the multivariate complex function defined by Eq. (8.16).

1. The function g is well-defined and holomorphic on K, and g(1) = 1.

2. For every (v, k) ∈ P ′,
∂f

∂λv,k

∣∣∣∣
λ=1

= Ψτ
µ(u, 0; v, k).

3. Suppose that g 6≡ 1. Let B ⊆ C be an open region defined as

B =
1

pτu,0

(
(Γu − 1)−1 + 1

)
.

Then 1 /∈ B. Let B1 be the connected component of Bc
which contains 1. Then B1 is

241



open and simply connected, and

image(g) ⊆ B1.

We may assume that g 6≡ 1 since otherwise Sτµ(u, 0) = 0 and the lemma is trivial. Again

we choose holomorphic functions ϕ : D(0, 1) → K, ψ : B1 → D(0, 1) and consider the

holomorphic function G : D(0, 1)→ D(0, 1) defined as G = ψ ◦ g ◦ϕ. Just as in the proof

of Lemma 8.4.8, we let ϕ : D(0, 1)→ K be a holomorphic vector-valued function such that

for every (v, k) ∈ P ′, the (v, k)-coordinate function ϕv,k : D(0, 1) → Γv,k is holomorphic

and satisfies ϕv,k(0) = 1 and ϕ′v,k(0) ∈ R+ if Ψτ
µ(u, j; v, k) ≥ 0 while ϕ′v,k(0) ∈ R− if

Ψτ
µ(u, j; v, k) ≤ 0. Meanwhile, let ψ : B1 → D(0, 1) be a holomorphic function such

that ψ′(1) ∈ R+. Hence, we have G(0) = ψ(1), and by Claim 8.4.13 G′(0) ∈ R can be

bounded by

G′(0) ≥ ψ′(1) min
(v,k)∈P ′

{∣∣ϕ′v,k(0)
∣∣}Sτµ(u, 0),

which is analogous to Eq. (8.10). We then deduce the analog of Eq. (8.11) from the

Schwarz-Pick Theorem (Theorem 2.5.3):

Sτµ(u, 0) ≤ 1

ψ′(1)

(
min

(v,k)∈P ′

∣∣ϕ′v,k(0)
∣∣)−1

. (8.17)

We specify next our choice of ϕ and ψ. The function ϕ is the same one as in the proof

of Lemma 8.4.8, and is given by Eq. (8.12). In particular, Eq. (8.13) still holds. We also

give two choices of the function ψ, denoted by ψ3 and ψ4 respectively, corresponding to

the two bounds in Lemma 8.4.9.

Consider first ψ3. Recall that Γu ⊆ C is defined to be the connected component of the

intersection
⋂

06=j∈Ωτu
Γu,j that contains 1. Let δu = dist (1, ∂Γu) ≥ δ and thus D(1, δu) ⊆
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Γu. Then we have

B =
1

pτu,0

(
(Γu − 1)−1 + 1

)
⊇ 1

pτu,0

(
D(0, δu)

−1 + 1
)

=
1

pτu,0δu
D(δu, 1)c,

and hence

B1 ⊆ B
c ⊆ 1

pτu,0δu
D (δu, 1) .

We define ψ3 : B1 → D(0, 1) as

ψ3(z) = pτu,0δuz − δu.

Observe that ψ3 is holomorphic, ψ′3(z) = pτu,0δu ∈ R+, and

1

ψ′3(1)
=

1

pτu,0δu
≤ 1

bδ
. (8.18)

Combining Eqs. (8.13), (8.17) and (8.18), we obtain

Sτµ(u, 0) ≤ 1

bδ2
.

This shows the first bound in Lemma 8.4.9.

Finally, we defineψ4. Since ∅ 6= B1 ( C is open and simply connected by Claim 8.4.13,

there exists a (unique) biholomorphic mapping ψ4 : B1 → D(0, 1) such that ψ4(1) = 0 and

ψ′4(1) ∈ R+ by the Riemann Mapping Theorem (Theorem 2.5.4). Let h = ψ−1
4 be the

holomorphic mapping from D(0, 1) to B1 with h(0) = 1. We deduce from the Koebe’s

One-Quarter Theorem (Theorem 2.5.5) that

1

4
|h′(0)| ≤ dist(1, ∂B1) ≤ dist(1,B) = dist

(
1, Cτu,0

)
,
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and hence
1

ψ′4(1)
= h′(0) ≤ 4dist

(
1, Cτu,0

)
. (8.19)

Combining Eqs. (8.13), (8.17) and (8.19), we get

Sτµ(u, 0) ≤ 4

δ
dist

(
1, Cτu,0

)
,

which is the second bound in Lemma 8.4.9.

We end this section with the proof of Claim 8.4.13.

Proof of Claim 8.4.13. Item 1 follows from the stability of the partition function and Item 2

can be deduced by direct calculations. We omit the details here and refer to the proof of

Claim 8.4.10.

For Item 3, again we first show that image(g) ⊆ Bc. Suppose for sake of contradiction

that g(λ) ∈ B for some λ ∈ K. Then there exists 1 6= y ∈ Γu ⊆
⋂

06=j∈Ωτu
Γu,j such that

y

pτu,0(y − 1)
= g(λ) =

1

pτu,0

Z
τ∪(u,0)
w (λ)

Zτ
w(λ ∪ 1u)

.

It follows that

Zτ
w(λ ∪ y1u) = Zτ∪(u,0)

w (λ) +
∑

06=j∈Ωτu

yZτ∪(u,j)
w (λ) = 0,

where y1u represents the vector of external fields at u defined by λu,j = y for all 0 6=

j ∈ Ωτ
u. This contradicts the stability assumption of the partition function. Therefore,

we have image(g) ⊆ Bc. The Open Mapping Theorem (Theorem 2.5.6) then implies that

image(g) ⊆ B1 which is the connected component of Bc
containing 1. Meanwhile, notice

that the region Γu is open and connected since it is a connected component of the open set⋂
06=j∈Ωτu

Γu,j , and so B is open, connected, and unbounded. Hence, Lemma 8.4.12 shows

that B1 is open and simply connected. This completes the proof of the claim.
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8.5 Optimal Mixing Results for Binary Symmetric Holant Problems

Let G = (V,E) be a graph of maximum degree ∆. We consider the Holant problem in

the binary symmetric case, which we now describe. Let {fv}v∈V : N → R≥0 be a family

of functions, one for each vertex v ∈ V in the input graph. One should think of each

fv as representing a local constraint on the assignments to edges incident to v. Since we

are restricting ourselves to the binary case, our configurations σ will map edges to {0, 1}.

Furthermore, since we are restricting ourselves to the symmetric case, our local functions

fv will only depend on the number of edges incident to v which are mapped to 1. With

these {fv}v∈V in hand, we may write the multivariate partition function as

ZG(λ) =
∑

σ:E→{0,1}

∏
v∈V

fv(|σE(v)|)
∏
e∈E

λ1{σe=1}
e , (8.20)

where E(v) is the set of all edges adjacent to v, σE(v) is the configuration restricted on

E(v), and |σE(v)| is the number of edges in E(v) with assignment 1.

This class of problems is already incredibly rich, and encompasses many classical ob-

jects studied in combinatorics and statistical physics including the following:

• Matchings/Monomer-Dimer Model: Assume all fv are the same and given by the

“at-most-one” function:

fv(k) =


1, if k = 0, 1;

0, if k ≥ 2.

Then ZG(1) yields the number of matchings (of any size) in G.

• Weighted Edge Covers: Assume all fv are the same and given by the weighted “at-
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least-one” function:

fv(k) =


ρ, if k = 0;

1, if k ≥ 1.

In the case ρ = 0, then ZG(1) yields the number of edge covers of G, that is, subsets

of edges such that every vertex is incident to at least one selected edge.

• Weighted Even Subgraphs: In this case, all fv are the same and given by the weighted

“parity” function. More specifically, for a fixed positive parameter ρ > 0, we have

fv(k) =


1, if k is even;

ρ, if k is odd.

In the case ρ = 0, then ZG(1) counts the number of even subgraphs, that is, subsets

of edges such that all vertices have even degrees in the resulting subgraph. (Note that

when ρ = 0, the Glauber dynamics is not ergodic.)

• Ising Model on Line Graphs: In this case, each fv depends on the degree of v. If

β > 0 is some fixed parameter (independent of v), and d = deg(v), then we have

fv(k) =


β(k2)β(d−k2 ), if 0 ≤ k ≤ d;

0, o/w.

In all of the above examples, prior works managed to show that the Glauber dynamics

admits an inverse polynomial spectral gap ([76] for matchings, [73] for edge covers, [77]

for weighted even subgraphs, and [53] for the Ising model in the antiferromagnetic β < 1

regime). Furthermore, all of these results were obtained via the canonical paths method

[76], and its winding extension [102]. However, one down-side behind these results is that

the spectral gap bounds are suboptimal, and do not yield optimal mixing times nor sub-

Gaussian concentration estimates. In contrast, by combining our framework with known
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zero-free regions for these models and the local-to-global mixing result of [45], we obtain

optimal mixing times and sub-Gaussian concentration results for these problems in the

bounded-degree regime.

Note that though Theorem 1.2.1 is stated only for spin systems, it holds for Holant

problems and tensor network contractions (see Sections 8.5 and 8.6 for definitions) as well

since one can view these as spin systems defined on hypergraphs (also known as Markov

random fields) and the proof approach of [45, 23] still works when the underlying graph

has bounded maximum degree.

One of the convenient aspects of our approach is that establishing the required root-

region for the complicated multivariate partition function can be boiled down to establish-

ing stability for a bounded-degree univariate polynomial with coefficients coming from the

local functions fv. This was one of the main insights of [126, 66, 21]. More specifically, if

∆ is the maximum degree of the input graph G = (V,E), and fv : [d] → R≥0 is the local

function for some vertex v ∈ V , where d = deg(v) ≤ ∆, then define the corresponding

local polynomial at v by

Pv(z) =
d∑

k=0

(
d

k

)
fv(k)zk. (8.21)

A circular region on the complex plane is the interior or exterior of a disk, or an open

half-plane. [66] showed using Asano-Ruelle contractions [7, 114] that in the case all fv

are the same, and all Pv are Φ-stable for an open half-plane Φ ⊆ C, the multivariate parti-

tion function is Γ-stable where Γ = [−(Φc)2]
c. This result actually holds for any circular

region Φ ⊆ C assuming that either Φ is convex or every local polynomial Pv has degree

deg(v); under these assumptions one can apply the famous Grace-Walsh-Szegö Coinci-

dence Theorem to the local polynomials, see [66, 26]. A straightforward generalization of

their techniques yields the following.

Theorem 8.5.1 ([66]). Let G = (V,E) be a graph. Let {fv}v∈V : N → R≥0 be a family

of local functions, and let {Φv}v∈V be a family of circular regions containing 0 such that
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for every v ∈ V , either Φv is convex or fv(deg(v)) > 0. If for every v ∈ V , the local poly-

nomial Pv is Φv-stable, then the multivariate partition function ZG(λ) is
∏

e∈E Γe stable,

where for each edge e = {u, v}, Γe = (−Φc
u · Φc

v)
c ⊆ C.

Using Theorem 8.5.1, [66] established zero-free regions for a large class of Holant

problems satisfying generalized second-order recurrences, including matchings, weighted

edge covers, and weighted even subgraphs. Our main theorems Theorems 8.1.1 and 8.1.3

and Theorem 1.1.6 build upon these zero-free results as well as Theorem 8.2.1 and The-

orem 1.2.1 (note that we can obtain spectral independence for matchings from Theo-

rems 8.5.1 and 8.2.1, which was already known in [45] with a better bound by correlation

decay proofs). Zero-free regions were also established for weighted edge covers and the

antiferromagnetic Ising model on line graphs in [21], using techniques from [126].

Before proving the main theorems, we will need the following simple lemma concern-

ing the case where the regions Φu are half-planes. Recall that Hε = {x+ iy : x < −ε} and

Hε = {x+ iy : x ≤ −ε} for ε ∈ R+.

Lemma 8.5.2 (Lemma 5 in [66]). For ε > 0, let Γ = (−H2

ε)
c be a region. Then Γ

contains R+, and for every λ ∈ R+ we have dist(λ, ∂Γ) = λ + ε2 if λ ∈ (0, ε2), and

dist(λ, ∂Γ) = 2ε
√
λ if λ ∈ [ε2,∞).

For completeness, we provide a proof in Section 8.5.2. With these tools in hand, we

deduce strong zero-free regions for the above examples. We use these to prove our main

mixing results Theorems 8.1.1 and 8.1.3 and Theorem 1.1.6. Note that by Lemma 8.4.1

and Theorem 8.4.2, one can in fact establish rapid mixing results for these models with

non-uniform external fields, though we only state the uniform case for simplicity.

Proof of Theorem 8.1.1. By Theorem 1.2.1, it suffices to prove η-spectral independence

for η = O∆,λ,ρ(1). By Theorem 8.2.1, it suffices to prove that the multivariate partition

function Eq. (8.20) is Γ-stable, where Γ ⊆ C is an open connected region containing R+

and δ = 1
λ
dist(λ, ∂Γ) = Ω∆,λ,ρ(1).
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It is more convenient for us to work with the model on complements of weighted edge

covers, whose partition function is the inversion of that for weighted edge covers. For this,

the local polynomial is given by

Pv(z) = (1 + z)deg(v) − (1− ρ)zdeg(v),

which is Hc

1/2-stable. Then by Theorem 8.5.1, the inversion of the weighted edge cover

partition function ZG(λ) is
(
−H2

1/2

)c
-stable, and therefore ZG(λ) is Γ-stable for

Γ =
[(
−H2

1/2

)c]−1

= [−D(−1, 1)2]c.

This region Γ is also derived in [21]. We remark that the region −D(−1, 1)2 is cardioid-

shaped, and its complement Γ is an open connected region containing R+; see Lemma 3.9

and Figure 1 in [21]. Hence, we have R+ ⊆ Γ and δ = Ω∆,λ,ρ(1) as wanted.

Proof of Theorem 1.1.6. We may assume ρ ∈ (0, 1) since if ρ = 1 then we get a trivial

product distribution. Once again, by Theorem 1.2.1, it suffices to prove η-spectral indepen-

dence for η = O∆,λ,ρ(1), and by Theorem 8.2.1, it suffices to prove that the multivariate

partition function Eq. (8.20) is Γ-stable, where Γ ⊆ C is an open connected region contain-

ing R+ and δ = 1
λ
dist(λ, ∂Γ) = Ω∆,λ,ρ(1).

For this, observe that the local polynomial is given by

Pv(z) =

deg(v)∑
k=0

(
deg(v)

k

)(
1 + ρ

2
+

1− ρ
2

(−1)k
)
zk

=
1 + ρ

2
(1 + z)deg(v) +

1− ρ
2

(1− z)deg(v).

Since 0 < ρ < 1, the roots of Pv are given by ω−tv
ω+tv

where ω ∈ C satisfies ωdeg(v) = −1,

and tv ∈ R+ is given by

tv =

(
1 + ρ

1− ρ

)1/ deg(v)

> 1.
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It follows that Pv is
[
D
(
− t2v+1
t2v−1

, 2tv
t2v−1

)]c
-stable. Then by Theorem 8.5.1, the partition func-

tion ZG(λ) is
∏

e∈E Γe-stable, where for each edge e = uv ∈ E,

Γe =

[
−D

(
− t

2
u + 1

t2u − 1
,

2tu
t2u − 1

)
· D
(
− t

2
v + 1

t2v − 1
,

2tv
t2v − 1

)]c
.

In particular, ZG(λ) is Γ-stable for

Γ =

[
−D

(
− t

2 + 1

t2 − 1
,

2t

t2 − 1

)2
]c
⊆ Γe, ∀e ∈ E, where t =

(
1 + ρ

1− ρ

)1/∆

> 1.

The region Γ is open and connected. Observe that we have Γ ⊇
(
−H2

t−1
t+1

)c
. Hence, by

Lemma 8.5.2 we have R+ ⊆ Γ and δ = Ω∆,λ,ρ(1) as wanted.

Proof of Theorem 8.1.3. By Theorem 1.2.1 it suffices to prove η-spectral independence for

η = O∆,β,γ,λ(1). By Theorem 8.2.1 it suffices to prove that the multivariate partition

function Eq. (8.20) is Γ-stable, where Γ ⊆ C is an open connected region containing R+

and δ = 1
λ
dist(λ, ∂Γ) = Ω∆,β,γ,λ(1).

For this, observe that the local polynomial is given by

Pv(z) =

deg(v)∑
k=0

(
deg(v)

k

)
β(k2)γ(deg(v)−k

2 )zk.

By Proposition 8.5.3 below (see Section 8.5.1 for the proof), all roots of this polynomials

are strictly negative reals, i.e. they are contained in (−∞,−εdeg(v)] for some constant

εdeg(v) = εdeg(v)(β, γ) > 0 depending only on deg(v), β, γ. Then by Theorem 8.5.1, ZG(λ)

is
∏

e∈E Γe-stable, where for each edge e = uv ∈ E,

Γe =
(
−Hεdeg(u)

·Hεdeg(v)

)c
.

In particular, ZG(λ) is Γ-stable for Γ = (−H2

ε)
c where ε = min1≤d≤∆ εd depends only on

∆, β, γ. The region Γ is open and connected, and by Lemma 8.5.2 it contains R+ and we
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have δ = Ω∆,β,γ,λ(1) as wanted.

8.5.1 Stability for Antiferromagnetic Two-Spin Edge Models

In this subsection, we analyze the roots of the local polynomial for antiferromagnetic two-

spin edge models, which is needed in the proof of Theorem 8.1.3 above. We generalize

a result due to [21] which proves that the local polynomial for the antiferromagnetic edge

Ising model has strictly negative real roots. We achieve this by generalizing their arguments

to all antiferromagnetic two-spin edge models.

Proposition 8.5.3 (Generalization of Lemma 4.3 in [21]). For every β ≥ 0, γ > 0 with

βγ < 1 and every positive integer d ≥ 1, the univariate polynomial

Pd(z) =
d∑

k=0

(
d

k

)
β(k2)γ(d−k2 )zk

has strictly negative real roots.

We prove this via an inductive approach, relying on the following decomposition of Pd.

Lemma 8.5.4. For every β ≥ 0, γ > 0 and every positive integer d ≥ 1, we have that

Pd+1(z) = γdPd(z/γ) + zPd(βz).

Proof. We have

Pd+1(z) =
d+1∑
k=0

(
d+ 1

k

)
︸ ︷︷ ︸

=(dk)+( d
k−1)

β(k2)γ(d+1−k
2 )zk

=
d∑

k=0

(
d

k

)
β(k2)γ(d+1−k

2 )zk +
d∑

k=0

(
d

k

)
β(k+1

2 )γ(d−k2 )zk+1

=
d∑

k=0

(
d

k

)
β(k2)γ(d−k2 )γd−kzk + z

d∑
k=0

(
d

k

)
β(k2)γ(d−k2 )βkzk
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= γdPd(z/γ) + zPd(βz).

Proof of Proposition 8.5.3. If β = 0 then Pd is liner and the proposition is immediate.

We may assume β > 0. We prove via induction the following stronger claim: The roots

r1 > · · · > rd of Pd are distinct, real, and strictly negative, and further satisfy ri/ri+1 < βγ.

The cases d = 0, 1 are vacuous. When d = 2, the polynomial P2(z) = βz2 + 2z + γ has

roots (−1±
√

1− βγ)/β, which are distinct, real, and strictly negative since βγ < 1. One

can also check that r1/r2 < βγ via a straightforward calculation. This establishes the base

case.

Assume the stronger conclusion holds for some d ≥ 2. By Lemma 8.5.4, we may write

Pd+1(z) = γdPd(z/γ)+zPd(βz). If r1 > · · · > rd are the roots of Pd, then γr1 > · · · > γrd

are the roots of γdPd(z/γ), and 0 = r0/β > r1/β > · · · > rd/β are the roots of zPd(βz),

where for convenience we define r0 = 0. First, we claim that the roots of γdPd(z/γ)

interlace the roots of zPd(βz), i.e.,

0 = r0/β > γr1 > r1/β > γr2 > · · · > rd−1/β > γrd > rd/β.

To see this, observe that γri > ri/β since βγ < 1, and ri−1/β > γri since ri−1/ri < βγ

by the induction hypothesis for Pd.

Now, we claim that for each i = 2, . . . , d, the evaluations

Pd+1(γri) = γriPd(βγri) and Pd+1(ri−1/β) = γdPd(ri−1/βγ)

are nonzero and have different signs. Observe that βγri, ri−1/βγ ∈ (ri, ri−1); hence, the

evaluations Pd(βγri) and Pd(ri−1/βγ) are nonzero and have the same sign, and we deduce

the claim by ri < 0. It then follows from the Intermediate Value Theorem that Pd+1 has a

root si ∈ (γri, ri−1/β) for each i = 2, . . . , d.

Moreover, Pd+1 also has a root s1 ∈ (γr1, 0) and a root sd+1 ∈ (−∞, rd/β). Observe
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that the evaluations Pd+1(γr1) = γr1Pd(βγr1) and Pd+1(0) = γdPd(0) are nonzero and

have different signs since 0 > βγr1 > r1, and the Intermediate Value Theorem implies

a root s1 ∈ (γr1, 0). Meanwhile, Pd+1(rd/β) = γdPd(rd/βγ) and Pd(−∞) are nonzero

and have the same sign since −∞ < rd/βγ < rd. Also, Pd(−∞) and Pd+1(−∞) have

different signs since the two polynomials differ in degree by 1. This shows that Pd+1(rd/β)

and Pd+1(−∞) are nonzero and have different signs, and the Intermediate Value Theorem

shows the existence of a root sd+1 ∈ (−∞, rd/β).

To summarize, we prove that Pd+1 has roots s1 > · · · > sd+1 which are distinct strictly

negative real numbers and (taking r0 = 0 and rd+1 = −∞ for convenience) satisfy si ∈

(γri, ri−1/β) for any i = 1, . . . , d + 1. To finish the induction, we need to show that

si/si+1 < βγ for all i = 1, . . . , d, which follows by si/si+1 < (γri)/(ri/β) = βγ.

8.5.2 Proofs of Technical Lemmas

Proof of Lemma 8.5.2. It was shown in [66] that

Γ =
(
−H2

ε

)c
=

{
ρeiθ : ρ <

2ε2

1− cos θ
, 0 < θ < 2π

}
.

To make this more interpretable, we rewrite the set in Cartesian coordinates. If z = ρeiθ,

then by Euler’s formula we may write z = x + iy where x = ρ cos θ and y = ρ sin θ. We

then obtain

ρ <
2ε2

1− cos θ

⇐⇒ ρ(1− cos θ) < 2ε2

⇐⇒ ρ < x+ 2ε2

⇐⇒ x2 + y2 < (x+ 2ε2)2

⇐⇒ y2 < 4ε2(x+ ε2).
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Therefore, we see that

Γ =
{
x+ iy : y2 < 4ε2(x+ ε2)

}
,

which clearly contains R+.

Furthermore, for λ ∈ R+ we have

dist(λ, ∂Γ) = inf
z∈∂Γ
|z − λ|

= inf
(x,y)∈R2: y2=4ε2(x+ε2)

√
(x− λ)2 + y2

= inf
x∈[−ε2,∞)

√
(x− λ)2 + 4ε2(x+ ε2)

=


λ+ ε2, λ ∈ (0, ε2);

2ε
√
λ, λ ∈ [ε2,∞).

This establishes the lemma.

8.6 Further Optimal Mixing Results

In this section, we study spectral independence for general tensor network contractions and

weighted graph homomorphisms. Unlike binary symmetric Holant problems, where rapid

mixing of the Glauber dynamics was already known for our main examples such as match-

ings [76], Ising model on line graphs [53], edge covers [73], and weighted even subgraphs

[77], in the setting we consider here, rapid mixing for any local Markov chain was not

known before. Prior works [16, 17, 112, 110] had studied these problems but only from the

perspective of deterministic approximation algorithms using Barvinok’s polynomial inter-

polation method [10]. While these algorithms run in polynomial time for bounded-degree

graphs, the exponent typically depends on the maximum degree, and are more difficult to

implement.

Here, we show that the Glauber dynamics mixes in O(n log n) steps for these prob-

lems on bounded-degree graphs, yielding significantly faster and simpler algorithms for
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computing the partition function. We again reduce rapid mixing to spectral independence

via Theorem 1.2.1, and then reduce spectral independence to the existence of a sufficiently

large zero-free region for the multivariate partition function via Theorem 8.4.2. Fortu-

nately, such zero-free regions were already obtained in prior works, as they are the entire

basis for Barvinok’s polynomial interpolation method. We leverage them here in a com-

pletely black-box manner.

8.6.1 Weighted Graph Homomorphisms

Here, we study weighted graph homomorphisms, which may also be viewed as spin sys-

tems on vertices. In the bounded-degree setting, we show that the Glauber dynamics on

vertex configurations for these models mixes in O(n log n) steps, provided the weights are

sufficiently close to 1. This is analogous to classical mixing results stating the Glauber

dynamics mixes rapidly in the “high-temperature” regime.

Theorem 8.6.1 (Spectral Independence for Weighted Graph Homomorphisms). Fix a pos-

itive integer q ≥ 2, let G = (V,E) be a graph with maximum degree ≤ ∆, and for

each edge uv ∈ E, let Auv ∈ Rq×q
≥0 be a (not necessarily symmetric) nonnegative matrix.

There exists a universal constant γ ≈ 0.56 independent of q,G, {Auv}uv∈E such that if

|Auv(j, k)− 1| ≤ γ
∆+γ
− ε for some ε > 0, all uv ∈ E and all j, k ∈ [q], then the as-

sociated graph homomorphism distribution µ on vertex configurations σ : V → [q] given

by

µ(σ) ∝
∏
uv∈E

Auv(σ(u), σ(v))

is η-spectrally independent for some constant η = η(∆, ε). In particular, if ∆, ε = Θ(1),

then the Glauber dynamics for sampling from µ mixes in O(n log n) steps.

Remark 8.6.2. A straightforward application of the classical Dobrushin uniqueness condi-

tion yields rapid mixing when |Auv(j, k)− 1| < 1
2∆

for all uv ∈ E and j, k ∈ [q].
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The zero-free region for the graph homomorphism partition function was studied in

[17]. We state here a slightly more general theorem, the proof of which is included in

Section 8.6.3 for completeness.

Theorem 8.6.3 (Zeros for Weighted Graph Homomorphisms; [17]). Fix a positive integer

q ≥ 2, let G = (V,E) be a graph with maximum degree ≤ ∆, and for each edge e =

uv ∈ E, let Auv ∈ Cq×q be a (not necessarily symmetric or Hermitian) complex matrix.

There exists a universal constant γ ≈ 0.56 independent of q,G, {Auv}uv∈E such that if

|Auv(j, k)− 1| < γ
∆+γ

for all uv ∈ E and all j, k ∈ [q], then for every S ⊆ V and every

φ : S → [q], the graph homomorphism partition function

∑
σ:V→[q]
σ|S=φ

∏
uv∈E

Auv(σ(u), σ(v))

with pinning φ is nonzero.

We give below the proof of Theorem 8.6.1.

Proof of Theorem 8.6.1. By Theorem 8.4.2, it suffices to prove that the multivariate parti-

tion function

∑
σ:V→[q]
σ|S=φ

∏
uv∈E

Auv(σ(u), σ(v))
∏
v∈V

λv,σ(v) (8.22)

is nonzero in the polydiskD =
{
λ ∈ CV×[q] : |λv,k − 1| < c,∀v ∈ V, ∀k ∈ [q]

}
for all pin-

nings φ, where c = c(∆, ε) > 0 is some constant depending only on ∆, ε but not G. Define

a new set of matrices {Ãuv}uv∈E by

Ãuv(j, k) = Auv(j, k) · λ1/deg(u)
u,j · λ1/ deg(v)

v,k , ∀uv ∈ E,∀j, k ∈ [q].

Note that the partition function for G, {Ãuv}uv∈E is precisely given in Eq. (8.22).
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Since |Auv(j, k)− 1| ≤ γ
∆+γ
− ε, there exists our desired c(∆, ε) > 0 such that |λu,j −

1|, |λv,k − 1| < c(∆, ε) implies |Ãuv(j, k)− 1| < γ
∆+γ

, for all uv ∈ E and all j, k ∈ [q]. It

follows from Theorem 8.6.3 that the multivariate partition function Eq. (8.22) is nonzero.

As this holds for all λ ∈ D, we are done.

8.6.2 Tensor Network Contractions

Here, we study general tensor network contractions, which is a partition function of a dis-

tribution over configurations on edges of a graph. Tensor networks are heavily studied in

quantum computing [96, 6, 109] and are also used to model Holant problems [31, 32, 33].

In the bounded-degree setting, we also show that the Glauber dynamics on edge config-

urations for these models mixes in O(n log n) steps, provided the weights are sufficiently

close to 1. Again, this is analogous to classical mixing results stating the Glauber dynamics

mixes rapidly in the “high-temperature” regime.

To state our main result, let us first define tensor network contraction. Given a graph

G = (V,E) and a collection of local functions {fv : [q]E(v) → R≥0}v∈V on configurations

on edges, we define the associated tensor network distribution µ over edge configurations

σ : E → [q] to be given by

µ(σ) ∝
∏
v∈V

fv(σ |E(v)). (8.23)

The associated partition function, known as a tensor network contraction, is given by

∑
σ:E→[q]

∏
v∈V

fv(σ |E(v)).

The name “tensor network” comes from the fact that each fv may be viewed as a tensor

with axes corresponding to edges in E(v) and indexed by [q]. This is a vast generalization

of the Holant problems considered in Section 8.5 (see, for instance, Eq. (8.20)), where

q = 2 and each local function fv is symmetric. Zeros for tensor network contractions were
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analyzed in [112] in the symmetric case.

Theorem 8.6.4 (Spectral Independence for Tensor Network Distribution). Fix a positive

integer q ≥ 2, let G = (V,E) be a graph with maximum degree ≤ ∆, and for each vertex

v ∈ V , let fv : [q]E(v) → R≥0 be a nonnegative function on configurations of edges incident

to v. There exists a universal constant γ ≈ 0.56 independent of q,G, {fv}v∈V such that if

|fv(α) − 1| ≤ γ
∆+1+γ

− ε for some ε > 0, all v ∈ V and all α : E(v) → [q], then the

tensor network distribution µ on edge configurations σ : E → [q] given by Eq. (8.23) is

η-spectrally independent for some constant η = η(∆, ε). In particular, if ∆, ε = Θ(1),

then the Glauber dynamics for sampling from µ mixes in O(n log n) steps.

To establish this spectral independence, we need a sufficiently large zero-free region.

This was proved by [112] in the symmetric case, where each local function fv depends

only on the number of incident edges that are mapped to each color in [q]. It turns out

using nearly identical arguments, one can obtain the following more general theorem. We

provide a proof in Section 8.6.3 for completeness.

Theorem 8.6.5 (Zeros of Tensor Network Contractions; [112]). Fix a positive integer q ≥

2, letG = (V,E) be a graph with maximum degree≤ ∆, and for each vertex v ∈ V , let fv :

[q]E(v) → C be a complex function on configurations of edges incident to v. There exists a

universal constant γ ≈ 0.56 independent of q,G, {fv}v∈V such that if |fv(α)− 1| < γ
∆+1+γ

for all v ∈ V and all α : E(v) → [q], then for every F ⊆ E and every φ : F → [q], the

tensor network contraction

∑
σ:E→[q]
σ|F=φ

∏
v∈V

fv(σ |E(v))

with pinning φ is nonzero.

We give below the proof of Theorem 8.6.4.
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Proof of Theorem 8.6.4. By Theorem 8.4.2, it suffices to prove that the multivariate parti-

tion function

∑
σ:E→[q]
σ|F=φ

∏
v∈V

fv(σ |E(v))
∏
e∈E

λe,σ(e) (8.24)

is nonzero whenever λ lies in the polydiskD = {λ ∈ CE×[q] : |λe,k− 1| < c,∀e ∈ E,∀k ∈

[q]} for all pinnings φ, where c = c(∆, ε) > 0 is some constant depending only on ∆, ε but

not G. Define a new set of local constraint functions {f̃v}v∈V by

f̃v(α) = fv(α) ·
∏

e∈E(v)

λ
1/2
e,α(e), ∀v ∈ V, ∀α : E(v)→ [q].

Note that the partition function for G, {f̃v}v∈V is precisely given in Eq. (8.24).

Since |fv(α)−1| ≤ γ
∆+1+γ

−ε, there exists our desired c(∆, ε) > 0 such that |λe,k−1| <

c(∆, ε) for all e ∈ E(v) implies |f̃v(α)−1| < γ
∆+1+γ

, for all v ∈ V and all α : E(v)→ [q].

It follows from Theorem 8.6.5 that the multivariate partition function Eq. (8.24) is nonzero.

As this holds for all λ ∈ D, we are done.

8.6.3 Proofs of Zero-Free Results

In this section, we supply proofs of the main zero-free statements used in Section 8.6.

As noted earlier, for technical reasons, we need straightforward generalizations of prior

results which do not make symmetry assumptions. We manage to adapt previous arguments

without much additional effort, which we provide here for completeness.

The main idea in these zero-free proofs is to do induction by conditioning on the as-

signment of fewer and fewer vertices (respectively, edges) for weighted homomorphisms

(respectively, tensor networks). However, one needs to strengthen the inductive hypothesis

beyond simple zero-freeness. To the best of our knowledge, this type of argument was first

pioneered by Barvinok, and has had a wide range of applications; see [9, 12, 15, 14] for
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applications besides those discussed in this chapter.

The crucial tool is the following geometric lemma, which provides a kind of “reverse

triangle inequality”. The version below is due to Boris Bukh; a weaker version, with

cos(θ/2) replaced by
√

cos θ, was known due to [11]. See [10] for a proof.

Lemma 8.6.6 (Angle Lemma). Let x1, . . . , xn ∈ C be nonzero complex numbers viewed

as vectors in R2. Suppose there is an angle 0 ≤ θ < 2π/3 such that for all i, j, the angle

between xi, xj is at most θ. Then we have the lower bound |
∑n

i=1 xi| ≥ cos(θ/2)
∑n

i=1 |xi|.

Proofs for Weighted Graph Homomorphisms

Our goal in this subsection is to prove Theorem 8.6.3, i.e. that the weighted graph homo-

morphism partition function

ZS
φ (A) =

∑
σ:V→[q]
σ|S=φ

∏
uv∈E

Auv(σ(u), σ(v))

is nonzero in a large polydisk around 1, where S ⊆ V, φ : S → [q], and we view ZS
φ (A) as

a polynomial with variables {Auv(j, k)}uv∈E,j,k∈[q]. For convenience, for a δ > 0, define

U(δ) = {A = {Auv}uv∈E : |Auv(j, k)− 1| < δ,∀uv ∈ E,∀j, k ∈ [q]}.

Additionally, for a partial configuration φ : S → [q], a vertex u ∈ V \ S and a spin j ∈ [q],

we write φu,j : S ∪ {u} → [q] for the unique extension of φ with φu,j(u) = j.

We will need the following lemmas to implement an inductive approach.

Lemma 8.6.7 (Lemma 3.3 from [17]). Let τ, δ > 0, and suppose A ∈ U(δ). Let S ⊆ V ,

φ : S → [q], u ∈ V \ S be arbitrary. Assume the following hold:

(1) ZS∪{u}
φu,j

(A) 6= 0 for every u ∈ V \ S and every j ∈ [q];
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(2) For every u ∈ V \ S and every j ∈ [q], we have

|ZS∪{u}
φu,j

(A)| ≥ τ

∆

∑
v∼u

∑
k∈[q]

|Auv(j, k)| ·
∣∣∣∣ ∂

∂Auv(j, k)
Z
S∪{u}
φu,j

(A)

∣∣∣∣ .
Then for every u ∈ V \S and every j, k ∈ [q], the angle between ZS∪{u}

φu,j
(A) and ZS∪{u}

φu,k
(A)

in C is at most 2δ∆
τ(1−δ) .

Proof. By assumption (1), the relevant partition functions are nonzero, and so the logarithm

is well-defined when applied to these partition functions and we may bound the angle

between ZS∪{u}
φu,j

(A) and ZS∪{u}
φu,k

(A) by

∣∣∣logZ
S∪{u}
φu,j

(A)− logZ
S∪{u}
φu,k

(A)
∣∣∣ . (8.25)

The strategy is to write ZS∪{u}
φu,k

(A) as ZS∪{u}
φu,j

(Ã) for some Ã ∈ U(δ) which differs from A

by a small number of coordinates, and then apply the Fundamental Theorem of Calculus

and assumption (2). For every v ∼ u, we set Ãuv(j, c) = Auv(k, c) for every c ∈ [q], and

Ãuv(`, c) = Auv(`, c) for all ` 6= j. For all other edges vw ∈ E, we set Ãvw = Avw.

It is clear that ZS∪{u}
φu,k

(A) = Z
S∪{u}
φu,j

(Ã). By the Fundamental Theorem of Calculus, we

may upper bound Eq. (8.25) by

max
B∈U(δ)

∑
v∼u

∑
c∈[q]

∣∣∣∣ ∂

∂Auv(j, c)
logZ

S∪{u}
φu,j

(B)

∣∣∣∣ · |Auv(j, c)− Ãuv(j, c)|︸ ︷︷ ︸
≤2δ since A,Ã∈U(δ)

≤ 2δ

1− δ
max
B∈U(δ)

∑
v∼u

∑
c∈[q]

|Auv(j, c)| · 1

|ZS∪{u}
φu,j

(B)|
·
∣∣∣∣ ∂

∂Auv(j, c)
Z
S∪{u}
φu,j

(B)

∣∣∣∣︸ ︷︷ ︸
≤∆/τ by assumption (2)

≤ 2δ∆

τ(1− δ)
.

Lemma 8.6.8 (Lemma 3.4 from [17]). Let 0 ≤ θ < 2π/3, δ > 0, and suppose A ∈ U(δ).

Let S ⊆ V , φ : S → [q] be arbitrary. Assume the following hold:
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(1) ZS∪{u}
φu,j

(A) 6= 0 for every u ∈ V \ S and every j ∈ [q];

(2) The angle between ZS∪{u}
φu,j

(A) and ZS∪{u}
φu,k

(A) in C is at most θ, for every u ∈ V \ S

and every j, k ∈ [q].

Then for every u ∈ S, we have the lower bound

|ZS
φ (A)| ≥ cos(θ/2)

∆

∑
v∼u

∑
k∈[q]

|Auv(φ(u), k)| ·
∣∣∣∣ ∂

∂Auv(φ(u), k)
ZS
φ (A)

∣∣∣∣ .
Proof. If v ∈ S as well, then there is a unique k ∈ [q] for which ∂

∂Auv(φ(u),k)
ZS
φ (A) 6= 0,

namely k = φ(v). In this case, Auv(φ(u), k) · ∂
∂Auv(φ(u),k)

ZS
φ (A) = ZS

φ (A). Otherwise,

v /∈ S and ∂
∂Auv(φ(u),k)

ZS
φ (A) = 1

Auv(φ(u),k)
· ZS∪{v}

φv,k
(A), where φv,k is the unique extension

of φ mapping v to k.

Combining these two observations, we obtain

∑
v∼u

∑
k∈[q]

|Auv(φ(u), k)| ·
∣∣∣∣ ∂

∂Auv(φ(u), k)
ZS
φ (A)

∣∣∣∣
= |N(u) ∩ S| · |ZS

φ (A)|+
∑

v∼u:v/∈S

∑
k∈[q]

|ZS∪{v}
φv,k

(A)|

≤ |N(u) ∩ S| · |ZS
φ (A)|+ 1

cos(θ/2)

∣∣∣∣∣∣
∑

v∼u:v/∈S

∑
k∈[q]

Z
S∪{v}
φv,k

(A)

∣∣∣∣∣∣︸ ︷︷ ︸
=|N(u)\S|·|ZSφ (A)|

(Lemma 8.6.6)

≤ ∆

cos(θ/2)
· |ZS

φ (A)|.

Rearranging yields the desired result.

With these lemmas in hand, we can now prove the main zero-free result.

Proof of Theorem 8.6.3. Let 0 < θ < 2π/3 be a parameter to be determined later, set

τ = cos(θ/2), and let δ > 0 satisfy θ = 2δ∆
τ(1−δ) ; in particular, δ =

1
2∆
θ cos(θ/2)

1+ 1
2∆
θ cos(θ/2)

. We show

by descending induction on |S| that the following three statements are all true:
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(i) For every S ⊆ V , φ : S → [q] and A ∈ U(δ), we have ZS
φ (A) 6= 0.

(ii) For every S ⊆ V , u ∈ V \ S, φ : S → [q], A ∈ U(δ) and j, k ∈ [q], the angle

between ZS∪{u}
φu,j

(A) and ZS∪{u}
φu,k

(A) in C is at most θ.

(iii) For every S ⊆ V , u ∈ S, A ∈ U(δ), we have the inequality

|ZS
φ (A)| ≥ cos(θ/2)

∆

∑
v∼u

∑
k∈[q]

|Auv(φ(u), k)| ·
∣∣∣∣ ∂

∂Auv(φ(u), k)
ZS
φ (A)

∣∣∣∣ .
The base case S = V is easily verified since ZS

φ (A) =
∏

uv∈E A
uv(φ(u), φ(v)), a product

of nonzero complex numbers.

Now, let S ⊆ V with |S| < |V |.

(i) Let u ∈ V \ S, which exists since |S| < |V |. It follows that (i) holds for S ∪ {u} by

the inductive hypothesis. Since ZS
φ (A) =

∑
k∈[q] Z

S∪{u}
φu,k

(A), Lemma 8.6.6 applied

to ZS
φ (A) yields (i) assuming that (ii) holds. We prove (ii) below.

(ii) Let u ∈ V \ S, which exists since |S| < |V |. Then (i) and (iii) hold for S ∪ {u} by

the inductive hypothesis. (ii) then follows by Lemma 8.6.7.

(iii) Let u ∈ S. Then (i) holds for S ∪ {u} by the inductive hypothesis. Since (ii) holds

for S (as proved earlier), we may then apply Lemma 8.6.8, yielding (iii) for S.

Now, we choose 0 < θ < 2π/3. As we wish to maximize the size of our zero-free region,

i.e. δ, we need to maximize θ cos(θ/2). As shown in [112], the maximum is attained

when 2/θ = tan(θ/2), which has solution θ∗ ≈ 1.72067 and has objective value x∗ =

θ∗ cos(θ∗/2) ≈ 1.12219. This yields δ =
x∗
2

∆+x∗
2

as claimed.
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Proofs for Tensor Network Contractions

Our goal in this subsection is to prove Theorem 8.6.5, i.e. that the tensor network partition

function

ZF
φ (h) =

∑
σ:E→[q]
σ|F=φ

∏
v∈V

hv(σ |E(v))

is nonzero in a large polydisk around 1, where F ⊆ E, φ : F → [q], and we view ZF
φ (·) as

a polynomial with variables {hv(α)}v,α. We prove the following stronger result.

Theorem 8.6.9 (Generalization of Theorem 6 from [112]). Let G = (V,E) be a graph of

maximum degree ≤ ∆. Then for every F ⊆ E, φ : F → [q], η > 0, and 0 ≤ θ < 2π/3, the

function ZF
φ (h) is nonzero whenever h ∈

∏
v∈V Sv(δ, η), where

Sv(δ, η) =
{
hv : [q]E(v) → C : |hv(α)−hv(β)|<δ,∀α,β:E(v)→[q],

|hv(α)|≥η,∀α:E(v)→[q]

}

and δ = η ·min
{

1, θ cos(θ/2)
∆+1

}
.

Before we prove this result, let us see how this gives Theorem 8.6.5.

Proof of Theorem 8.6.5. Observe that Sv(δ, η) contains a disk around 1 of radius given by

min{δ/2, 1 − η}. Using Theorem 8.6.9 and given that δ = η · min
{

1, θ cos(θ/2)
∆+1

}
, where

0 < θ < 2π/3, our goal is to maximize θ cos(θ/2) over 0 < θ < 2π/3 to obtain the largest

zero-free disk. As shown in [112], this maximum is attained when 2/θ = tan(θ/2), which

has solution θ∗ ≈ 1.72067 and has objective value x∗ = θ∗ cos(θ∗/2) ≈ 1.12219. Given

this, to obtain the largest possible radius disk, we equalize 1 − η and δ/2 = η · x∗

2(∆+1)
.

Solving, we obtain η = 1

1+ x∗
2(∆+1)

, yielding radius
x∗

2(∆+1)

1+ x∗
2(∆+1)

as desired.

It remains to prove Theorem 8.6.9. We will need the following lemmas to implement

an inductive approach.
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Lemma 8.6.10 (Lemma 8 from [112]). Let τ > 0, F ⊆ E, φ : F → [q] and u ∈ V be

arbitrary. Suppose for all h ∈
∏

v∈V Sv(δ, η) and all ψ : F ∪ E(u)→ [q] extending φ, the

following hold:

(1) ZF∪E(u)
ψ (h) 6= 0;

(2) For all v ∈ N(u) ∪ {u}, we have

|ZF∪E(u)
ψ (h)| ≥ τ

∑
α:E(v)→[q]

compatible with ψ

|hv(α)| ·
∣∣∣∣ ∂

∂hv(α)
Z
F∪E(u)
ψ (h)

∣∣∣∣ .

Then for all extensions ψ, ψ̃ : F ∪ E(u) → C of φ, the angle between Z
F∪E(u)
ψ and

Z
F∪E(u)

ψ̃
(h) in C is at most δ(∆+1)

τη
.

Proof. By assumption (1), the relevant partition functions are nonzero, and so the logarithm

is well-defined when applied to these partition functions and we may bound the angle

between ZF∪E(u)
ψ (h) and ZF∪E(u)

ψ̃
(h) by

∣∣∣logZ
F∪E(u)
ψ (h)− logZ

F∪E(u)

ψ̃
(h)
∣∣∣ . (8.26)

The strategy is to write ZF∪E(u)

ψ̃
(h) as ZF∪E(u)

ψ (h̃) for some h̃ ∈
∏

v∈V Sv(δ, η) which

differs from h by a small number of coordinates, and then apply the Fundamental Theorem

of Calculus and assumption (2). Let v ∈ V . We consider three cases.

• v /∈ N(u) ∪ {u}: In this case, ψ, ψ̃ agree on E(v) and so we may simply take hv =

h̃v.

• v ∈ N(u): In this case, ψ, ψ̃ differ only on the single edge uv. If α : E(v) → [q]

agrees with ψ on uv, then let α′ : E(v)→ [q] be given by replacing α(uv) = ψ(uv)

with ψ̃(uv), and take h̃v(α) = hv(α
′). Otherwise, just set h̃v(α) = hv(α). (Note that

it does not really matter what we set h̃v(α) to since ZF∪E(u)
ψ (h) only has the term
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hv(α) when α agrees with ψ on uv. However, we wish to minimize the number of

coordinates in which h, h̃ differ.)

• v = u: In this case, just set h̃v(ψ |E(v)) = hv(ψ̃ |E(v)) and h̃v(α) = hv(α) for all

α 6= ψ |E(v).

It is clear that ZF∪E(u)

ψ̃
(h) = Z

F∪E(u)
ψ (h̃). By the Fundamental Theorem of Calculus , we

may upper bound Eq. (8.26) by

max
x∈

∏
v∈V Sv(δ,η)

∑
v∈N(u)∪{u}

∑
α:E(v)→[q]

compatible with ψ

∣∣∣∣ ∂

∂hv(α)
logZ

F∪E(u)
ψ (x)

∣∣∣∣ · ∣∣∣hv(α)− h̃v(α)
∣∣∣

≤ δ

η
max

x∈
∏
v∈V Sv(δ,η)

∑
v∈N(u)∪{u}︸ ︷︷ ︸
≤∆+1

∑
α:E(v)→[q]

compatible with ψ

|hv(α)| · 1

|ZF∪E(u)
ψ (x)|

·
∣∣∣∣ ∂

∂hv(α)
Z
F∪E(u)
ψ (x)

∣∣∣∣
︸ ︷︷ ︸

≤1/τ by assumption (2)

(Definition of Sv(δ, η))

≤ δ(∆ + 1)

τη
.

Lemma 8.6.11 (Lemma 9 from [112]). Let 0 ≤ θ < 2π/3, u ∈ V , F ⊆ E satisfying

F ⊇ E(u), and φ : F → [q]. Suppose for all v ∈ N(u) ∪ {u}, all h ∈
∏

v∈V Sv(δ, η), and

all extensions ψ, ψ̃ : F ∪ E(v)→ [q] of φ, the following hold:

(1) ZF∪E(v)
ψ (h) 6= 0;

(2) The angle between ZF∪E(v)
ψ (h) and ZF∪E(v)

ψ̃
(h) in C is at most θ.

Then for all v ∈ N(u) ∪ {u} and all h ∈
∏

v∈V Sv(δ, η), we have

|ZF
φ (h)| ≥ cos(θ/2)

∑
α:E(v)→[q]

compatible with φ

|hv(α)| ·
∣∣∣∣ ∂

∂hv(α)
ZF
φ (h)

∣∣∣∣ .
Proof. The conclusion is trivially true if v = u, since by the assumption E(u) ⊆ F , there

is only one α : E(v) → [q] compatible with φ, namely φ |E(u) itself. In this case, hv(α)
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divides ZF
φ (h) and we can replace cos(θ/2) by 1.

Suppose v ∈ N(u). Since ZF
φ (h) =

∑
ψ:F∪E(v)→[q]

ψ|F=φ

Z
F∪E(v)
ψ (h), assumptions (1) and

(2) make Lemma 8.6.6 applicable, yielding

|ZF
φ (h)| ≥ cos(θ/2)

∑
ψ:F∪E(v)→[q]

ψ|F=φ

|ZF∪E(v)
ψ (h)|

= cos(θ/2)
∑

α:E(v)→[q]
compatible with ψ

|hv(α)| ·
∣∣∣∣ ∂

∂hv(α)
ZF
φ (h)

∣∣∣∣
as desired.

With these lemmas in hand, we may now proceed with the proof of Theorem 8.6.9.

Proof of Theorem 8.6.9. Let η > 0 and 0 ≤ θ < 2π/3 be arbitrary, and take τ = cos(θ/2),

δ = η · min
{

1, θτ
∆+1

}
. We show by descending induction on |F | that the following three

statements are all true:

(i) For every F ⊆ E, φ : F → [q] and h ∈
∏

v∈V Sv(δ, η), we have ZF
φ (h) 6= 0.

(ii) For every F ⊆ E, u ∈ V , φ : F → [q], h ∈
∏

v∈V Sv(δ, η) and ψ, ψ̃ : F∪E(u)→ [q]

extending φ, the angle between ZF∪E(u)
ψ (h) and ZF∪E(u)

ψ̃
(h) in C is at most θ.

(iii) For every F ⊆ E, u ∈ V satisfying E(u) ⊆ F , φ : F → [q], h ∈
∏

v∈V Sv(δ, η) and

v ∈ N(u) ∪ {u}, we have the inequality

|ZF
φ (h)| ≥ cos(θ/2)

∑
α:E(v)→[q]

compatible with φ

|hv(α)| ·
∣∣∣∣ ∂

∂hv(α)
ZF
φ (h)

∣∣∣∣ .

The base case F = E is easily verified since ZF
φ (h) =

∏
v∈V hv(φ |E(v)), a product of

nonzero complex numbers.

Now, let F ⊆ E with |F | < |E|.
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(i) Let v ∈ V with E(v) 6⊆ F . Since |F ∪ E(v)| > |F |, (i) holds for F ∪ E(v) by

the inductive hypothesis. Since ZF
φ (h) =

∑
ψ:F∪E(v)→[q]

ψ|F=φ

Z
F∪E(v)
ψ (h), Lemma 8.6.6

applied to ZF∪E(v)
ψ (h) yields (i) assuming that (ii) holds. We prove (ii) below.

(ii) Let u ∈ V and φ : F → [q]. If E(u) ⊆ F , then the claim is trivially true since

ψ = ψ̃ = φ. Otherwise, assume E(u) 6⊆ F and let ψ, ψ̃ : F ∪ E(u)→ [q] extend φ.

Since |F ∪ E(u)| > |F |, (i) and (iii) hold for F ∪ E(u) by the inductive hypothesis.

Applying Lemma 8.6.10 to F ∪ E(u) then yields (ii).

(iii) Let u ∈ V with E(u) ⊆ F . Without loss of generality, we may assume such an u

exists since otherwise, there is nothing to prove. Let v ∈ N(u) ∪ {u}. If E(v) ⊆ F ,

then (iii) trivially holds with cos(θ/2) replaced by 1, since there is only one term

in the summation, namely α = φ |E(v). Hence, assume E(v) 6⊆ F . In this case,

|F ∪ E(v)| > |F | and so (i) holds for F ∪ E(v) by the inductive hypothesis. Since

(ii) for F holds (as proved earlier), we may then apply Lemma 8.6.11, yielding (iii)

for F .
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CHAPTER 9

CONCLUSION

In this thesis we establish optimal mixing time of the Glauber dynamics for many classes

of spin systems, including Ising model, hardcore model, colorings, monomer-dimer model,

and weighted even subgraphs. The key concept for proving our results is the notion of

spectral independence. We show that for spin systems, if the Gibbs distribution is spectrally

independent and the model is defined on bounded-degree graphs with constant marginal

probabilities, then the Glauber dynamics mixes in Cn log n steps where n is the number of

vertices of the underlying graph and C is a constant depending on the maximum degree and

parameters of the model. We further show how to establish spectral independence using

current algorithmic approach of approximate counting and sampling, including coupling

arguments for MCMC, correlation decay methods, and polynomial interpolation methods.

A natural open direction is to improve the constant C with better dependencies on

all parameters. In particular, our current approach does not work when the underlying

graph has unbounded maximum degree, e.g., the complete graph. It is an interesting open

problem to establish optimal mixing of Glauber dynamics for spin systems defined on dense

graphs.
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Mathématiques. Vol. 24. 4. 2015, pp. 691–716.

[37] Pietro Caputo and Daniel Parisi. “Block factorization of the relative entropy via
spatial mixing”. In: ArXiv preprint, arXiv:2004.10574 (2020).

[38] Eric A. Carlen, Maria C. Carvalho, and Michael Loss. “Determination of the spec-
tral gap for Kac’s master equation and related stochastic evolution”. In: Acta Math-
ematica 191 (2003), pp. 1–54.

[39] Eric A. Carlen and Dario Cordero-Erausquin. “Subadditivity of the entropy and its
relation to Brascamp-Lieb type inequalities”. In: Geometric and Functional Anal-
ysis 19 (2009), pp. 373–405.

[40] Eric A. Carlen, Elliott H. Lieb, and Michael Loss. “A sharp analog of Young’s
inequality on SN and related entropy inequalities”. In: The Journal of Geometric
Analysis 14 (2004), pp. 487–520.

[41] Filippo Cesi. “Quasi-factorization of the entropy and logarithmic Sobolev inequal-
ities for Gibbs random fields”. In: Probability Theory and Related Fields 120.4
(2001), pp. 569–584.

[42] Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle.
“Improved bounds for randomly sampling colorings via linear programming”. In:
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM. 2019, pp. 2216–2234.

[43] Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. “Rapid
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[122] Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. “Adaptive simulated an-
nealing: a near-optimal connection between sampling and counting”. In: Journal of
the ACM 56.3 (2009), pp. 1–36.

[123] Daniel W. Stroock and Boguslaw Zegarlinski. “The equivalence of the logarithmic
Sobolev inequality and the Dobrushin-Shlosman mixing condition”. In: Communi-
cations in Mathematical Physics 144.2 (1992), pp. 303–323.

[124] Mario Ullrich. “Rapid mixing of Swendsen-Wang dynamics in two dimensions”.
In: Dissertationes Mathematicae 502 (2014), pp. 1–65.

[125] Eric Vigoda. “Improved bounds for sampling colorings”. In: Journal of Mathemat-
ical Physics 41.3 (2000), pp. 1555–1569.

[126] David G. Wagner. “Weighted enumeration of spanning subgraphs with degree con-
straints”. In: Journal of Combinatorial Theory, Series B 99.2 (2009), pp. 347–357.

[127] Dror Weitz. “Counting independent sets up to the tree threshold”. In: Proceed-
ings of the 38th Annual ACM Symposium on Theory of Computing (STOC). 2006,
pp. 140–149.

280



VITA

Zongchen Chen received the Ph.D. degree in Algorithms, Combinatorics, and Optimization

from the School of Computer Science at Georgia Institute of Technology in 2021. He was

fortunate to be advised by Eric Vigoda. Before that, he received the Bachelor’s degree in

Math and Applied Math from Zhiyuan College at Shanghai Jiao Tong University in 2016.

He has broad interests in randomized algorithms, discrete probability, and machine learn-

ing. Currently, he works on Markov chain Monte Carlo (MCMC) methods for sampling

from Gibbs distributions, and machine learning problems related to graphical models.

281


	Title Page
	Acknowledgments
	Table of Contents
	List of Figures
	Summary
	1 | Introduction
	Optimal Mixing of Glauber Dynamics
	Spectral Independence: A Powerful Tool for Analyzing MCMC
	Thesis Organization

	2 | Preliminaries
	Spin Systems
	Markov Chains
	Entropy Tensorization and Factorization
	Simplicial Complexes
	Complex Analysis

	3 | Optimal Mixing of Glauber Dynamics via Spectral Independence
	Main Result: Optimal Mixing of Glauber Dynamics
	Proof Outline
	Approximate Tensorization via Uniform Block Factorization
	Uniform Block Factorization via Spectral Independence

	4 | Other Implications of Spectral Independence
	Introduction and Our Results
	Proof Approach and Discussions
	Basic Properties of Entropy
	Optimal Mixing of Arbitrary Block Dynamics
	Optimal Mixing of Swendsen-Wang Dynamics
	Uniform Block Factorization via Spectral Independence: A Direct Approach

	5 | Spectral Independence via Strong Spatial Mixing Approach: 2-Spin Systems
	Optimal Mixing Results for 2-Spin Systems
	Establishing Spectral Independence by the Potential Method
	Preliminaries for 2-Spin Systems
	Proof Outline
	Preservation of Influences for Self-Avoiding Walk Trees
	Influence Bounds for Trees
	Verifying a Good Potential: Contraction
	Remaining Antiferromagnetic Cases
	Verifying a Good Potential: Boundedness
	Ferromagnetic Cases
	Proofs of Mixing Results

	6 | Spectral Independence via Strong Spatial Mixing Approach: Matchings and Colorings
	Optimal Mixing Results for Monomer-Dimer Model
	Optimal Mixing Results for Colorings on Triangle-free Graphs

	7 | Spectral Independence via Coupling Methods
	Optimal Mixing Results for Colorings and Potts Model
	Establishing Spectral Independence for Contractive Distributions
	Warm-up: Contraction for Glauber Dynamics and Hamming Metric
	Contraction for Glauber Dynamics and General Metrics
	Contraction for General Markov Chains and General Metrics

	8 | Spectral Independence via Stability of Partition Function
	Optimal Mixing Results for Holant Problems
	Establishing Spectral Independence in Zero-Free Regions
	Preliminaries for Pinnings
	Proofs of Spectral Independence via Stability
	Optimal Mixing Results for Binary Symmetric Holant Problems
	Further Optimal Mixing Results

	9 | Conclusion
	References
	Vita

