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SUMMARY

Polynomial systems of equations that occur in applications frequently have a special

structure. Part of that structure can be captured by an associated Galois/monodromy group.

This makes numerical homotopy continuation methods that exploit this monodromy action an

attractive choice for solving these systems; by contrast, other symbolic-numeric techniques

do not generally see this structure. Naturally, there are trade-offs when monodromy is

chosen over other methods. Nevertheless, there is a growing literature demonstrating that

the trade can be worthwhile in practice.

In this thesis, we consider a framework for efficient monodromy computation which

rivals the state-of-the-art in homotopy continuation methods. We show how its implemen-

tation in the package MonodromySolver can be used to efficiently solve challenging

systems of polynomial equations. Among many applications, we apply monodromy to

computer vision—specifically, the study and classification of minimal problems used in

RANSAC-based 3D reconstruction pipelines. As a byproduct of numerically computing

their Galois/monodromy groups, we observe that several of these problems have a decompo-

sition into algebraic subproblems. Although precise knowledge of such a decomposition is

hard to obtain in general, we determine it in some novel cases.

x



CHAPTER 1

INTRODUCTION

1.1 Families of polynomial systems

Scientists, engineers, and mathematicians alike are frequently confronted with the need to

solve polynomial systems of equations. It is rather typical that these systems occur naturally

in a parametric family:

fpx; zq “ 0, where

x “ px1, . . . , xnq are variables,

z “ pz1, . . . , zmq are parameters,

f “ pf1, . . . , fNq are polynomials.

(1.1)

The parameters z represent given measurements or data. The variables are unknown quanti-

ties to be solved for. The system of equations f1px; zq “ ¨ ¨ ¨ “ fNpx; zq “ 0 may describe

a mathematical object or encode constraints implied by some underlying model. Methods

for solving these systems of equations lie within the intersection of algebraic geometry and

applied mathematics, a subject that has been dubbed nonlinear algebra [86, 22].

It is well-known that solving polynomial systems, and algebraic geometry in general,

works best over the complex numbers. This is due in large part to classical principles,

such as dimension counting and conservation of number. It is a standard trick in algebraic

geometry to consider the entire family of systems in Equation 1.1 at once as a geometric

object, by considering the incidence correspondence of parameter-solution pairs

X “ tpx, zq P Cn
ˆ Cm

| fpx; zq “ 0u. (1.2)

Let us first note that the set X is itself the set of solutions to a polynomial system of

equations. This is a feature of algebraic geometry that distinguishes it from its mathematical
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cousins, and a compelling reason to search for algebraic models wherever they might occur.

Let us also note that the solution sets which interest us, namely tx P Cn | fpx; zq “ 0u,

may be naturally identified with the fibers Xz :“ tpx, zq P Cn | fpx; zq “ 0u of the map

which projects X onto the space of parameters:

X Ñ Cm (1.3)

px, zq ÞÑ z.

One would like to invert this map. There are three possibilities for a generic fiber Xz:

• Xz is empty (an over-constrained problem) ,

• dimXz ą 0 (an under-constrained problem) , or

• there are finitely many solutions: Xz “ tx1, . . . , xdu ˆ tzu, with d independent of z.

When we are lucky enough to be in the third, well-constrained case, the number of solutions

d may still be prohibitively large for the intended application. If our goal is to compute all

solutions, working over the real numbers does not help us much in general. Indeed, the cardi-

nality of a typical real fiber Xz XRn is not conserved (consider X “ tpx, zq | x2´ z “ 0u.)

Moreover, in applications it often holds that X is an irreducible variety with a smooth real

point. This implies that the real points XpRq are Zariski-dense in X, and hence the complex

solution set Xz will have the same cardinality for generic z, real or complex.

It is reasonable to take a more optimistic stance than in the previous paragraph. For

one, there are many natural applications where solving a well-constrained system is the

immediate goal. One rather prominent example comes from the study of minimal problems,

which are used inside of RANSAC-based pipelines in 3D reconstruction. A systematic study

of these problems is presented in Chapter 3 of this thesis. Other natural examples include

problems where we must compute the equillibria of dynamical systems, or the assembly

modes of mechanisms in kinematics, or enumerative problems in geometry.
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In other applications, a well-constrained system may serve as a proxy for the real prob-

lem of interest. For instance, an over-constrained problem may be recast as an optimization

problem—we may then reduce to the well-constrained case by considering the associated

critical point systems. At the opposite end of the spectrum, positive-dimensional solution

sets can be approached via their intersections with generic linear spaces—this is the main

principle underlying the algorithms of numerical algebraic geometry. Thus, the interesting

cases where our system of equations typically has finitely many solutions are far more

prevalent than one might initially suspect.

Conservation of number is the point de départ for numerical homotopy methods. Most

homotopy methods fit into a very general framework identified by Morgan and Sommese,

called coefficient parameter homotopy [88], generalizing the so-called cheater’s homotopies

introduced by Li, Sauer, and Yorke [80]. The ethos of these parameter homotopies is very

simple: solve first a generic instance of Equation 1.1 (given by some z0 P Cm), and then

track solutions towards a specific instance (given by some z1 P Cm) by deforming the

generic problem into the specific problem. The second step is accomplished by introducing

a homotopy function

Hpx, tq “ fpx;ψptqq, (1.4)

where ψ : r0, 1s Ñ Cm is a sufficiently regular path such that ψp0q “ z0, ψp1q “ z1, and

such that there exists a solution path x : r0, 1q Ñ Cn satisfying an initial value problem

ˆ

dH

dx

˙

d x

d t
“ ´

dH

d t
(1.5)

with the initial condition that xp0q is an isolated, nonsingular solution to fpx; z0q “ 0. For a

well-constrained problem and generic z1, each of these solution paths converges to a unique

solution xp1q as t Ñ 1 such that fpxp1q; z1q “ 0. In practice, approximate values of the

solution path xptq along points t in some discretization of r0, 1s are obtained via numerical

predictor/corrector methods. This is commonly called continuation, or path-tracking. For

completeness, we give a very watered-down pseudocode for path-tracking the parameter

homotopy of Equation 1.4, for a well-constrained system with as many unknowns as equa-

3



Algorithm 1 (track).
Input: z0, z1, Q0: starting parameters, target parameters, and start solutions Q0 Ă Xz0

Output: target solutions Q1 Ă Xz1

for x˚ P Q0 do
Initialize: t˚ Ð 0
while: t˚ ă 1 do

update t˚ Ð minpt˚ `∆t, 1q
predict x˚ Ð x˚ ´ pdxHpx˚, t˚qq

´1 dtHpx˚, t˚q
correct x˚ Ð x˚ ´ pdxHpx˚, t˚qq

´1 Hpx, tq
update Q1 Ð Q1 Y tx˚u

return Q1

Figure 1.1: A simplified predictor/corrector path-tracking scheme.

tions (N “ n.) In practice, the step-size ∆t is controlled adaptively so that Hpx˚, t˚q « 0,

multiple corrector steps and different predictor schemes are typically used, matrix inverses

are replaced with linear-solves, and so-called endgame methods must be employed when

the target solution set is singular or positive-dimensional or when solution curves diverge.

See [5, 87, 103, 16] for an overview of numerical continuation methods and their application

to polynomial system solving.

Parameter homotopies are appealing in the sense that the system specified by z0 (aka the

start system) has a similar structure to the system specified by z1 (aka the target system.)

But there is a chicken-egg problem—how do we solve the start system? In the context

of parameter homotopies, this is referred to as the offline phase, since in principle it only

needs to be done once per family of systems. For the offline phase, there are basically two

alternatives:

• The first alternative is to track paths from some easily-solvable start system(s), which

need not belong to the family given by Equation 1.1. The standard total-degree,

multihomogeneous, polyhedral, and regeneration homotopies all fit into this paradigm.

Despite their successes, these methods are frequently sub-optimal in the sense that

they overestimate the number of solutions inXz1 . The result is that extraneous solution

paths will diverge, an unnecessary computational overhead which also presents the

numerical challenge of deciding when a solution path diverges. On a more philosoph-
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ical note, the main limitation of these methods is that they do not fully exploit the

structure of the family in Equation 1.1.

• In general, the systems fpx; z1q “ 0 and fpx; z0q “ 0 “look the same”: we cannot

expect solving one to be any easier than solving the other. Nevertheless, there are

numerical homotopy methods that work directly with the family of interest which,

under suitable assumptions, scale reasonably well with the cardinality of the generic

fiber d “ #Xz1 . These methods are based on monodromy.

As a concept in mathematics, monodromy dates back to the 19th century, originating

in foundational work of Riemann in complex analysis [95], and the Galois/monodromy

groups of branched covers are implicit in the work of Jordan [65]. In more recent works

from the field of symbolic-numeric computation, heuristics based on monodromy have

enabled applications like computing Riemann matrices of algebraic curves [29] and polyno-

mial factorization [44]. The latter application is closely related to the use of monodromy

in numerical irreducible decomposition [101], in which points on algebraic varieties are

classified according to irreducible components. A natural progression from the numerical

irreducible decomposition was the use of monodromy as a heuristic for solving polynomial

systems, appearing in several recent works in symbolc-numeric computation [33, 84, 57]

and independently in the kinematic design literature [93, 13]. The closely-related prob-

lem of computing Galois/monodromy groups via numerical continuation was considered

before in [79, 59]. Monodromy implementations are freely available in both the package

MonodromySolver [32] for the computer algebra system Macaulay2 [46], which is used

in this thesis, and the more recent HomotopyContinuation.jl [23], which achieves

even greater efficiency through through the Julia language’s native just-in-time compiler

and a more sophisticated path-tracking algorithm [104].

1.2 Contributions of this thesis

In Chapter 2, we present some basic facts related to monodromy, and revisit a framework

for solving polynomial systems using monodromy and homotopy continuation established

in the author’s previous publications [33, 20]. We describe some general considerations

5



for efficiently using monodromy-based methods in polynomial system solving in the con-

text of this framework. We illustrate some non-trivial aspects of this framework through

several case studies using MonodromySolver, spanning subjects like computer vision,

checmical reaction networks, Galois theory, kinematics, and numerical algebraic geometry.

Each illustrates in a different way how monodromy can be a versatile tool for solving the

polynomial systems that arise in a wide variety of applications.

Chapter 3 contains original results from the author’s previous collaborations in computer

vision [34, 40, 35]. The polynomial systems that arise are known in the literature as

minimal problems. Monodromy allows us to compute the degree of each minimal problem,

which serves as a proxy for the complexity of specialized minimal solvers which are used in

RANSAC-based pipelines. We provide an overview of the classification of minimal problems

for calibrated cameras with complete and missing data, and describe in additional detail how

the monodromy computations were carried out. The results give another illustrative case

study on the applications of monodromy, since a similar program of classifying minimal

problems and computing their degrees can be carried over in principle to other settings

(eg. non-calibrated cameras.)

In Chapter 4, we consider monodromy in settings where the problem of interest ei-

ther decomposes into algebraic subproblems or possesses some kind of symmetry. The

Galois/monodromy group, which can be heuristically computed using the framework of

Chapter 2, tells us whether or not such a decomposition or symmetries exist. Decompositions

and symmetries, once understood precisely, can be easily exploited for solving. Obtaining

such a precise understanding is a difficult problem in general, which we solve for several of

the problems occuring in Chapter 3. This chapter contains preliminary work which is joint

with Viktor Korotynskiy, Tomas Pajdla, and Margaret Regan [36].

6



CHAPTER 2

MONODROMY

Figure 2.1: A graph of homotopies embedded in the base space of the branched cover of
Example 1. Partial correspondences are drawn along each edge between the known solutions
in grey. Taking x3 as a seed solution, we subsequently discover x2 and x1 by numerical
continuation along the appropriate paths in Z. Figure first appeared in [33].

The essence of monodromy as applied to polynomial system solving is the slogan

“collect all solutions starting from one.” This chapter brings some precision to this slogan.

We give some mathematical background, and then revisit the graph-based framework

first described in [33]. One of the main contributions of this framework was the simple

observation that re-using information from monodromy loops is much more efficient than

the so-called naive dynamic strategy, in which new loops are used in every iteration,

allowing for monodromy-based blackbox solvers that are competetive with other leading

homotopy methods. We further illustrate the efficiency of this framework by applying

MonodromySolver to a variety of challenging examples.

7



2.1 Preliminary notions (Branched covers and Galois/monodromy groups)

Definition 2.1.1. A branched cover is a dominant, rational map X 99K Z, where X and Z

are irreducible algebraic varieties over C of the same dimension.

Readers who feel uncomfortable with the math should keep in mind that, in applications,

X 99K Z is simply a map that is locally invertible at a generic data-point z P Z, and defined

by polynomial or rational functions. The varieties X and Z are said to be the total space

and base of the branched cover, respectively. Depending on the context, we may also call Z

the parameter space. The reader may safely assume that all varieties are quasiprojective.

Several consequences of Definition 2.1.1 deserve emphasis. Most importantly, domi-

nance implies that for generic (and hence almost all) data z P Z, the fiber over z, denoted

Xz, is a nonempty, finite set. Second is the assumption of irreducibility. In principle, we

can always reduce to the case of an irreducible variety by writing an arbitrary variety as the

union of its irreducible components. On the other hand, in many applications, we are really

interested in solutions which lie on an “interesting” irreducible component of some possibly

reducible incidence variety. Finally, it is more natural to state various results using rational

maps instead of regular maps. For instance, a branched cover might have a decomposition

which is only valid on some Zariski-open subset of X, as is the case for Example 2. These

decompositions are the subject of Chapter 4.

Pulling back rational functions from Z to X lets us identify CpZq with a subfield of

CpXq. Since CpXq and CpZq have the same transcendence degree over C, the field exten-

sion CpXq{CpZq is finite. The degree of the map X 99K Z may be defined as the degree

of this field extension. We write degpX{Zq for this quantity, since the map X 99K Z is

usually clear from context. We say that a nonempty Zariski-open U Ă Z is a regular locus

for X 99K Z if U XZsing “ H and if for all z P U the cardinality of the fiber Xz is equal to

the degree of the map. The existence of such a U follows from basic results in algebraic

geometry [99, cf. pp. 142].

We now recall the monodromy action on the fibers of of a degree-d branched cover

f : X 99K Z. Fix a regular locus U and a basepoint z P U, and write Xz “ tx1, . . . , xdu. A

8



loop based at z is a continuous map γ : r0, 1s Ñ U which satisfies γp0q “ γp1q “ z. For

each xi, there exists a unique lift rγi : r0, 1s Ñ f´1pUq satisfying γ “ f ˝ rγi and γp0q “ xi.

This fact from topology is known as the unique path-lifting property (see eg. [54, Proposition

1.30]). The lifts based at each of the points x1, . . . , xd determine a permutation of the fiber,

σγ : Xz Ñ Xz, which may be written in two-line notation as

σγ “

¨

˝

x1 x2 x3 ¨ ¨ ¨ xd

rγ1p1q rγ2p1q rγ3p1q ¨ ¨ ¨ rγdp1q

˛

‚. (2.1)

Remark 2.1.2. SympXq denotes the symmetric group of all permutations from a finite setX

to itself, Sn, An, denote symmetric and alternating groups acting on letters rns “ t1, . . . , nu

(hence Symprnsq “ Sn), and Cn denotes a cyclic group of order n. At several points, it

will be necessary to distinguish between abstract groups and the way they act on sets. For

instance, the usual action of S4 on r4s not equivalent to to the action of S4 ãÑ S6 on the

6 “
`

4
2

˘

unordered pairs in r4s. The latter group may also described as S2 o S3 X A6. Here,

o denotes the wreath product, whose basic properties are summarized in [97, Ch. 7]. For

example, the permutation group S2 o S3 is isomorphic to the subgroup of S6 consisting of all

permutations that preserve the partition r6s “ r2s Y t3, 4u Y t5, 6u.

One can show that the permutation σγ given in Equation 2.1 is independent of the

homotopy class of γ in U, from which one obtains a homomorphism from the fundamental

group π1pU, zq into the symmetric group SympXzq:

ρ : π1pU, zq Ñ SympXzq (2.2)

rγs Ñ σγ. (2.3)

The map ρ in Equation 2.2 is known as the monodromy representation, and its image is called

the monodromy group. We will use either notation MonpX{Z;U, zq or simply MonpX{Zq.

The latter notation is justified by Proposition 2.1.4.

First, we recall the most basic and important fact about monodromy.

Proposition 2.1.3. The monodromy group acts transitively on the fiber Xz.

9



Proof. Suppose x, x1 P Xz. As an irreducible set in its Zariski topology, X is connected, and

hence also path-connected, in its complex topology—see eg. [47, pp. 21–22]. Moreover, we

maintain connectedness after excising any proper Zariski-closed Σ Ă X—that is, replacing

X Ð XzΣ. This is because codimR Σ ě 2. If we take Σ containing all points where the

branched cover is undefined or whose image is not contained in U, then there exists a path

in XzΣ connecting x and x1, which pushes forward to a monodromy loop γ such that

σγpxq “ x1.

It is well-known that monodromy groups are Galois groups. Proposition 2.1.4 makes

this precise. We write CpXqgal{CpZq for the Galois closure of CpXq{CpZq and GalpX{Zq

for the Galois group of CpXqgal{CpZq.

Proposition 2.1.4. Let X 99K Z be a branched cover with regular locus U, and fix a

basepoint z P U. Then the GalpX{Zq and MonpX{Z;U, zq are isomorphic as permutation

groups. In particular, MonpX{Z;U, zq is independent of the choice of pU, zq.

A proof of Proposition 2.1.4 is given in [52]. In this proof, the Galois closure

CpXqgal{CpZq is identified as an extension of CpXq obtained by adjoining certain germs of

functions around points in Xz. With this identification, it is then argued (using the Galois

correspondence and analytic continuation) that the Galois and monodromy actions on Xz

coincide.

Example 1. Consider

X “ tpx, zq P Cˆ C | x3
“ zu

as a degree-3 branched cover over Z “ C given by px, zq ÞÑ z. A regular locus is the

punctured complex line U “ tz | z ‰ 0u. The monodromy group MonpX{Zq – A3 “ C3

acts by cyclic permutation of Xz “ tz, ω z, ω
2 zu, where ω “ expp2πi{3q. Indeed, π1pU ; zq

is generated by the loop γptq “ e2πit, which encircles the branch point z “ 0 and induces

the permutation σγ defined by

σγ “

¨

˝

z ω z ω2 z

ω z ω2 z z

˛

‚.
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Example 2. Consider the “palindromic” family over Z “ C2 given by

X “ tpx, a, bq P Cˆ C2
| x4

` ax3
` bx2

` ax` 1 “ 0u.

The map px, a, bq ÞÑ pa, bq is a branched cover of degree 4. A regular locus is given by

U “ C3 zV p∆q, where ∆pa, bq is the discriminant

∆pa, bq “ p2 a´ b´ 2q p2 a` b` 2q
`

a2
´ 4 b` 8

˘2
.

Identifying the fundamental group π1pUq is less standard than in the previous example. This

regular branched cover X Ñ Z decomposes as a composition of rational branched covers

X 99K Y, Y 99K Z, where

Y “ tpt, a, bq | a t2 ` b t` c´ 2 a “ 0u

is obtained by setting t “ px2 ` 1q{x. The monodromy action is equivalent to the action

of the dihedral group D8 on the vertices of a square, which is permutation isomorphic to

the wreath product S2 o S2 ãÑ S4. In this example, CpXq{CpY q and CpY q{CpZq are both

Galois extensions, but CpXq{CpY q is not.

Example 3. Let

X “ tpx1, x2, x3, a, bq P C3
ˆ C2

| x6
` a x4

` b px2
` bqu

Z “ C2.

The map px, a, bq ÞÑ pa, bq is a branched cover of degree 6, with a regular locus U “

C4 zV p∆q, where ∆ is the discriminant

∆pa, bq “ 64 b6
`

4 a3
´ a2

´ 18 a b` 27 b2
` 4 b

˘2
.

We have MonpX{Zq – S2 o S3 X A6. As abstract groups, there exists an isomorphism

S2 o S3 X A6 – S4. The monodromy action is equivalent to the action of S4 on 2-subsets
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ti, ju | 1 ď i ă j ď 4
(

which is induced by the standard action S4 ñ r4s.

Example 4. Let

X “ tpx, a, b, cq P Cˆ C3
| x6

` a x4
` b x2

` cu

Z “ C3.

As in the previous example, the map px, a, bq ÞÑ pa, bq is a branched cover of degree 6. In

this case we have that MonpX{Zq is the full wreath product S2 o S3.

Example 5. Let

rC “ tpw, xq P C2
| w2

“ px2
´ 1qpx2

` 1qu,

C “ tpy, zq P C2
| y2

“ zpz ´ 1qpz ` 1qu.

The double cover rC Ñ C given by pw, xq ÞÑ pwx, x2q is unramified. Topologically, C is a

punctured torus. The monodromy representation maps π1 pC; py, zqq , a free group with two

generators, onto Sym
´

rCpy,zq

¯

– S2.

Definition 2.1.5. Two branched covers, X1 99K Z1 and X2 99K Z2, are birationally

equivalent if there exist birational maps X1 99K X2 and Z1 99K Z2 such that the following

diagram commutes:

X1 X2

Z1 Z2.

Proposition 2.1.6. The Galois/monodromy group of a branched cover is a birational invari-

ant.

Proof. This follows easily from Proposition 2.1.4, since a birational equivalence of branched

covers induces an isomorphism of field extensions. A more topological proof is also

possible. Let us write Ψ : X1 99K X2, ψ : Z1 99K Z2 for the horizontal maps appearing in

Definition 2.1.5. Then, for suitable regular loci U1 Ă Z1, U2 Ă Z2, there is an isomorphism

MonpX1{Z;U1, zq – MonpX2{Z;U2,Ψpzqq defined by identifying, for γ : r0, 1s Ñ U

based at z, the lifts rγ1, . . . , rγd in X1 with the lifts Ψ ˝ rγ1, . . . ,Ψ ˝ rγd in X2.

12



2.2 A graph-based framework for monodromy computations

Proposition 2.1.3 suggests that, when our family of polynomial systems is modeled by a

branched cover, it is possible to recover all solutions to a generic problem instance starting

from just one solution. To do this, it suffices to conjure up loops γ1, . . . , γk such that the

subgroup xσγ1 , . . . , σγky ď MonpX{Zq acts transitively. However, in practice we have a

very limited knowledge of the main mathematical objects in play—the regular locus U Ă Z,

the fundamental group π1pU ; zq, perhaps even the irreducible varieties X and Z. In light of

this lack of knowledge, it benefits us to make very minimal assumptions about how to give

our branched cover X 99K Z as input to a procedure such as Algorithm 2.

In the remainder of this chapter, we primarily consider branched covers of affine varieties

X Ñ Cm given by coordinate projection px, zq ÞÑ z, where

IX “ xg1px; zq, . . . , gkpx; zqy Ă Crx1, . . . , xn, z1, . . . , zms (2.4)

is a prime ideal in both variables x and parameters z. The main examples considered

in this thesis are of this form, at least up to birational equivalence. These problems are

well-posed in the sense that exact solutions exist for generic parameter values. We remark

that for a branched cover X 99K Y where Y Ă Cm is a proper subvariety (for instance,

as in Example 5), we could take a generic projection Y 99K Z onto an affine space

Z “ CdimY , and use Proposition 4.1.2 to identify MonpX{Y q. Using this approach to study

over-constrained problems is an intriguing possibility, but beyond the scope of this thesis.

Since our knowledge of the irreducible variety X may be limited, it is very useful to

observe that we do not need to know all generators of IX . To “do monodromy”, we only

really need to know two things:

1) the ability to sample a generic point px˚, z˚q P X, and

13



2) a set of n equations vanishing on X,

fpx; zq “ fpx1, . . . , xn; z1, . . . , zmq “

»

—

—

—

–

f1px1, . . . , xn; z1, . . . , zmq
...

fnpx1, . . . , xn; z1, . . . , zmq

fi

ffi

ffi

ffi

fl

, (2.5)

such that the Jacobian dxfpx˚; z˚q is an invertible n ˆ n matrix. We say that equa-

tions Equation 2.5 form a well-constrained system for the branched cover X Ñ Cm.

The point px˚, z˚q is called the seed pair for Algorithm 2. The well-constrained system

f may consist of polynomial or rational functions. For generic px˚, z˚q P X and generic

z P Cm, the segment ψ1 : r0, 1s Ñ Cm defined by the straight-line

ψ1ptq “ p1´ tq ¨ z
˚
` t ¨ z (2.6)

will have a lift Ăψ1ptq to X based at Ăψ1p0q “ px
˚, z˚q. An approximation of the lifted path

can be computed by numerical path-tracking.

Proposition 2.2.1. For generic z˚, z, the lifted path Ăψ1 : r0, 1s Ñ X will not intersect the

exceptional subvariety of X where dx f is singular or f is undefined for any t P r0, 1s.

Proof. This is the same argument as Lemma 7.1.2 in [103]. Let Σ be the image of the

exceptional set under projection onto Cm. We have dimC Σ ď m ´ 1, and hence also

dimR Σ ď 2m´ 2. We may assume that neither z nor z˚ are in Σ. Consider the exceptional

set which is the union of all real lines (ie., lines parametrized as in Equation 2.6) which

contain z˚ and a point in Σ. This set has real dimension at most 2m ´ 1, so it suffices to

assume that z lies outside of this exceptional set.

Thus, if we consider the parameter homotopy

Hpx, tq “ f px;ψ1ptqq “ 0, (2.7)

Proposition 2.2.1 implies that the solution curves xptq will satisfy Hpxptq, tq “ 0 and the

initial condition xp0q “ x˚ will stay on our irreducible variety X with probability-one, and
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hence Ăψ1ptq “ pxptq, ψ1ptqq. Thus, although the variety X need not be a complete intersec-

tion, appropriate use of a well-constrained system enables us to compute solutions on X

using the same number of equations as unknowns. In practice, our numerical approximations

to Ăψ1ptq remain “close” to X with some probability that depends on the conditioning and the

implementation of the numerical methods. Our previous remarks still apply if we replace

the straight-line segment ψ1ptq by some other suitably generic path in Z. By numerically

continuing solutions along some path ψ2ptq from z to z˚, and then along some other path

ψ1ptq from z˚ to z, the concatenated path γ “ ψ2 ˚ ψ1 is a loop based at z which induces a

monodromy permutation σγ.

To organize the discovery of new solutions, it is natural to collect all homotopies used

together in a finite, connected, undirected graph G, in which every vertex in V pGq is a point

z P Cm, and every edge e “ pz0, z1q P EpGq is decorated with a homotopy. To specify the

homotopies, we orient each edge ~e “ ÝÝÑz0z1 and define

H~epx; tq “ fpx;ψ~eptqq (2.8)

where ψ~e : r0, 1s Ñ Cm is some sufficiently regular path such that ψ~ep0q “ z0, ψ~ep1q “ z1.

For the reverse orientation, set HÐÝ
e px; tq “ HÐÝ

e px; 1´ tq. Thus, any vertex in the graph may

serve as a start system or a target system, depending on the state of the computation.

Depending on how the equations f depend on the parameters z, we may flexible on how

the path ψ is represented. For instance, if f is linear in parameters in the sense that

fpx; z1 ` ψ1z2q “ fpx; z1q ` α1 fpx; z2q,

the straight-line homotopies proposed in [33] are given by ψ “ ψ1 ˚ ψ2 ˚ ψ3, where

ψ1ptq “ exppi tq z0, t P r0, R0s

ψ2ptq “ exppi R0q z0 ` exppi R1q z1, t P r0, 1s

ψ3ptq “ exppi tq z1, t P rR1, 0s,

where R0, R1 „ Unifpr0, 2πsq. This is the simplest instance of an endpoint randomization
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scheme. A cartoon illustration is provided in Figure 2.2. Two edges in the homotopy graph

are drawn on the left, and the corresponding monodromy loop is drawn on the right. A

fictional discriminant locus is drawn in red.

The endpoint randomization scheme discussed above is a special case of the well-known

“gamma-trick” (cf. [103, Ch. 7].) It is possible to devise analagous randomization schemes

for other types of families. For instance, in Chapter 3 we will encounter polynomial systems

which are equivariant with respect to a group action G ñ Cm in the sense that

fpx; zq “ fpx; g zq @g P G.

The “gamma-trick” above corresponds to the case where G is the group of complex numbers

with modulus 1, acting by coordinate-wise multiplication. Intuitively—the bigger the group

G, the more efficiently we can explore the parameter space Cm.Of course, the main difficulty

in devising such a scheme is that it requires us to know something extra about the structure

of our family. Nevertheless, endpoint randomization allows us to connect the fibers Xz1 and

Xz2 with different correspondences using the same basic type of edge homotopy, such as

the linear segment in Equation 2.6. Thus, endpoint randomization allows us to introduce

multiple edges between distinct vertices without computing redundant correspondences

between the fibers over z0 and z1. Our graph G can actually be a multigraph, depending on

how the homotopies in Equation 2.8 are constructed. Using multiple edges has the potential

to be more memory-efficient, since it is somewhat less expensive to store correspondences

between solutions than the solutions themselves.

Ultimately, storing correspondences between solutions is the main feature that distin-

guishes our graph-based monodromy framework from approaches previously considered

in the literature. To describe the basic algorithm, it is convenient to define the state of

a partially known homotopy graph. The state of a homotopy graph G is defined by the

known solutions Qz for each vertex z P V pGq, and the correspondence set Ce for each edge

e “ pz0, z1q P EpGq. Upon termination of Algorithm 2, each correspondence set Ce is a

bijective matching between known solutions in Qz0 and Qz1 . Thus, any closed walk starting

at z P V pGq determines a permutation σγ : Qz Ñ Qz, where the loop γ is obtained by
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z0

z1

Figure 2.2: Endpoint randomization via the γ-trick.

concatenating the paths ψ~e defining each edge homotopy in Equation 2.8.

Having defined the state of a homotopy graph, we may finally state the basic monodromy

algorithm. Upon termination of Algorithm 2, the graph G returned by encodes a group

MG ñ tXzu generated by loops in the edge-wide embedding of G in Z “ Cm given by

~e ÞÑ ψ~epr0, 1sq. These loops are easily computed from a spanning tree of G. Assuming

the embedded graph avoids the exceptional set Σ of Proposition 2.2.1 and no numerical

failures occur in the subroutine track, we give an easily-verified correctness statement

for Algorithm 2 in the form of Proposition 2.2.2.

Proposition 2.2.2. When Algorithm 2 terminates, the set Q1 contains the the orbit of

px˚, z˚q under MG. Generators of the group MG can be computed by composing bijective

correspondences Ce along edges in closed walks in G obtained from joining z˚ to a set of

basic cycles for G.

2.3 Uncertainty in monodromy computations

2.3.1 Probabilistic models and complexity

To harness the power of monodromy for solving nontrivial examples of polynomial systems,

it seems the best we can hope for is some sort of probabilistic technique. Likewise for

the problem of computing the monodromy group itself—although a more deterministic
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Algorithm 2 (Monodromy meta-algorithm).
Input: pG, px˚, z˚qq

G — a graph with vertices z1, . . . , znG P Z “ Cm and edges decorated by homotopies
H~e obtained from a well-constrained system for X Ñ Z,

px˚, z˚q P X is an initial seed such that z1 “ z˚.

Output: Solutions in Xz for all z P V pGq and correspondences Ce for all e P EpGq
Initialize: Q1 “ tx˚u, Q2 “ ¨ ¨ ¨ “ QnG “ H, Ce “ H @e P EpGq
while D e “ pzi, zjq P EpGq with #Ce ă maxp#Qi,#Qjq do

select a directed edge ÝÑe “ ÝÝÑzi zj from pzi, zjq P EpGq with #Qi ą #Ce
track points in Qi to points in Qj along H~e

update Ce and Qj with undiscovered correspondences and solutions
return

`

tQvuvPV pGq, tCeuePEpGq
˘

Figure 2.3: Meta-algorithm for monodromy of a branched cover X Ñ Z.

approach is given by the branch-point method of [59], this method unfortunately requires

computing the intersection of some discriminant locus with a generic line in Cm. This is

typically costly when compared to Algorithm 2.

In light of Proposition 2.2.2, if we knew the root count d “ degpX{Zq in advance, we

could run Algorithm 2 until it is reached, augmenting the graphG within the while loop with

new edges and vertices as necessary. However, in many cases we do not know the root count

a priori. Thus, it is essential to consider the following question: how many loops are needed

to generate a transitive action? In terms of the graph G—how large should its first Betti

number β1pGq be? The answer to this question clearly depends on the Galois/monodromy

group. For instance, if we consider the “corner-case”

x2
i “ zi, i “ 1, . . . n,

then the Galois/monodromy group pC2q
n requires n generators at a minimum, and no

smaller number will generate a transitive subgroup. On the other hand, we frequently have

that the Galois/monodromy group is full-symmetric—MonpX{Zq – Sd. In this case, it

is actually quite reasonable in practice to take a small number of loops—in other words,

to have β1pGq “ Op1q as d Ñ 8. We observe this experimentally in section 2.4 on
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several problems of interest. Here, we validate this observation with an extremely simple

probabilistic model, which assumes that the group MG is generated by j permutations

σ1, . . . , σj drawn independently and uniformly at random from Sd. In other words, we

consider σ1, . . . , σj „ UnifpSdq as i.i.d. random variables. The accuracy of this model

primarily depends on the underlying scheme for generating random loops γ1, . . . , γj as well

as the nontrivial assumption MonpX{Zq – Sd.

The uniform model is highly over-simplied. However, it already suggests a major

difference between Algorithm 2 and a naive, dynamic strategy that discards the knowledge

obtained from previous loops. As observed in [33, 93], such a strategy is naturally modeled

by the coupon collector’s problem, requiring d log d trials in expectation. Maintaining a

set of partial permutations yields a modest asymptotic improvement: provided that the

monodromy group is full-symmetric, the expected number of path-tracks under the uniform

model is Opdq. The following result appearing in [33] is a generalization of a celebrated

result by Dixon [31, Theorem 2], who considered the case j “ 2. In our paper, we give a

proof which follows quite closely the same proof Dixon gave when j “ 2.

Theorem 2.3.1. For j ě 2, we have

Pr rσ1, . . . , σjy is transitive for σ1, . . . , σj „ UnifpSdqs “ 1´ d1´j
`O

`

d´j
˘

.

We refer to [33] for a complete proof and further discussion of this asymptotic result. To

complement the asymptotics, Table 2.1 contains exact values of the success probabilities

appearing in Theorem 2.3.1 for various values of d and j. Under the uniform model, j « 2

loops are sufficient to generate a transitive action, in expectation. To derive the table, let td

denote the probability appearing in Theorem 2.3.1. Suppose we partition the set of letters

rds into ki parts of size i for each 1 ď i ď d. Letting

Kd “

!

~k “ pk1, . . . , kdq P Nd
|
ÿ

i ki “ d
)

,

the number of partitions corresponding to each ~k P Kd is d!{p
śd

i“1pi!q
ki ¨ ki!q.

For each ~k P Kd, the partition of rds into the orbits of the group xσ1, . . . , σjy is ~k-indexed
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precisely when this group acts transitively on all classes of some partition associated to

~k. The number of tuples in Sji with coordinates generating a group acting transitively on

t1, . . . , iu is ti pi!qj . Thus, we may count the j-fold product Sd ˆ ¨ ¨ ¨ ˆ Sd as

pd!qj “
ÿ

~kPKd

d!
śd

i“1pi!q
ki ¨ ki!

¨

d
ź

i“1

`

ti pi!q
j
˘ki

“ d! ¨
ÿ

~kPKd

d
ź

i“1

pti pi!q
j´1q

ki

ki!
.

Let pF pxq denote the generating function the sequence ppd!qj´1q
8

d“1 . Our counting formula

implies the formal identity

8
ÿ

d“1

d ¨ pd!qj´1 xd´1
“

d

dx
pF pxq

“
d

dx
exp

˜

8
ÿ

i“1

ti pi!q
j´1xi

¸

“

´

8
ÿ

d“0

pd!qj´1 xd
¯

¨

8
ÿ

i“1

i ¨ ti pi!q
j´1xi´1

“

8
ÿ

d“1

xd´1
´

d
ÿ

i“1

i ¨ ti
`

i! ¨ pd´ iq!
˘j´1

¯

Equating coefficients of xd´1 yields

d “
d
ÿ

i“1

ˆ

d

i

˙1´j

i ti,

giving linear equations which can be solved successively for t1, t2, . . . .

The uniform permutation model supports the following hypothesis—for a branched

cover with Galois/monodromy group Sd, the probability that Algorithm 2 yields all solutions

in the fiber Xz˚ approaches 1 very rapidly as the Betti number of the underlying graph

grows slightly. We do not comment on the extent to which the bounds of Theorem 2.3.1

are sharp. Nor do we treat the analagous question of when Algorithm 2 terminates with the

correct Galois/monodromy group, although precise statements are known when j “ 2 due
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d j “ 2 j “ 3 j “ 4
1 1 1 1
2 0.75 0.875 0.9375
3 0.72222222 0.89814815 0.96450617
4 0.73958333 0.93012153 0.98262080
5 0.76833333 0.95334722 0.99115752
10 0.88180398 0.98954768 0.99898972
20 0.94674288 0.99747856 0.99987487
30 0.96536852 0.99888488 0.99996295

Table 2.1: The probability that j random permutations generate a transitive subgroup of Sd.

to Babai [10] and subsequent simplifications by Eberhard and Virchow [38].1

Looking beyond the uniform model and the restrictive assumption that MonpX{Zq –

Sd, we may consider an arbitrary scheme for generating loops which induces a probability

distribution P : MonpX{Zq Ñ r0, 1s. The random permutations σk P MonpX{Zq ob-

tained by concatenating k independent random loops form a Markov chain with probability

distribution given by the k-fold convolution P ˚k : MonpX{Zq Ñ r0, 1s. Under the very

mild assumption that P is not supported on a proper coset of MonpX{Zq, the distribution

P k˚ converges in total variation to the uniform distribution on MonpX{Zq (see eg. [30,

Ch. 4, Theorem 3].) This suggests the intriguing possibility of using Theorem 2.3.1 to give

rigorous, probabilistic guarantees for some variant of Algorithm 2, provided that one could

devise an explicit process for generating loops γ1, . . . , γk that allows one to bound the rate

of convergence of P k˚. Even more ambitiously, one could demand that such a procedure be

efficient in a complexity-theoretic sense: for instance, by requiring it to run in time polypdq

(with other parameters fixed) with bounded probability of failure. This raises the further

issue of bounding the expected runtime of track and rigorously certifying its correctness.

Prior work on Smale’s 17th problem [18, 25, 73] and certified path-tracking [17, 55, 108]

should convince us that this is no easy feat. Still, the author believes that rigorous explana-

tion of monodromy’s successes deserves attention from people with the right tools to attack

this difficult and open-ended problem.

1Babai’s proof uses the classification of finite simple groups.

21



2.3.2 Dealing with failures

In reality, the subroutine track in Algorithm 2 must operate with floating-point arithmetic.

Although the edges in the graph will avoid the discriminant locus with probability-one,

they will get close to it. Thus, track will fail with some positive probability, which may be

rather high for poorly conditioned systems. In principle, the failure probability can be driven

to 0 by working with more than the 53 bits (« 16 digits) provided by the standard IEEE

double. However, this comes at a disproportionate cost, since higher-precision floating

point is typically not implemented at the hardware level.

An appealing aspect of the graph-based framework is that it is robust to a moderate

number of failures. If the goal is simply to collect all solutions starting from one, then we

might tolerate a few failures along each edge, so long as some vertex eventually accumulates

degpX{Zq-many solutions. This should be contrasted with a single start-system approach,

in which any failing path must be adaptively re-run with more conservative tolerances until

it succeeds. Running monodromySolve with the option Verbose=>true will print a

number of messages to the screen when failures occur:

tracking failure: these failures are classified according to the implementation of

track and trackHomotopy in Macaulay2, including cases where the minimum

step-size is reached, or when a solution curve gets too close to infinity or being

singular.

correspondence conflict: tracking a solution in Qi along ~e to Qj results in a solution

already occuring in the correspondence Ce. This suggests the unfortunate possibility

of path-jumping, where the path-tracker unknowingly jumps between different solu-

tion curves. Another possibility is that the problem is poorly-conditioned, and our

numerical approximations cannot be distinguished under the chosen tolerances.

filter failure: using the option filterCondition, the output of track can be post-

processed according to some filter function. This can be used to guard against path-

jumping—when the well-constrained system has multiple irreducible components

besides X, numerical approximations to the lifted paths have the potential to wrongly
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discover solutions on these excess components, effectively contaminating the entire

computation. Sometimes we know enough to test when newly discovered solutions

lie on these excess components; when they do, we do not store them in Qj.

2.3.3 When to stop?

Depending on our goal, different stopping criteria are available for monodromy. The

stopping criterion of Algorithm 2 ensures that we can compute permutation generators for

the group MG. However, if d is known a priori and our only goal is to find d solutions, we

can simply terminate the computation once the target solution count is attained at some

vertex. This type of stopping criteria can also be applied to showing that the degree of a

problem is lower-bounded by some integer, as we do later in section 3.3.

When the root count is not known a priori, the exhaustive stopping criterion of Algo-

rithm 2 is the most straight-forward option. In practice, we also often limit the number

of iterations with no new solutions discovered—the default limit in MonodromySolver

is 10. A third option is based on numerical trace tests [102, 58, 78], which give effective

criteria for the completeness of solution sets. The various trace tests all amount to checking

that a suitably-defined function called the trace is linear. In the original setting of [102], the

trace test could be applied to a branched cover of the formX Ñ Gk,n, whereX Ă PnˆGk,n

is an incidence correspondence of points on a codimension-k subvariety X 1 Ă Pn and the

k-planes in the Grassmannian Gk,n that contain them. The degree of this branched cover is

the degree of the projective variety degX 1, and the monodromy group of such a branched

cover is full-symmetric (see eg. [6, pp. 111–112].) This trace test can be reduced to the

case where X 1 is a curve (k “ 1.) It amounts to taking parallel slices H1, H2, H3 in some

chart on Pn and checking that the known points in degpHiXX
1q move linearly—this occurs

iff the number of known points equals degpX 1q. Checking linearity of the trace reduces to

numerical linear algebra. In practice, this computation is not rigorously certified; even if we

know the points to arbitrary precision through Newton refinement, we cannot easily say that

the trace function is exactly linear.

For more general branched covers, the multihomogeneous trace tests developed in [58,

78] must be applied. For a branched cover X Ñ Pm with X Ă Pn ˆ Pm, the complex-
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ity of these trace tests depend on the multi-degrees dpm,0qpXq, . . . , dp0,mqpXq. Here, the

degree of X Ñ Pm equals the multi-degree dp0,mqpXq. The trace test of [58] requires

O
`
řm
k“0

`

m
k

˘

dpk,m´kqpXq
˘

path-tracks. The trace test of [78] requires a more modest

O
`

dp0,mqpXq ` dp1,m´1qpXq
˘

path-tracks. Still, the multidegrees form a log-concave se-

quence by Hodge-theoretic results due Khovanskii and Teissier (see [77, Ch 1.6] and the

references therein), and we can reasonably expect dp1,m´1qpXq to be significantly larger than

dp0,mqpXq. Therefore, on problems of larger degree, the trace test should be used prudently.

2.4 Case Studies

2.4.1 Monodromy as a blackbox solver

A system with as many equations as unknowns is usually said to be square. We expect such

a system to have finitely many solutions. Several theorems bound the number of isolated

solutions of a square system. The most classical is Bézout’s theorem, where the bound is

the product of the polynomials’ degrees. A sharper result in many cases is the celebrated

Bernstein-Khovanskii-Kushnirenko (BKK) theorem [70, 19], where the bound is given by

the mixed volume of the polynomials’ Newton polytopes. The examples of subsection 2.4.3

and the table below illustrate that there may still be a large discrepency between these

bounds and the actual number of solutions.

problem wnt SOp4q SOp5q SOp6q SOp7q
# vars 19 16 25 36 49
BKK bound 60 1024 32768 2097152 268435456
degree 9 40 384 4768 111616
MonodromySolver 0.52 4 23 528 42791
Bertini 42 81 10605 out of memory
PHCpack 862 103 ą one day

Table 2.2: Wall time in seconds of MonodromySolver vs other solvers.

Table 2.2, taken from [33], gives a comparison of MonodromySolver against two

other leading polynomial homotopy continuation solvers, PHCPack and Bertini [106, 15].
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Related experiments may be found in [33, 20]. PHCpack uses the polyhedral homotopy [63],

which tracks a number of paths equal to the BKK bound. The Bertini runs were us-

ing an equation-by-equation method known as regeneration [62], where the number of

tracked paths is harder to predict. On these examples, MonodromySolver significantly

outperformed PHCpack and Bertini, by virtue of tracking fewer paths and avoiding a po-

tentially expensive mixed volume computation. We note that although Bertini dominates

PHCpack on these examples, the situation can be very much reversed for other prob-

lems. We also note that the implementations of polyhedral homotopy and monodromy in

HomotopyContinuation.jl [23] likely outperform their counterparts in Table 2.2 in

the regime where the degree is large and compilation overhead is negligible. The column

labeled “wnt” refers to a suitably randomized system of equillibria for a chemical reaction

network that is studied in cell-signaling—see [33, 48] for more details. The columns labeled

SOpnq refer to computing the degree of the special orthogonal group. A well-constrained

system is obtained from npn` 1q{2 upper-diagonal entries of RRJ ´ I “ 0 together with

npn ´ 1q{2 inhomogeneous linear equations. In [21], MonodromySolver was used to

check a closed form for the degree obtained from general results of Kazarnovskii [66]. In

addition to the research presented in this thesis, we note the use of MonodromySolver in

applications as diverse as graph rigidity [12] and quantum physics [107].

It can be difficult to get a fair comparison between solvers. This difficulty is compounded

when we are faced with a well-constrained problem with more equations than unknowns.

Blackbox solvers will regularize such a system by taking random linear combinations of

the equations (called randomization or “squaring up”), adding random linear combinations

of new slack variables, or simply dropping equations. Any of these strategies has the

undesirable effect of introducing extraneous solutions. Monodromy, when initialized from

a generic seed pair on the component of interest, will avoid these extraneous solutions

with probability 1. Throughout this thesis, we reduce systems with more equations than

unknowns to a well-constrained system with Algorithm 3. This is just a numerically-sensible

version of the usual greedy algorithm. Orthogonal projection is done via SVD—this is not a

bottleneck, since generally n ă 100.

Example 6. We consider a problem from computer vision—reconstruction of nine lines
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Algorithm 3 (square-down).
Input: seed pair px˚, z˚q, system f “ pf1px; zq, . . . , fNpx; zqq
Output: square system f̂ “ pfi1 , . . . , finq with rank dxf̂ “ n

Initialize: v1, . . . , vN Ð rows of dxf̂ , B ÐH, iÐ 1
while: #B ă n do
vi Ð vi ´ projBpviq
if: ‖vi‖2 ąą 0 then B Ð B Y tviu
iÐ i` 1

return pfi1 , . . . , finq w/ B “ tvi1 , . . . ,vinu.

Figure 2.4: Computing a well-constrained subsystem from the seed pair.

from three uncalibrated views. We use the formulation of Larsson et al. [75], where two of

the lines have been fixed up to projective change of coordinates. In this formulation, there

are 14 unknown entries in three camera matrices:

P1 “

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

˛

‹

‹

‹

‚

(2.9)

P2 “

¨

˚

˚

˚

˝

x1 1 0 ´1

0 x2 x3 ´x3

x4 x5 x6 x7

˛

‹

‹

‹

‚

(2.10)

P3 “

¨

˚

˚

˚

˝

x8 x9 0 ´x9

0 x10 1 ´1

x11 x12 x13 x14

˛

‹

‹

‹

‚

. (2.11)

The 63 parameters are the homogeneous equations of seven lines in three views:

l1,1, l1,2, l1,2, . . . , l7,1, l7,2, l7,3 P C3ˆ1,

These lines correspond in the sense that certain 4ˆ 3 matrices drop rank:

rank
´

PJ1 li,1 PJ2 li,2 PJ3 li,3

¯

ď 2, i “ 1, . . . , 7 (2.12)
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The maximal minors of matrices in Equation 2.12 give us polynomial equations

f1px; lq “ . . . “ f28px; lq “ 0. (2.13)

For generic parameter values, these polynomials have 36 solutions and 4 distinct New-

ton polytopes. To get a well-constrained system fi1 , . . . , fi14 for the branched cover

V pf1, . . . , f28q Ñ C63, we could take two minors corresponding to each of the given

rank constraints. Bézout’s theorem predicts 214 “ 16, 384 solutions for these subsystems,

whereas their mixed volumes depend on the selection of minors. For generic parameters,

permuting such a selection among the 7 rank constraints does not change the mixed volume,

so representative mixed volumes for the square subsystems may be obtained by placing 7

unlabeled balls into 6 “
`

4
2

˘

labeled bins. In doing so, we obtain 792 square subsystems,

whose mixed volumes, as computed by Gfan [64], range from 470 to 2, 858. Another option

is to randomize the system by taking 14 generic linear combinations of f1, . . . , f28. In this

case, the mixed volume is simply the normalized volume of the Newton polytope of such a

linear combination, which turns out to be 3, 328.

For this example, we performed a short computational experiment to illustrate the

behavior of MonodromySolver when working with more equations than unknowns.

Timings in Table 2.3 are given in seconds. We used Algorithm 3 to select a square subsystem.

To generate the seed pair, we choose values for x1, . . . , x14 at random from the complex unit

circle and taking each li,j to span the kernel of pPi vj,1|Pi vj,2qJ, where vj,1, vj,2 are points

on a fabricated “world line.” In all cases, a graph with two vertices and four edges was used,

and the computation terminates with the same number of solutions at both nodes. However,

with the default path-tracker settings, this number was occassionally higher than the true

degree 36 due to path-jumping. To make the monodromy more robust, we can either use

more conservative tracker settings—here tStepMin => 1e-8, maxCorrSteps =>

2—or use a filter function—here, we do not store any newly discovered solution such that

the singular values of any of the 7 rank-constrained matrices exceeds 10´5.
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solving strategy time monodromy % d “ 36 % d “ 88 % d “ 114
default 9.6 s 84 % 12 % 4 %
conservative tracker 11.9 s 84 % 0 % 0 %
w rank filter 10.9 s 100 % 0 % 0 %

Table 2.3: Solving the system of Equation 2.13, with 25 runs per row.

2.4.2 The Mathieu Group M23

To further demonstrate the versatility of MonodromySolver, we numerically verify some

calculations due to Elkies [39] for a univariate family whose Galois/monodromy group is

the Mathieu group M23. This example illustrates some of the potential difficulties arising

from naive application of homotopy continuation and monodromy as black-box methods,

and some tricks for overcoming these difficulties.

Consider the univariate polynomials

P2pxq “ p8g
3
` 16g2

´ 20g ` 20qx2
´ p7g3

` 17g2
´ 7g ` 76qx

` p´13g3
` 25g2

´ 107g ` 596q,
(2.14)

P3pxq “ 8p31g3
` 405g2

´ 459g ` 333qx3
` p941g3

` 1303g2
´ 1853g ` 1772qx

` p85g3
´ 385g2

` 395g ´ 220q,

(2.15)

P4pxq “ 32p4g3
´ 69g2

` 74g ´ 49qx4
` 32p21g3

` 53g2
´ 68g ` 58qx3

´ 8p97g3
` 95g2

´ 145g ` 148qx2
` 8p41g3

´ 89g2
´ g ` 140qx

` p´123g3
` 391g2

´ 93g ` 3228q,

(2.16)

P pxq “ P2pxq
2 P3pxqP4pxq

4, (2.17)
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where g « .549472´ .67565i is an algebraic number satisfying

g4
` g3

` 9g2
´ 10g ` 8 “ 0. (2.18)

The map C Q x ÞÑ P pxq P C is a degree-23 branched cover which is unramified over the

twice-punctured plane U “ C z t0, τu, where

τ “ p238317
{233

qp47323g3
´ 1084897g2

` 7751g ´ 711002q (2.19)

is a complex number whose modulus is on the order of 1021. In principal, to compute

the Galois/monodromy group of the branched cover x ÞÑ P pxq we only need to carefully

track small loops around the ramification points 0 and τ. However, these equations are

poorly-scaled—for instance, evaluation of P pxq at random points in the complex unit

circle typically results in complex numbers of modulus « 1020, creating problems for most

homotopy continuation software packages in their default settings.

To remedy the poor scaling, we define

Qipxq “ Pipxq{103, i “ 2, 3, 4

Qpxq “ Q2pxq
2Q3pxqQ4pxq

4.
(2.20)

With this normalization, the ramification points of x ÞÑ Qpxq become 0 and τ{1021 «

´.165 ` 2.29i. Rather than tracking loops around these points, we perform an experi-

ment that shows how we can compute the Galois/monodromy groups by tracking ran-

dom loops in a higher-dimensional parameter space. We define a family of systems

f ppX, Y, gq; pa, b, c, d, eqq as follows:

f1 ppX, Y, gq; pa, b, c, d, eqq “ g4
` g3

` 9g2
´ 10g ` 8

f2 ppX, Y, gq; pa, b, c, d, eqq “ aQpX{Y q ` b

f3 ppX, Y, gq; pa, b, c, d, eqq “ cX ` dY ` e.

(2.21)

Here, the last equation is a parametric chart on the projective line P1 with homogeneous

coordinates rX : Y s “ rx : 1s, and the first equation is chosen for the convenience
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x

Q2pxq Q3pxq Q4pxq

Q2pxq
2 ¨Q3pxq Q4pxq

2

Q4pxq
4

Qpxq

Figure 2.5: Schematic straight-line program that computes Qpxq.

of working with a system defined over Q. In Equation 2.21 we have also emphasized

that the second equation can be evaluated using straight-line programs implemented in

the package SLPexpressions. The straight-line program for Qpxq is depicted in Fig-

ure 2.5. This allows us to use fewer floating-point evaluations compared to Horner-like

schemes used for polynomials in their dense coefficient representations. To seed the func-

tion monodromySolve, we fix g0 « .549472´ .67565i, draw X0, Y0 randomly from the

complex unit circle, and sample initial parameters pa0, b0, c0, d0, e0q by computing a random

vector in the kernel of the matrix dpa,...,eq f ppX0, Y0q; pa0, . . . , e0qqq via SVD. Despite better

scaling, the problem remains poorly conditioned, so we use conservative tracking tolerances:

• CorrectorTolerance => 1e-8

• tStepMin => 1e-12

• Precision => 100

• maxCorrSteps => 1

With these settings, we ran Algorithm 2 on graphs with increasing Betti number. The

non-seed vertices had parameters pa, b, c, d, eq drawn randomly from the complex unit circle.
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#V pGq #EpGq β1pGq % M23 % C4

2 10 9 50 % 50 %
3 10 28 70 % 30 %
4 10 57 100 % 0 %

Table 2.4: Estimated probability of generating M23 with random loops in C5.

Edges were randomized by mapping each endpoint pa, b, c, d, eq to pγ1a, γ1b, γ2c, γ2d, γ2eq

for γ1, γ2 chosen randomly from the complex unit circle. Table 2.4 shows the results of 10

runs on a homotopy graph with 2, 3, 4 vertices and 10 edges between every pair of them.

Typical runs for 3 and 4 vertices took around 30 and 60 seconds, respectively. In all cases,

the group returned by Algorithm 2 is typically either M23 or the cyclic group C4 acting on

only 4 discovered solutions. A uniform model of randomization suggests that 9 random

elements of M23 generate the group with very high probability. Indeed, this can be checked

by direct simulation in GAP [45]:

G:=MathieuGroup(23);

Length(Filtered(List([1..10000],i->Group(List([1..9], \

i->Random(G)))=G), b -> b)); # typically 1000

Table 2.4 shows that the uniform model is very far off. Still, by increasing the Betti number

we are gradually able to boost the chances of computing the whole group.

2.4.3 A problem from kinematics

We now move on to an optimization problem from kinematic design. In [14], the authors

design planar mechanisms with polar linkages. For fixed values l P R and b1, b2, b3 P R2,

the mechanism starting in an initial configuration q P R2 will sweep out a generator curve

that meets certain technical design requirements. To enforce these design requirements,

points d1, . . . ,dN are sampled from the generator curve such that the loop equations

l ´ ‖dj ´Rk,jq ´ bk‖2 “ 0 are all as close to zero as possible for k P t1, 2, 3u and j P

t1, . . . , Nu. For given parameters pRk,jq
p3,Nq
p1,1q and pdjqNj“1, a mechanism that approximately
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meets the design requirements can be found by optimizing the function

f pb1, b2, b3, q, l; pRk,j, djq “

p3,Nq
ÿ

pk,jq“p1,1q

l ´ ‖dj ´Rk,jq´ bk‖2. (2.22)

In the above, the notation ‖¨‖2 means the quadratic form on C2 that restricts to the usual

norm on R2. To find the optimum for given parameters, it is sufficient to solve for all of the

critical points, which satisfy a square system in the 9 unknowns:

db1 f “ db2 f “ db3 f “ fdq f “ dl f “ 0. (2.23)

This system, independently of N, has a BKK bound of 6, 561, and the authors report

a root count 1, 253. We validate the reported root count by taking N “ 4 and using

MonodromySolver.

To do monodromy, the usual rational parametrization for the rotation parameters is a

natural choice:

Rk,jptk,j, uk,jq “ pt
2
k,j ` u

2
k,jq

´1

¨

˝

t2k,j ´ u
2
k,j ´2tk,juk,j

2tk,juk,j t2k,j ´ u
2
k,j

˛

‚. (2.24)

Unfortunately, this led to unstable monodromy runs with the default settings—some nodes

collected 1, 257 solutions, while others collected 1, 253. To explain this discrepency, we

consider Equation 2.23 as parametrized by un-normalized rotations.

Rk,jptk,j, uk,jq “

¨

˝

t2k,j ´ u
2
k,j ´2tk,juk,j

2tk,juk,j t2k,j ´ u
2
k,j

˛

‚. (2.25)

With this parametrization, we are able to reliably compute 1, 257 critical points on 4 vertices

of a complete graph with no multiple edges, using the standard tracker settings. Each

run takes about 10 minutes, in serial, which seems to compare favorably to the timing

of 3 minutes real time with 192 cores for the case N “ 7 reported in [14]. Once the

monodromy run is finished, we run a parameter homotopy for Equation 2.23 with starting

parameter values of the form in Equation 2.25 to target parameter values of the form
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in Equation 2.24. We find that 4 paths seem to go off to infinity, bringing us into agreement

with the results of [14]. To explain the discrepency from before, we note that rounding

errors have the potential to make a system parametrized by Equation 2.24 look like a system

parametrized by Equation 2.25. This leads to path-jumping much like we saw in Example 6,

and underscores the fact that careful attention to the numerics may be needed for solving

non-trivial problems like the system of Equation 2.23.

2.4.4 Pseudowitness sets

In numerical algebraic geometry, an irreducible variety X Ă Cn is represented by its

intersection with a generic linear space L of complementary codimension. This is an

effective representation of X in the sense that it allows for a membership test. To test a query

of the form x P X, one can use a homotopy X X L X X Lx, where Lx is a genric linear

space through x, and simply determine whether or not x is one of the endpoints reached

from some point in X XL (cf. [103, Ch. 13, 15] and [16, Ch. 8,16].) It is easy to implement

such a homotopy method when equations vanishing on X are known—this leads to the

notion of witness sets, which are the main data structures in numerical algebraic geometry.

In other cases, we might only know X parametrically, say as the closed image of a rational

map X “ im Ψ where Ψ : Ck 99K Cn. The term pseudowitness set has been used in several

previous works [27, 60, 61] used to distinguish the parametric case.

Membership tests as described above can be applied to the invariant-theoretic problem of

determining whether or not two algebraic curves are equivalent under some algebraic group

action. This was the subject of the author’s recent joint work with Ruddy [37]. The connec-

tion between pseudowitness sets and invariant theory is made through so-called signature

maps. These signature maps originate from Cartan’s method of moving frames [26] and have

inspired a sizeable literature on the group-equivalence problem for smooth manifolds (see

eg. [42].) More recently, signatures have been considered in the algebraic setting [69]. We de-

scribe two signature maps for the action of the Euclidean group ECp2q ñ C2 by rotation and

translation. If C : F px, yq “ 0 is an irreducible curve in C2, we let yp1qC “ yx, y
p2q
C “ yxx, . . .
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denote the implicit derivatives of y with respect to x. The map

ΨC : C 99K C2

px, yq ÞÑ

˜

y2
xx

p1` yxq3
,
pyxxxp1` yxq

2 ´ 3yxyxxq
2

p1` yxq6

¸

is called the differential signature map associated to C. The coordinate functions of ΨC

can be interpreted as the square of curvature and its derivative with respect to arc-length.

The Zariski closure of the image of ΨC is called the differential signature, which we

denote SC . The map is classifying in the sense that C1 and C2, besides certain exceptional

cases, are ECp2q-equivalent if and only if SC1 “ SC2—see [69, Theorem 2.37]. Thus,

the homotopy membership test can be applied, in principal, to get a probabilistic test of

ECp2q-equivalence of curves—similarly for other matrix groups acting linearly on C2, with

the appropriate signature map. To implement this test, we need to compute a pseudowitness

set for one of the SCi . This is where monodromy comes into play—by moving the blue line

in Figure 2.6 in and out of place with monodromy loops, we can compute all of the points in

the pseudowitness set for the signature curve. Stopping criteria are quite easy for generic C

of degree d, since we have degSC “ 12 dpd´ 1q [69, Theorem 4.13]. Sample timings for

computing these pseudowitness sets are in Figure 2.6. We note that, for C of degree d, the

rational functions defining ΨC typically involve polynomials of degree 6pd´ 2q. Already

for d “ 4, 5, 6, this bodes poorly for the numerics if these rational functions are evaluated

naively. Fortunately, there is a natural straight-line program structure as in the Example

of subsection 2.4.2, thanks to the following recursion:

y
p1q
C “

´Bx F

By F
and y

pk`1q
C “ Bx y

pkq
C ` By y

pkq
C y

p1q
C .

Another type of signature map is the so-called Euclidean joint signature map

C ˆ C ˆ C ˆ C ÞÑ C6

ppxi, yiqq
4
i“1 ÞÑ

`

pxi ´ xjq
2
` pyi ´ yjq

2
˘

1ďiăjď4
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Figure 2.6: Two ECp2q-equivalent curves and their differential signature in red. Where red
meets blue, we get the points defining a witness set for the signature curve.

d degS time (s) degJ time (s) dege1 J time (s) dege2 J time (s)
2 6 0.3 42 4 24 2 26 2
3 72 2 936 33 576 17 696 16
4 144 9 3024 139 1920 57 2448 87
5 240 21 7440 463 4800 206 6320 276
6 360 55 15480 1315 10080 748 13560 791

Figure 2.7: Degrees and monodromy timings for differential and joint signatures.

whose closed image JC we call the joint signature. The Euclidean joint signature is typically

a four-fold, and like the differential signature it is classifying for the group action. Equations

of the joint signature map are much less complicated, but the size of witness sets are

much larger. Figure 2.7 gives degrees and monodromy timings for the witness sets of the

generic joint signature. We also considered multiprojective witness sets [58, 56], obtained

by coordinates slices fixing some di,j . There are two combinatorial types, indexed by lattice

vectors e1 “ p1, 1, 1, 1, 0, 0q and e2 “ p0, 1, 1, 1, 1, 0q inside of a certain polymatroid base

polytope (see [56, Sec. 2] for details.) These computations allowed the authors of [37]

to compare differential and joint signatures experimentally for the application to group

equivalence described above. They also led to the following conjecture:

Conjecture 2.4.1. Let Id denote the Euclidean joint signature for a generic plane curve of

degree d. For d ě 3:

deg Id “ 12dpd3
´ 1q

dege1 Id “ 8d2
pd2
´ 1q

dege2 Id “ 4dpd´ 1qp3d2
` d´ 1q.
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CHAPTER 3

VISION

Figure 3.1: Digram of a pinhole camera with principal point p0, 0q and focal length 1.

In this chapter, we apply the framework developed in the previous chapter to novel

problems originating from the subject of multiview geometry. This is a sub-field of computer

vision which studies the contraints placed on some number of cameras that see objects

in a 3D world, as well as algorithms for recovering the cameras and 3D geometry. We

give a few definitions and a condensed overview of the subject in section 3.1, giving

particular attention to minimal problems which appear in RANSAC-based reconstruction.

In section 3.2 and section 3.3, we summarize the main results of the papers [34] and [35].

We also spell out some of the nitty-gritty in the monodromy computations done in these

works.
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3.1 Preliminary notions

3.1.1 What is a camera?

We begin with a rapid summary of concepts in geometric computer vision. More details

can be found in several standard texts [53, 85, 83]. Our starting point is the pinhole cam-

era model, illustrated in Figure 3.1. Here, a real-life camera is modeled as projection

through a point in space onto a plane. The center of projection is an idealized lens, through

which rays of light pass to form an image. The coordinates of our camera frame are cho-

sen so that the center of projection is the origin and so that the image plane is given by

H “ tpX, Y, Zq P R3 | Z “ 1u. We remark that our choice of coordinates implies that two

world points which differ by sign pX, Y, Zq, p´X,´Y,´Zq P R3 will produce the same

image in R2.

The equations of a world-to-image map for this camera, which can be derived algebraically

or using similar triangles, are as follows:

R3 99K H

pX, Y, Zq ÞÑ pX{Y, Y {Z, 1q
(3.1)

This map is non-linear, and undefined when Z “ 0. However, it can be better understood

through the lens of projective geometry. In this approach, each point in the image is

naturally identified with the light-ray that passes through it—-a line through the origin in

R3. There are also exceptional light-rays where the map Equation 3.1 is undefined. These

exceptional lines in space correspond to “vanishing points" where two parallel lines in

our image meet. The projective space P2 is the space of all lines through the origin in

R3. Using homogeneous coordinates on P2, we may rewrite our image coordinates as

rX{Y : X{Z : 1s “ rX : Y : Zs. In doing so, we obtain a projective-linear map from the

world to the image

P3 99K P2

rX : Y : Z : W s ÞÑ rX : Y : Zs
(3.2)
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which is defined for all world points except the camera center r0 : 0 : 0 : 1s. Equivalently,

the map is given by the camera matrix

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

˛

‹

‹

‹

‚

.

A more general camera matrix has the form K rR | ts where

K “

¨

˚

˚

˚

˝

αx s x0

0 y y0

0 0 1

˛

‹

‹

‹

‚

is the so-called calibration matrix and rR | ts P SERp3q is a 3 ˆ 4 matrix in the special

Euclidean group giving the relative orientation between the world and camera frame. The

parameters can be understood as follows: αx and αy measure the focal length (that is, the

distance from the camera center to the plane) in terms of the pixel dimensions in x and y

directions of the image, x0 and y0 give the principal point (the center of the image), and s is

a skew parameter. Almost any 3ˆ 4 matrix can be written as K rR | ts up to scale. In this

chapter, we consider problems where the calibration matrix is known a priori and invertible.

3.1.2 What is a minimal problem?

In various applications, the information provided by multiple cameras must be combined.

These applications may involve very intensive computation (eg. building 3D models of

cities from large collections of photos [1]) or have strict real-time requirements (eg. multi-

camera systems for 360˝ field-of-view on an autonomous vehicle [51].) A common thread

throughout these applications is that the data in images are noisy. Even worse, the heuristic

nature of algorithms for matching features between images can result in non-negligible

amount of mislabeled data, commonly known as outliers. For example, a common task is to

estimate the relative orientation between two cameras given many point correspondences

between pairs of corresponding points px1,y1q, . . . , pxm,ymq P P2
R ˆ P2

R. If the calibration
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matrices for both cameras are known, we may make the simplifying assumption that the

frame of the first camera is equal to the world frame, and normalize each image points by

pre-multiplying by the inverse of its calibration matrix. Thinking of each xi,yi as a 3ˆ 1

matrix with last coordinate “ 1 (ie. in the affine chart Z “ 1q), we get point correspondence

equations

βi yi “ R pαixiq ` t (3.3)

where α1, . . . , αm, β1, . . . , βm are the the unknown depths of the points in the first and

second camera. For this problem, outliers are mismatched pairs pxi,yiq which do not

correspond to a common world point seen by both cameras.

The prevalence of outliers calls for robust estimation techniques, among which heuristics

based on RANSAC (RANdom SAmpling and Consensus) [43] have been ubiquitous in

computer vision. The basic idea of RANSAC is to sample m point correspondences at

random and solve Equation 3.3 for rR | ts P SORp3q until an outlier-free subset is detected

by comparison against the rest of the data. Suppose that w P r0, 1s is the fraction of inlier

correspondences; how long must we wait to get an outlier-free sample with probability

δ “ .95? Since, the probability of waiting ě k trials is p1´ w´mqk, we may expect

k “ logp1´ δq{ logp1´ w´mq « 3wm

iterations are needed. The implications for RANSAC are clear: the sample-size m should

be as small as possible, and a minimal solver for Equation 3.3 should run as fast as possible.

These needs are amplified within structure-from-motion systems, which use many RANSAC

runs to obtain initial pose estimates between many cameras, which are later refined with

nonlinear least-squares (see eg. [98, 1, 100, 11].)

Minimal problems and minimal solvers are an active area of research in computer vision—

see eg. [71, 75, 76, 72, 4]. Many minimal solvers are constructed via an offline/online phase

analogous to the use of parameters homotopies described in the introduction. However,

most minimal solvers are based on Gröbner bases and resultants; for use in RANSAC, the

target runtime of a minimal solver is typically on the order of micro-seconds. Despite their

successes, these techniques are typically limited to problems of low degree (ă 100.)
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Figure 3.2: Recovering cameras from point-line incidences, taken from [40].

In work with Fabbri et al. [40], the author helped to develop a homotopy-based minimal

solver for a novel minimal problem of degree 312. This problem, nicknamed the “Chicago

problem”, is motivated by the failure of structure-from-motion pipelines on textureless

scenes where few point-point correspondences are available, such as in Figure 3.2. Feature

detectors such as SIFT (Scale-Invariant Feature Transform [82]) are designed to detect both

a point and an orientation in each image. The SIFT orientation is effectively a line incident

to the detected point, and a line-line-line correspondence between three cameras constraints

the 3D geometry.

Although too slow for immediate use in RANSAC (« 1s per run), the solver developed

for the Chicago problem showed that homotopy continuation is a promising tool for solving

solving minimal problems of higher degree and with more than two cameras. The offline

solver used was MonodromySolver, and the formulation for the final solver is the same

as will be discussed for the other point-line minimal problems treated in this chapter.
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3.2 Point-line minimal problems with complete visibility

In this subsection, we classify minimal problems for relative pose estimation in which a

configuration of points and lines is observed by any number of calibrated cameras. There

are 30 such minimal problems for m “ 2, 3, 4, 5, or 6 cameras, subject to the assumption

that every entity (point, line, or incidence) that occurs in the world is seen in every camera.

We call this assumption complete visibility. We compute the degrees of such problems for

m “ 2, 3, 4, and 5 using monodromy. For m “ 2, 3, these computations agree with the

answers obtained by symbolic computation (Gröbner bases.) In fact, the monodromy runs

helped us discover a bug in an older version of the symbolic code which resulted in incorrect

degrees for certain problems.

The point-line problems we classify share a common encoding, pp, l, I,mq, where

• p denotes the number of world points observed in each image

• l denotes the number of lines observed in each image

• I Ă t1, . . . , pu ˆ t1, . . . , lu is an incidence relation which must be satisfied for all

points and lines in the world (and hence also in the images.) Points and lines in each

image are indexed so that, for cameras Pv and Pv1 , every pair of corresponding points

that they see has the form xv,i, xv1,i, (respectively in the case of lines: `v,j, `v1,j.) Thus,

if pi, jq P I, this means that xv,i P `v,j for all v “ 1, . . .m, where m is the number of

cameras/images.

In this setup, we may easily model lines in space which intersect by requiring that each

intersection point of two lines has to be one of the p points in the point-line problem. We

shall assume that the incidence relation I is realizable as the set of incidences of some

collection of points and lines in P3. Thus, two distinct lines cannot be incident to the same

two distinct points. In addition, we will always assume that the incidence relation I is

complete in the sense that every incidence which is automatically implied by the incidences

in I must also be contained in I.

A point-line arrangement in space consists of p points X1, . . . , Xp and l lines L1, . . . , Ll

in P3 which are incident exactly as specified by I Ă t1, . . . , pu ˆ t1, . . . , lu. Hence, the
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point Xi is on the line Lj if and only if pi, jq P I. We write

Xp,l,I “
!

pX,Lq P
`

P3
˘p
ˆ pG1,3q

l
| @pi, jq P I : Xi P Lj

)

for the associated variety of point-line arrangements. Note that this variety also contains

degenerate arrangements, where not all points and lines have to be pairwise distinct or where

there are more incidences between points and lines than those specified by I.

Let us now consider a generic point-line arrangement in Xp,l,I . We partition the set

of points into independent and depdendent points, where a dependent point lies on a

line spanned by two independent points, such that the number of independent points is

minimal. We write pf and pd “ p´ pf for the number of independent and dependent points,

respectively (the upper index f stands for free). Each free point is defined by three parameters.

A dependent point X is only defined by one further parameter after the two points, which

span the line containing X , are defined. In total, the p points in our arrangement are defined

by 3 pf ` pd parameters. Each of the l lines in our arrangement is either incident to zero,

one or at least two points. We refer to lines which are incident to no points as free lines. We

denote the number of free lines by lf . As the Grassmannian G1,3 of lines is four-dimensional,

each free line is defined by four parameters. A line which is incident to a fixed point is

defined by only two parameters. We denote the number of lines which are incident to exactly

one point by la (the upper index a stands for adjacent). Finally, each of the remaining

l ´ lf ´ la lines is incident to at least two points and thus already uniquely determined by

the two points. Hence, we have derived

dimpXp,l,Iq “ 3 pf
` pd

` 4 lf ` 2 la. (3.4)

In particular, we see that we might as well assume that there is no line passing through two

or more points, as such lines do not contribute to our dimension count. Indeed, we would

get no new minimal problems up to birational equivalence if we relaxed this condition. We

also note that Xp,l,I admits a rational parametrization and thus is irreducible.
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The space of inputs/data for a point-line problem is defined analagously to Xp,l,I :

Yp,l,I,m “
!

px, `q P
`

P2
˘mp

ˆ pG1,2q
ml

ˇ

ˇ

ˇ
@v “ 1, . . . ,m @pi, jq P I : xv,i P `v,j

)

for the image variety, which consists of all m-tuples of two-dimensional point-line arrange-

ments which satisfy the incidences specified by I.

We derive the dimension of the image variety Yp,l,I,m similarly. Since we assume all

camera positions to be sufficiently generic, each camera views exactly pf independent points,

pd dependent points, lf free lines and la lines which are incident to exactly one of the points.

Each independent point is defined by two parameters, whereas each dependent point is

defined by a single parameter. A free line is defined by two parameters. A line which is

incident to a fixed point is defined by a single parameter. All in all, we have that

dimpYp,l,I,mq “ m p2 pf
` pd

` 2 lf ` laq. (3.5)

There are two inherent ambiguities in recovering calibrated camera matrices rR1 |

t1s, . . . , rRm | tms P SECp3q from data in images. The first is arbitrary choice of a

Euclidean coordinate system for the world C3. The second is the ability to “re-scale the

world”: if Xi P C3 and xi P C2 are such that

´

Rk | tk

¯

¨

˝

Xi

1

˛

‚„

¨

˝

xi

1

˛

‚, k “ 1, . . . ,m,

then also for any c P C we have

´

Rk | c tk

¯

¨

˝

cXi

1

˛

‚„

¨

˝

xi

1

˛

‚, k “ 1, . . . ,m,

To fix the first ambiguity, we assume the world frame and the frame of the first camera

coincide. To fix the second ambiguity, we may assume for generic data that the first
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coordinate of t2 equals 1. Thus, we define the space of calibrated camera configurations as

Cm “

$

’

’

’

&

’

’

’

%

pP1, . . . , Pmq P SECp3q

ˇ

ˇ

ˇ

ˇ

P1 “

¨

˚

˚

˚

˝

1 0 0 0

0 1 0 0

0 0 1 0

˛

‹

‹

‹

‚

, P2 “

¨

˚

˚

˚

˝

˚ ˚ ˚ 1

˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˛

‹

‹

‹

‚

,

/

/

/

.

/

/

/

-

. (3.6)

We have quite easily that dim Cm “ 6m´ 7.

The joint camera map Φp,l,I,m : Xp,l,I ˆ Cm 99K Yp,l,I,m sends a point-line arrangement

in space and m cameras to the resulting joint image.

Definition 3.2.1. We say that the point-line problem pp, l, I,mq is minimal if the joint

camera map Φp,l,I,m : Xp,l,I ˆ Cm 99K Yp,l,I,m is a branched cover.

The degree of the minimal problem specified by pp, l, I,mq is defined to be the degree

of its joint camera map. In order to be a minimal problem, it is necessary that the 3D degrees

of freedom be equal to the number of constraints implied by the 2D data. More precisely,

Definition 2.1.1 requires that the tuple pp, l, I,mq be balanced in the following sense.

Definition 3.2.2. pp, l, I,mq is balanced if dimpXp,l,I ˆ Cmq “ dimpYp,l,I,mq.

We can easily list all balanced point-line problems for any particular m by counting

dimensions. As it turns out, there are only finitely many balanced problems for all m.

These are given explicitly in Table 3.1, up to the addition of an arbitrary number of line

correspondences for m “ 2 (see Remark 3.2.6.)

To weed out the non-minimal balanced problems, it is enough to compute the Jacobian

of Φp,l,I,m in local coordinates around a generic px, cq P Xp,l,I ˆ Cm and check whether or

not it is invertible for each problem pp, l, I,mq. As a result, it is easy to check which of the

balanced problems appearing in Table 3.1 are actually minimal.

3.2.1 Balanced Point-Line Problems

To enumerate balanced problems, we use the dimension counts from the previous section.

Note that there is no balanced point-line problem for a single camera. For m ą 1 cameras,

combining dimpCmq “ 6m´ 7 with Equation 3.4 and Equation 3.5 yields that a point-line
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Table 3.1: All balanced point-line problems, modulo adding arbitrarily many lines to the
problems with 2 views. Each picture gives the combinatorial type of point-line incidences
I in both the world and in image correspondences. Degrees are listed for the minimal
problems. Degrees marked with ˚ were only computed using monodromy, whereas the
others were verified using both monodromy and Gröbner bases.

6 6 6 5 5 5 4 4 4 4 4 4 4

ą 180k˚ 11296˚ 26240˚ 11008˚ 3040˚ 4512˚ 1728˚ 32˚ 544˚

4 3 3 3 3 3 3 3 3 3 3 3 3

544˚ 360 552 480 264 432 328 480 240 64 216
3 3 3 3 3 3 3 3 2 2 2 2 2

312 224 40 144 144 144 64 20 16 12

problem is balanced if and only if

3 pf
` pd

` 4 lf ` 2 la ` 6m´ 7 “ m
`

2 pf
` pd

` 2 lf ` la
˘

.

This is equivalent to

6m´7“p2m´3qpf
`pm´1qpd

`2pm´2qlf`pm´2qla. (3.7)

Lemma 3.2.3. Every balanced point-line problem with at least five points has exactly two

cameras.

Proof. Suppose pp, l, I,mq is a balanced point-line problem with m ą 1 cameras and at

least five points, i.e. pf ` pd ě 5. In this case, the equality Equation 3.7 implies

6m´7 ě p2m´3qpf
`pm´1qp5´pf

q“ppf
`5qm´p2pf

`5q,

which is equivalent to

2ppf
´ 1q ě ppf

´ 1qm. (3.8)
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Among the five or more points at least two have to be (by definition) independent, i.e. pf ą 1.

So Equation 3.8 yields m ď 2.

Theorem 3.2.4. There is no balanced point-line problem with seven or more cameras.

Proof. Let pp, l, I,mq be a balanced point-line problem with m ě 7 cameras. By equal-

ity Equation 3.7, we have

5 ” pf
` pd mod pm´ 2q. (3.9)

This implies pf ` pd ě 5 if m ě 8, which contradicts Lemma 3.2.3, and thus we have

only one remaining case to check: m “ 7. From Equation 3.9 and Lemma 3.2.3, we have

pf ` pd “ 0 in the case of seven cameras. It means that there are no points, and thus

there cannot be lines which are incident to points. So we have pf “ 0, pd “ 0, la “ 0,

and Equation 3.7 reduces to 35 “ 10lf , which is clearly not possible. So there are no

balanced point-line problems with seven or more cameras.

Theorem 3.2.5. There are 34 balanced point-line problems with 3, 4, 5 or 6 cameras. They

are all listed in Table 3.1.

Proof. We consider the different cases for 3 ď m ď 6 and reason by cases.

‚ m “ 6: Due to Equation 3.9 and Lemma 3.2.3, every balanced point-line problem

with six cameras must have exactly one point. So we have pf “ 1, pd “ 0, and Equation 3.7

reduces to 5 “ 2lf ` la. This gives us three possibilities: plf , laq P tp2, 1q, p1, 3q, p0, 5qu (see

first row of Table 3.1).

‚m “ 5: Due to Equation 3.9 and Lemma 3.2.3, every balanced point-line problem with

five cameras must have exactly two points. So we have pf “ 2, pd “ 0, and Equation 3.7

reduces to 3 “ 2lf ` la. This gives us two possibilities: plf , laq P tp1, 1q, p0, 3qu, which yield

three point-line problems (see the first row of Table 3.1).

‚ m “ 4: Due to Equation 3.9 and Lemma 3.2.3, every balanced point-line problem

with four cameras must have either one point or three points. Let us first consider the

case of a single point. Here we have pf “ 1, pd “ 0, and Equation 3.7 reduces to

6 “ 2lf ` la. This gives us four possibilities: plf , laq P tp3, 0q, p2, 2q, p1, 4q, p0, 6qu (see first
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row of Table 3.1). Secondly, we consider balanced point-line problems with four cameras

and three points. If all three points are independent, Equation 3.7 reduces to 1 “ 2lf ` la,

which has a single solution: plf , laq “ p0, 1q. If not all three points are independent, we have

pf “ 2, pd “ 1, and Equation 3.7 reduces to 2 “ 2lf ` la. This gives us two possibilities:

plf , laq P tp1, 0q, p0, 2qu, which yield three point-line problems (see the first two rows

of Table 3.1 for all four point-line problems with four cameras and three points).

‚ m “ 3: We first observe that each balanced point-line problem with three cameras

must have at least one point. Otherwise we would have pf “ 0, pd “ 0 and la “ 0,

so Equation 3.7 would reduce to 11 “ 2lf , which is impossible. Let us first consider the case

of a single point. Here we have pf “ 1, pd “ 0, and Equation 3.7 reduces to 8 “ 2lf ` la.

This gives us five possibilities: plf , laq P tp4, 0q, p3, 2q, p2, 4q, p1, 6q, p0, 8qu (see second row

of Table 3.1). Secondly, in the case of two points, we have pf “ 2, pd “ 0, and Equation 3.7

reduces to 5 “ 2lf ` la. This gives us three possibilities: plf , laq P tp2, 1q, p1, 3q, p0, 5qu,

which yield six point-line problems (see second row of Table 3.1). Thirdly, we consider the

case of three points. If all three points are independent, Equation 3.7 reduces to 2 “ 2lf ` la.

The two solutions plf , laq P tp1, 0q, p0, 2qu yield three point line problems (see last two

rows of Table 3.1). If not all three points are independent, we have pf “ 2, pd “ 1,

and Equation 3.7 reduces to 3 “ 2lf ` la. The two solutions plf , laq P tp1, 1q, p0, 3qu yield

four point-line problems (see last row of Table 3.1). Finally, we consider balanced point-line

problems with three cameras and four points. We see from Equation 3.7 that not all four

points can be independent. Hence, we either have pf “ 3 and pd “ 1 such that Equation 3.7

reduces to 0 “ 2lf ` la, which has a single solution plf , laq “ p0, 0q, or we have pf “ 2 and

pd “ 2 such that Equation 3.7 reduces to 1 “ 2lf ` la, which also has a single solution

plf , laq “ p0, 1q (see the last row of Table 3.1)

Remark 3.2.6. For the case of two cameras, we see from Equation 3.7 that the number

of free and incident lines do not contribute to the dimension count for balanced point-line

problems. In fact, Equation 3.7 reduces for m “ 2 to 5 “ pf ` pd. Hence, we have

the classical minimal problem of recovering five points from two camera images. More

precisely, a point-line problem with two cameras is balanced if and only if it has five points.

Therefore, it is irrelevant how many lines are contained in the arrangement or how many
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points are independent. There are 5 combinatorial possibilities to distribute dependent and

independent points (see the last row of Table 3.1).

Corollary 3.2.7. There are 39 balanced point-line problems, modulo any number of lines

in the case of two views. They are listed in Table 3.1.

3.2.2 Eliminating world points and lines

Having reduced the classification of minimal problems to finitely many candidates, it remains

to check which balanced point-line problems are minimal. In order to do computations, it is

customary to describe problems with implicit equations that do not depend on the world

variables. Before we describe such equations, let us phrase the elimination of the world

variables geometrically.

We consider the graph of the joint camera map: that is, the incidence variety

Inc “ tpX,C, Y q P Xp,l,I ˆ Cm ˆ Yp,l,I,m | Y “ Φp,l,I,mpX,Cqu.

The joint camera map Φp,l,I,m is birationally equivalent to the map πY : Inc Ñ Yp,l,I,m
obtained by projection onto the last factor. We may also consider a restricted incidence

variety which does not include the 3D structure Xp,l,I :

Inc1 “ tpC, Y q P Cm ˆ Yp,l,I,m | DX P Xp,l,I : Y “ Φp,l,I,mpX,Cqu.

We have a diagram

Inc Yp,l,I,m

Inc1

πY

πC,Y
π1Y

where πC,Y omits the first factor and π1Y projects onto the last factor. Our assumption

of complete visibility implies that, when m ě 2, the branched covers πY and πC,Y are

birationally equivalent. Indeed, letting Y “ px, `q consist of points x “ px1,1, . . . , xm,pq

and lines ` “ p`1,1, . . . , `m,lq in the m views. Each point xv,i P P2 in a view v is pulled

back via the v-th camera to a line in 3-space. As m ě 2, the m pull-back lines for generic
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Figure 3.3: Transforming a point-line arrangement to an arrangement of visible lines.

x1,i, . . . , xm,i intersect in a unique point in P3. Similarly, each line `v,j in a view v is pulled

back via the v-th camera to a plane in P3. As m ě 2, the m generic pull-back planes for

`1,j, . . . , `m,j intersect in a unique line in P3.

Computationally, working with the branched cover πY is easier than πC,Y or Φp,l,I,m,

since there are fewer variables. To describe implicit equations vanishing on Inc1, it is also

convenient to reparametrize Y solely in terms of lines.

We consider two types of constraints. The first type of constraint is a line correspondence

constraint: if `1, . . . , `m are images of the same world line, with respective homogeneous

coordinates l1, . . . , lm P C3ˆ1, then

rk
”

P T
1 l1 P T

2 l2 . . . P T
mlm

ı

ď 2. (3.10)

That is, the planes with homogeneous coordinates P T
i li share a common line in P3. We

distinguish two classes of lines in P2 :

(1) Visible lines define valid line correspondences. Besides ml observed lines in the

joint image, for generic x there is a unique visible line between any two observed points.

Taken across all views, any pair of points thus provides a line correspondence which must

be satisfied. This scheme is illustrated for the Chicago problem in Figure Figure 3.3

(2) Two generic visible lines suffice to define a point. We may use an additional set of

non-corresponding ghost lines to define any points which are incident to fewer than two

visible lines. A generic ghost line contains exactly one observed point, and is not constrained

by a line correspondence constraint. It is simply a device for generating equations.

Thus, from both visible and ghost lines, we obtain common point constraints: given
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visible and ghost lines lv,1, . . . lv,ki which meet xv,i, the projection of the i-th point in the

view v P 1, . . . ,m, we must have

rk
”

P T
1 l1,1 . . . P T

mlm,ki

ı

ď 3, i “ 1, . . . , p. (3.11)

Assuming that pp, l, I,mq is a minimal problem, line correspondences and common

point constraints give a well-constrained system for the branched cover π1Y : Inc1 Ñ Yp,l,I,m.

Moreover, it is easy to sample Inc1 by first sampling Inc (fabricating a scene and cameras)

and then projecting. Thus, the two essential ingredients for running Algorithm 2 are in

place. Surprisingly, these equations may cut out a variety with multiple components besides

the geometrically relevant Inc1 in certain cases. We discovered this phenomenon for the

2-camera minimal problems , (both degenerate cases of the five-point problem)

and the 3-camera problem . Computing the number of solutions to these equations for

random data using Gröbner bases resulted in a higher degree than achieved by monodromy.

The explanation is that each of these problems has “parasitic solutions” which satisfy

Equation 3.10 and Equation 3.11, but are not points in the fibers of π1Y . For instance, for the

problem these equations generically have 80 solutions in camera matrices—however, 16

of these solutions are such that the three recovered camera rays mapping to an observed point

with four incidences coincide—in other words, the solution reconstructed from three point

correspondences is actually a line! Likewise, there are 4 and 8 excess solutions in camera

matrices, respectively, for the problems , . When lifted to the world, the resulting

points are not in the desired configuration. In symbolic Gröbner basis computation, these

geometric anomalies can be removed by saturating out an appropriate ideal of non-maximal

minors from the rank-constrained common line and common point matrices. When using

monodromy, they are naturally avoided.

3.2.3 Monodromy of point-line problems

In this section, we provide details on how the numerical computations are set up. Each of

the degree computations for m “ 2, 3, 4, 5 cameras all terminated in a matter of hours or

less, using MonodromySolver on a laptop machine with 16 GB RAM and a maximum
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clock rate of 3.5 GHz. The minimum criterion used for a successful monodromy run was

node consensus—if the number of solutions known at two different nodes is different, we

declare that the monodromy run failed and have to start over. For m “ 2, 3, the degrees

obtained by monodromy were validated using Gröbner bases. For m “ 4, 5, the degrees

we report were obtained consistently from several runs with different random seeds, using

a graph with two nodes and four edges and the endpoint randomization scheme described

below. For m “ 6, the computation ran for days, encountering memory issues and failing to

result in node consensus. For the problems of higher degree, we found it necessary to use

more conservative path-tracking tolerances (eg. MaxCorrectorSteps => 2 instead of

the default 3, tStepMin => 10´8 instead of the default 10´6.)

Each of the rotation matrices R2, . . . ,Rm was represented using the rational quaternion

parametrization of P3 99K SOCp3q. Letting rw : x : y : z :s be homogeneous coordinates on

P3, we have

R “ pwI´ rpx, y, zqsˆqpwI`´rpx, y, zqsˆq
´1.

Together with the translation vectors t2, . . . , tm, we construct for each point-line problem a

polynomial system of equations in 7 pm ´ 1q unknowns. Among these equations, m ´ 1

are affine charts on the domain of the quaternion map, whose coefficients are 5 independent

parameters, and an m-th chart for t2 with 4 independent parameters is used, for a total of

5m´ 1 chart parameters. The remaining equations are the line correspondence and common

point constraints obtained by taking suitable minors in Equation 3.10 and Equation 3.11.

To parametrize the lines in each image, it is natural to use homogeneous coordinates—ie),

represent each line l P C3ˆ1 with three independent parameters. This over-parametrization

is harmless for problems where at most two lines are incident at any point. However, cases

where three or more lines intersect at some point must be handled with more care: in such

cases, we may use three independent parameters for two of the lines, say l1, l2 P C3ˆ1, and

the parametrize the remaining lines to have the form a1l1 ` a2l2, with a1, a2 independent

parameters. To distinguish lines according to this scheme, we say l1, l2 are independent

lines and a1l1 ` a2l2 is a dependent line. To randomize multiple edges between the same

nodes in the homotopy graph, we generate random scalars γ P C of modulus 1 for each
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of the chart equations and each of the independent lines, and multiply the corresponding

parameters by each γ. Having randomized independent lines l1 ÞÑ γ1l1, l2 ÞÑ γ2l2, we can

maintain the common point and line constraints by sending pa1, a2q ÞÑ pγ´1
1 a1, γ

´1
2 a2q for

each of the remaining dependent lines.

We peform a short computational experiment to illustrate how this endpoint randomiza-

tion scheme can boost the success probability of the degree computation. In this experiment,

we use a homotopy graph which is a complete graph on four vertices, with two edges

between two vertices. We consider the minimal problem , whose Galois/monodromy

group MonpX{Zq ãÑ S32 has order 512, is highly imprimitive, and cannot be generated by

fewer than 5 permutations (see Result 2.) On the other hand, the probability of generating a

transitive subgroup of MonpX{Zq with three generators drawn uniformly roughly equals

.52, as reveleated by simulating one million trials in GAP. Without randomizing endpoints,

the multiple edges are redundant, and despite the Betti number of the homotopy graph being

9 we can only ever compute a subgroup of MonpX{Zq generated by 3 elements. We find

that 4{10 trials without randomization terminate with the correct number of solutions, which

is 32. By contrast, 10{10 trials, each taking a few minutes, terminate with node consensus

using the edge randomization scheme described above. We also note that under a uniform

model, the probability of generating MonpX{Zq with 9 random elements is roughly .94.

3.3 Point-line minimal problems with partial visibility

It is natural to ask what happens when we drop the assumption of complete visibility from

the previous section. In three or more views, features such as points and lines might only be

partially matched due to occlusions or failures of the matching algorithm that is used. Partial

visibility is also a natural setting for considering relaxations of overconstrained minimal

problems For instance, Kileel [68] considered a number of relative pose problems which

can be understood by taking special linear slices of the so-called calibrated trifocal variety.

One of these problems is a natural relaxation of the notorious problem of computing relative

orientation from four points in three views [91]. In this relaxation, we impose only three
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Figure 3.4: Minimal problems with missing three calibrated views with partial visbility and
no incidences, together with their degrees. Five-point subproblems indicated in red.

point-point-point correspondences and one point-point-line correspondence. Pictorially:

.

This problem is not minimal in the sense of the previous section—we cannot recover an

arbitrary world line that passes through the fourth point. However, counting dimensions

and computing Jacobians does show that this problem does have finitely many solutions

in cameras for generic data—272 to be exact. Thus, in the setting of partial visibility, we

distinguish between minimal and camera-minimal problems. Moreover, in a setting where

we actually have four complete point correspondences, we could easily obtain a complete

line correspodence. This leads us to the following problem, which is both minimal and

camera-minimal:

The joint camera maps for the above problems are not birationally equivalent, but they are

inter-reducible in a sense that can be made precise [35].

We use a similar encoding as the previous section for point-line problems with partial

visibility—pp, l, I,Oq , where now O “ ppP1,L1q, . . . , pPm,Lmqq is a set of observations
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in each view with Pi,Li Ă rls. With the same assumptions on I as before, we also assume

that if px, `1q, px, `2q P I and `1, `2 P Li, then also x P Pi. We once again define the joint

camera map Xp,l,I ˆ Cm 99K Yp,l,I,O and ask for which pp, l, I,Oq it is a branched cover.

The first interesting case is for m “ 3 cameras. Like in the previous section, there are

infinitely many minimal problems in this case, since we could always, say, add an arbitrary

number of line-line-nothing correspondences to a given minimal problem. Thus we have a

reduction

 

A number of analagous reductions arise from partial visibility of incidences. For instance,

 

Formally, a reduction between two minimal problems pp, l, I,Oq pp1, l1, I 1,O1q has the

following properties (cf. [35, Definition 5]):

1) for all x P rpszrp1s, we have #tpx, `q P I 1u ď 1

2) the diagram below commutes such that the generic fiber in Xp,l,I,m maps bijectively

onto the corresponding fiber in Xp1,l1,I1,O1 :

With this notion of reduction, we can prove that there is only a finite number of reduced

minimal problems—see [35, Theorems 2 & 7]. We can count their number by counting

dimensions, although it is difficult to do so by hand—there are 140, 616 problems up to

relabeling of cameras. Moreover, these problems divide into 74, 575 equivalence classes

under a “swap & label” operation, such that the maps Inc1 99K Yp,l,I,O in each class are all

birationally equivalent [35, see Corollary 1 and discussion]. Among these problems, we

were able to verify the degrees of 66 problems first appearing in [68]. For problems without

incidences, the situation is much more simple. There are 51 reduced minimal problems,

given in Figure 3.4, none of which are swap & label equivalent.
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camera-degree 64 80 144 160 216 224 240 256 264 272 288
# problems 13 9 3 547 7 2 159 2 2 11 4

Table 3.2: Distribution of degrees ă 300 of minimal problems with missing three calibrated
views with partial visbility.

To search for problems of low degree, multiple instances of MonodromySolver were

run on problems representative of these equivalence classes on a computing cluster at the

Czech Institute of Informatics, Robotics, and Cybernetics, truncating each computation

after 300 or more solutions were found. A visible/ghost line parametrization similar to

that of the previous section was used. The minimal problems of degre ă 300 are given

in Table 3.2. The high frequency of certain degrees (eg. 160) leads us to speculate that many

of these problems are birationally equivalent. We also expect that many of these low-degree

problems have imprimitive Galois/monodromy groups—this will be the main topic of the

next chapter.
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CHAPTER 4

DECOMPOSITION

Figure 4.1: The twisted pair symmetry.

We consider once again the five-point problem from section 3.1. This is from Table 3.1.

Although the degree of the joint camera map is 20, solutions to this problem map 2´ 1 to

10 essential matrix solutions. Solutions mapping to the same essential matrix are related

by the twisted pair symmetry, illustrated above. The goal of this chapter is to search for

analogous decompositions for other minimal problems, outlining some of the general theory

along the way.

For the five-point problem, we are interested in the following system of polynomial

equations and inequations:

RJR “ I, detR “ 1,

βiyi “ Rαixi ` t, αi, βi ‰ 0, @ i “ 1, . . . , 5.
(4.1)
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An inherent ambiguity of the five-point problem is that the unknowns t, α1, . . . , α5, β1, . . . , β5

can only be recovered up to a common scale factor. If we treat these unknowns as homo-

geneous coordinates on a 12-dimensional projective space, then we are led to consider the

branched cover f : X Ñ Z, where X is the incidence correspondence

X “ tpR, pt, α1, . . . , β5q, px1, . . . ,y5qq P SOCp3q ˆ P12
C ˆ Z | Equation 4.1 holds u.

For most solutions to Equation 4.1, the associated twisted pair solution depicted in Figure 4.1

is obtained by rotation of the second camera frame 180˝ about the baseline connecting the

first and second camera centers. Algebraically, the twisted pair may be viewed as a rational

map Ψ : X 99K X, given coordinate-wise by

ΨpRq “

ˆ

2
ttJ

tJt
´ I

˙

R

Ψptq “ t

Ψpαiq “
´αi‖t‖2

‖t‖2 ` 2 xRJt, αixiy
“

´αi‖t‖2

‖βiyi‖2 ´ ‖αixi‖2

Ψpβiq “
βi‖t‖2

‖t‖2 ` 2 xRJt, βixiy
“

βi‖t‖2

‖βiyi‖2 ´ ‖αixi‖2

Ψpx1, . . . ,x5,y1, . . . ,y5q “ px1, . . . ,x5,y1, . . . ,y5q.

(4.2)

Here, we use the notation x, y and ‖¨‖2 for the complex quadratic forms xa, by “ a1b1 `

a2b2 ` a3b3, ‖a‖2 “ xa,ay which restrict to the usual norm and inner product on R3.

We note that Ψ is undefined whenever t P P2 is an isotropic vector satisfying ‖t‖2 “ 0,

and whenever ‖αixi‖2 “ ‖βiyi‖2 for some i “ 1, . . . , 5. The second condition can be

understood geometrically: if the camera centers and the world point X “ αx form an

isosceles triangle with base ‖t‖, then, after rotating the second camera, the rays which join

camera centers to the respective image points will become parallel.

One can check (e.g. [85, p. 20]) that we have an equality of mappings f ˝ Ψ “ f

wherever Ψ is defined. The map Ψ is a deck transformation (see Definition 4.1.3) of the
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branched cover f. To remove the twisted pair symmetry, we recall the essential variety

E “ tE P PpC3ˆ3
q | detE “ 0, EEJE´

1

2
trpEEJqE “ 0u (4.3)

and define

Y “ tpE, px1, . . . , y5qq P E ˆ Z | yJi Exi “ 0, i “ 1, . . . , 5u.

This gives rise to a factorization of the branched cover X 99K Z, which is simply a

commutative diagram
X Y

Z

(4.4)

such that X 99K Y and Y 99K Z are branched covers. The map X 99K Y is given by

pR, t, px1, . . . , y5qq ÞÑ prtsˆR, px1, . . . , y5qq . (4.5)

We have that MonpX{Zq – S2 o S10 X A20.

State-of-the art five-point solvers such as Nistér’s [90] are based on the formulation

in terms of essential matrices. From the ten essential matrix solutions corresponding to a

fiber of the map Y 99K Z, the rotation/translation pairs corresponding to any real essential

matrix may be computed via SVD [53, Sec 9.6], which in turn allow for easily recovering

the unknown depths.

It is natural to consider whether analogues of the twisted pair or essential matrix exist

for the problems of section 3.2 and section 3.3. Propositions 4.1.4 and 4.1.1 tell us that the

existence of nontrivial deck transformations and decomposability can be decided just by

looking at generators of the Galois/monodromy group. These facts follow from standard

results—from Galois theory or topology, depending on the point of view taken. However,

they seem to be under-appreciated in the worlds of engineering and applied math. In this

chapter, we demonstrate that numerically computing Galois/monodromy groups gives a

powerful tool for detecting hidden symmetries in equations coming from applications.
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4.1 Preliminary notions

Consider a factorization as in Equation 4.4. If degpX{Y q and degpY {Zq are both strictly

less than degpX{Zq, we say that the factorization is proper and that the branched cover

X 99K Z is decomposable. Otherwise, X 99K Z is indecomposable.

Proposition 4.1.1 below implies that the decomposability of a branched cover can be

determined from the Galois/monodromy group alone. We recall that a block system for the

monodromy action MonpX{Zq ñ Xz “ tx1. . . . xdu, is a partition of Xz “ B1Y ¨ ¨ ¨YBk,

comprised of equally-sized blocks B1, . . . , Bk, which is preserved in the sense that blocks

are always mapped to blocks under the group action. The block systems associated to the

action form a lattice under refinement, whose respective maximum and minimum elements

are tXzu and ttx1u, . . . , txduu. If any other block systems exist, then MonpX{Zq is said to

be imprimitive, and otherwise it is primitive.

Example 7. Consider the degree-6 branched cover over Z “ C2 given by

X “ tpx1, x2, x3, a, bq P C3
ˆC2

| x1`x2`x3 “ x2
2`x2x3`x

2
3`a “ x3

3`ax3`b “ 0u.

X Ñ Z factors as a composition of degree-2 and degree-3 branched covers: we may take

Y “ tpx3, a, bq P C1
ˆ C2

| x3
3 ` ax3 ` b “ 0u.

In this example we have CpXq – CpY qgal{CpZq. The group MonpX{Zq is given, up to

conjugacy, by the left-regular representation of S3 ãÑ S6. This holds more generally for

Galois covers due to the normal basis theorem [7, Theorem 41].

Given a factorization Equation 4.4, we have degpX{Zq “ degpX{Y q degpY {Zq, and a

partition

Xz “ Xy1 Y ¨ ¨ ¨ YXyk (4.6)

with k “ degpY {Zq. The proof of Proposition 4.1.2 below shows that this is a block system

for the monodromy action with blocks of size degpX{Y q. Conversely, imprimitivity implies

decomposability.
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Proposition 4.1.1. A branched cover is decomposable if and only if MonpX{Zq is imprim-

itive.

Proposition 4.1.1 dates back to the work of Ritt [96], who characterized the possible

decompositions of branched covers C Q x ÞÑ ppxq P C given by a univariate polynomial

p. A Galois-theoretic proof of Proposition 4.1.1 may be found, for instance, in [24]. If we

know MonpX{Zq, it is also possible to identify MonpX{Y q and MonpY {Zq occuring in

the factorization of Equation 4.4, as the next proposition shows.

Proposition 4.1.2. Consider a factorization of branched covers as in Equation 4.4. For fixed

generic z P Z, partition Xz as in Equation 4.6. The action MonpX{Zq ñ Xz induces two

other group actions which are equivalent to the monodromy groups of the individual factors:

1) action on blocks: MonpX{Zq ñ tXy1 , . . . , Xyku, which is equivalent to MonpY {Zq.

2) action on a single block: MonpX{ZqXy ñ Xy, where MonpX{ZqXy denotes the

stabilizer of the set Xy under the action by MonpX{Zq ñ Xz. This is equivalent to

MonpX{Y q, and thus independent of the choice y P Yz.

Proof. 1) For each σγ P MonpX{Zq, there is an induced permutation of the blocks:

Ăσγ “

¨

˝

Xy1 ¨ ¨ ¨ Xyk

σγpXy1q ¨ ¨ ¨ σγpXykq

˛

‚.

Indeed, suppose that x, x1 P Xyi are such that σγpxq P Xyj , σγpx
1q P Xyk , and consider

the lift rγ : r0, 1s Ñ Y starting at yi. We must have both rγp1q “ yj and rγp1q “ yk. Hence

k “ j by the unique path-lifting property applied to Y 99K Z, showing that σγ preserves

the partition into blocks. In this way we get a group homomorphism

MonpX{Zq Ñ SymptXy1 , . . . , Xykuq

σγ ÞÑĂσγ,
(4.7)

which represents the action of MonpX{Zq on the blocks. Now, there is also an injective
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group homomorphism

MonpY {Zq Ñ SymptXy1 , . . . , Xykuq

τγ ÞÑ

¨

˝

Xy1 ¨ ¨ ¨ Xyk

Xτγpy1q ¨ ¨ ¨ Xτγpykq

˛

‚

(4.8)

obtained by restricting the natural isomorphism SympYzq – SymptXy1 , . . . , Xykuq that

identifies a point yi P Yz with its corresponding block Xyi . We wish to show that maps

in Equation 4.7 and Equation 4.8 have the same image. This follows easily if we restrict γ in

both maps to be loops contained in a regular locus for X 99K Z: the lifts of γ to Y (which,

by our restriction, also lift to X) determine the corresponding permutation of blocks in X ,

and vice-versa. Indeed, we have σγpXyq “ Xτγpyq for any y P Yz. To see this, it is enough

to show one set is contained in the other. A point x P σγpXyq is the endpoint of some lift

of γ to X. The image of this lift in Y is itself a lift rγ : r0, 1s Ñ Y with rγp0q “ y—hence

rγp1q “ τγpyq, and the endpoint of our original lift x is in Xτγpyq.

2) The proof amounts to showing that a loop γ in Z lifts to a loop in Y if and only if

σγ P MonpX{Zq stabilizes each of the blocks. As in the previous part, this only true if we

consider loops in a suitably small regular locus U Ă Z. It suffices to take U contained in a

regular locus for X 99K Z and whose preimage in Y is a regular locus for X 99K Y.

Proposition 4.1.1 shows that an arbitrary branched cover X 99K Z factors as a composi-

tion of indecomposable branched covers:

X “ Y0 99K Y1 99K ¨ ¨ ¨ 99K Yk´1 99K Yk “ Z. (4.9)

Such a factorization corresponds to a maximal chain in the lattice of block systems, and the

associated degrees can be read off from the block sizes. Equivalently, for any x P Xz, a

maximal chain in the lattice of blocks of MonpX{Zq corresponds to a chain of subgroups

that contain the stabilizer MonpX{Zqx (cf. [97, proof of Theorem 9.15])

MonpX{Zqx “ G0 Ă G1 Ă ¨ ¨ ¨ Ă Gk´1 Ă Gk “ MonpX{Zq,
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and we have degpYi{Yi`1q “ rGi`1 : Gis for i “ 0, . . . , k ´ 1. The decomposition Equa-

tion 4.9 is not unique. In fact, as Ritt already understood [96, p. 53], there are many

examples where even the multi-set of degrees degpYi{Yi`1q is not unique. In fact, as Ritt

already understood [96, p. 53], there are many examples where even the multi-set of degrees

degpYi{Yi`1q is not unique.

Example 8. This example was first given in [50, Example 25]. Consider

X “

!

px, zq P C1
ˆ C1

|
`

x ¨ px` 6q ¨
`

x2
´ 6x` 36

˘˘3
“ z

`

px´ 3q
`

x2
` 3x` 9

˘˘3
)

.

This is a Galois cover of degree 12 over Z “ C1. The lattice of block systems can be

identified with the lattice of subgroups of the Galois/monodromy group A4. Corresponding

to a subgroup chain

id Ă C2 Ă V4 Ă A4

is the decomposition of X Ñ Z into rational branched covers of degrees p3, 2, 2q implied

by the identity

px ¨ px` 6q ¨ px2 ´ 6x` 36qq
3

ppx´ 3q px2 ` 3x` 9qq3
“ x3

˝
xpx´ 12q

x´ 3
˝
xpx` 6q

x´ 3
.

Likewise, the chain

id Ă C3 Ă A4

corresponding to

px px` 6q ¨ px2 ´ 6x` 36qq
3

ppx´ 3q px2 ` 3x` 9qq3
“
x3px` 24q

x´ 3
˝
xpx2 ´ 6x` 36q

x2 ` 3x` 9
.

gives a decomposition with degrees p4, 3q.

Finally, we define and carefully study the deck transformations of a branched cover, of

which the twisted pair symmetry from the introduction is a special case.

Definition 4.1.3. A birational equivalence from a branched cover to itself which fixes the

base is called a deck transformation. Explicitly, for f : X 99K Z a deck transformation
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Ψ : X 99K X must satisfy f ˝ Ψ “ f whenever both maps are defined. The deck

transformations form a group under composition which acts on a generic fiber Xz. The deck

transformation group can be naturally identified with the automorphisms of CpXq which fix

CpZq, denoted AutpX{Zq.

Analogously to decomposability, Proposition 4.1.4 shows that the existence of a non-

trivial deck transformation can be decided from the Galois/monodromy group alone. This

turns out to be stronger than decomposability in general. We learned of Proposition 4.1.4

from the sources [9, 28]. Since it seems less well-known outside of the literature on Ga-

lois/monodromy groups, we give a self-contained proof. In topology, a deck transformation

of a covering map f can be any continuous function Ψ satisfying f ˝Ψ “ f. Our proof of

Proposition 4.1.4 reveals that, for a rational branched cover f with regular locus U, the deck

transformations of f|f´1pUq in the topological sense are always rational maps in the sense of

Definition 4.1.3. Before giving the proof, we first consider three illustrative examples.

Example 9. Let X “ Vpx2 ` ax ` bq Ă C3, Z “ C2 and f : X Ñ Z be the degree-2

branched cover defined by coordinate projection fpx, a, bq “ pa, bq. The deck transformation

defined by Ψpx, a, bq “ p´x´ a, a, bq acts on a generic fiber Xpa,bq by permuting the two

roots of the quadratic equation x2 ` ax` b “ 0.

Example 10. Ask et al. [8] define a polynomial system F pxq with p-fold symmetry to be

such that F pxq “ 0 implies F pω xq “ 0 whenever ω is a p-th root of unity. For example,

the equations

f1,2 “ x2
1 ` x

2
2 ´ c1,2x1x2 ´ d

2
1,2

f1,3 “ x2
1 ` x

2
3 ´ c1,3x1x3 ´ d

2
1,3

f2,3 “ x2
2 ` x

2
3 ´ c2,3x2x3 ´ d

2
2,3

(4.10)

have a 2-fold sign symmetry: px1, x2, x3q ÞÑ p´x1,´x2,´x3q. These equations define the

famous Perspective-3-Point problem or P3P problem. Here, each ci,j is equal to 2 cos θi,j

as in Figure Figure 4.2. Letting X denote the vanishing locus of Equation 4.10 in C9,

the coordinate projection onto the space of knowns C6 is a branched cover with a deck
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Figure 4.2: Frontal view of the P3P problem: x1, x2, x3 are unknown.

transformation given by the sign-symmetry.

Ask et al. [8] develop algorithms for detecting and exploiting partial p-fold symmetries

(occurring in only some subset of the variables) in the automatic generation of polyno-

mial solvers. These methods were generalized by Larsson and Åström [74] to the case of

weighted partial-p fold symmetries. In general, a branched cover with a weighted partial-p

fold symmetry will have a deck transformation of order p, degree e p for some integer e,

and its Galois/monodromy group will be a subgroup of Cp o Se.

Example 11. Two models of the same birational equivalence class will have isomorphic

deck transformation groups, but the formulas defining the deck transformations may look

quite different. We consider an example from [81, 105], in which the author(s) construct

moduli spaces obtained by letting the absolute conic [53] degenerate to a double line. A

particular double cover of the essential variety plays a role in this work. Explicitly, the

branched cover X Ñ E is given by

X “ tpra0 : a1 : a2 : a3s, rb0 : b1 : b2 : b3sq P P3
ˆ P3

| a0b0 ` a1b1 ` a2b2 ` a3b3 “ 0u

pras, rbsq ÞÑ
´

a0b0´a1b1´a2b2`a3b3 a1b0`a0b1`a3b2`a2b3 a2b0´a3b1`a0b2´a1b3
a1b0`a0b1´a3b2´a2b3 ´a0b0`a1b1´a2b2`a3b3 a3b0`a2b1`a1b2`a0b3
a2b0`a3b1`a0b2`a1b3 ´a3b0`a2b1`a1b2´a0b3 ´a0b0´a1b1`a2b2`a3b3

¯

,

and there exists a birational equivalence
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X SOCp3q ˆ P2

E E .

where the bottom map is the identity. The top map may be given by

pras, rbsq ÞÑ
´

pa3 I ` rasˆqprasˆ ´ a3 Iq
´1,

´

2 a1b0´2 a0b1`2 a3b2´2 a2b3
2 a2b0´2 a3b1´2 a0b2`2 a1b3
2 a3b0`2 a2b1´2 a1b2´2 a0b3

¯¯

,

where now

rasˆ “
´

0 a0 a1
´a0 0 a2
´a1 ´a2 0

¯

.

For SOCp3qˆP2 99K E , the action on the fiber applies the twisted pair map as in Equation 4.2.

For X 99K E , the action swaps coordinates pras, rbsq ÞÑ prbs, rasq .

Proposition 4.1.4. Let X 99K Z be a branched cover and fix generic z P Z. We may

identify the deck transformation group with a subgroup of SympXzq by restricting functions

to Xz. This permutation group is equal to the centralizer of MonpX{Zq in SympXzq.

Proof. We abbreviate the deck transformation group and centralizer subgroup by D and C,

respectively. We define a map between these groups as follows:

ϕ : D Ñ SympXzq

Ψ ÞÑ

¨

˝

x1 ¨ ¨ ¨ xd

Ψpx1q ¨ ¨ ¨ Ψpxdq

˛

‚

To prove Proposition 4.1.4, we verify the following properties of ϕ:

1) ϕ is a group homomorphism.

2) ϕ is injective.

3) The image of ϕ is contained in C.

4) C is contained in the image of ϕ—more explicitly, for all σ P C there exists a deck

transformation Ψσ P D whose restriction to the fiber Xz equals the permutation σ.
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Figure 4.3: Construction and well-definedness of Ψσ.

Property 1) is straightforward. Properties 2) and 3) both follow from the unique path-lifting

property. For instance, if Ψpxiq “ xi for i “ 1, . . . , d, then for generic x P X will be the

endpoint of the lift rγ of some path γ in Z based at z—if xi “ Ψpxiq is the initial point of

this lift, then we must have Ψ ˝ rγ “ rγ, so that in particular Ψpxq “ Ψ ˝ rγp1q “ rγp1q “ x.

This gives Property 2). The proof of Property 3) is very similar, and may also be found, for

instance, in [28, Proposition 1.3].

It remains to show Property 4). We do so by first constructing a map Ψσ : X 99K X

pointwise via lifting paths. The argument is analagous to the proof in [54, Propsition 1.39].

Fix x0 P Xz. For generic x P X, there exists a path αx : r0, 1s Ñ X from x0 to x whose

image in Z is contained in a regular locus for X 99K Z. Define αx to be the lift based at

σpx0q whose image in Z coincides with the image of α. We define

Ψσ : X 99K X

x ÞÑ αxp1q.

First of all, we must show that Ψσ is well-defined. This means that for any other path βx
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from x0 to x we must have βxp1q “ αxp1q. We refer the reader to Figure Figure 4.3 to

more easily follow the argument. Consider the loop γ based at fpx0q in Z obtained by

concatenating
ÐÝÝÝ
f ˝ βx (the reverse of the path f ˝ βx) with f ˝ αx. Since σ and σγ commute,

we have that

σγpσpx0qq “ σpσγpx0qq

“ σpx0q.

Thus σγ fixes σpx0q, and it follows that the lift rγ based at σpx0q is a loop. This implies that

αx and βx have the same terminal point Ψσpxq, proving well-definedness.

Consider now an arbitrary x P Xz. Note that in this case f ˝ αx is a loop. We calcu-

late

σpxq “ σpσf˝αxpx0qq

“ σf˝αxpσpx0qq

“ Ψσpxq.

Thus, restricting Ψσ to Xz yields the permutation σ. Moreover, by definition of Ψσ we have

that f ˝ Ψσ “ f on the locus of points where both maps are defined. It remains to show

that Ψσ is a rational map, since then it will also follow that Ψσ´1 is a rational inverse. First

we note that, in a suitably small neighborhood of any generic point x P X , we can write

Ψσ “ gx ˝ f, where gx is a holomorphic local inverse of f. Such an expression for Ψσ

exists for any x in some Zariski open subset of X. It follows that Ψσ is a meromorphic

map from X to itself—in other words, it is holomorphic after restricting to a Zariski-open

U Ă X. To finish the proof, we may use the well-known fact that all meromorphic maps

between projective varieties are rational.1 Indeed, if X and Z are quasiprojective varieties,

we may replace them with their projective closures X,Z, to get a birationally equivalent

X 99K Z.
1We recall the words of Mumford [89, Ch. 4]: “This should be viewed as a generalization of the old result

that the only everywhere meromorphic functions on C Y t8u are rational functions."
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Proposition 4.1.5. A branched cover X 99K Z of degree d with a nontrivial deck transfor-

mation Ψ is either decomposable or its Galois/monodromy group is cyclic of order d. In the

latter case, MonpX{Zq is imprimitive precisely when d is composite.

Proof. Partition Xz into the orbits under repeated application of Ψ. This partition is pre-

served under the monodromy action. Thus, the Galois group is imprimitive if this partition

is nontrivial. Otherwise, the action of Ψ on Xz generates a cyclic group Cd Ă Sd. Let-

ting Centp¨q denote the centralizer in Sd, we have Cd Ă CentpMonpX{Zqq, which holds

and only if MonpX{Zq Ă CentpCdq “ Cd. Since MonpX{Zq is transitive, we must have

MonpX{Zq “ Cd.

In general, a decomposable branched cover need not have any deck transformations.

However, a converse to Proposition 4.1.5 does hold in a special case frequently encountered

in practice.

Proposition 4.1.6. X 99K Z has a deck transformation of order 2 if and only if MonpX{Zq

has a block of size 2.

Proof. ñ As in Proposition 4.1.5. ð Proposition 4.1.1 gives a factorization such that

CpXq{CpY q is a degree 2 extension, and thus always Galois.

4.2 Decomposing minimal problems

4.2.1 Absolute pose of points and lines

In this section, we apply the mathematical framework of the previous section to absolute

pose problems involving combinations of point/line features appearing in work of Rama-

lingam et al. [94] Although the problems considered here are of low degree, computing the

Galois/monodromy groups yields new insights which might be applied to building better

solvers for these problems.

We begin formulating these problems in the language of branched covers. Our general

task is to determine a calibrated camera matrix rR | ts from correspondence data between the

scene and images. We let p and l be the numbers of point-point and line-line correspondences,
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respectively, between 3D and 2D. The total space of our branched cover is

Xp,l “
`

P3
˘p
ˆ pG1,3q

l
ˆ SECp3q

where G1,3 denotes the Grassmannian of lines in P3. The base space equals

Zp,l “
`

P3
˘p
ˆ pG1,3q

l
ˆ
`

P2
˘p
ˆ pG1,2q

l ,

where G1,2 denotes the Grassmannian of lines in P2 and fp,l : Xp,l 99K Zp.l is the map that

“takes pictures":

´

X1, . . . , Xp, L1 L11, . . . , Ll L
1
l, rR | ts

¯

ÞÑ
ˆ

X1, . . . , Xp, L1 L11, . . . , Ll L
1
l, rR | tsX1, . . . , rR | tsXp,

rR | tsL1 rR | tsL11, . . . , rR | tsLl rR | tsL1l

˙

(here LL1 is the line spanned by L and L1.) Counting dimensions gives dimXp,l “ 3pp`

lq ` 6 and dimZp,l “ 5pp ` lq. Equating the two, we see that the only possibilities are

pp, lq “ p3, 0q, p2, 1q, p1, 2q, p0, 3q. The first case corresponds to the P3P problem.

Result 1. The full list of Galois/monodromy groups of branched covers fp,l is as follows:

MonpX3,0{Z3,0q – S2 o S4 X A8 ãÑ S8

MonpX2,1{Z2,1q – S2 o S2 X A4 – C2 ˆ C2 ãÑ S4

MonpX1,2{Z1,2q – S2 o S4 X A8 ãÑ S8

MonpX0,3{Z0,3q – S8.

We note the respective degrees 8, 4, 8, 8 agree with those reported in [94], in which

these problems were formulated using different systems of equations. The systems of

equations defining the parameter homotopies used for Result 1 were constructed as follows:

• Points in the world are represented by 4ˆ 1 matrices X1, . . . , Xp.

69



• Points in the image are represented by 3ˆ 1 matrices x1, . . . , xp.

• World lines are kernels of 2ˆ 4 matrices rN1 | N
1
1s
J, . . . , rNl | N

1
ls
J.

• Image lines are kernels of 1ˆ 3 matrices nJ1 , . . .n
J
l .

• We enforce rank constraints by the vanishing of maximal minors of certain matrices:

– point-to-point: rk
´

rR | tsXi | xi

¯

ď 1 for i “ 1, . . . , p

– line-to-line: rk
´

Ni | N
1
i | rR | tsJni

¯

ď 2 for i “ 1, . . . , l

• A well-constrained system is extracted with Algorithm 3.

The case pp, lq “ p3, 0q reduces to solving the P3P problem as formulated in Equa-

tion 4.10. The literature on this problem is vast, and the earliest work [49] pre-dates the

field of computer vision by more than a century. The degree of this problem is 8 and

the Galois/monodromy group is a subgroup of S2 o S4 due to the sign symmetry. In the

terminology of Brysiewicz et al. [24], Equation 4.10 defines a lacunary polynomial system

whose monomial supports span a proper sublattice of Z3 with finite index. In the setting of

that paper, we would consider the family of all systems with the same monomial supports as

in Equation 4.10

h1,2 “ Ax2
1 `Bx

2
2 ` Cx1x2 `D

h1,3 “ Ex2
1 ` Fx

2
3 `Gx1x3 `H

h2,3 “ Ix2
2 ` Jx

2
3 `Kx2x3 ` L

(4.11)

This gives a branched cover Xh Ñ C12 where Xh “ V ph1,2, h1,3, h2,3q Ă C3 ˆ C12. On the

other hand, for P3P the natural branched cover is Xf Ñ C6, where Xf Ă C3 ˆ C6. We find

numerically that MonpXh{C12q is the full wreath product S2 o S4, whereas our numerical

experiments suggest that the Galois/monodromy group for P3P is the proper subgroup

S2 o S4 X A8.

To certify the result of our numerical monodromy computation, we can compute the

Galois group for P3P using symbolic computation. Consider I “ xf1,2, f1,3, f2,3y as an

ideal in a polynomial ring Frx1, x2, x3s whose coefficient field is F “ CpZq “ Cp~c, ~dq. The
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dimension and degree of I are 0 and 8. We can compute a lexicographic Gröbner basis for I

with x1 ą x2 ą x3 in a matter of seconds using the FGLM algorithm [41], implemented

for Macaulay2 [46] in the package FGLM [92]. The Gröbner basis G “ tg1, g2, g3u has the

form predicted by the Shape lemma:

g1px1, x2, x3q “ x1 ` r1p~c, ~dqx3

g2px2, x3q “ x2 ` r2p~c, ~dqx3

g3px3q “ x8
3 ` Ap~c,

~dqx6
3 `Bp~c,

~dqx4
3 ` Cp~c,

~dqx2
3 `Dp~c,

~dq,

for particular rational functions r1, r2, A,B,C,D P F. We see that x3 is a primitive element

for the extension CpXq{CpZq. To verify that MonpX{Zq – GalpX{Zq is contained in

A8, it suffices to show that the discriminant of g3 is square. For arbitrary coefficients

pA,B,C,Dq, the discriminant of x8
3 ` Ax

6
3 `B x4

3 ` C x
2
3 `D is the product of D and a

square. For P3P, Dp~c, ~dq is also a square.

Factorizations of P3P are also classical: from Equation 4.10, we have

y1p1` y
2
2 ´ c1,2y2q ´ d

2
1,2 “ 0

y1p1` y
2
3 ´ c1,3y3q ´ d

2
1,3 “ 0

y1py
2
2 ` y

2
3 ´ c2,3y2y3q ´ d

2
2,3 “ 0

(4.12)

where y1 “ x2
1, y2 “ x2{x1, y3 “ x3{x1 are separating invariants [67] for the action of the

deck transformation group. We see that even when X Ñ Z is regular in the definition of a

factorization Equation 4.4, the maps X 99K Y and Y 99K Z need not be.

In contrast to the case of 3 points, the branched cover X0,3 99K Z0,3 corresponding to

the case of 3 lines is indecomposable, since its Galois/monodromy group S8 acts primitively

on the set of 8 solutions. Thus, any algebraic algorithm for solving this problem must be

capable of computing the roots of a polynomial of degree 8 or higher.

We now consider the more interesting “mixed cases” pp, lq P tp2, 1q, p1, 2qu. Proposi-

tion 4.1.4 shows that each of the mixed cases has a nontrivial deck transformation group: we

have that AutpX2,1{Z2,1q – C2 ˆ C2 and AutpX1,2{Z1,2q – C2. Using the rank constraints
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described above, we were able to observe numerically that solutions in the same block for

both of these mixed cases differed by a reflection. These deck transformations take on a

particularly simple form after changing coordinates as in [94].

For the case pp, lq “ p2, 1q, the formulation [94, Equations 4,5] makes use of a clever

choice of reference frames to get equations

AX ´ b “ 0

R2
1,1 `R

2
2,1 `R

2
3,1 ´ 1 “ 0

R2
2,1 `R

2
2,2 `R

2
2,3 ´ 1 “ 0

(4.13)

where A and b are 6ˆ 8 and 8ˆ 1 matrices depending on the given data, and

X “ rR1,1, R2,1, R3,1, R2,2, R2,3, t1, t2, t3s
J

is a vector of indeterminates. Using FGLM as in the previous section, we discover new

constraints

R2
3,1 ` ψ1pA, bq “ 0

t23 ` 2t3 ` ψ2pA, bq “ 0,

for particular rational functions ψ1, ψ2 in the data, which did not appear in Equation 4.13

originally. Formulas for the deck transformations of this Galois cover follow by way of the

basic Example 9. The remaining constraints output by FGLM are, as expected, of the form

Ri,j ` `i,jpR3,1q “ 0

tj ` `jpt3q “ 0

for linear forms `j, `i,j over the coefficient field QpA, bq. For this very special problem, the

Gröbner basis elements are surprisingly compact. This suggests, as an alternative to the

solution proposed in [94], that we may solve for the rotation and translation independently.

Likewise, for the pp, lq “ p1, 2q case, using the similar formulation of [94, Equations
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7,8], we discover the following symmetry in the solutions (e3 P R3 is the third standard

basis vector):

p~R, tq ÞÑ p´~R,´t´ 2e3q.

We note that in this formulation, ~R contains only the first two rows of the unknown rotation

matrix. In hindsight, this symmetry is quite easy to verify. However, we stress that computing

the Galois/monodromy group was what led us to discover it.

4.2.2 Relative pose of points and lines

We now consider Galois/monodromy groups of problems discussed in Chapter 3. Here, the

problems have much larger degree, making them well-suited for numerical methods.

Result 2. Among all minimal problems of degree ă 1, 000 appearing in Table 3.1, all have

either an imprimitive or full symmetric Galois/monodromy group. The imprimitive cases

are:

Mon
` ˘

– pC2q
2
¸ pS2 o S3 X A6q ãÑ S12

Mon
` ˘

– S2 o S8 X A16 ãÑ S16

Mon
` ˘

– S2 o S10 X A20 ãÑ S20

Mon
` ˘

– S2 o pS2 o S16 X A32q X A64 ãÑ S64

Mon
` ˘

– pC2q
4
¸
`

pC2q
4
¸ pS2 o pS2 o S4qq

˘

ãÑ S64

Mon
` ˘

– pC2q
2
¸
`

C2
2 ¸ pS2 o pS2 o S2 X A4q X A8q

˘

ãÑ S32.

For the sake of uniformity, we have used the semidirect product ¸ to indicate subgroups

of an appropriate wreath product. Thus, for instance, for Mon
` ˘

, the outermost pC2q
2

should be regarded as a subgroup of pS2q
16, and the innermost as a subgroup of pS2q

8. Much

to our surprise, the group Mon
` ˘

turns out to be solvable. The fact that Mon
` ˘

– S312

shows that the homotopy solver developed in [40] is optimal in the sense of tracking the

fewest paths possible. The problem appearing in [35] can be thought of as P3P fibered

over the five-point problem. Unlike the majority of problems studied here, this composite

minimal problem has an intermediate field CpZq Ĺ CpY q Ĺ CpXq which is not the fixed
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field of some subgroup of AutpX{Zq. This can be seen by comparing the lattice of block

systems with the subgroup lattice of AutpX{Zq.

In the remainder of this section, we describe explicit decompositions of two problems in

Result 2—the problem , which is a degenerate case of the five-point problem, and

For , we use similar notation as in the five-point problem, with constraints

RJR “ I, detR “ 1,

βiyi “ Rαixi ` t, αi, βi ‰ 0, i “ 1, . . . , 4,

det

¨

˝

»

–

α1x1 α2x2 α3x3 α4x4

1 1 1 1

fi

fl

˛

‚“ 0.

(4.14)

Our branch cover has a base space

Z “
`

C2
ˆ t1u

˘4
ˆ
`

C2
ˆ t1u

˘4

and its total space X is given by

X Ď SOCp3q ˆ P10
C ˆ

such that Equation 4.14 holds for all pR, pt, α1, . . . , α4, β1, . . . , β4q, zq P X. Projection

of X onto Z defines a branched cover of degree 12. This branched cover is birationally

equivalent to the joint camera map of the problem from [34], since the fifth point on

both lines in each image is generically determined from the other four points. Result 2

tells us the Galois/monodromy group is C2 ˆ C2 ¸ pS2 o S3 X A6q. The GAP command

MinimalGeneratingSet shows that this group is minimally generated by two permu-

tations: in cycle notation,

MonpX{Zq –
A

p1 2qp3 4qp5 12 8 9qp6 11 7 10q, p1 11 5qp2 10 8qp3 9 7qp4 12 6q
E

.

(4.15)
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r12s

r4s

r2s t1, 3u t1, 4u

r1s

3

2
2

2

2
2

2

CpZq

CpXqxΨ1,Ψ2y

CpXqxΨ1˝Ψ2y CpXqxΨ1y CpXqxΨ2y

CpXq

3

2
2

2

2
2

2

Figure 4.4: Correspondence between block systems (left) and intermediate fields (right) for
the calibrated homography problem. The notation KH means the intermediate field of an
extension K{F fixed elementwise by a subgroup H ď AutpK{F q.

The lattice of block systems is depicted on the left in Figure Figure 4.4. The vertex

labels correspond to stabilizer subgroups of MonpX{Zq, and the edges are labeled by the

degrees of maps appearing in some decomposition of the form in Equation 4.9. To the right

is the inverted lattice of intermediate fields. Like the majority of examples in this paper,

CpXq{CpZq is not a Galois extension.

Before we determine a decomposition, we first describe the group of deck transforma-

tions. The centralizer in S12 is

xp1 3qp2 4qp5 7qp6 8qp9 11qp10 12q, p1 4qp2 3qp5 8qp6 7qp9 12qp10 11q
E

– C2ˆC2.

The deck transformation corresponding to the first generator is the twisted pair map Ψ1,

defined just as in Equation 4.5. The second is a reflection-rotation symmetry Ψ2 depicted in

Figure Figure 4.5. To get a formula for Ψ2, it is convenient to work with the equation of the

unknown plane:

xn,Xy “ d. (4.16)

75



Note that n and d depend rationally on the data. The formula for Ψ2 is given by

Ψ2pRq “ R

ˆ

2
nnJ

nJn
´ I

˙

Ψ2ptq “ ´t´
2d

nJn
Rn

Ψ2pαiq “ αi

Ψ2pβiq “ ´βi

Ψ2px1, . . . ,x4,y1, . . . ,y4q “ px1, . . . ,x4,y1, . . . ,y4q.

(4.17)

To better understand the effect of Ψ2 on t, let X be any point on the scene plane and

calculate

´t´
2d

nJn
Rn “ ´t´RX ´R

ˆ

2
nnJ

nJn
´ I

˙

X (4.18)

“ ´R

ˆ

2
nnJ

nJn
´ I

˙ˆ

´

I´ 2
nnJ

nJn

¯

`

´RJt´X
˘

`X

˙

(4.19)

“ ´Ψ2pRq

ˆ

´

I´ 2
nnJ

nJn

¯

`

´RJt´X
˘

`X

˙

(4.20)

This may be understood as follows: we take´RJt, which is the center of the second camera

expressed in the frame of the first camera (cf. Eq. Equation 4.14), then reflect this vector

through the plane and transform it back to the vector representing the center of the first

camera expressed in the frame of the reflected second camera (by multiplying by ´Ψ2pRq).

Figure 4.5: Reflection-rotation symmetry for Equation 4.14
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Proposition 4.2.1. Ψ1 and Ψ2 generate the deck transformation group for the planar cal-

ibrated homography problem X Ñ Z defined by Equation 4.14. The corresponding

permutations which centralize MonpX{Zq are as follows:

Ψ1 ˝Ψ2 Ø p1 2qp3 4qp5 6qp7 8qp9 10qp11 12q

Ψ1 Ø p1 3qp2 4qp5 7qp6 8qp9 11qp10 12q

Ψ2 Ø p1 4qp2 3qp5 8qp6 7qp9 12qp10 11q

These correspond to the maximal chains in the lattice of block systems (see Figure 4.4).

Proof. We verify that Ψ1 and Ψ2 really are deck transformations. The rest is elementary or

follows from Proposition 4.1.4. Appealing to well-known properties of the twisted pair Ψ1,

it suffices for us to check that planarity of the scene is preserved:

det

¨

˝

»

–

Ψ1pα1qx1 Ψ1pα2qx2 Ψ1pα3qx3 Ψ1pα4qx4

1 1 1 1

fi

fl

˛

‚“ 0.

Letting m “ 2
tJt

RJt, we may compute this determinant as follows:

˜

4
ź

i“1

p1`mJαixiq

¸´1

det

¨

˝

»

–

α1x1 α2x2 α3x3 α4x4

1`mJα1x1 1`mJα2x2 1`mJα3x3 1`mJα4x4

fi

fl

˛

‚“

˜

4
ź

i“1

p1`mJαixiq

¸´1

det

¨

˝

»

–

α1x1 α2x2 α3x3 α4x4

1 1 1 1

fi

fl

˛

‚“ 0.

For Ψ2, it is clear that planarity of the scene is preserved and that Ψ2pRq P SOCp3q. If

we substitute Ψ2pxq into the point correspondence constraint in Equation 4.14 and take

X “ αi xi in Equation 4.18, then

´βiyi “ R

ˆ

2
nnJ

nJn
´ I

˙

αixi`

ˆ

´t´Rαixi ´R

ˆ

2
nnJ

nJn
´ I

˙

αixi

˙

“ ´Rαixi´t.

We conclude that Equation 4.14 is invariant up to sign under application of Ψ2.

Finally, we describe a decomposition of X Ñ Z

X 99K Y1 99K Y2 Ñ Z, (4.21)
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corresponding to the left-most chain in Figure 4.4. This decomposition makes use of the

calibrated homography matrix associated to pR, tq and the scene plane:

H “ R`
1

d
tnJ. (4.22)

Up to scale, any 3 ˆ 3 matrix has the form Equation 4.22. On the other hand, any real

calibrated homography matrix has an eigenvalue equal to 1 (see eg. [83, Lemma 5.18]), and

thus lies on an irreducible hypersurface of degree 6:

H1 “ tH P C3ˆ3
| detpHJH´ Iq “ 0u.

In our decomposition, we may take

Y1 “ tpH, ppx1, . . . ,x4q , py1, . . . ,y4qqq P H1 ˆ
`

P2
˘4
ˆ
`

P2
˘4
| xi „ Hyi, i “ 1, . . . 4u.

Here we use the standard notation „ indicate that two vectors are equal up to scale. We

note that each of these correspondence constraints is equivalent to the vanishing of three

homogeneous, non-independent linear equations

”

xi

ı

ˆ
Hyi “ 0.

A short calculation reveals that x P Xz and Ψ1˝Ψ2pxq P Xz map to the same point in Y1.We

also note that Y1 is irreducible, since its Zariski-open in the graph of H1 ˆ pP2q
4 99K pP2q

4
.

The projection Y1 Ñ Z has a deck transformation given by the sign-symmetry H ÞÑ

´H. To remove this last symmetry, we define

s “
1

H2
1,1

S “
1

H1,1

H (4.23)

and take Y1 99K Y2 Ă C9ˆ pP2q
4
ˆ pP2q

4 by mapping H to s and the 8 non-constant entries
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of S. Algebraically, the ideal

xdetpSJS´ sIq,
”

x1

ı

ˆ
Sy1,

”

x2

ı

ˆ
Sy2,

”

x3

ı

ˆ
Sy3,

”

x4

ı

ˆ
Sy4y (4.24)

has dimension 0 and degree 3 “ degpY2{Zq for generic data px1, . . . ,y4q P Z. The algebraic

complexity as captured by the Galois group matches that of a well-known algorithm for

computing H, in which one must compute the singular values of a 3 ˆ 3 matrix λH

recovered up to scale from the four point correspondences (see eg. [53, Algorithm 4.1]

or [83, Algorithm 5.2].)

Finally, we consider the minimal problem , where the task is to recover the relative

orientation of three cameras from the input data of four point correspondences which lie on

the incidence variety

Z “ tpx1, . . . , x4, y1, . . . , y4, z1, . . . , z4q P
`

P2
˘12
| x3 P x1 x2, y3 P y1 y2, z3 P z1 z2u.

Unlike the two-view problem , the three-view problem no longer has a twisted

pair symmetry. However, the deck transformation group for is C2 ˆ C2, generated by

two deck transformations analagous to Ψ2 in Figure 4.5. For , the joint camera map

defined in section 3.2 is birationally equivalent to a branched cover whose fibers are pairs of

homography matrices which are compatible in the sense that they share the same normal

vector. Thus, the solutions of interest lie on the subvariety H2 Ă pC3ˆ3q
2 defined to be the

closed image of the map

pSOCp3qq
2
ˆ
`

C3
˘3
Ñ

`

C3ˆ3
˘2

pR1,R2, t1, t2,nq ÞÑ pR1 ` t1n
J, R2 ` t2n

J
q.

Notice that, unlike in Equation 4.22, we have absorbed the constant 1
d

into t for each

homography matrix. We wish to compute the fibers of the branched cover X Ñ Z, where

X “ tppH1, H2q, px1, . . . , z4qq P H2 ˆ Z | xi „ H1 yi „ H2 zi, i “ 1, . . . 4u. (4.25)
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For this problem, we have degpX{Zq “ 64, and Result 2 tells us MonpX{Zq – S2 o pS2 o

S16 X A32q X A64. It follows that there exists a decomposition

X 99K Y1 99K Y2 99K Z

with degpX{Y1q “ degpY1{Y2q “ 2 and degpY2{Zq “ 16. The deck transformations of

X Ñ Z are easily seen to be pH1,H2q ÞÑ p˘H1,˘H2q. Thus, we may use separating

invariants s1,S1, s2,S2 as in the two view case to write down the maps X 99K Y1 and

Y1 99K Y2.

However, our description of X is unsatisfying from the point of view of constructing a

polynomial solvers, since we have only described H2 parametrically. We leave determining

the ideal IH2 as a challenging open problem in algebraic vision, analogous to previous

works [3, 2]. Our final Result 3 is a partial solution to this implicitization problem, which

describes an ideal contained in IH2 . The generators of this ideal and the linear correspon-

dence constraints in Equation 4.25 generate a 0-dimensional ideal of degree 64 for generic

data z “ pxi,yi, ziq.

Drawing on the description of H1 from the previous section, consider the map

H2 Ñ
`

C3ˆ3
˘2

pH1,H2q ÞÑ pHJ
1 H1 ´ I,HJ

2 H2 ´ Iq.

The image of this map has the alternate parametrization

`

C3ˆ1
˘3
Ñ

`

C3ˆ3
˘2

pd1,d2,nq ÞÑ pndJ1 ` d1n
J,ndJ2 ` d2n

J
q.

Using Macaulay2, we compute implicit equations in new matrix variables Wi “ ndJi `

din
J, i “ 1, 2. The resulting elimination ideal in CrW1,W2s is generated by four cubics

and 15 quartics. The cubic constraints obtained are

detpW1q “ detpW2q “ detpW1 `W2q “ detpW1 ´W2q “ 0. (4.26)

80



These cubics can be understood in terms of the alternate parametrization, which shows

that generic pW1,W2q in the image will span a pencil of rank-2 symmetric matrices. In

what in follows, it is enough for us to consider two of the 15 quartics, which have alternate

expressions in terms of resultants:

Resn1

`

W3,3
1 n2

1 ´ 2W1,3
1 n1 `W1,1

1 ,W3,3
2 n2

1 ´ 2W1,3
2 n1 `W1,1

2

˘

“ 0

Resn2

`

W3,3
1 n2

2 ´ 2W2,3
1 n2 `W2,2

1 ,W3,3
2 n2

2 ´ 2W2,3
2 n2 `W2,2

2

˘

“ 0
(4.27)

where n “ pn1, n2, n3q.

Substituting Wi “ HJ
i Hi ´ I into Equation 4.26 yields four polynomials of degree 6

vanishing on H2. Using Bertini [15], we computed points where these equations vanish by

tracking 64 “ 1296 homotopy paths. Out of these points, 336 lie on H2. The remaining 960

paths resulted in 224 points not on H2, each occurring with multiplicity 4. We confirmed

that the degree of the variety H2 is indeed 336 using monodromy.

Unlike in the five-point problem, the linear equations implied by xi „ H1 yi „ H2 zi

are non-generic. The number of solutions to these linear equations and the four degree-6

equations obtained from Equation 4.26 is 320. Out of these solutions, only 84 satisfy the

degree-8 equations obtained from Equation 4.27. To obtain the degree 64 reported in [34],

it is sufficient to impose the additional constraint detH1 ‰ 0. In summary, we have the

following result.

Result 3. For each z “ px1, . . . , z4q P Z, let Iz Ă CrH1,H2, Ds be the ideal in 19

variables generated by the linear relations xi „ H1 yi „ H2 zi for i “ 1, . . . , 4, the

saturation constraint D detH1 ´ 1 “ 0, and six equations obtained by setting pW1,W2q “

pHJ
1 H1 ´ I,HJ

2 H2 ´ Iq in Equation 4.26 and Equation 4.27. For generic z P Z, we have

degpIzq “ 64. Moreover, after substituting s1, s2,S1,S2 as in Equation 4.23, Equation 4.24,

we obtain an ideal of degree 16 for generic data.
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