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SUMMARY

This work concerns the study of combinatorial models for biological structures and

networks as motivated by questions in predictive medicine. Through multiple examples,

the power of combinatorial models to simplify problems and facilitate computation is ex-

plored. First, continuous time Markov models are used as a model to study the progression

of Alzheimer’s disease and identify which variables best predict progression at each stage.

Next, RNA secondary structures are modeled by a thermodynamic Gibbs distribution on

plane trees. The limiting distribution (as the number of edges in the tree goes to infinity)

is studied to gain insight into the limits of the model. Additionally, a Markov chain is

developed to sample from the distribution in the finite case, creating a tool for understand-

ing what tree properties emerge from the thermodynamics. Finally, knowledge graphs are

used to encode relationships extracted from the biomedical literature, and algorithms for

efficient computation on these graphs are explored.

xv



CHAPTER 1

INTRODUCTION AND BACKGROUND

Combinatorics is a branch of mathematics concerned with counting, selecting, and arrang-

ing various types of mathematical objects [1]. The mathematical objects studied in com-

binatorics can vary widely; some examples include integers, trees, graphs, and matchings.

Generally speaking, combinatorics deals with questions of enumeration, existence, and op-

timization of objects [2, 3]. Enumeration problems ask the question “how many objects

of this type are there?” Existence questions ask “is there an object with these properties?”

Optimization problems ask “which object in the set is best”, according to a criterion of

(often practical) interest.

Predictive medicine is a field of study that uses mathematics, statistics, data science

and machine learning to develop and implement algorithms that can be used to improve

healthcare [4, 5]. More specifically, predictive medicine can provide tools to help identify

the cause or mechanisms of a disease, to identify possible treatments for disease, and to

directly improve patient care.

A combinatorial approach can bring many benefits to predictive medicine. Many prob-

lems in predictive medicine are so complex that direct computational approaches are im-

practical and direct biological or mathematical inquiry is extremely difficult or impossible.

Combinatorics can provide a crucial framework in the form of a combinatorial model. Us-

ing such a model, a complex biomedical problem can be simplified to the point where

meaningful computation and/or direct mathematical analysis is possible. Because all mod-

els involve simplification and assumptions, the results of such computation or analysis

should then be verified against the real data, experimentally tested, or simply used to gen-

erate hypothesies and point out possible areas for future research.

Combinatorial models also provide clear benefits with respect to computation. In order

1



for the algorithms generated by predictive medicine to be useful, they have to be efficient

enough that researchers and clinicians can actually use them on the computing hardware

available. The structure of a combinatorial model often allows for careful algorithm design

and optimization. Additionally, some models can be used as the basis for approximation

algorithms, which may be much faster than exact computation while still delivering useful

results.

Broadly, this thesis approaches combinatorial models in predictive medicine in a few

distinct ways. First, the models are analyzed with the goal of drawing conclusions, ei-

ther about the modeled phenomenon or about the model itself. This style of analysis is

dominant in chapter 2 and chapter 3. Second, the models are used as a starting point for

computation, and the main results concern how efficiently quantities can be computed.

These computation-inspired questions are central to chapter 4 and chapter 5.

Another persistent theme in both the models and the computation is stochasticity. Many

of the models are themselves stochastic. For example, the RNA secondary structure models

from chapter 3 and chapter 4 are stochastic due to the stochastic nature of physics on a

molecular scale. In contrast, the continuous time Markov models used to study disease

progression in chapter 2 use stochasticity as a stand-in for the uncertainty in our current

state of knowledge. Stochasticity also proves useful when examining the question of how

to efficiently compute quantities of interest. Randomized algorithms feature prominently

in chapter 4 and chapter 5.

1.1 Overview of chapters

We begin with chapter 2, which concerns the use of continuous time Markov models

to study the progression of Alzheimer’s disease. Alzheimer’s disease is a serious neu-

rodegenerative disease with significant personal and societal costs. The development of

Alzheimer’s disease is gradual, and diagnosis in early stages is often missed [6, 7]. It

is also currently quite difficult to predict who will develop Alzheimer’s disease or how

2



quickly an individual with Alzheimer’s disease will progress to the more severe stages [8].

The goal of this work is to provide models and identify key characteristics that can help to

predict the progression of the disease. Ultimately, the objective is to enable clinicians to

provide more insight to patients and families about the likely course of the disease. This

additional information has the potential to improve healthcare by reducing the stress caused

by uncertainty and enabling patients and their families the plan for the future.

The key combinatorial model from this project is the continuous time Markov model,

and much of the work can be viewed as an optimization problem: of all possible parameters

for this Markov model, which combination best fits the observed data? The continuous time

Markov models also incorporate various covariates from the dataset, allowing for the study

of which covariates are the best predictors of disease progression.

In chapter 3 and chapter 4, we study a thermodynamic model for ribonucleic acid

(RNA) secondary structures. In the context of predictive medicine, understanding RNA

secondary structures is a crucial step to understanding the mechanisms behind disease. In

biology, form and function are nearly always closely linked. Through better understand-

ing of the structure of RNA, its specific function may be revealed. Known functions of

RNA include information transfer, gene regulation, and catalysis of chemical reactions [9,

10, 11]. RNA also comprises many viral genomes [9]. A better understanding of RNA

structure has the potential to shed light on the mechanisms of many diseases.

The specific combinatorial model of RNA secondary structure studied here is focused

on the branching behavior of these structures. Structures are modeled by plane trees, and

a thermodnyamic model defines a Gibbs probability distribution on the plane trees. Plane

trees belong to a well-studied class of mathematical objects known as Catalan objects. The

rich combinatorial literature on plane trees makes them especially attractive as a model for

RNA structure. Both chapter 3 and chapter 4 build on this literature.

In chapter 3 we study the above-mentioned Gibbs distribution on plane tress in the

limit as the number of edges in the plane trees approaches infinity. Various aspects of

3



the work can be understood as enumeration problems. For example, “how many plane

trees have a given energy value?” The results ultimately shed light on the boundaries

of what structures this model can predict, regardless of the thermodynamic parameters

selected. Since the plane tree model is a special case of a more general model (the Nearest

Neighbor Thermodynamic Model) widely used in the study of RNA secondary structure

[12], understanding these limitations may enable future researchers to develop even better

models. In turn, better models will lead to better structural predictions, which will facilitate

the study of the mechanisms behind numerous diseases.

In chapter 4, we study the same thermodynamic model for RNA secondary structure

from a different perspective. Instead of looking at the limiting behavior of the probabil-

ity distributions, we devise an algorithm for sampling from the probability distribution on

plane trees of some fixed size. The sampling algorithm is based on the Metropolis algo-

rithm, and the key result is a mixing time bound on the resulting Markov chain. Improving

the mixing time bound, we encounter many combinatorial enumeration problems. As a

simple example, we must answer questions like “how many plane trees with n edges have

exactlym vertices with exactly one child?” Choices made in the algorithm design and proof

strategy also have elements of combinatorial optimization, as we are seeking the smallest

achievable mixing time bound.

This mixing time result has potential utility for performing computational experiments

that can help researchers understand what types of branching properties are typical for the

given thermodynamic model. This information, in turn, is important for interpreting the

output of secondary structure prediction software. As with the previous chapter, better

understanding of RNA secondary structure models is a stepping stone to better models,

better structure predictions, and, ultimately, better understanding of disease mechanisms.

Finally, chapter 5 concerns the question of navigating a knowledge graph built from

biomedical paper abstracts. Consider, as a motivating example, the problem of identifying,

from the set of all known drugs, potential drug treatments for a disease. From the vast set
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of known drugs, it is reasonably likely that a few might provide benefit for a given dis-

ease, but it would be impractical and likely unethical to simply test all of the drugs. (Even

when testing in animal models, ethical considerations demand that animal tests only be

performed when no alternative methods are available, that the minimum necessary number

of animals be used, and that care is taken not to unnecessarily duplicate experiments al-

ready documented in literature [13].) Instead, a researcher would like to be able to use their

knowledge together with the vast amount of information available in the biomedical liter-

ature to identify promising drugs for further testing. While this researcher is likely quite

familiar with the disease they are studying and the known or hypothesized mechanisms for

this disease, in order to identify promising drug candidates, they would also want to be

familiar with all candidate drugs, the diseases they are known to treat, and the mechanisms

behind all of those diseases and treatments. No single human has the capacity to read and

remember all of the relevant literature.

This is where a combinatorial model is useful, specifically a knowledge graph. A

knowledge graph is a directed graph that encodes relationships between biomedical con-

cepts [14]. This graph is built using natural language processing techniques on biomedical

paper abstracts [15].

This chapter focuses on computing quantities of interest on this graph. In particular, the

goal is to efficiently compute HeteSim [14], a similarity score that gives an overall measure

of the relatedness of different concepts in the knowledge graph. Developing, refining,

and implementing algorithms for HeteSim involves many combinatorial questions around

existence, enumeration, and optimization. In fact, all of these questions are raised about

paths in the knowledge graph. We ask “is there a path between s and t?” We also need to

know “how many paths are there between s and t?” When optimizing our algorithms, we

need to know “of the set of all paths between s and t, how many do we need to examine?”

in order to accurately estimate certain quantities.

Key improvements to the HeteSim computations include changes to the underlying data
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structure representing the knowledge graph and the introduction of relevant randomized

approximation algorithms. The more efficient algorithms and data structures developed in

chapter 5 will allow researchers to compute similarity scores for concepts of interest much

more quickly, facilitating the identification of possible drug therapies for disease.

Taken together, these examples will demonstrate the utility of applying combinatorial

models in predictive medicine. The following chapters will show how combinatorics and

predictive medicine together have the potential to reveal disease mechanisms, identify po-

tential treatments, and improve patient care.

1.2 Technical Background

An overview of the technical background and relevant tools is provided in this section.

1.2.1 Continuous time Markov models and hidden Markov models

In chapter 2, continuous time Markov models are a tool used to model the progression of

Alzheimer’s disease. A continuous time Markov model is defined by a state space Ω, a

transition intensity matrix Q, and an initial state x0. The model defines a random variable

X(t) as a function of time t. By assumption,X(0) = x0 with probability 1. The probability

that X changes state is governed by the transition intensity matrix Q. More specifically,

the entry qrs is given by

qrs = lim
δ→0+

P (X(t+ δ) = s|X(t) = r)

δ
. (1.1)

Note that this definition does satisfy the Markov property. The probability of moving to

any given state depends only on the current state, not on any history of prior states.

Continuous time hidden Markov models are an extension of continuous time Markov

models where the true state of the Markov chain is hidden. Instead, the observed state has

a probability distribution conditional on the true state. More formally, a continuous time
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hidden Markov model is defined by a state space Ω, a transition intensity matrix Q, an

initial state x0, and an emission probability matrix E. The first 3 quantities are defined as

for a continuous time Markov model. The emission probability matrix E has entries ers

given by

ers = P (O(t) = s|S(t) = r) , (1.2)

where O(t) is the observed state at time t and S(t) is the true state at time t.

Considerable study has been devoted to algorithms for fitting both discrete and contin-

uous time Markov models and hidden Markov models to data (e.g. [16, 17, 18], also see

[19, 20] for an overview) and to applying these models to biomedical problems (e.g. [21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]).

The act of fitting a continuous time Markov model or hidden Markov model to disease

progression data has the potential to yield insights on its own, such as a better understand-

ing of the actual rate of disease progression with respect to different disease states. Further

insight may be gained by incorporating covariates into the model. As an example, a propor-

tional hazards model as described by Marshall and Jones [27] replaces the original (without

covariates) elements of matrix Q by

qrs(z(t)) = q(0)
rs e

βTrsz(t), (1.3)

where q(0)
rs are the original entries of Q, βrs is a vector of parameters which must be fit to

the data, and z(t) is a vector of (time varying) covariates. The values of β can then be used

to draw conclusions about the relation between covariates and disease progression.

1.2.2 Generating functions and analytic combinatorics

In chapter 3, generating functions are used as a tool to obtain asymptotic approximations of

sequences. Using Carleman’s condition [33], asymptotic results on sequences of moments

are extended to results about limiting probability distributions. For a sequence (a(n)) for
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n ∈ Z≥0, we define the generating function corresponding to the sequence to be the formal

power series,

F (x) =
∑
n≥0

a(n)xn.

Fix (a(n)), for n ∈ Z≥0, and let F (z) be the associated generating function. We can

treat F (z) as a function over the complex plane. We say F (z) is analytic at a point z0 ∈ C

if there exists a region around z0 such that F (z) is differentiable. We say F (z) is analytic

on a domain if it is analytic at all points in the domain.

A point, z0 ∈ C, is a singularity of F (z) if F (z) is not analytic at z0. Furthermore,

that singularity is isolated if there exist ε > 0 such that F (z) is analytic on the domain

{z ∈ C : 0 < |z − z0| < ε}. Let F (z) be such that all its singularities are isolated. We

define a dominant singularity of F (z) to be an isolated singularity with minimal distance

from the origin.

A key tool comes from the work of Flajolet and Sedgewick [34]: the Transfer Theorem.

The Transfer Theorem allows us to deduce asymptotic information about (a(n)) using F (z)

and its singularities. In turn, this asymptotic information is used to characterize limiting

probability distributions.

1.2.3 The Metropolis algorithm and Markov chain convergence

In chapter 4, the key algorithm is the Metropolis algorithm. The Metropolis algorithm,

used in the context of Markov chain Monte Carlo, allows one to design a Markov chain that

converges to a given probability distribution. While Markov chain Monte Carlo has been

used widely in computational biology and other applied sciences (e.g. [35, 36, 37, 38]),

convergence of chains is often judged by heuristics, rather than the mathematically-rigorous

analysis (see, e.g. [39, 40, 41]. The Metropolis algorithm only guarantees the convergence

of a chain to a target distribution; it does not automatically suggest any generally useful

bounds on how long that convergence may take [42]. This chapter concerns the question of

actually bounding that mixing time for our chain of interest.
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The actual mixing time bound is achieved by bounding the spectral gap of the transition

probability matrix. The key tools used in bounding the spectral gap include decomposition

theorems due to Martin and Randall [43] and Hermon and Salez [44], the latter of which

builds on work by Jerrum, Son, Tetali, and Vigoda [45]. Other tools include coupling and

comparison of Dirichlet forms, both of which are discussed by Randall [42].

1.2.4 Randomized approximation algorithms

In chapter 5, multiple randomized approximation algorithms are analyzed. An approxima-

tion algorithm is an algorithm which returns a value within a specified error (additive or

multiplicative) of the true answer, with some known or bounded probability. The power of

approximation algorithms lies in their ability, for some problems, to provide a fast approx-

imation to a solution even when computing the exact solution requires exponential time

(assuming P 6= NP). Though approximation algorithms have existed in the literature for

some time, Garey, Graham, and Ullman [46] and Johnson [47] both introduced the idea for-

mally in 1973 and 1974, respectively. Since then, the computer science and combinatorics

literature has featured many advancements in the field of randomized approximation algo-

rithms. For an overview of basic techniques for designing and analyzing approximation

algorithms and more recent results, see [48, 49, 50].
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CHAPTER 2

MARKOV MODELS FOR PROGRESSION OF ALZHEIMER’S DISEASE

This chapter represents partial results of an ongoing collaborative project, with collabora-

tors Sri Vivek Vanga, Raghav Tandon, Albert Lee, Lauren Steimle, and Cassie Mitchell.

The full results will be submitted to a journal specializing in Alzheimer’s disease.

2.1 Introduction

Alzheimer’s disease (AD) and related dementia [51] are characterized by decline in mem-

ory leading to loss of independence and reliance on caregivers. AD is the sixth leading

cause of death in the United States population and the fifth leading cause of death among

adults aged ≥ 65 years. The impact of Alzheimer’s is expected to increase in the US as

15.0 million will have clinical AD or mild cognitive impairment by 2060 [52]. Diagnosis of

AD is often missed or delayed [6]. Diagnosis of AD is hard especially at early onset. Sev-

eral lines of research such as Positron emission tomography (PET) and structural images

suggest that AD begins years before its clinical manifestations are obvious [6]. Early and

accurate diagnosis is an important problem as early diagnosis can be used to slow down the

rate of decline by apt treatment and behavioral therapy [6]. AD broadly progresses through

three disease stages: cognitive normal (CN), mild cognitive impairment (MCI) and AD.

Patients transition to different stages at varying rates. The ability to identify early features

that predict the clinical progression of AD is imperative for clinical trial patient selection

and personalized predictive medicine. The objective of the present study is to utilize a

form of statistical model called a Markov model to predict the probability of transitioning

to each stage using a select number of commonly measured clinical features, including

cognitive function assessments, the Apolipoprotein E4 (APOE4) genotype, and standard

brain volumes obtained from magnetic resonance imaging (MRI).
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Alzheimer’s disease neuroimaging initiative (ADNI) [53] has released a dataset track-

ing patients’ Alzheimer’s disease progression, including time varying and time independent

attributes. The ADNI longitudinal dataset consistently collects measures of disease pro-

gression on study volunteers throughout their disease course. A small yet diverse subset of

features from the ADNI dataset was used to build an interpretable model with an intent to

analyze how different features affect Alzheimer’s disease progression. The ADNI clinical

dataset includes recruitment, demographics, physical examination and cognitive assess-

ment data. For the present work, three cognitive assessments were included, the ADAS11,

ADAS13 and CDRSB.

The Alzheimer Disease Assessment Scale 11 (ADAS11) [54] consists of 11 modalities

that evaluate memory, praxis, and language deficiencies. The tests take 30-35 minutes to

take and the items score range from 1 to 5. The total ADAS11 score ranges from 0–70 with

higher scores suggesting greater impairment. The ADAS11 test has been shown successful

in not only identifying Alzheimer’s patients from healthy elderly controls, but it has also

shown to be effective in rating severity between moderate and late-stage dementia based

on decreasing performance on the test items[54]. Critics of ADAS11 [55] state that the

test is less effective in rating severity in MCI and mild dementia cases. The Alzheimer

Disease Assessment Scale 13 (ADAS13) [56] includes all ADAS11 modalities as well as

a test of delayed word recall and a number cancellation or maze task. The inclusion of

additional tests helps ADAS13 identify more mild forms of dementia. The ADAS13 scores

range from 0 to 85. Just like ADAS11, higher score indicates more severe impairment. The

Clinical Dementia Rating (CDR) was introduced by C P Huges et. al. [57] and provides

data on inter-rater reliability and comparison with other dementia rating scales. Clinical

Dementia Rating Scale Sum of Boxes (CDR-SB) [58, 59] is a modified scoring of the

CDR scale. [58] shows that the CDR-SB scores allow for a more granular assessment than

the CDR score and shows that the utility of the CDR-SB (over CDR) for diagnosing mild

dementia. Results presented by O’Bryant SE et. al. [59] validates the CDR-SB scores by
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comparison with the (global) CDR score.

Apolipoprotein E4 (APOE4) is the most prevalent genetic risk factor of AD [60]. The

APOE4 genetic risk factor is expressed in more than half of AD patients, making it a

sought after therapeutic target [61]. The more copies of APOE4 a patient has, the higher

their risk for developing dementia. In the ADNI study, the APOE4 column takes values

0 to 2. The APOE4 allele, present in approximately 10-15% of people, increases the risk

for Alzheimer’s and lowers the age of onset. Having one copy of E4 (E3/E4) can increase

your risk by 2 to 3 times while two copies (E4/E4) can increase the risk by 12 times[62].

MRI [63] is a powerful technique for non-invasive imaging of the human brain. MRI of

the brain can support the quantitative characterization of neurological conditions such as

Alzheimer’s disease (AD). MRI can provide informative biomarkers even before clinical

symptoms are apparent or irreversible neuronal damage has occurred [64]. ADNI patients

have MRI image scans during their baseline and follow-up clinic visits. The collection of

images is central to meeting ADNI’s objective of developing biomarkers to track both the

progression of Alzheimer’s disease and changes in the underlying pathology. In the present

study, hippocampus and whole brain volume attributes extracted from these MRI images

are exported via ADNImerge [65] tabular dataset. The whole brain volume and hippocam-

pus volume have been used in prior work [66] to identify fast AD disease progressors. The

present study utilizes the ADNI data set and Markov modeling to answer two important

research questions: 1) Which standard clinic variables are most important for predicting

which patients will transition to each AD stage and when do these transitions take place?

2) What standard clinical metrics or combination of attributes is most likely to result in a

misdiagnosis? For example, what combination of attributes is likely to result in a patient

with mild cognitive impairment but not pathological AD to be incorrectly diagnosed as

having AD or vice versa? Most prior machine learning studies [67, 68, 69] have focused

only on imaging or only on informatics. The present study utilizes the most ubiquitous met-

rics from the AD clinic and combine them into an interpretable model to better understand
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the transitions and how well these clinical features predict such transitions. Specifically,

Markov models are used to study the longitudinal data and decision trees [70], a form of

supervised machine learning, used to study the IID dataset.

2.2 Materials and Methods

This study utilizes the ADNI data set to predict disease stage progression and probability

of mis-diagnosis using Markov modeling and supervised machine learning.

2.2.1 Data Sets

This work is based on the ADNImerge [65] dataset, a longitudinal dataset containing clini-

cal and biomarker data from the Alzheimer’s disease neuroimaging initiative (ADNI). Each

row in ADNImerge corresponds to a patient’s visit and the patient’s attributes that were

collected in that visit. A subset of columns from the ADNImerge dataset were used: par-

ticipant roster ID (RID), which uniquely identifies a patient; column M in ADNImerge,

which captures the relative time of the visit (in months) compared to the baseline visit of

the patient; APOE4 genetic risk score; cognitive assessment scores for each visit, includ-

ing the 11-question and 13-question Alzheimer’s Disease Assessment Survey (ADAS11,

ADAS13); the clinical dementia rating (CDR) at each visit; and the MRI-captured hip-

pocampus and whole brain volumes measured during each visit. All ADNImerge rows that

contain a null (i.e. missing) value for any of the aforementioned attributes were dropped.

There are two dataset variants for the present project, which vary on the number of

attributes utilized. Dataset variant 1 includes 4 attributes: APOE4, CDRSB, ADAS11,

ADAS13. Dataset variant 2 includes 6 attributes APOE4, CDRSB, ADAS11, ADAS13,

hippocampus brain volume, whole brain volume. The “diagnosis” (the label for patient

diagnostic stage or class) labelled as DX is included in all variants. Summary statistics for

the dataset variants are shown in Table 2.1. Please note that variant 2 has smaller number

of data points as variant 2 has more columns which also results in more null values (and
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more rows necessitated to be dropped). Dataset variants 1 and 2 were each used to con-

struct separate Markov models for analysis. Finally, a separate independent and identically

distributed (IID) dataset was constructed to build interpretable supervised learning models.

The variant 2 IID dataset is the same as variant 2 with the exception that it only considers

the baseline visit for each patient and their eventual diagnosis approximately 24 months

after their baseline. Table 2.1 contains a description of the dataset variants. Please note

that dataset variant 1 and 2, as mentioned in the table, are derived from ADNImerge data

set [65].

Table 2.1: Description and sample sizes for Dataset Variants. Both dataset variants are
derived from the ADNImerge data set [65].

Dataset variant Attributes
Contained

Visits Included Number of data
points

Number of patients

Variant 1 APOE4, CDRSB,
ADAS11,
ADAS13

all visits 9972 2016

Variant 2 APOE4, CDRSB,
ADAS11,
ADAS13,
hippocampus brain
volume, whole
brain volume

all visits 5595 1602

Variant 2 IID APOE4, CDRSB,
ADAS11,
ADAS13,
hippocampus brain
volume, whole
brain volume

Baseline(attributes)
and
24-months(DX)

1106 1106

2.2.2 Modeling to predict AD transitions

Broadly speaking, two distinct approaches are used to analyze the importance of each vari-

able in predicting AD transitions from normal, MCI, and AD. Supervised machine learning

with a binary classifier was used to identify features of highest importance in predicting pa-

tient diagnosis using baseline data. A standard Markov model was utilized to predict tran-

sition probabilities for stages of disease progression and to compute corresponding hazard

ratios. A hidden Markov model was utilized to assess the probability of mis-diagnosis or

14



an incorrect prediction of a stage transition during disease progression based on temporal

attributes collected at each clinic visit.

2.2.3 Binary classifier

The binary classifier, a decision tree model, was designed to provide a simple, interpretable

machine learning framework to assess which baseline feature are most important in pre-

dicting a patient’s diagnosis 24 months later. As noted under Datasets, the binary classifer

utilized the variant 2 IID data. Two subsets of data were created containing only two even-

tual diagnosis (DX) labels: MCI and CN subset; MCI and AD subset. Each subset was

randomly partitioned to utilize 70% of the data for training the model and 30% of the data

for independent testing of the model. For each subset, a binary classifier model was built

with just one feature, and the model performance assessed using the test partition. The

corresponding predictive power of each feature is reported and plotted for discriminating

the two classes. The framework used to implement and train the decision tree was Python

scikit-learn [71].

2.2.4 Standard Markov Model

The R package MSM [29] was used to fit a continuous time Markov model to the data. A

continuous time Markov model is defined by state space S and a transition intensity matrix

Q. The state space for all Markov models discussed here is

S = {CN,MCI,AD}. (2.1)

Equation 2.1 describes the three possible disease states: control (CN), mild cognitive im-

pairment (MCI) and Alzheimer’s Disease (AD). The entries of the transition intensity ma-

trix may be understood informally as the instantaneous transition rate from one state to

another. By the Markov assumption, for any t > 0, δ > 0 the state at time t + δ is inde-

15



pendent of all states prior to time t. The MSM R package computes a transition intensity

matrix Q which maximizes likelihood. The effect of covariates on transition intensity can

also be modeled, as described below. Under a proportional hazards model, the entries of

the transition intensity matrix, given covariate vector z(t), are given by

qrs(z(t)) = q(0)
rs exp(β

T
rsz(t)). (2.2)

Using this new definition of the transition intensity matrix Q, the MSM package simulta-

neously finds the values of q(0)
rs and βrs (for all r, s) which maximize likelihood. Note that

the transition intensity matrix can be written as

qrs(z(t)) = q(0)
rs

n∏
i=1

exp((βrs)i))
zi(t), (2.3)

where (βrs)i is the ith entry of the covariate vector. The quantity exp(βrs)i is referred to

as the hazard ratio for covariate i.

When working with multiple (possibly correlated) covariates, it is not generally pos-

sible to interpret the hazard ratio of an individual covariate. To overcome this limitation,

a separate single-covariate model was fit for each covariate and the resulting hazard ratios

reported. For a given covariate i and transition rs (which implies transition from state r to

state s) if the corresponding hazard ratio is greater than 1, then an increase in the value of

the covariate corresponds to an increased transition intensity. If the hazard ratio is less than

1, then an increase in the covariate value corresponds to a decrease in transition intensity.

If the hazard ratio is exactly 1, then the covariate value does not change the transition inten-

sity. Further, for a hazard ratio greater than 1, a larger hazard ratio shows a larger effect of

the covariate on the transition probability. For a hazard ratio less than 1, a smaller hazard

ratio shows a stronger effect.
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2.2.5 Hidden Markov Model

To better understand what factors may affect misdiagnosis of Alzheimer’s disease, the

MSM R package was used to fit a hidden Markov model (HMM). In a hidden Markov

model, the true state of the Markov chain is not observed. Instead, for each state in the

state space, there is a distribution of emission probabilities. The observed value, then,

depends on both the state and the emission distribution. Let Si(t) be the true state of par-

ticipant i at time t. Similarly, let Oi(t) be the observed state of participant i at time t. The

misclassification matrix E is defined by ers = Pr(Oi(t) = s|Si(t) = i). To investigate

which variables may explain misclassification, a multinomial logistic regression model is

used satisfying log ers(t)
ers0 (t)

= γTrsw(t)), where s0 is a baseline state and w(t) is a vector of

explanatory variables. As with the analysis of hazard ratios, the individual entries of γrs

do not allow the effect of correlated explanatory variables to be understood. As with haz-

ard ratios, a separate model is built for each variable. The MSM package computes E by

likelihood maximization using a continuous version of the Baum-Welch algorithm due to

Bureau et al [17].

2.3 Results

2.3.1 Binary classifier results

In this section, results are examined from the binary classifier trained on two subsets of the

variant 2 dataset. Two subsets of data contain only two eventual diagnosis (DX) labels:

MCI and NC subset; MCI and AD subset. The predictive power of a variable for discrim-

inating among two subsequent disease states is interpreted as feature importance of that

variable in influencing disease progression to the subsequent state. The orange bars in Fig-

ure 2.1 represent the feature importance of a variable for discriminating the MCI and CN

subset; hence it is labelled as feature importance 1 2. The blue bars represent the feature

importance of a variable for discriminating the MCI and AD dataset; hence, it is labelled

17



as feature importance 2 3. In the feature importance plot, all the variables except CDRSB

are better at discriminating MCI and AD (feature importance 2 3) as compared to the dis-

criminating CN and MCI (feature importance 1 2). CDRSB, on the other hand, is a better

at discriminating CN and MCI as compared to discriminating MCI and AD.

Figure 2.1: Feature importance predicted by binary classifier using the decision tree method
and the variant 2 IDD dataset from Table 2.1. The blue and orange bars represent the
feature importance of a variable for predicting - future transition to MCI from CN and
future transition to AD from MCI. respectively. The error bars represent the 95% CI.

2.3.2 Assessing disease stage transition probability using Markov modeling

Two Markov models on two dataset variants were fit as described in the Data Structures

sub-section of the Methods. All attributes present in a specific dataset variant are used as

covariates in the Markov model. For dataset 1, the model did converge and appears to have

a qualitatively good fit when compared to the binary classification results. No convergence

was obtained in the model for dataset 2, likely due to the model having more parameters

but fewer data points. Ongoing work on the project beyond the present thesis will examine

the quantitative fit of the Markov model using a goodness of fit test appropriate for Markov
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models. Goodness of fit will also be assessed for the single-covariate models described in

this chapter.

The hazard ratios for the two variants of datasets are reported in tabular form in Ta-

ble 2.2 and Table 2.3, and visualized in the forest plot of Figure 2.2. The hazard ratios indi-

cate the relative importance of the feature in predicting a disease transition. Greater hazard

ratios indicate greater association between the feature and the indicated corresponding dis-

ease transition. The 95% confidence interval (CI) is illustrated in parentheses following the

hazard ratio. Note that the overlapping confidence intervals are a function of data variance

(patient heterogeneity) and sample size. Nonetheless, general trends are discernable based

on the presented results.

The different orders of magnitude seen in the hazard ratios for different covariates re-

flects the fact that, in the model, different covariates can have effects on transition intensi-

ties of quite different magnitude. As an example, APOE4 has a hazard ratio between 2 and

3 for both transitions. APOE4 is a genetic risk factor which will therefore remain constant

for a given patient. In contrast, ADAS11 has a hazard ratio of order 104 and 105 for the two

transitions. ADAS11 is also a cognitive test which would be re-administered at frequent in-

tervals. An elevated ADAS11 score, then, should be a much stronger predictor of a patient

transitioning within a narrow time interval, compared with the constant APOE4 test result.

Table 2.2: Hazard ratios of Markov model built from dataset variant 1

Dataset variant 1 CN→MCI MCI→ AD
(hazard ratios) Estimated (CI 95%) Estimated (CI 95%)
APOE4 2.6189e+00 (1.51401,4.5301) 2.9862e+00 (2.26930,3.9296)
ADAS11 1.387e+05 (4.188e+03,4.592e+06) 1.943e+05 (4.961e+04,7.614e+05)
ADAS13 3.131e+04 (2.428e+03,4.038e+05) 4.750e+04 (1.444e+04,1.562e+05)
CDRSB 3.734e+08 (2.659e+06,5.242e+10) 4.687e+05 (8.781e+04,2.501e+06)

Results indicate that APOE4, ADAS11, ADAS13, hippocampus volume, and whole

brain volume are better predictors of transition state 2 (MCI) to state 3 (AD) compared to

state 1 (CN) to state 2 (MCI). CDRSB, on the other hand, is better predictor of transition

state 1 to state 2 compared to state 2 to state 3. However, the aforementioned inference is
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Table 2.3: Hazard ratios of Markov model built from dataset variant 2

Data variant 2 CN→MCI MCI→ AD
(hazard ratios) Estimated (CI 95%) Estimated (CI 95%)
APOE4 2.0280e+00 (0.8643,4.759) 3.5307e+00 (2.4838,5.019)
ADAS11 2.551e+04 (1.999e+02,3.257e+06) 2.096e+05 (4.241e+04,1.036e+06)
ADAS13 9.925e+04 (1.634e+03,6.028e+06) 1.218e+05 (2.665e+04,5.571e+05)
CDRSB 1.886e+06 (5.260e+01,6.761e+10) 3.311e+05 (1.148e+03,9.551e+07)
Hippocampus 1.135e-01 (7.064e-03,1.824e+00) 7.419e-04 (2.013e-04,2.734e-03)
Whole Brain 4.121e+00 (0.151043,1.125e+02) 9.474e-03 (0.001545,5.810e-02)

only conclusive for the features of hippocampus and Whole brain; for other features the

confidence intervals overlap which indicate a need for more data points (patient sample

observations). Results inferences are summarized in Table 2.5.

Table 2.4: Interpretation of presented quantitative study results.

Attribute Interpretation based on point Interpretation based on confidence
estimate of hazard ratio interval of hazard ratio

APOE4 Better predicator of transition MCI - AD
compared to CN - MCI

Need more data to conclude as hazard ra-
tio of CN - MCI transition overlaps with
hazard ratio of MCI - AD.

ADAS11 Better predictor of transition MCI - AD
compared to CN - MCI

Need more data to conclude as hazard ra-
tio of CN - MCI transition overlaps with
hazard ratio of MCI - AD.

ADAS13 Better predictor of transition MCI – AD
compared to CN – MCI.

Need more data to conclude as hazard ra-
tio of CN - MCI transition overlaps with
hazard ratio of MCI - AD.

CDRSB Better predictor of transition CN – MCI
compared to MCI – AD.

Need more data to conclude as hazard ra-
tio of CN - MCI transition overlaps with
hazard ratio of MCI - AD.

Hippocampus Better predictor of transition MCI - AD
compared to CN - MCI

Conclusive.

Whole Brain MCI - AD compared to CN - MCI. Conclusive.

2.3.3 What metrics are most likely to lead to a misdiagnosis?

Values in Table 2.5 indicate whether a larger value of the coefficient increases or decreases

the probability of misdiagnosis. A value greater than 1 means that an increase in the value

of the covariate corresponds to an increased probability of misdiagnosis. A value less

than 1 means that an increase in the value of the covariate decreases the probability of

misdiagnosis. APOE4 and ADAS11 are more likely to cause misclassification of MCI as

CN as compared to misclassifying of AD as MCI. A reversal of trend is noticed for CDRSB
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Figure 2.2: Hazard ratios for attributes assess in the Markov model (dataset variant 2).
Blue represents transition from cognitively normal to mild cognitive impairment whereas
burgundy represents transition from mild cognitive impairment to Alzheimer’s Disease.
The error bars represent 95% CI.

– it is more likely to cause misclassification of AD as MCI as compared to misclassifying

MCI as CN.

2.4 Discussion

The results from the three techniques to assess cognitive disease progression in AD – bi-

nary classifiers, Markov models and Hidden Markov model – are discussed in context of

the prior literature studies. Binary classifiers, specifically decision trees, predict well the

future disease state based on the current disease state and one feature. The performance

of the interpretable decision tree is explained by the fact most clinicians primarily utilize

basic clinical attributes, namely neuropsychological survey performance, to diagnose AD.
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Table 2.5: Diagnostic misclassification coefficients for hidden Markov model.

Dataset variant 1 APOE4 coefficient ADAS11 coefficient CDRSB coefficient
Obs MCI | CN 3.4982

(1.1922433,10.264)
8.856e+18
(1.016e+15,7.719e+22)

1.941e-01
(1.589e-01,2.348e-01)

Obs AD | CN 0.4524
(0.0029691,68.932)

1.801e+02
(4.273e-18,7.590e+21)

4.964e-01
(3.34e-01,6.602e-01)

Obs CN |MCI 0.3508 (0.11619,1.059) 3.753e-09(1.843e-
12,7.643e-06)

8.321e-07
(1.051e-07,6.585e-06)

Obs AD |MCI 1.6783 (0.7617180,3.698) 3.753e-09
(1.843e-12,7.643e-06)

1.47e-02
(9.700e-03,2.303e-02)

Obs CN | AD 0.4427
(0.00011,1700.936)

2.402e-01
(2.162e-71,2.669e+69)

6.726e-03
(3.314e-03,1.360e-02)

Based on Figure 2.2, APOE4, AGE, ADAS13, ADAS11, hippocampus volume, and whole

brain volume are better at discriminating later stages of Alzheimer’s disease - MCI and

AD. CDRSB is a better at discriminating earlier stages of Alzheimer’s disease progression

- CN and MCI. Binary classifiers were included in this study primarily to confirm the re-

sults of the continuous time Markov models. Since the continuous time Markov models

require significant assumptions (in particular, the Markov assumption itself), the consis-

tency between the decision trees and hazard ratios from the Markov models give additional

confidence that Markov models are appropriate and hazard ratios are meaningful in this

context.

Presented results indicate that underlying disease progression is approximately Marko-

vian and that the covariates selected assist in predicting disease progression transitions.

Clinicians look at basic cognitive and neuroanatomical MRI features to build a timeline of

disease progression and recommend treatment options for the patient. Based on Figure 2.2,

the present study concludes APOE4, ADAS11, ADAS13, hippocampus volume, and whole

brain volume are better at predicting transition in later stages of disease progression (MCI

to AD) than earlier stages of disease progression (CN to MCI). CDRSB, on the other hand,

is better at predicting transition in earlier stages of disease progression (CN to MCI) com-

pared to predicting transition in later stages of disease progression (MCI to AD). Based on

Hidden Markov model results in Table 2.5, APOE4 and ADAS11 are better at predicting

misclassification in earlier stages of disease progression (MCI as CN) as compared to later
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stages of misclassification (AD as MCI). However, the sparsity of the data limits the num-

ber of cases that can be examined using hidden Markov models. Nonetheless, the trends

identified are expected to generalize across potentially larger sample populations or mixed

cohorts.

The results from the three techniques - binary classifiers, Markov models and hidden

Markov model can be together interpreted to state that for APOE4, ADAS11, ADAS13,

hippocampus and whole brain volumes are better for diagnosing later stages of disease

progression in Alzheimer’s disease. CDRSB, on the other hand, is better for diagnosing

earlier stages of disease progression in Alzheimer’s disease. The quantitative findings, as

shown in Figure 2.1 and Figure 2.2, indicate CDRSB are better at diagnosis for earlier

stages of Alzheimer’s disease. The present study’s CDSRB finding is explained by prior

literature [58, 59], which argues that because CDRSB is more granular, it is more helpful

in diagnosing mild dementia.

The quantitative findings, as shown in Figure 2.1 and Figure 2.2, indicate ADAS11 is

better at diagnosis for later stages of Alzheimer’s disease. The present study’s ADAS11

are also explained by prior literature. Critics of the ADAS11 [55] state that the test is

less effective in rating severity in MCI and mild dementia cases. In fact, this limitation was

central to later development of the ADAS13. Based on quantitative results in Figure 2.1 and

Figure 2.2, ADAS13 is better at diagnosing mild dementia cases as compared to ADAS11.

ADAS13 [56] includes all ADAS11 modalities as well as a test of delayed word recall and a

number cancellation or maze task. The inclusion of additional tests helps ADAS13 identify

more mild forms of dementia. Please note from Figure 2.1 and Figure 2.2 that ADAS13

is still an inferior neuropsychological metric for diagnosing earlier stages of Alzheimer’s

disease as compared to CDR-SB.

23



2.4.1 Future directions

As noted in the Results, work to quantitatively prove the goodness of fit of the Markov

models is in progress at the time of this thesis writing. The lack of additional standard or

uniformly utilized clinic predictors that assess the transition from CN to MCI exacerbate

the difficulty in predicting an early Alzheimer’s diagnosis in the absence of large genetic

or proteomic testing, the latter of which is not typically available to the general popula-

tion. The current study quantitatively highlights the need to invest in ubiquitous and easily

accessible clinical metrics that better assist in early diagnosis of Alzheimer’s disease.

More broadly, this chapter adds to a substantial body of work using Markov models and

hidden Markov models to better understand disease progression. For example, such models

have been applied to glaucoma [21], complications after lung transplantation [22], coronary

occlusive disease after heart transplant [23], is that you Chido various cancers [24, 30, 31,

32], progression of HIV infection [25, 26], and development of diabetes complications [27,

28]. In principle, Markov models could be applied to any disease with multiple stages

where a Markov assumption is appropriate. In other words, the probability of transitioning

to a given stage of disease with in a given (small) time interval must depend only on the

current disease state, not on any additional history. This assumption might be questioned in

many progressive disease contexts, where intuition could lead one to believe that the prob-

ability of transitioning to a more advanced disease state would increase with the amount of

time spent in the current state. However, as seen by the breadth of literature, the Markov

assumption appears to be reasonable in a wide variety of disease contexts. Additionally,

as seen in this chapter, large quantities of data are generally necessary for fitting meaning-

ful Markov models, so applicability of these techniques will be limited to settings where

such data are available. Further, hidden Markov models have proven useful in a variety of

contexts where the true disease state cannot be known with certainty (but where a Markov

assumption can still be reasonably applied) (e.g. [22, 26, 32]). Markov models and hid-

den Markov models should be considered as valuable tools for the analysis of longitudinal
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patient data when attempting to study disease progression.

2.4.2 Limitations

The study results quantitatively show the sparsity of the ADNI dataset through overlap-

ping confidence intervals of parameter estimates for all three techniques - binary classifiers,

Markov models and Hidden Markov model. Because of the sparsity of data, advanced tech-

niques like Hidden Markov models were used to analyze only three covariates – APOE4,

ADAS11, CDRSB. In order to further analyze the ADNI dataset and apply more advanced

techniques, there is a need for increased data density by possibly onboarding more patients

or aggregating data across other longitudinal cohorts.
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CHAPTER 3

ON THE ASYMPTOTIC DISTRIBUTIONS OF CLASSES OF SUBTREE

ADDITIVE PROPERTIES OF PLANE TREES UNDER THE NEAREST

NEIGHBOR THERMODYNAMIC MODEL

The content of this chapter has been submitted to the Online Journal of Analytic Combina-

torics, with co-author Chidozie Onyeze.

3.1 Background and Introduction

This chapter uses techniques from analytic combinatorics to explore probability distribu-

tions arising from questions in molecular biology. Specifically, the questions explored are

inspired by the problem of RNA secondary structure prediction.

3.1.1 Overview of results

This chapter examines a model of RNA secondary structure in which secondary structures

are modeled by plane trees. As defined more rigorously in section 3.2, we consider the set

of all plane trees with n edges under a Gibbs distribution, where the energy of each tree

depends on its degree sequence and root degree. The energy function is also determined by

3 thermodynamic parameters, which we treat as fixed: (α, β, γ). In this chapter, we treat

these parameters as arbitrary real numbers. However, specific values of interest do arise

from the thermodynamic models used in molecular biology; the biological motivation is

discussed further in subsection 3.1.2. For a wide class of properties of plane trees, we show

a relationship in their asymptotic distributions under different values of (α, β, γ).

One such property is the path length. The path length of a plane tree is the sum of the

distances from each vertex of the tree to the root. It is known that the path length of all

plane trees with n edges is Airy distributed asymptotically as n → ∞ (see Theorem 5).
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This case, with the plane trees being uniformly distributed, corresponds to the thermody-

namic parameters (0, 0, 0). Applying Theorem 42 to the path length property allows us to

relate the asymptotic distribution of path length under arbitrary thermodynamic parame-

ters (α, β, γ) to this known result. As shown in Corollary 43, we can explicitly state the

asymptotic distribution of path length under arbitrary thermodynamic parameters.

For some properties, such as the path length, the asymptotic distribution in the uniform

case is known. For many other properties, such as the sum of the distances from each

leaf to the root, this distribution is not known. Therefore in addition to our main result

relating asymptotic distributions of plane tree properties under different thermodynamic

parameters, we also develop some tools which are useful for determining the asymptotic

distributions of certain properties in the uniform case. Combining these tools with the main

result discussed above allows us to obtain explicit forms for asymptotic distributions for a

wide variety of plane tree properties under arbitrary thermodynamic parameters. More

specifically, in Theorem 17, we relate the asymptotic distribution of a class of plane tree

properties, which we call simple subtree additive properties, to the asymptotic distribution

of path length, both in the uniform case. As shown in Corollary 31, this theorem allows

us to deduce that the total leaf to root distance is also distributed asymptotically as an Airy

random variable.

3.1.2 Biological background

We now proceed with some exposition on RNA secondary structure and prior work in this

area. The reader interested only in the mathematics may skip this section.

RNA secondary structure

RNA is an important biological polymer with roles including information transfer, regu-

lation of gene expression, and catalysis of chemical reactions. The primary structure of

an RNA molecule is the sequence of nucleotides in the polymer. RNA nucleotides are
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adenine, cytosine, guanine, and urasil, which we frequently abbreviate as A, C, G, and U,

respectively. The primary structure, therefore, may simply be understood as a string of A’s,

C’s, G’s, and U’s. Because RNA is single-stranded, it has the capacity to form nucleotide-

nucleotide bonds with itself. The set of such bonds is the secondary structure of an RNA

molecule. The bonds A-U, C-G, and G-U are considered canonical, and our the only bonds

considered by the model presented here. The tertiary structure of an RNA molecule is its

three-dimensional shape. Though tertiary structure ultimately is most relevant to the deter-

mination of function, it is also very difficult to deduce with current laboratory techniques.

Therefore, secondary structure is often used as a first step in the process of predicting ter-

tiary structure [72, 73]. In fact, secondary structure is often an input to tertiary structure

prediction algorithms [74, 75, 76, 77].

One of the main computational tools for predicting RNA secondary structures is ther-

modynamic free energy minimization using Nearest Neighbor Thermodynamics Modeling

(NNTM) [78, 79, 80]. Under the NNTM, the free energy of a structure is computed as

the sum of the free energy of its various substructures. This free energy is in turn used in

algorithms to predict secondary structure given an RNA sequence, see, e.g., [81, 82, 83].

Though such algorithms perform reasonably well on short RNA sequences, performance

rapidly degrades once sequence length exceeds a few hundred nucleotides.

Multiloops and branching

This chapter investigates an aspect of RNA secondary structure that becomes more sig-

nificant as sequence length grows: multiloops. A multiloop is a place where 3 or more

helices meet in an RNA secondary structure. Multiloops are not predicted well by the cur-

rent NNTM energy assignments [84]. The number and type of multiloops determines the

branching behavior of an RNA secondary structure.

We study a model for RNA secondary structure first presented by Hower and Heitsch

[12]. This model isolates the multiloops and branching properties of secondary structure,
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allowing their study without the necessity to consider the identity of individual base pairs.

Under the model, secondary structures are placed in bijection with plane trees. The min-

imum energy structures under the model were characterized by Hower and Heitsch in the

original paper, but this leaves open the question of the full Gibbs distribution of possible

structures, as well as the question of characterizing asymptotic behavior of the distribution.

Kirkpatrick et al. [85] have shown the existence of a polynomial-time Markov chain-based

algorithm for sampling from the Gibbs distribution on structures of a fixed size. Bakhtin

and Heitsch [86] analyzed a simplification of the model and determined degree sequence

properties of the distribution of plane trees asymptotically.

Several properties are used to describe the overall branching behavior of an RNA sec-

ondary structure. In particular, ladder distance and contact distance are used to characterize

various aspects of a molecule’s shape, size, and branching structure (see, e.g. [87, 88]). As

discussed in subsection 3.2.2, ladder distance and contact distance correspond to Wiener

index and path length, respectively, of plane trees.

We will examine the distribution of several plane tree properties asymptotically under

the full version of the Hower and Heitsch model. Under an assumption that the root degree

is bounded, the theorems developed will allow us to characterize the asymptotic distribution

of many properties of RNA secondary structures under the Nearest Neighbor Thermody-

namic Model (NNTM). We will further show that altering the parameters (α, β, γ) only

changes the property distribution by a constant multiple. When the assumption that the

root degree is bounded is removed, we will still obtain analogous results for parameter sets

of the form (α, β, 0).

3.1.3 Structure of this chapter

In section 3.2, we give an overview the necessary mathematical preliminaries (including

relevant known results). In subsection 3.3.1, we construct generating functions counting

plane trees. In subsection 3.3.2, we relate the moments (and hence the distribution) of
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a class of subtree additive properties we call simple. In subsection 3.3.3, we apply the

generating functions in subsection 3.3.1 to relate the moments of a class of subtree addi-

tive properties under the uniformly weighted distribution on the plane trees to the same

properties under the non-uniformly weighted distribution on the plane trees arising from

the Nearest Neighbor Thermodynamic Model. We, hence, show that there exists a con-

stant that translates the asymptotic random variable in the uniformly weighted case to the

asymptotic random variable in the non-uniformly weighted case. In subsection 3.4.1, we

provide some miscellaneous enumeration results on plane trees.

3.2 Mathematical Preliminaries

3.2.1 Plane Trees and their Properties

A plane tree is a rooted ordered tree. Let Tn denote the set of plane trees on n edges.

Let T≤k = ∪n≤kTn. It is well-known that |Tn| is given by the nth Catalan number,

Cn = 1
n+1

(
2n
n

)
. We define the down degree of a vertex to be the degree of the vertex

when considering the root and one less than the degree of the vertex for all other vertices.

We define a leaf to be a non-root vertex with down degree 0 and an internal node to be

a non-root vertex with down degree 1. For a plane tree T , let v(T ), n(T ), d0(T ), d1(T )

and r(T ) be the number of vertices, edges, leaves, internal nodes and root degree of T ,

respectively. Let V(T ) be the vertex set of T and let V(T ) be the vertex set excluding the

root vertex. For v ∈ V(T ), let Tv be the subtree of T that contains all descendant of v

(including v).

For plane trees T1 ∈ Tn and T2 ∈ Tm for some m,n ≥ 0, we define the join of T1 and

T2, T1 n T2, to be the tree formed by adding a new edges to leftmost side of the root of

T1 and attaching T2 to this new edge. Note that T1 n T2 ∈ Tn+m+1. Notice that for a tree

T ∈ T>0, there is unique T1, T2 ∈ T≥0 such that T = T1 n T2.

We define a property of a plane tree to be a function P : T≥0 → R. We define the

2 types of properties we will consider from this point forward: additive properties and
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subtree additive properties. A property P is additive if, for T ∈ T≥1 such that T = T1nT2

for some T1, T2,

P(T ) = P(T1) + P(T2) + f(T2),

where f(T ) : T≥0 → R≥0. For a tree T , let v1, · · · , vd be the child vertices of the root

vertex of T . By repeated use of the above definition, we see that

P(T ) = P(T ∗) +
d∑
i=1

f(Tvi) +
d∑
i=1

P(Tvi), (3.1)

where d is the degree of the root of T and T ∗ is the tree on 1 vertex.

This is similar to the notion of an additive functional as described by Janson [89]. An

additive functional is a function F : T≥0 → R such that

F (T ) = f(T ) +
d∑
i=1

F (Tvi),

where f : T≥0 → R is known as the toll function. Due to (Equation 3.1), we note that

an additive property (as we have defined it) is an additive functional with toll function f

where there exist a function f ∗ : T≥0 → R≥0 such that f(T ) = c +
∑d

i=1 f
∗(Tvi) where

c = P(T ∗). We will borrow the terminology of additive functionals and call the tuple

(f, c) the toll of the additive property. It should be clear that a subtree additive property

is uniquely determined by its toll. Thus, we will denote the additive property with a given

toll by P(f,c). We will call f , in the toll, the toll function of the subtree additive property.

We will call an additive property non-negative integer valued if the co-domain of the toll

function is a subset of Z≥0 (and c ∈ Z≥0).

It can also be shown inductively that, for c, c1, c2 ∈ R, f1, f2 : T≥0 → R and T ∈ Tn,

P(c1·f1+c2·f2,c)(T ) = c1 · P(f1,0)(T ) + c2 · P(f2,0)(T ) + c · P(0,1)(T ). (3.2)
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A property P is subtree additive if, for T ∈ T≥1,

P(T ) =
∑

v∈V(T )

f(Tv, T ).

where f : T≥0 × T≥0 → R, and P(T ∗) = 0. We will call such a property simple if

P(T ) =
∑

v∈V(T )

P ′(Tv)

where P ′ is a non-negative integer valued additive property. In this case, we call P the

subtree additive property induced by P ′.

For a plane tree T , the energy of the tree is given by

E(T ) = αd0(T ) + βd1(T ) + γr(T ) (3.3)

where α, β, γ ∈ R are parameters of the energy function.

For fixed n ∈ N and parameters α, β, γ ∈ R and property P , we define the random

variable P(α,β,γ)(Tn) to be P(T ) for a plane tree T ∈ Tn selected at random with probabil-

ity e−E(T )

Z(n,α,β,γ)
where Z(n,α,β,γ) is a normalizing constant given by Z(n,α,β,γ) =

∑
T∈Tn e

−E(T ).

For convenience, we will denote P(0,0,0)(Tn) simply as P(Tn).

Let P and P be properties and let α1, α2, β1, β2, γ1, γ2 ∈ R be parameters. We use

P(α1,β1,γ1)(Tn)
d←→ P(α2,β2,γ2)(Tn)

to imply that there exist a random variable W such that as n→∞,

P(α1,β1,γ1)(Tn)
d→ W and P(α2,β2,γ2)(Tn)

d→ W,

where d→ denotes convergence in distribution. In this case, we will say that P(α1,β1,γ1)(Tn)
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and P(α2,β2,γ2)(Tn) are equivalent in distribution.

We now state the well-known Carleman’s condition [33] which tells us that, under cer-

tain conditions (which the random variables we will consider satisfy), to show equivalence

in distribution, it is sufficient to show equality is asymptotic moments.

Theorem 1 (Carleman’s condition). Let X be a random real-valued variable and let mk =

E[|X|k] <∞ for all k ≥ 0. If
∞∑
k=1

|m2k|−
1
2k =∞,

then there exists a unique distribution with moments mk.

3.2.2 Examples

Example 2. It can be shown inductively that the number of edges in a tree is given by the

additive property with toll function (f, 0) where f(T ) = 1 for all T ∈ T≥0. We will denote

this by Pe. Similarly, the number of vertices in a tree is given by the additive property with

toll function (0, 1) where 0 is the zero function. We will denote this by Pv.

Example 3. For f(T ) = 1 when T = T ∗ and f(T ) = 0 otherwise, we observe that

P(f,0)(T ) represents the number of leaves in T . We will denote this by Pd0 . Similarly,

for f(T ) = 1 when T has root degree 1, and f(T ) = 0 otherwise, P(f,0)(T ) represents

the number of internal nodes in T . We will denote this by Pd1 . Note that for T ∈ Tn,

Pd0(T ) ≤ n and Pd1(T ) < n.

Example 4. We define the path length of T , PPL(T ), to be the sum of the edge distances

from each vertex of T to the root. In the biological context, this quantity is also known

as the total contact distance. We can observe that PPL(T ) is a simple subtree additive

property since

PPL(T ) =
∑

v∈V(T )

Pv(Tv) =
∑

v∈V(T )

Pe(Tv) + n

where n =
∣∣V∣∣ is the number of edges in T . This holds because the number of paths from
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vertices to the root that utilize an edge e is the number of vertices in the subtree directly

below e.

It can be shown from the work of Takács [90] or more directly from the work of Janson

[91] that the following result about the distribution of the path length holds.

Theorem 5. As n→∞,
PPL(Tn)√

2n3

d→
∫ 1

0

e(t) dt

where e(t) is a normalized Brownian excursion on [0, 1]. Thus, it is Airy Distributed.

Furthermore,

lim
n→∞

E

[(
PPL(Tn)√

2n3

)k]
∼ 6k√

2

(
k

12e

) k
2

as k →∞.

Example 6. We define the Wiener index of T , PWI(T ), to be the sum of the edge distances

between any 2 vertices. In the biological context, this quantity is also known as the total

ladder distance. We can observe that PWI(T ) is a subtree additive property since

PWI(T ) =
∑

v∈V(T )

Pv(Tv)(Pv(T )− Pv(Tv)).

This holds because the number of paths between vertices that utilize an edge e is the number

of unordered pairs of vertices, one from the subtree below e and the other not from that

subtree.

From the work of Janson [91], the following result about the distribution of the Wiener

index holds.

Theorem 7. As n→∞,

PWI(Tn)√
2n5

d→
∫ ∫

0<s<t<1

(e(s) + e(t)− 2 min
s≤u≤t

e(u)) ds dt

where e(t) is a normalized Brownian excursion on [0, 1].
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Example 8. We define the total leaf to root distance of T , PLR(T ), and the total internal

node to root distance of T , PIR(T ), to be the sum of the edge distances from every leaf

vertex to the root and the sum of the edge distances from every internal node to the root,

respectively. We can observe that PLR(T ) and PIR(T ) can be described in terms of a

simple subtree additive properties as follows.

PLR(T ) = Pd0(T ) +
∑

v∈V(T )

Pd0(Tv) =
∑

v∈V(T )

Pd0(Tv) +O(n)

and

PIR(T ) = Pd1(T ) +
∑

v∈V(T )

Pd1(Tv) =
∑

v∈V(T )

Pd1(Tv) +O(n).

We see this as follows. The total leaf to root distance is the sum over all edges of the

number of path that use that edge which is the number of leaves in the subtree below the

edge, which is Tv, where v is the vertex below the edge. We, however, notice that by our

definition of a leaf, if v is a leaf in T , it will not be counted as a leaf in Tv. Thus, overall, we

under count by the number of leaves in T . A similar argument holds for the total internal

node to root distance.

In subsection 3.3.2, we will show that P
LR(Tn)√
n3

and P
IR(Tn)√
n3

both converge weakly to an

Airy random variable.

3.2.3 Generating Functions and Analytic Combinatorics

For a sequence (a(n)) for n ∈ Z≥0, we define the generating function corresponding to the

sequence to be the formal power series,

F (x) =
∑
n≥0

a(n)xn.
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Similarly, for a k-dimensional sequence, (a(n1, · · · , nk)) for n1, · · · , nk ∈ Z≥0, we define

the multivariate generating function corresponding to the sequence to be

F (x1, · · · , xk) =
∑
n1≥0

· · ·
∑
nk≥0

a(n1, · · · , nk)xn1
1 · · ·x

nk
k .

We will use [xn1
1 · · ·x

nk
k ]F (x1, · · · , xk) to denote the coefficient of xn1

1 · · ·x
nk
k in the

generating function F (x1, · · · , xk), namely a(n1, · · · , nk).

Fix (a(n)) for n ∈ Z≥0 and let F (z) be the associated generating function. We can

treat F (z) as a function over the complex plane. We say F (z) is analytic at a point z0 ∈ C

if there exist a region around z0 such that F (z) is differentiable. We say F (z) is analytic

on a domain if it is analytic at all points in the domain.

A point, z0 ∈ C, is a singularity of F (z) if F (z) is not analytic at z0. Furthermore,

that singularity is isolated if there exist ε > 0 such that F (z) is analytic on the domain

{z ∈ C : 0 < |z − z0| < ε}. Let F (z) be such that all its singularities are isolated. We

define a dominant singularity of F (z) to be an isolated singularity with minimal distance

from the origin.

From the work of Flajolet and Sedgewick [34], we now state a slightly simplified form

of a so called Transfer Theorem that will allow us to deduce asymptotic information about

(a(n)) using F (z). For some R > 1 and 0 < φ < π
2
, we define a ∆-domain at 1 to be the

domain

∆(φ,R) = {z ∈ C : |z| < R, z 6= 1, |arg(z − 1)| > φ}.

Theorem 9 (Transfer Theorem). Let (a(n)) be a sequence with associated generating func-

tions F (z). Let F (z) be a function analytic at 0 with a unique dominant singularity at 1

and let F (z) be analytic in a ∆-domain at 1, ∆0. Assume there exist σ, τ such that σ is a

finite linear combination of terms of the form (1 − z)−α for α ∈ C and τ is a term of the
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form (1− z)−β for β ∈ C such that, for z ∈ ∆0,

F (z) = σ (z) +O (τ (z)) as z → 1.

Then, the following asymptotic estimation holds.

a(n) = [zn]F (z) = [zn]σ(z) +O(nβ−1) .

A basic application of the above result that we will be useful in section 3.3 is as follows.

Corollary 10. Let (a(n)) be a sequence with associated generating functions F (z). Let

1
ζ
∈ C be the unique dominant singularity of F (z) and assume F (z) = (1 − ζz)−αg(z)

where α ∈ C and g(z) is a complex-valued function that is analytic in the region R ={
z ∈ C : |z| ≤

∣∣∣1ζ ∣∣∣}. Then, the following asymptotic estimation holds.

a(n) =
ζng

(
1
ζ

)
Γ(α)

nα−1 +O
(
ζnnα−2

)
.

Proof. We expand g(z) about z = 1
ζ

using Taylor’s Theorem to get g(z) = g
(

1
ζ

)
+

O (1− ζz) . Thus

F

(
z

ζ

)
= g

(
1

ζ

)
(1− z)−α +O

(
(1− z)1−α) as z → 1.

We then apply Theorem 9 and notice that [zn]F
(
z
ζ

)
= 1

ζn
[zn]F (z) to achieve the desired

result.
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3.3 Results

3.3.1 Generating functions for counting trees by leaves, internal nodes and root degree

Let Gn(d0, d1, r) be the set of plane trees on n edges with d0 leaves, d1 internal nodes and

root degree r. Let

G(x, a, b) =
∞∑
n=0

∞∑
d0=0

∞∑
d1=0

∞∑
r=0

|Gn(d0, d1, r)|xnad0bd1 ,

Gr(x, a, b) =
∞∑
n=0

∞∑
d0=0

∞∑
d1=0

|Gn(d0, d1, r)|xnad0bd1

and

G(x, a, b, c) =
∞∑
n=0

∞∑
d0=0

∞∑
d1=0

∞∑
r=0

|Gn(d0, d1, r)|xnad0bd1cr.

As we will use it often from this point on, let G∗(x, a, b) = G1(x, a, b).

Theorem 11. The following recurrences hold.

G(x, a, b) = 1 + xG(x, a, b)2 + (a− 1)xG(x, a, b) + (b− 1)xG(x, a, b)G∗(x, a, b), (3.4)

G(x, a, b, c) =
1

1− cG∗(x, a, b)
, (3.5)

and

G∗(x, a, b) = 1− 1

G(x, a, b)
. (3.6)

Proof. To achieve Equation 3.4, we apply the decomposition of a plane tree into 2 subtrees

given by T = T1 n T2. This adds a new edge. The only tree not accounted for by this

process is T ∗. Note that this process of adjoining trees never creates any new leaves or

internal nodes in T1. Notice that when T2 = T ∗, T2 has an extra leaf which is not accounted

for (since it would be at the root of T2). Thus we re-weight these trees. (Hence (a −
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1)xG(x, a, b).) Also notice that when T2 has root degree 1, T2 has an extra internal node

which is not accounted for (since it would be at the root of T2). Thus we re-weight these

trees. (Hence (b− 1)xG(x, a, b)G∗(x, a, b).)

To achieve Equation 3.5, we notice that a tree with root degree r is equivalent to a

sequence of r trees with root degree 1 where we identify all the root vertices. This iden-

tification does not add or remove any edges, leaves or internal nodes. Thus the generating

function for trees with root degree r, where we weight root degree, is crG∗(x, a, b)r. Sum-

ming over all possible values for r, we get the desired expression.

To achieve Equation 3.6, we set c to 1 in (Equation 3.5) to ignore root degree, and

rearrange the expression.

Corollary 12. The following generating functions hold.

G(x, a, b) =
1 + (2− a− b)x−

√
(1 + (2− a− b)x)2 − 4x(1− (b− 1)x)

2x
(3.7)

and

G∗(x, a, b) =
1 + (a− b)x−

√
(1 + (2− a− b)x)2 − 4x(1− (b− 1)x)

2(1− (b− 1)x)
. (3.8)

Proof. The result follows immediately by solving Equation 3.4 and Equation 3.6 simulta-

neously.

Lemma 13. For all a, b ∈ R>0, the dominant singularity of G(x, a, b) and G∗(x, a, b)

occurs at ρ = ρ(a, b) = a+ b+ 2
√
a.

Proof. Fix a, b > 0. Let Ψ = (1 + (2 − a − b)x)2 − 4x(1 − (b − 1)x) and let ρ =

ρ(a, b) = a + b − 2
√
a. The roots of Ψ are 1

ρ
and 1

ρ
. Clearly, 0 < 1

ρ
< 1

ρ
. Notice that the

only singularity caused by the numerator of (Equation 3.8) and (Equation 3.7) occurs when
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Ψ = 0. Thus the most significant of such singularities is 1
ρ
.

Notice that if there exists another singularity of G(x, a, b), it must occur at x = 0

(caused by the denominator). We notice that when x = 0, the numerator of Equation 3.7

goes to 0. Thus, taking a Laurent expansion of G(z, a, b) at z = 0, we get

G(z, a, b) =
1

2z

∑
n≥1

dnz
n =

∑
n≥0

dn+1

2
zn,

where di are constants. Thus G(z, a, b) is analytic at z = 0. Thus, the dominant singularity

of G(x, a, b) is 1
ρ
.

For b = 1, the denominator of Equation 3.8 is a constant, thus cannot cause another

singularity. Assume b 6= 1. Notice that if there exists another singularity of G∗(x, a, b), it

must occur at x = 1
b−1

(caused by the denominator). We notice that when x = 1
b−1

, the

numerator of Equation 3.8 goes to d′0 = a−1
b−1
−
∣∣a−1
b−1

∣∣. Notice that when the sign of a − 1

and b− 1 are the same (or a = 1), d′0 = 0. Thus, taking a Laurent expansion of G∗(z, a, b)

at z = 1
b−1

, we get

G∗(z, a, b) =
1

2(1− (b− 1)z)

∑
n≥0

d′n

(
z − 1

b− 1

)n
=
∑
n≥−1

d′n+1

2(1− b)

(
z − 1

b− 1

)n
,

where d′i are constants. Notice that when d′0 = 0, G∗(z, a, b) is analytic at z = 1
b−1

. Thus,

the dominant singularity of G∗(x, a, b) is 1
ρ
. When d′0 6= 0, G∗(z, a, b) has a singularity at

z = 1
b−1

. For this to be the case, we must have that a − 1 and b − 1 have the different

signs. Notice that for z = 1
b−1

to be the dominant singularity, ρ2 < (b− 1)2, which implies

that a + 2b + 2
√
a < 1. Since a − 1 and b − 1 have different signs, one of a and b is at

least 1, thus the inequality cannot hold. We thus conclude that the dominant singularity of

G∗(x, a, b) in this case is also 1
ρ
.
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Corollary 14. Fix α, β ∈ R. Let ρ = e−α + e−β + 2e−
α
2 . The following estimate holds.

Z(n,α,β,0) =

√
e−

α
2 ρ

2
√
π
· ρn · n−

3
2 +O

(
n−

5
2

)

Proof. Let ρ = e−α + e−β − 2e−
α
2 . By definition, it should be clear that Z(n,α,β,0) =

[xn]G(x, e−α, e−β). Thus, from Corollary 12, for n ≥ 2,

Z(n−1,α,β,0) = [xn]

(
−
√

1− ρx
2

·
√

1− ρx
)
.

By Lemma 13, for all α, β ∈ R, 1
ρ
< 1

ρ
, thus

√
1− ρx is analytic on the disk R ={

z ∈ C : |z| ≤ 1
ρ

}
. We thus apply Corollary 10, to see that

Z(n−1,α,β,0) = − ρn

2Γ
(
−1

2

) ·
√4e−

α
2

ρ

n−
3
2 +O

(
n−

5
2

)

=
ρn

2
√
π
·

√
e−

α
2

ρ
· n−

3
2 +O

(
n−

5
2

)
. (3.9)

We now set n to n+ 1 to get the desired result.

We will now extract the generating function Gn(a, b) defined by

Gn(a, b) =
∞∑
d0=0

∞∑
d1=0

∞∑
r=0

|Gn(d0, d1, r)|ad0bd1

using the following technical lemma. We will defer the proof of the lemma.

For a continuously differentiable function F (x1, · · · , xk) and V , a finite multiset with

elements v1, · · · , vm ∈ {x1, · · · , xk}, define

∂F (x1, · · · , xk)
∂V

=
∂mF (x1, · · · , xk)
∂v1 · · · ∂vm

.
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For a set V , let Part(V ) be the set of unordered partitions on V , (Vi). For a multiset, V ,

we define Part(V ) by distinguishing all elements of V , taking the partitions of the induced

set, then removing the distinction from each of the repeated elements. Note that Part(V ) is

itself a multiset. For example, Part({x1, x1}) = {{{x1}, {x1}}, {{x1, x1}}}.

Lemma 15. Let F be a continuously differentiable function in x, ∆ be a continuously

differentiable function in x1, · · · , xk and V be a non-empty finite set or multiset of the

elements x1, · · · , xk with elements v1, · · · , vm.

∂F (∆)

∂V
=

∑
(Vi)∈Part(V )

∂∆

∂V1

· · · ∂∆

∂Vp
· ∂

pF (x)

∂xp

∣∣∣∣
x=∆

(3.10)

We now achieve the following expression for Gn(a, b). We also compute the coeffi-

cients of the above expression explicitly via a combinatorial argument in Corollary 54.

Corollary 16. For n ≥ 2,

Gn(a, b) =
1

2n+1

∑
0≤k≤n+1

2

Cn−k

(
n− k + 1

k

)
· (a+ b)n−2k+1 ·

(
4a− (a+ b)2

)k
.

Proof. We consider xG(x, a, b). Notice that for n ≥ 2,

∂nxG(x, a, b)

∂xn
= −1

2
· ∂
√

∆

∂V

where V is the multiset containing n copies of x and ∆ = (1 + (2 − a − b)x)2 − 4x(1 −

(b − 1)x). Thus we apply Lemma 15. We notice that if |Vi| > 2, ∂∆
∂Vi

= 0. The number of

elements in Part(V ) in which each part has size is at most 2 and there are l parts of size 1

and k parts of size 2 is n!
2k·k!·l! . Thus, for n ≥ 2,
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∂nxG(x, a, b)

∂xn

∣∣∣∣
x=0

=
1

2

∑
2k+l=n

n!

2k · k! · l!
·
(
∂∆

∂x

)l
·
(
∂2∆

∂x2

)k
(3.11)

·
(
−1

2

)k+l · (2(k + l)− 3)!!

∆
2(k+l)−1

2

∣∣∣∣∣
x=0

(3.12)

=
n!

2n

∑
0≤k≤n

2

Cn−k−1

(
n− k
k

)
· (a+ b)n−2k ·

(
4a− (a+ b)2

)k
.

(3.13)

Finally, notice that

∂nxG(x, a, b)

∂xn

∣∣∣∣
x=0

= n!
∞∑
d0=0

∞∑
d1=0

∞∑
r=0

|Gn−1(d0, d1, r)|ad0bd1 . (3.14)

3.3.2 The Distributions of Simple Subtree Additive Properties

In this section, we will consider various additive properties. We will assume all the tolls in

this section are of the form (f, 0) since, from Example 2 and Equation 3.2, we see that for

any c ∈ Z≥0 and T ∈ Tn,

P(f,c)(T ) = P(f,0)(T ) + c · (Pe(T ) + 1) = P(f+c,0)(T ) + c, (3.15)

where (f + c)(T ) = f(T ) + c.

Let P be a non-negative integer valued additive property of plane trees. Let P∗ be the

subtree additive property induced by P . Such a subtree additive property is simple as we

have defined. The main result of this section is that if the toll function of P is bounded,

the limiting distribution of P∗ is determined by the limiting distribution of P . Our primary

result is stated as follows.
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Theorem 17. Let P1 and P2 be non-negative integer valued additive properties of plane

trees with toll functions f1 and f2, respectively. Let the subtree additive properties induced

by P1 and P2 be P∗1 and P∗2 , respectively. Further assume that there exists ζ ∈ N such that

for all T ∈ T≥0, f1(T ) ≤ ζ and f2(T ) ≤ ζ . If, for all m,n ∈ Z,

∑
T∈Tn

P1(T )m = µm ·
∑
T∈Tn

P2(T )m +O
(
n

2m−4
2 4n

)
(3.16)

where µ ∈ R is a constant, then as n→∞,

P∗1 (Tn)√
n3

d←→ µ · P
∗
2 (Tn)√
n3

.

Let P be a non-negative integer valued property of plane trees that is additive with toll

function f . Let F(n,m) be the set of trees, T , on n edges such that P(T ) = m. Let

F (x, p) =
∑
n≥0

∑
m≥0

|F(n,m)|xnpm.

We may also refer to F (x, p) by FP(x, p) where the property we are referring to is unclear.

We now letHv(n,m) be the set of trees, T , on n edges such that P(T ) = m and f(T ) = v.

Let

Hv(x, p) =
∑
n≥0

∑
m≥0

|Hv(n,m)|xnpm.

Lemma 18. For any fixed non-negative integer valued additive property of plane trees, the

following recurrence holds.

F (x, p) = 1 + xF (x, p)
∑
v≥0

pvHv(x, p) (3.17)

Proof. We apply the decomposition of a plane tree into 2 subtrees given by T = T1 n T2.

This adds a new edge. Recall that P(T ) = P(T1) + P(T2) + f(T2). Thus, the tree T

gains an extra pf(T2) in the weighting. When T2 ∈ Hv(n,m), T gains an extra pv in the
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weighting. The only tree not accounted for by this process is T ∗.

Lemma 19. Let P be a non-zero non-negative integer valued additive property with toll

function f such that f(T ) ≤ ζ for all T ∈ T≥0 where f achieve ζ . For all n,m ≥ 0,

∑
T∈Tn

P(T )m = Θ
(
n

2m−3
2 4n

)
.

Proof. Fix m ≥ 0. Assume ζ > 0 (otherwise P(T ) = 0 for all T ∈ T≥0). We first note

that

∂FP(x, 1)

∂pm
=

∑
n≥0

xn
∑
T∈Tn

P(T )(P(T )− 1) · · · (P(T )−m+ 1)

=
∑
n≥0

xn
∑
T∈Tn

P(T )m +O
(
P(T )m−1

)
(3.18)

Consider P1, the additive property with toll function f1(T ) = ζ for all T ∈ T≥0. Let

T ′ ∈ TN be a tree such that f(T ′) = ζ . Consider P2, the additive property with toll

function f2(T ′) = ζ and f2(T ) = 0 for all other T ∈ T≥0. It should be clear that for any

tree T ∈ T≥0,

0 ≤ P2(T ) ≤ P(T ) ≤ P1(T ). (3.19)

We now see that FP1(x, p) = 1 + xpζFP1(x, p)
2 and FP2(x, p) = 1 + xFP2(x, p)

2 +

(pζ − 1)xN , thus

FP1(x, p) =
1−

√
1− 4xpζ

2xpζ
and FP2(x, p) =

1−
√

1− 4x(1 + (pζ − 1)xN)

2x
.

Thus, for m ≥ 1,

∂FP1(x, 1)

∂pm
= c1 · (1− 4x)

1−2m
2 +O

(
(1− 4x)

3−2m
2

)
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and
∂FP2(x, 1)

∂pm
= c2 · (1− 4x)

1−2m
2 +O

(
(1− 4x)

3−2m
2

)
, (3.20)

where c1, c2 are constants (that depend on m). We now apply Corollary 10 to see that

[xn]
∂FP1(x, 1)

∂pm
= c′1 ·n

2m−3
2 4n(1 + o(1)) and [xn]

∂FP2(x, 1)

∂pm
= c′2 ·n

2m−3
2 4n(1 + o(1))

(3.21)

where c′1, c
′
2 are constants. From Equation 3.18 and Equation 3.19, we thus see that for all

n ≥ 0, ∑
T∈Tn

P(T )m ≤
∑
T∈Tn

P1(T )m = c′1 · n
2m−3

2 4n(1 + o(1)) (3.22)

and ∑
T∈Tn

P(T )m ≥
∑
T∈Tn

P2(T )m = c′2 · n
2m−3

2 4n(1 + o(1)). (3.23)

Lemma 20. Let P be a non-zero non-negative integer valued additive property with toll

function f such that f(T ) ≤ ζ for all T ∈ T≥0 where f achieve ζ . As n→∞, the limiting

distribution of P(Tn)
n

is uniquely determined by its moments.

Proof. Consider P1, the additive property with toll function f such that f(T ) = ζ for

all T ∈ T≥0. We also see that for all T ∈ T≥0, P(T ) ≤ P1(T ). From Example 2 and

(Equation 3.2), for T ∈ Tn, P1(T ) = ζn. Thus E
[(
P(Tn)
n

)k]
≤ E

[(
P1(Tn)
n

)k]
= ζk.

The result follows immediately by the Carleman’s condition (Theorem 1).

The above result tells us that the condition in Equation 3.16 implies that P1(Tn)
n

d←→

µ · P2(Tn)
n

. Thus Theorem 17 is equivalent to the following corollary.

Corollary 21. For non-negative integer valued additive properties, P1 and P2, with toll

functions f1 and f2, respectively, such that there exists ζ ∈ N such that for any T ∈ T≥0,
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f1(T ) ≤ ζ and f2(T ) ≤ ζ ,

P1(Tn)

n

d←→ µ · P2(Tn)

n
⇒ P

∗
1 (Tn)√
n3

d←→ µ · P
∗
2 (Tn)√
n3

where µ ∈ R is constant and P∗1 and P∗2 are the induced subtree additive properties.

Let P∗ be the subtree additive property induced by P . Let Tn,m be the set of plane

trees, T , on n edges such that P(T ) = m. We define

Mk,n,m =
∑

T∈Tn,m

P∗(T )k =
∑

T∈Tn,m

 ∑
v∈V(T )

P(Tv)

k

=
∑

T∈Tn,m

∑
(v1,··· ,vk)∈V(T )k

P(Tv1) · · · P(Tvk) (3.24)

and let

Mk(x, p) =
∑
n,m≥0

Mk,n,mx
npm (3.25)

and Mk(x) = Mk(x, 1). Note that [xn]Mk(x) =
∑

T∈Tn P
∗(T )k = E

[
P∗(Tn)k

]
· Cn,

where Cn is the nth Catalan number.

Fix t1, · · · , tk ∈ Z≥0 and n,m ≥ 0. We consider tuples of (v1, · · · , vk) ∈ V(T ) for

some T ∈ Tn,m where P(Tvi) = ti. Notice that the contribution to Mk,n,m of any such

tuples is
∏k

i=1 ti. Also notice that the number of such tuples is

∑
T∈Tn,m

k∏
i=1

W (T, ti)

where W (T, t) =
∣∣{v ∈ V(T ) : P(Tv) = t

}∣∣. Let Fk(n,m,~t, ~s) be the set of trees, T , on

n edges such that P(T ) = m and W (T, ti) = si where ~s = (s1, · · · , sk) ∈ Zk≥0 and
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~t = (t1, · · · , tk) ∈ Zk≥0. We now let

Fk(~t|x, ~y|m) =
∑
n≥0

∑
s1≥0

· · ·
∑
sk≥0

|Fk(n,m,~t, ~s)|xn
k∏
i=1

ysii

and

Fk(~t|x, p, ~y) =
∑
m≥0

Fk(~t|x, ~y|m)pm.

Note that

∂Fk(~t|x, p,~1)

∂y1 · · · ∂yk
=
∑
n≥0

∑
m≥0

∑
s1≥0

· · ·
∑
sk≥0

|Fk(n,m,~t, ~s)|xnpm
k∏
i=1

si

where ~1 the vector of appropriate size for the context consisting of all 1s.

For V = {v1, · · · , vl} ⊂ N and F , a function, we define

∂F

∂y(V )
=

∂F

∂yv1 · · · ∂yvl
.

We define ∂F
∂z(V )

similarly. We also denote the set of integers from 1 to k by [k]. We now

show the following lemma that will be integral to the rest of our analysis.

Lemma 22. For k ∈ N and V = {v1, · · · , vl} ⊂ [k] such that |V | = l ≤ k, the following

holds.

Ml(x, p) =
∂

∂z(V )

∑
tv1≥0

· · ·
∑
tvl≥0

∂Fk(~t|x, p,~1)

∂y(V )

l∏
i=1

z
tvi
vi

∣∣∣∣∣∣
~z=~1

. (3.26)
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Proof. Let W = [k]− V = {w1, · · · , wk−l}. We first see that

∂Fk(~t|x, p,~1)

∂y(V )
=
∑
n≥0

∑
m≥0

∑
s1≥0

· · ·
∑
sk≥0

|Fk(n,m,~t, ~s)|xnpm
l∏

i=1

svi

=
∑
n≥0

∑
m≥0

∑
sv1≥0

· · ·
∑
svl≥0

xnpm
l∏

i=1

svi
∑
sw1≥0

· · ·
∑

swk−l≥0

|Fk(n,m,~t, ~s)|

(3.27)

=
∑
n≥0

∑
m≥0

∑
sv1≥0

· · ·
∑
svl≥0

|Fl(n,m,~t, ~s)|xnpm
l∏

i=1

svi (3.28)

=
∂Fl(~t|x, p,~1)

∂y(V )
(3.29)

We go from Equation 3.27 to Equation 3.28 by noting that when we sum |Fk(n,m,~t, ~s)|

over sw1 · · · swk−l , we lose our dependency on tw1 , · · · , twk−l . We go from Equation 3.28

to Equation 3.29 by relabeling the indices from v1, · · · , vl to 1, · · · , l. Thus to prove the

lemma, we need only consider the case when V = [k]. We now see that

∂

∂z([k])

∑
tv1≥0

· · ·
∑
tvl≥]0

Fk(~t|x, p,~1)

∂y([k])

l∏
i=1

z
tvi
vi

∣∣∣∣∣∣
~z=~1

=
∑
n≥0

∑
m≥0

∑
t1≥0

∑
s1≥0

· · ·
∑
tk≥0

∑
sk≥0

|Fk(n,m,~t, ~s)|xnpm
k∏
i=1

siti. (3.30)

For fixed ~t, ~s, we notice that trees in Fk(n,m,~t, ~s) are precisely the trees from which

we can get (v1, · · · , vk) ∈ V(T ) for some T ∈ Tn,m where P(Tvi) = ti. The contribution

of each tuple to Mk,n,m is
∏k

i=1 ti. The number of tuples (v1, · · · , vk) that can be achieved

from each tree T ∈ Fk(n,m,~t, ~s) is
∏k

i=1 si. Thus the total (weighted) contribution from

tuples of the above form is

|Fk(n,m,~t, ~s)|xnpm
k∏
i=1

siti.
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Hence, summing over ~t, ~s ∈ Zk≥0 and n,m ∈ Z≥0, we get Mk(x, p), proving the result.

LetHv
k(n,m,~t, ~s) = Hv(n,m) ∩ Fk(n,m,~t, ~s),

Hv
k (~t|x, ~y|m) =

∑
n≥0

∑
s1≥0

· · ·
∑
sk≥0

|Hv
k(n,m,~t, ~s)|xn

k∏
i=1

ysii , (3.31)

Hv
k (~t|x, p, ~y) =

∑
m≥0

Hv
k (~t|x, ~y|m)pm (3.32)

and

Jvk (x, p) =
∂

∂z([k])

(∑
t1≥0

· · ·
∑
tk≥0

Hv
k (~t|x, p,~1)

∂y([k])

k∏
i=1

ztii

)∣∣∣∣∣
~z=~1

. (3.33)

Using a similar argument to Lemma 22, we get that for V = {v1, · · · , vl} ⊂ [k] such

that |V | = l ≤ k,

Jvl (x, p) =
∂

∂z(V )

∑
tv1≥0

· · ·
∑
tvl≥0

Hv
k (~t|x, p,~1)

∂y(V )

l∏
i=1

z
tvi
vi

∣∣∣∣∣∣
~z=~1

. (3.34)

Note that

∑
v≥0

Hv
k (~t|x, p, ~y) = Fk(~t|x, p, ~y) and

∑
v≥0

Jvk (x, p) = Mk(x, p). (3.35)

We define a partition of a set to be a set of disjoint subsets of the original set whose

union is the original set. We call these subsets parts. We denote a partition of S into λ parts

by (Si)λ, where S1, · · · , Sλ are the parts of the partition. We say a partition of S, (Si)λ,

refines another partition of S, (S ′i)µ if for any Si, there is a S ′j such that Si ⊂ S ′j . We denote

this by (Si)λ ⊂ (S ′i)µ.

Let ~t ∈ Zk≥0. Notice that ~t induces a partition of S = [k] as follows. Let (Si)
~t
λ be such

that the numbers i, j are in the same part if and only if ti = tj . For a fixed (Si)
~t
λ, let t∗i = tj
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such that j ∈ Si.

Lemma 23. The following recurrence holds.

Fk(~t|x, p, ~y) = 1 + x
∑
v≥0

pvFk(~t|x, p, ~y)Hv
k (~t|x, p, ~y)

+ xFk(~t|x, p, ~y)
∑
v≥0

λ∑
i=1

(∏
j∈Si

yj − 1

)
· pt∗i · pv ·Hv

k (~t|x, ~y|t∗i ),

(3.36)

where the Si are the parts in (Si)
~t
λ.

Proof. We apply the decomposition of a plane tree into 2 subtrees given by T = T1nT2. By

similar argument to Lemma 18, we properly weight with respect to n and m. To properly

weight with respect to ~y, we notice that the number of non-root vertices v with P(Tv) = t,

for some t, in T is the sum of the number of such vertices in T1 and T2. Additionally,

when P(T2) = t, we get an extra such vertex (the root of T2). When P(T2) = t∗i , we get

an extra vertex, v, where P(Tv) = tj = t∗i , where j ∈ Si. Notice that these are the trees

counted by
∑

v≥0H
v
k (~t|x, ~y|t∗i ). These trees should get an extra

∏
j∈Si yj in the weighting.

We however notice that the weight with respect to p of such trees is pt∗i . Trees counted by

Hv
k (~t|x, ~y|t∗i ) also get an extra pv (to properly weight the entire tree with respect to p).

Differentiating both sides of (Equation 3.36), we see that

∂Fk(~t|x, p,~1)

∂y([k])
= x

∑
V⊂[k]

∂Fk(~t|x, p,~1)

∂y([k]− V )

∑
v≥0

pv · ∂H
v
k (~t|x, p,~1)

∂y(V )
+ x

∑
V⊂[k]

∂Fk(~t|x, p,~1)

∂y([k]− V )

× ∂

∂y(V )

(∑
v≥0

λ∑
i=1

(∏
j∈Si

yj − 1

)
· pt∗i · pv ·Hv

k (~t|x, ~y|t∗i )

)∣∣∣∣∣
~y=~1

.

(3.37)
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For V = {v1, · · · , vl} ⊂ [k], we let ~t(V ) = (tv1 , · · · , tvl). Using Lemma 22, we

simplify

Φ
(1)
k =

∂

∂z([k])

∑
~t∈Zk≥0

∑
V⊂[k]

∂Fk(~t|x, p,~1)

∂y([k]− V )

∑
v≥0

pv · ∂H
v
k (~t|x, p,~1)

∂y(V )

∏
i∈[k]

ztii

as follows.

Φ
(1)
k =

∑
V⊂[k]

∂

∂z(V )

 ∑
~t(V )∈Zk≥0

∂Fk(~t|x, p,~1)

∂y(V )

∏
i∈V

ztii

×
∑
v≥0

pv · ∂

∂z([k]− V )

 ∑
~t([k]−V )∈Zk≥0

∂Hv
k (~t|x, p,~1)

∂y([k]− V )

∏
i∈[k]−V

ztii

(3.38)

=
∑
V⊂[k]

M|V |(x, p) ·
∑
v≥0

pv · Jvk−|V |(x, p) (3.39)

where we set zi to 1. To simplify

Φ
(2)
k =

∂

∂z([k])

∑
~t∈Zk≥0

∑
V⊂[k]

∂Fk(~t|x, p, ~y)

∂y([k]− V )
×

∂

∂y(V )

(∑
v≥0

λ∑
i=1

(∏
j∈Si

yj − 1

)
· pt∗i · pv ·Hv

k (~t|x, ~y|t∗i )

))∏
i∈V

ztii ,

we will use Lemma 22 and the following lemma (whose proof is deferred).

Lemma 24. Let ∅ 6= W = {w1, · · · , wm} for some m ∈ N. For any xw1 , · · · , xwm ,

m∏
i=1

xwi − 1 =
∑

V={v1,··· ,vl}⊂W

(xv1 − 1) · · · (xvl − 1) (3.40)
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For V ⊂ [k] and ~t ∈ Zk≥0, we let

Φ(~t|V ) =
∂

∂y(V )

(∑
v≥0

λ∑
i=1

(∏
j∈Si

yj − 1

)
· pt∗i · pv ·Hv

k (~t|x, ~y|t∗i )

)
.

We apply Lemma 24 to get

Φ(~t|V ) =
∑
v≥0

pv· ∂

∂y(V )

 λ∑
i=1

∑
U={u1,··· ,uq}⊂Si

(yu1 − 1) · · · (yuq − 1) · pt∗i ·Hv
k (~t|x, ~y|t∗i )

 .

(3.41)

Our goal is to take the sum

∑
~t(V )∈Z|V |≥0

Φ(~t|V )
∏
i∈V

ztii .

For some U = {u1, · · · , uq} ⊂ [k], consider (S ′i), the partition of [k] where the elements

u1, · · · , uq are in the same part and all other elements are in their own parts. Notice that

(yu1 − 1) · · · (yuq − 1) · pt∗i ·Hv
k (~t|x, ~y|t∗i ) (3.42)

is a term in the bracket of (Equation 3.41) if and only if the partition induced by ~t is such

that (S ′i) is a refinement of (Si)
~t
λ, ie. (Si) ⊂ (Si)

~t
λ.

Assume V is such that U ⊂ V (otherwise the term we are considering will vanish when

we set yi to 1). Let V − U = {j1, · · · , jl}. We now consider the sum

Φ(V, U) =
∑
v≥0

pv · ∂

∂y(V )

∑
tj1≥0

· · ·
∑
tjl≥0

(yu1 − 1) · · · (yuq − 1)×

∑
t∗i≥0

Hv
k (~t|x, ~y|t∗i ) · pt

∗
i (zu1 · · · zuq)t

∗
i

l∏
i=1

z
tji
ji

=
∑
v≥0

pv ·
∑
tj1≥0

· · ·
∑
tjl≥0

∂Hv
k (~t|x, pzu1 · · · zuq , ~y)

∂y(V − U)

l∏
i=1

z
tji
ji
. (3.43)
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We see that as we sum up Φ(~t|V )
∏

i∈V z
ti
i over ~t, we actually take the sum above for all

U ⊂ V . Thus

∂

∂z(V )

∑
~t(V )∈Z|V |≥0

Φ(~t|V )
∏
i∈V

ztii

∣∣∣∣∣∣∣
~z=~1

=
∑
∅6=U⊂V

∂Φ(V, U)

∂z(V )

∣∣∣∣∣∣
~z=~1

(3.44)

=
∑
∅6=U⊂V

∑
v≥0

pv ·
∂Jv|V |−|U |(x, pzu1 · · · zuq)

∂z(U)

∣∣∣∣∣∣
~z=~1

(3.45)

=
∑
∅6=U⊂V

∑
v≥0

pv · D|U |p Jv|V |−|U |(x, p) (3.46)

where for F , a function in some variables including p, we define the operator Dmp recur-

sively as

Dmp F = p ·
∂Dm−1

p F

∂p
and D0

pF = F. (3.47)

Thus, we simplify Φ
(2)
k as follows.

Φ
(2)
k =

∑
V⊂[k]

∂

∂z([k]− V )

 ∑
~t([k]−V )∈Zk−|V |≥0

∂Fk(~t|x, p,~1)

∂y([k]− V )

∏
i∈[k]−V

ztii

×
∂

∂z(V )

∑
~t(V )∈Z|V |≥0

ΦV (~t)
∏
i∈V

ztii (3.48)

=
∑
V⊂[k]

Mk−|V |(x, p) ·
∑
∅6=U⊂V

∑
v≥0

pv · D|U |p Jv|V |−|U |(x, p) (3.49)

where we set zi to 1.

We will denote Dmp (F (x, p))
∣∣
p=1

simply as D|U |p F (x).

Theorem 25. For k ≥ 1, the following recurrence holds.

Mk(x, p) =
∑

U⊂V⊂[k]

Mk−|V |(x, p) ·
∑
v≥0

pv · D|U |p Jv|V |−|U |(x, p). (3.50)
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Furthermore, for k ≥ 1 and m ≥ 0, let

S(k,m) = {(a, b, c, d) ∈ Z4 : 0 ≤ a ≤ b ≤ m, 0 ≤ c ≤ d ≤ k}

and

S ′(k,m) = S(k,m)− {(0, 0, 0, 0), (0,m, 0, k)}.

The following recurrence also holds.

Dmp Mk(x) =
x√

1− 4x
·

∑
(a,b,c,d)∈S′(k,m)

(
k

d

)(
d

c

)∑
v≥0

va · Dm−bp Mk−d(x) · Dc+b−ap Jvd−c(x).

(3.51)

Proof. From Equation 3.37, we see that, for k ≥ 1,

Mk(x, p) = xΦ
(1)
k + xΦ

(2)
k

=
∑
V⊂[k]

Mk−|V |(x, p) ·
∑
∅6=U⊂V

∑
v≥0

pv · D|U |p Jv|V |−|U |(x, p)

+
∑
V⊂[k]

∑
v≥0

pv ·Mk−|V |(x, p) · Jv|V |(x, p)

=
∑

U⊂V⊂[k]

Mk−|V |(x, p) ·
∑
v≥0

pv · D|U |p Jv|V |−|U |(x, p).

Differentiating the above expression, we see that

Dmp Mk(x, p) = x
∑

U⊂V⊂[k]

m∑
b=0

b∑
a=0

∑
v≥0

Dap(pv) · Dm−bp Mk−|V |(x, p)×

D|U |+b−ap Jv|V |−|U |(x, p)

Dmp Mk(x) = x
∑

(a,b,c,d)∈S(k,m)

(
k

d

)(
d

c

)∑
v≥0

va · Dm−bp Mk−d(x) · Dc+b−ap Jvd−c(x)

Dmp Mk(x)(1− 2xM0(x)) = x
∑

(a,b,c,d)∈S′(k,m)

(
k

d

)(
d

c

)∑
v≥0

va · Dm−bp Mk−d(x) · Dc+b−ap Jvd−c(x).

Notice that M0(x) is the generating function counting plane trees by number of edges.
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Thus 1− 2xM0(x) =
√

1− 4x. Thus, we arrive at the desired result.

For simple subtree additive propertiesP∗ where the property in question is not clear, we

will denote the generating function for
∑

T∈Tn P
∗(T )k byMk(P∗, x). Let [xn]Dmp Mk(P∗, x) =

M
(m)
k,n (P∗) (or simplyM (m)

k,n if there is no ambiguity). Note thatM (m)
0,n (P∗) =

∑
T∈Tn P(T )m

where P is the additive property from which P∗ is derived.

We now prove the following lemmas from which the main theorem of this section will

follows. To do so, we utilize the following lemma (whose proof is deferred).

Lemma 26. Let a1, a2 ∈ R and n ∈ N be large. For min{a1, a2} > −1,

∑
n1+n2=nn1,n2≥1

na11 · na22 = Θ
(
na1+a2+1

)

and, for min{a1, a2} < −1,

∑
n1+n2=nn1,n2≥1

na11 · na22 = Θ
(
nmax{a1,a2}

)
.

Lemma 27. Let P be a non-negative integer valued additive property with toll function

f and let their induced subtree additive property be P∗. Further assume that there exists

ζ ∈ N such that for all T ∈ T≥0, f(T ) ≤ ζ ∈ N. For all m, k, the following holds.

M
(m)
k,n = Θ

(
n

2m+3k−3
2 4n

)
.

Proof. We show this result by induction on k and m. The base case of k = 0 (and any m)

holds by Lemma 19. We now consider (Equation 3.51). Let

Ψ(k,m, a, b, c, d) =
x√

1− 4x

(
k

d

)(
d

c

)∑
v≥0

va · Dm−bp Mk−d(x) · Dc+b−ap Jvd−c(x). (3.52)
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We now take the coefficients on both sides of the equation. Let [xn]Dmp Jvk (x) = J
(m)
k,n (v).

[xn]Ψ(k,m, a, b, c, d) =

(
k

d

)(
d

c

)∑
v≥0

va
∑

n1+n2+n3=n−1
n1,n2,n3≥1

M
(m−b)
k−d,n1

· J (c+b−a)
d−c,n2

(v) ·Θ
(
n
− 1

2
3 4n3

)

where (a, b, c, d) ∈ S ′(k,m).

Fix k ≥ 1, m ≥ 0. Assuming the the theorem holds for all smaller k and any m as

well as for equal k and smaller m. Notice that the right hand side of Equation 3.53 depends

precisely on terms for which the theorem holds. We now see using Lemma 26 that

[xn]Ψ(k,m, a, b, c, d) ≤
(
k

d

)(
d

c

)
ζa

∑
n1+n2+n3=n−1
n1,n2,n3≥1

M
(m−b)
k−d,n1

·M (c+b−a)
d−c,n2

(v) ·O
(
n
− 1

2
3 4n3

)

≤ O

4n
∑

n1+n2+n3=n−1
n1,n2,n3≥1

na11 · na22 · n
− 1

2
3

 (3.53)

where a1 = 2(m−b)+3(k−d)−3
2

and a2 = 2(c+b−a)+3(d−c)−3
2

. Notice that for (a, b, c, d) ∈

S ′(k,m), a1, a2 ≥ −3
2
. We now consider the 2 possible cases:

Case 1: (a, b, c, d) ∈ S ′(k,m) such that d = k,m = b or d = c, c+ b = a. We see that

min{a1, a2} = −3
2

and max{a1, a2} = 2m+3k−c−2a−3
2

. Thus we apply Lemma 26 twice,

noting that min{a1, a2} = −3
2
< −1, to get

[xn]Ψ(k,m, a, b, c, d) ≤ O
(
n

2m+3k−c−2a−2
2 4n

)
. (3.54)

Note that we get the most significant upper bound when we minimize c+ 2a. The minimal

c + 2a for which there is (a, b, c, d) ∈ S ′(k,m) for some k,m in this case is when c =

1, a = 0.

Case 2: All other cases. We see that min{a1, a2} > −1. Thus we apply Lemma 26
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twice to get

[xn]Ψ(k,m, a, b, c, d) ≤ O
(
n

2m+3k−c−2a−3
2 4n

)
. (3.55)

Note that we get the most significant upper bound when we minimize c+ 2a. The minimal

c + 2a for which there is (a, b, c, d) ∈ S ′(k,m) in this case is when c = 0, a = 0. We note

that when k = 1,m = 0 there is no (a, b, c, d) ∈ S ′(k,m) in this case.

Thus, for all (a, b, c, d) ∈ S ′(k,m), [xn]Ψ(k,m, a, b, c, d) ≤ O
(

4nn
2m+3k−3

2

)
. From

Equation 3.51, we hence get

Dmp Mk(x) =
∑

(a,b,c,d)∈S′(k,m)

Ψ(k,m, a, b, c, d) (3.56)

M
(m)
k,n ≤ O

(
4nn

2m+3k−3
2

)
. (3.57)

Towards the lower bound, we see when a = 0,

[xn]Ψ(k,m, a, b, c, d) ≥
(
k

d

)(
d

c

) ∑
n1+n2+n3=n−1
n1,n2,n3≥1

M
(m−b)
k−d,n1

·M (c+b−a)
d−c,n2

·Θ
(
n
− 1

2
3 4n3

)

≥ Ω

4n
∑

n1+n2+n3=n−1
n1,n2,n3≥1

na11 · na22 · n
− 1

2
3

 (3.58)

where a1 = 2(m−b)+3(k−d)−3
2

and a2 = 2(c+b−a)+3(d−c)−3
2

. We break this into cases exactly as

before. We notice that there is (a, b, c, d) ∈ S ′(k,m) where a = 0 and [xn]Ψ(k,m, a, b, c, d) ≥

Ω
(

4nn
2m+3k−3

2

)
. Thus, from Equation 3.51, we get

M
(m)
k,n (P∗) ≥ Ω

(
4nn

2m+3k−3
2

)
. (3.59)

The result follows by induction.
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Observation 28. In the proof of Lemma 27, for any k,m ≥ 0 and (a, b, c, d) ∈ S ′(k,m),

when a ≥ 1,

[xn]Ψ(k,m, a, b, c, d) ≤ O
(
n

2m+3k−4
2 4n

)
.

Lemma 29. Let P1 and P2 be non-negative integer valued additive properties with toll

functions f1 and f2, respectively. Let the induced subtree additive properties of P1 and

P2 be P∗1 and P∗2 , respectively. Further assume that there exists ζ ∈ N such that for all

T ∈ T≥0, f1(T ) ≤ ζ ∈ N and f2(T ) ≤ ζ ∈ N. Assume for all m,n ≥ 0,

∑
T∈Tn

P1(T )m = µm ·
∑
T∈Tn

P2(T )m +O
(
n

2m−4
2 4n

)

where µ is a constant. It then holds that for all n,m, k ≥ 0,

M
(m)
k,n (P∗1 ) = µk+m ·M (m)

k,n (P∗2 ) +O
(
n

2m+3k−4
2 4n

)
.

Proof. We prove the result by induction on k and m. The base case of k = 0 (and any

m) is true by assumption. Fix k ≥ 1, m ≥ 0. Assuming the the theorem holds for all

smaller k and any m as well as for equal k and smaller m. We now apply Lemma 27 and

Observation 28 regarding Ψ(k,m, a, b, c, d) to get
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M
(m)
k,n (P∗1 ) =

∑
(a,b,c,d)∈S′(k,m)

(
k

d

)(
d

c

)∑
v≥0

va
∑

n1+n2+n3=n−1

M
(m−b)
k−d,n1

(P∗1 )

×J (c+b−a)
d−c,n2

(P∗1 , v) ·
(

2n3

n3

)
= µm+k

∑
(a,b,c,d)∈S′(k,m)

a=0

(
k

d

)(
d

c

) ∑
n1+n2+n3=n−1

M
(m−b)
k−d,n1

(P∗2 ) (3.60)

×M (c+b−a)
d−c,n2

(P∗2 ) ·
(

2n3

n3

)
+

∑
(a,b,c,d)∈S′(k,m)

a≥1

Ψ(k,m, a, b, c, d) +O
(
n

2m+3k−4
2 4n

)
(3.61)

= µm+k ·M (m)
k,n (P∗2 ) +O

(
n

2m+3k−4
2 4n

)
(3.62)

Thus the result holds for all k,m ∈ N by induction.

Lemma 30. Let P be a non-negative integer valued additive properties of plane trees with

toll function f . Let the subtree additive property induced by P be P∗. Further assume that

there exist ζ ∈ N such that for any T ∈ T≥0, f(T ) ≤ ζ . The limiting distribution of

P∗(Tn)√
n3

is unique determined by its moments. Specifically, it satisfies the Carleman’s condition.

Proof. LetP1 be the additive property with toll function f where f(T ) = ζ for all T ∈ T≥0.

Let P∗1 be the subtree additive property derived from P1. We see that P(T ) ≤ P1(T ), and

hence, P∗(T ) ≤ P∗1 (T ) for all T ∈ T≥0. From Example 2, P1(T ) = ζ · Pv(T ), thus
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P∗1 (T ) = ζ · PPL(T ). Applying Theorem 5, we see that

lim
n→∞

E

[(
P∗(Tn)√

2n3

)k]
≤ lim

n→∞
E

[(
ζ · PPL(Tn)√

2n3

)k]
∼ 6k√

2

(
k

12e

) k
2

· ζk

as k →∞. Thus applying the Carleman Condition (Theorem 1), we get the desired result.

Proof of Theorem 17. We recall that for all n, k ≥ 0 and P∗ ∈ {P∗1 ,P∗2}, M
(0)
k,n(P∗) =∑

T∈Tn P
∗(T )k, hence E[P∗(Tn)k] =

M
(0)
k,n(P∗)
Cn

. We apply the assumption of the Theo-

rem 17, Lemma 27 and Lemma 29 to achieve

E

[(
P∗1 (Tn)√

n3

)k]
= µk · E

[(
P∗2 (Tn)√

n3

)k]
+O

(
1√
n

)
. (3.63)

We now apply Lemma 30 to see that the limiting distribution of the properties are

unique determined by their moments. Thus, we arrive at the desired result.

Corollary 31. The total leaf to root distance of a random plane tree on n edges, PLR(Tn),

and the total internal node to root distance of a random plane tree on n edges, PIR(Tn) is

asymptotically Airy distributed, up to a scaling factor. Specifically, as n→∞,

2 · P
LR(Tn)√

2n3

d←→ 4 · P
IR(Tn)√

2n3

d←→ PPL(Tn)√
2n3

.

Proof. Let F (x, p) be the generating function for plane trees weighted by number of edges

and vertices. Let Fd0(x, p) be the generating function for plane trees weighted by number

of edges and leaves. Let Fd1(x, p) be the generating function for plane trees weighted by

number of edges and internal nodes. From Corollary 12,

Fd0(x, p) =
1 + (1− p)x−

√
(1 + (1− p)x)2 − 4x

2x
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and

Fd1(x, p) =
1 + (1− p)x−

√
(1 + (1− p)x)2 − 4x(1− (p− 1)x)

2x
.

Thus, we see that

[xn]
∂Fd0(x, 1)

∂pm
=

1

2m
· [xn]

∂F (x, 1)

∂pm
+O

(
(1− 4x)

2−2m
2

)

and

[xn]
∂Fd1(x, 1)

∂pm
=

1

4m
· [xn]

∂F (x, 1)

∂pm
+O

(
(1− 4x)

2−2m
2

)
.

Thus ∑
T∈T

Pd0(T )m =
1

2m
·
∑
T∈T

Pv(T )m +O
(
n

2m−4
2 4n

)
and ∑

T∈T

Pd1(T )m =
1

4m
·
∑
T∈T

Pv(T )m +O
(
n

2m−4
2 4n

)
.

We now apply Theorem 17 to get that, as n→∞,

2 · P
LR(Tn)√

2n3

d←→ 4 · P
IR(Tn)√

2n3

d←→ PPL(Tn)√
2n3

.

From Theorem 5, we know that P
PL(Tn)√

2n3
converges weakly to an Airy random variable, thus

the same holds for 2 · P
LR(Tn)√

2n3
and 4 · P

IR(Tn)√
2n3

.

3.3.3 The Distribution of Classes of Subtree Additive Properties under NNTM

Let f : T≥0×T≥0 → R be a polynomial in the number of edges, leaves and internal nodes

of its input trees. Hence, f(T ′, T ) ∈ R[t, p, q][n, p, q] where t, p, q represents the number

of edges, leaves and internal nodes of T ′ and n, p, q represents the number of edges, leaves

and internal nodes of T .

62



We now consider Pf , the subtree additive property given by

Pf (T ) =
∑

v∈V(T )

f(n(Tv), d0(Tv), d1(Tv), n(T ), d0(T ), d1(T )) =
∑

v∈V(T )

f(Tv, T ) (3.64)

where, for v ∈ V(T ), the root vertex in Tv is allowed to count as a leaf or internal node.

Let f be a polynomial over R in the variables x1, · · · , xn. We can write f in the form of∑L
j=1 wj ·vj where wj ∈ R and vj is a monic monomial in the variables such that the mono-

mial are all distinct. We will call this the reduced form of f . It should be clear that f can be

written uniquely in this form. For any such vj and variables x1, · · · , xl, let ∆(vj|x1, · · · , xl)

be the degree of the monomial vj if we consider all variables other than x1, · · · , xl to be

constant. For a vector of variables ~x = (x1, · · · , xl), let ∆(vj|~x) = ∆(vj|x1, · · · , xl). We

also define ∆(f |x1, · · · , xl) = max1≤j≤L ∆(vj|x1, · · · , xl).

Fix parameters α, β, γ ∈ R. Let

Mk,n(f, α, β, γ) =
∑
T∈Tn

Pf (T )ke−E(T ) = E
[
Pf(α,β,γ)(Tn)k

]
· Z(n,α,β,γ)

and

Mk(f, α, β, γ)(x) =
∑
n≥0

Mk,n(f, α, β, γ)xn.

We provide the following theorem that specifies the asymptotic form ofMk,n(f, α, β, 0).

Theorem 32. Fix k ∈ N, α, β ∈ R and f ∈ R[t, p, q][n, p, q]. Let δ = ∆(f |t, n, p, p, q, q).

Let Vk(f) = (2δ+1)k−1
2

if for every monomial of f , u, such that ∆(u|t, n, p, p, q, q) = δ,

∆(u|t, p, q) > 0 and Vk(f) = 2(δ+1)k−1
2

otherwise. We have that
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Mk(f, α, β, 0)(x) =
W (α, β, f)

(1− ρx)Vk(f)
+O

(
1

(1− ρx)Vk(f)− 1
2

)
,

where ρ = e−α + e−β + 2e−
α
2 and W (α, β, f) is a constant that depends on f, α, β.

Furthermore, assume every monomial of f , u, such that ∆(u|t, n, p, p, q, q) = δ is such

that ∆(u|t, n) = δn, ∆(u|p, p) = δd0 and ∆(u|q, q) = δd1 where δn, δd0 and δd1 are

constants that depend only on f . We have that

W (α, β, f) = Qk(f, δd0 , δd1 , α, β) · Pk(f)

where Qk(f, δd0 , δd1 , α, β) depends on δd0 , δd1 and Vk(f), and Pk(f) is a constant that

depends on f and is independent of α and β.

We now describe a construction that will allow us to prove the above result. Fix k ∈ N.

Let Cpk be the set of compositions of k into p parts, where a composition of an integer k into

p parts is a p-tuple (c1, · · · , cp) such that ci ∈ N and
∑p

i=1 ci = k. Let

V∗k =
⋃

T∈T≥1

{T} × V(T )k and F∗k =
⋃

1≤i≤k

Ti × Cik.

Let (T,~v) ∈ V∗k . We will define the skeleton tree of this tuple to be the tree formed by

contracting the parent edge of all vertices except those in ~v. We will denote the skeleton

tree of the tuple as S(T,~v). We define the composition of the tuple (T,~v) by C(T,~v) =

(c∗1, · · · , c∗λ), where c∗i is the number of times the ith non-root vertex in the pre-ordering

of S(T,~v) appears in ~v. Notice that C(T,~v) ∈ Cλk and S(T,~v) ∈ Tλ where λ ≤ k is the

number distinct vertices in ~v.

We define φ : V∗k → F∗k as φ(T,~v) = (S(T,~v), C(T,~v)). (See the top of Figure 3.1.)

We will denote the pre-image of (Ts, C) ∈ F∗k under φ as φ−1(Ts, C) ⊂ V∗k . We will now

show a construction for the elements of φ−1(Ts, C) that will allow us to count the elements

of φ−1(Ts, C).
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~v = (v2, v3, v4, v1, v2, v5, v2, v3, v5)

v1

v4 v5

v2 v3

φ

C(T,~v) = (1, 3, 2, 1, 2)

v0

v1 v4 v5

v2 v3

TL
0 TL

1 TL
4 TL

2 , T
L
3 , T

L
5

Figure 3.1: Illustration of the map φ and the construction of elements in φ−1(Ts, C). We
consider k = 9. The top left tree is T ∈ T11 and the top right tree is Ts = S(T,~v). To
achieve (T,~v) from the construction we describe, we select local trees TLi as in the bottom
left trees. The red vertices are the leaf vertices we must choose. The bottom rightmost tree
is T formed by the construction. The resulting fused trees T Fi are outlined in red. The blue
vertices are the roots of the local trees.
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Let (Ts, C) ∈ F∗k such that Ts ∈ Tλ. We label each vertex in Ts. We assign 0 to the root

vertex and assign i to the ith non-root vertex in the pre-ordering of Ts. From this point, we

will refer to the vertices of Ts by their assigned number. Let mi be the number of children

of the ith vertex of Ts.

Each element of φ−1(Ts, C) may be constructed as follows. To each vertex in Ts, we

shall assign 2 trees. We shall call these trees the local tree and the fused tree assigned to

the vertex. We now proceed recursively. Consider a vertex v, labelled i, in Ts with children

to all of which a local and fused tree has been assigned. We select a tree with ti edges, pi

leaves, qi internal nodes and root degree yi. This tree will be the local tree assigned to the

vertex, denoted TLi .

We select mi leaves in TLi . We then identify these leaves with the root vertices of the

fused trees assigned to the children of v. We denote these root vertices v1, · · · , vmi , where

vi is the root vertex assigned to the fused tree of the ith child of v encountered in a pre-order

traversal. We identify each root vertex to a unique leaf in such a way that vi is encountered

before vi+1 is a pre-order traversal of the new tree formed. This new tree will be the fused

tree assigned to v, denoted T Fi . We continue this process until all the vertices in Ts have a

fused and local tree assigned to them. (See the bottom of Figure 3.1.)

The elements of φ−1(Ts, C) this construction will correspond to, (T,~v), will have

T = T F0 . The vertices in ~v will be root vertices of each TLi for i 6= 0. The number of

times each vertex appears in ~v is determined by C = (c∗1, · · · , c∗λ), where the root of TLi

appears c∗i times. We are now free to choose any arrangement of these vertices into a tuple.

There are k!
c∗1!···c∗λ!

such choices, which we will denote as
(
k
C

)
. Notice that every tuple formed

by this process of building up a tree and arranging special vertices from the tree is unique.

Observation 33. Let Si ⊂ {0, · · · , λ} be the set indices j, such that the vertex i of Ts is an

ancestor of vertex j. The number of edges in T Fi is t̂i =
∑

j∈Si tj . The number of vertices

in T Fi which are leaves in T F0 is p̂i =
∑

j∈Si(pj − mj) if we declare that TLj has 1 leaf
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if TLj = T ∗ and vertex j is a leaf vertex of Ts. The number of vertices in T Fi which are

internal nodes in T F0 is q̂i =
∑

j∈Si qj if we declare that for all j 6= 0, TLj has an extra leaf

if it has root degree 1.

The adjustments are to account for the fact that the root of a proper sub-tree of a larger

tree may be an internal node or a leaf relative to the larger tree but not relative to itself.

Recall the definition of Gn(d0, d1, r) in subsection 3.3.1. Let G ′n(d0, d1, r) be defined

similarly to Gn(d0, d1, r) but where we declare that root vertices with down degree 1 are

internal nodes. Let G ′′n(d0, d1, r) be defined similarly to G ′n(d0, d1, r) but where we also

declare that the tree on 0 edges has 1 leaf. Let L(Ts) ⊂ {1, · · · , λ} be the set of indices

greater than 0 corresponding to leaf vertices in Ts. Let L(Ts) ⊂ {1, · · · , λ} be the set of

indices greater than 0 corresponding to non-leaf vertices in Ts.

Let ~t = (t0, · · · , tλ), ~p = (p0, · · · , pλ), ~q = (q0, · · · , qλ) and ~y = (y0, · · · , yλ). Let

H(Ts, C, ~y,~t, ~p, ~q) be the set of all elements in φ−1(Ts, C) with fixed ti, pi, qi, yi given by

~t, ~p, ~q, ~y. From the above construction, after making the adjustments specified in Observa-

tion 33, we see that

|H(Ts, C, ~y,~t, ~p, ~q)| =

(
k

C

)
·
[(

p0

m0

)
· |Gt0(p0, q0, y0)|

]
·

 ∏
i∈L(Ts)

(
pi
mi

)
· |G ′ti(pi, qi, yi)|

×
 ∏
i∈L(Ts)

(
pi
mi

)
· |G ′′ti(pi, qi, yi)|

 (3.65)

where
(
pi
mi

)
counts the number of ways to pick the leaves which will be identified with

the root vertices of the fused trees assigned to the children of vertex i. Notice that when

pi < mi,
(
pi
mi

)
forces the entire term to 0 thus we do not require any extra restriction on the

properties of the trees chosen.

We now let xi, ai, bi be variables that count the number of edges in TLi , the number of
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vertices in TLi which are leaves in T F0 and the number of vertices in TLi which are internal

nodes in T F0 , respectively. Also, let c weigh the root degree of T F0 . Let ~x = (x0, · · · , xλ),

~a = (a0, · · · , aλ) and~b = (b0, · · · , bλ). Let

R′i(Ts, ti, pi, qi, yi) = xtii a
pi−mi
i bqii c

yi ·
(
pi
mi

)
· |Gti(pi, qi, yi)| (3.66)

for i = 0,

R′i(Ts, ti, pi, qi, yi) = xtii a
pi−mi
i bqii ·

(
pi
mi

)
· |G ′ti(pi, qi, yi)| (3.67)

for i ∈ L(Ts), and

R′i(Ts, ti, pi, qi, yi) = xtii a
pi−mi
i bqii ·

(
pi
mi

)
· |G ′′ti(pi, qi, yi)| (3.68)

for i ∈ L(Ts). We now let

Ri(Ts, xi, ai, bi, c) =
∑

ti,pi,qi,yi≥0

R′i(Ts, ti, pi, qi, yi). (3.69)

For convenience, we make the following definitions.

Ψ(x, a, b) = [1 + (2− a− b)x]2 − 4x[1− (b− 1)x] (3.70)

X(x, a, b) = −∂Ψ(x, a, b)

∂x
(3.71)

A(x, a, b) = −∂Ψ(x, a, b)

∂a
(3.72)

B(x, a, b) = −∂Ψ(x, a, b)

∂b
(3.73)

For conciseness, we let Ψi = Ψ(xi, ai, bi), Xi = X(xi, ai, bi), Ai = A(xi, ai, bi) and

Bi = B(xi, ai, bi). We will simply write Ψ, X,A,B to refer to Ψ(x, a, b), X(x, a, b),

A(x, a, b) and B(x, a, b), respectively.

Recall Theorem 11 and Corollary 12 and the definitions in subsection 3.3.1. From
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Equation 3.69, we see that

Ri(Ts, xi, ai, bi, c) =
1

mi!
· ∂G(x0, a0, b0, c)

∂am0
0

(3.74)

for i = 0,

Ri(Ts, xi, ai, bi, c) =
1

mi!
· ∂ (G(xi, ai, bi) + (bi − 1)G∗(xi, ai, bi))

∂amii
(3.75)

for i ∈ L(Ts), and

Ri(Ts, xi, ai, bi, c) =
1

mi!
· ∂ (G(xi, ai, bi) + (bi − 1)G∗(xi, ai, bi) + ai − 1)

∂amii
(3.76)

for i ∈ L(Ts), where the difference between the cases is to account for whether or not trees

with root degrees 0 and 1 as having an extra leaf and internal node, respectively. Note that

G(xi, ai, bi) + (bi − 1)G∗(xi, ai, bi) + ai − 1 =
G∗(xi, ai, bi)

xi
.

Recall the definition of the operator Dmp in Equation 3.47.

Lemma 34. Fix (Ts, C) ∈ F∗k for k ≥ 1. Let ux, ua, ub,∈ Z≥0 and u = ux + ua + ub. Let

1n = −1 for n = 0 and 1n = 1 otherwise. Let 1′n = 1 for n = 0 and 1′n = 0 otherwise.

We have that, for 0 ≤ i ≤ λ,

Duxxi D
ua
ai
Dubbi [amii Ri(Ts, xi, ai, bi, 1)] = 1

′
u+mi
·Z ′i+1u+mi ·Zi(u+mi)·(xiXi)

ux·(aiAi)ua+mi×

(biBi)
ub ·Ψ

1−2(u+mi)

2
i +O

(
pi ·Ψ

2−2(u+mi)

2
i

)
, (3.77)

where, Z0(n) = (2n−3)!!
2n·m0!

· 1
2x0

, for i > 0, Zi(n) = (2n−3)!!
2n·mi! ·

1
2xi(1−(bi−1)xi)

, for i ∈ L,

Z ′i = 1+(ai−bi)xi
2xi(1−(bi−1)xi)

and pi is a sum of quotients of polynomial whose denominators are the
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products of powers of xi and 1− (bi − 1)xi.

Proof. Follows by differentiating G(x, a, b), G
∗(x,a,b)
x

and G∗(x,a,b)
x

+ 1−a. We note that for

i 6∈ L, we omit stating Z ′i since since u+mi > 0.

Fix α, β ∈ R and f ∈ R[t, p, q][n, p, q]. For (Ts, C) ∈ F∗k such that Ts ∈ Tλ and

C = (c∗1, · · · , c∗λ), let

fk(Ts, C) =
λ∏
i=1

f(t̂i, p̂i, q̂i, t̂0, p̂0, q̂0)c
∗
i (3.78)

such that

fk(Ts, C) =
L∑
j=1

wj · vj where vj =
λ∏
i=0

t
vn(i,j)
i · pvd0 (i,j)

i · qvd1 (i,j)

i (3.79)

where wj ∈ R and vn(i, j), vd0(i, j), vd1(i, j) ∈ Z≥0 for all 0 ≤ i ≤ λ and 1 ≤ j ≤ L.

Furthermore, let σi,j = vn(i, j) + vd0(i, j) + vd1(i, j) + mi and {σi,j}>0 = {0 ≤ i ≤ λ :

σi,j > 0}. Finally, let

Ri,j(Ts, xi, ai, bi) =
1

ami
· Dvn(i,j)

xi
Dvd0 (i,j)
ai Dvd1 (i,j)

bi
[amiRi(Ts, xi, ai, bi, 1)] (3.80)

for 0 ≤ i ≤ λ.

Lemma 35. For fk(Ts, C) =
∑L

j=1 wj · vj as in (Equation 3.79), the following equation
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holds.

Mk(f, α, β, 0)(x) =
∑

(Ts,C)∈F∗k

(
k

C

) L∑
j=1

wj ·Aλ · (e−αA)
∑λ
i=0 vd0 (i,j) · (e−βB)

∑λ
i=0 vd1 (i,j)×

(xX)
∑λ
i=0 vn(i,j) ·Ψ

|{σi,j}>0|−2
∑λ
i=0 σi,j

2 · (Z ′)1+λ−|{σi,j}>0| ·

 ∏
i∈{σi,j}>0

Zi(σi,j)


+O

(
p(x) ·Ψ

1+|{σi,j}>0|−2
∑λ
i=0 σi,j

2

)
, (3.81)

where Z ′ = 1+(e−α−e−β)x
2x(1−(e−β−1)x)

, for i = 0, Zi(n) = (2n−3)!!
2n·mi! ·

1
2x

, for i > 0, Zi(n) = (2n−3)!!
2n·mi! ·

1
2x(1−(e−β−1)x)

and p(x) is a sum of quotients of polynomial whose denominators are the

products of powers of x and 1− (e−β − 1)x.

Proof. We observe that

Mk,n(f, α, β, 0) =
∑
T∈Tn

 ∑
v∈V(T )

f(Tv, T )

k

e−E(T )

=
∑
T∈Tn

 ∑
~v∈V(T )k

k∏
i=1

f(Tvi , T )

 e−E(T )

=
∑

(Ts,C)∈F∗k

 ∑
(T,~v)∈φ−1(Ts,C)

T∈Tn

e−E(T )

k∏
i=1

f(Tvi , T )

 , (3.82)

where ~v = (v1, · · · , vk).

We now notice that for any (T,~v) ∈ φ−1(Ts, C) formed by the construction we pre-

viously described, with fixed ~t, ~p, ~q and ~y,
∏k

i=1 f(Tvi , T ) = fk(Ts, C). We have also

shown that the number of such (T,~v) is |H(Ts, C,~t, ~p, ~q, ~y)|. Hence, following from Equa-
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tion 3.82, we achieve

∑
(T,e)∈φ−1(Ts,C)

T∈Tn

e−E(T )

k∏
i=1

f(Tvi , T ) =
∑

∑λ
i=0 ti=n

∑
~p,~q,~y∈Zλ+1

≥0

e−E(p̂0,q̂0)|H(Ts, C,~t, ~p, ~q, ~y)|fk(Ts, C)

(3.83)

where t̂i, p̂i, q̂i are defined as in Observation Observation 33 and E(p̂0, q̂0) = αp̂0 + βq̂0.

Recall the definitions in (Equation 3.79) and (Equation 3.80). We now show that

Mk(f, α, β, 0)(x) =
∑

(Ts,C)∈F∗k

∑
n≥0

xn
∑

(T,~v)∈φ−1(Ts,C)
T∈Tn

e−E(T )

k∏
i=1

P(Tvi , T )

=
∑

(Ts,C)∈F∗k

(
k

C

) L∑
j=1

wj

λ∏
i=0

Ri,j(Ts, x, e
−α, e−β). (3.84)

We notice that to get Ri,j(Ts, xi, ai, bi), we first multiply by ami to get the power of

ai to be pi. The application of the differentiation operator D then creates the factor of

t
vn(i,j)
i · pvd0 (i,j)

i · qvd1 (i,j)

i (without changing the power of xi, ai, bi). We then divide by ami

to get the power of ai to be pi −mi. Taking the product of all these terms, we now notice

that if we set all the xi to x, ai to a and bi to b, x, a and b now weight the number of edges,

leaves and internal nodes in T for (T,~v) ∈ φ−1(Ts, C). Finally, we set a to e−α and b to

e−β to weight by e−E(T ). We set c to 1 as, for γ = 0, we are not weighting by the root

degree.

By Lemma 34, we get an expression for Ri,j(Ts, x, e
−α, e−β). We consider when

σi,j = 0 for some i. We notice that the most significant term of Ri,j with respect to Ψ

has order 1
2
. Thus we get a higher order term in

∏λ
i=0Ri,j(Ts, x, e

−α, e−β) by taking the

term independent of Ψ for i such that σi,j = 0. Furthermore, note that any i such that

σi,j = 0 must correspond to a leaf vertex of Ts since otherwise σi,j ≥ mi ≥ 1. Thus

0 ∈ {σi,j}>0 since the root of Ts cannot be a leaf (since Ts ∈ T≥1).
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λ∏
i=0

Ri,j(Ts, x, e
−α, e−β) = A

∑λ
i=0mi · (e−αA)

∑λ
i=0 vd0 (i,j) · (e−βB)

∑λ
i=0 vd1 (i,j) · (xX)

∑λ
i=0 vn(i,j)

×Ψ
1+λ−m−2

∑λ
i=0 σi,j

2 · (Z ′)m ·

 ∏
i∈{σi,j}>0

Zi(σi,j)


+O

(
p(x) ·Ψ

2+λ−m−2
∑λ
i=0 σi,j

2

)
(3.85)

where p(x) is a sum of quotients of polynomials whose denominators are the products of

powers of x and 1 − (e−β − 1)x and m is the number of i such that σi,j = 0 and is thus

equal to 1 + λ− |{σi,j}>0|.

To conclude the proof, we see that
∑λ

i=0mi = λ since this is the sum of the number of

children of all vertices of a tree on λ edges.

Notice that every monomial of fk is of the form
∏k

i=1 ui where ui is a monomial in

f . To go from fk to fk, in each of the monomials
∏k

i=1 ui, we set t, p, q to t̂j, p̂j, q̂j and

n, p, q to t̂0, p̂0, q̂0, respectively, in ui from some j for each i. After making this change,

we can expand each of the t̂j , p̂j , q̂j to express
∏k

i=1 ui as the sum of monomials in ti, pi,

qi. Notice that for every monomial formed in this way, vj , ∆
(
vj|~t
)

= ∆
(∏k

i=1 ui

∣∣∣ t, n),

∆ (vj|~q) = ∆
(∏k

i=1 ui

∣∣∣ q, q) and ∆ (vj|~p) ≤ ∆
(∏k

i=1 ui

∣∣∣ p, q). We note that the in-

equality in the last relation occurs because p̂j =
∑

i∈Sj pi −mi may have a constant term.

We however also note that the inequality is tight.

Let δ = ∆(f |t, p, q, n, p, q). Towards simplifying the expression in Lemma 35, we es-

tablish the following lemmas.
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Lemma 36. Fix k ∈ N. Consider fk =
∑Lk

j=1w
′
j · v′j in reduced form where v′j is a

monomial. For any 1 ≤ j ≤ Lk, the inequality

∆(v′j|t, p, q, n, p, q) = ∆(v′j|t, n) + ∆(v′j|p, p) + ∆(v′j|q, q) ≤ δk

holds and is tight.

Proof. The fact that δk is an upper bound for the degree of monomials in the reduced form

of fk should be clear. Every monomial of degree δk, must be achieved as the product of

monomials of degree δ in f . Let f =
∑L

j=1 vj in reduced form such that the vj1 · · · vjm

are all the monomials on f of degree δk. Since R[t, p, q][n, p, q] is an integral domain,

(wj1 · vj1 + · · · + wjm · vjm)k 6= 0 since wj1 · vj1 + · · · + wjm · vjm 6= 0. Thus, in reduced

form, there is at least one monomial of fk of degree δk.

Recall fk =
∑L

j=1wj · vj . Since every monomial in fk, vj , is formed from a monomial

fk in the way we previously described, ∆(vj|~t, ~p, ~q) ≤ δk and this inequality is tight.

Clearly vn(i, j) = ∆(vj|ti), thus
∑λ

i=0 vn(i, j) = ∆(vj|~t). Similarly,
∑λ

i=0 vd0(i, j) =

∆(vj|~p) and
∑λ

i=0 vd1(i, j) = ∆(vj|~q). Thus, we achieve

λ∑
i=0

σi,j =
λ∑
i=0

vn(i, j) + vd0(i, j) + vd1(i, j) +mi ≤ δk + λ (3.86)

and this inequality is tight.

We will call vj , a mononial of fk, such that
∑λ

i=0 σi,j = δk+λ a maximal monomial of

fk. We also call u, a monomial in f , such that ∆(u|t, p, q, n, p, q) = δ a maximal monomial

of f . We now consider, for a maximal monomial vj , when σi,j = 0 for some 0 ≤ i ≤ λ.

Lemma 37. There exist a maximal monomial vj where σi,j = 0 for some 0 ≤ i ≤ λ if

and only if, in the reduced form, f has a maximal monomial, u, such that ∆(u|t, p, q) = 0.
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Furthermore, when f has a maximal monomial, u, such that ∆(u|t, p, q) = 0, there exist j

where σi,j = 0 where vertex i is a leaf of Ts.

Proof. For each vertex i corresponding to a non-leaf of Ts, mi ≥ 1, hence σi,j ≥ 1. Let

vertex i be leaf vertex of Ts.

Assume that every maximal monomial in the the reduced form of f is such that ∆(u|t, p, q) ≥

1. We have seen that vj is derived from a monomial of fk,
∏k

i=1 ui, where ui must be max-

imal monomial of f . To go from
∏k

l=1 ul to monomials in fk, in at least one of ul, t, p, q

are set to t̂i =
∑

l∈Si tl = ti, p̂i =
∑

l∈Si pl − ml = pi and q̂i =
∑

l∈Si ql = qi, respec-

tively. Assume (WLOG) ∆(u|t) ≥ 1. Thus ti divides every monomial of fk from
∏k

i=1 ui,

including vj . Thus σi,j ≥ vn(i, j) ≥ 1.

Assume, in the reduced form, f has a maximal monomial, u, such that ∆(u|t, p, q) = 0,

thus u(n, p, q) = nlnpld0qld1 for some ln, ld0 , ld1 such that ln + ld0 + ld1 = δ. Consider∏k
l=1 ul, where ul = u for all l.

Setting n, p, q to t̂0, p̂0, q̂0, respectively, in
∏k

l=1 ul and expanding the term, we get

k∏
l=1

ul = t̂kln0 p̂
kld0
0 q̂

kld1
0 =

(
λ∑
i=0

ti

)kln ( λ∑
i=0

pi

)kld0
(

λ∑
i=0

qi −mi

)kld1

= tkln0 p
kld0
0 q

kld1
0 +· · · .

Thus tkln0 p
kld0
0 q

kld1
0 is maximal monomial of fk with vn(i, j) = vd0(i, j) = vd1(i, j) = 0.

Thus σi,j = 0. Notice that this holds whenever vertex i is a leaf vertex of Ts.

From Lemma 35, to achieve the most significant with respect to Ψ inMk(f, α, β, 0)(x),

we must minimize |{σi,j}>0|. When f does not have a maximal monomial, u, such that

∆(u|t, p, q) = 0, |{σi,j}>0| = λ + 1. When f has a maximal monomial, u, such that

∆(u|t, p, q) = 0, |{σi,j}>0| is at least the number of non-leaf vertices in Ts (and this is

tight). Thus, taking Ts to be the tree where every non-root vertex is a leaf (the bush), we

get |{σi,j}>0| = 1.
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Finally, we achive the following lemma that tells us that in all cases, the term of

Mk(f, α, β, 0)(x) from non-maximal monomial of fk are insignificant with respect to Ψ.

Lemma 38. The most significant terms in the sum for Mk(f, α, β, 0)(x) in Lemma 35 must

be achieve from maximal monomial of fk and Ts ∈ Tk.

Proof. When f has a maximal monomial, u, such that ∆(u|t, p, q) = 0, By Lemma 37, the

maximum order with respect to Ψ of a term in Mk(f, α, β, 0)(x) is 1−2(δk+k)
2

(when Ts is

the bush on k edges).

Assume f has no maximal monomial, u, such that ∆(u|t, p, q) = 0. Notice that the

order with respect to Ψ of a term in Mk(f, α, β, 0)(x) from a maximal monomial of fk is

1−2δk−k
2

(when Ts ∈ Tk). To possibly get a non-maximal monomial of fk which leads to a

term in Mk(f, α, β, 0)(x) of higher order with respect to Ψ, we must minimize |{σi,j}>0|.

By similar argument to the latter part of the proof of Lemma 37, any monomial, vj , of

fk achieved from a monomial of fk,
∏k

i=1 ui, where each of the ui are maximal monomials

of f , has σi,j ≥ 1 for all i. Thus, we need only consider monomial, vj , of fk where achieved

from a monomial of fk,
∏k

i=1 ui, where at least one of the ui are maximal monomials of f .

Consider any monomial, vj , of fk achieved from a monomial of fk,
∏k

l=1 ul, where each

of the ul are monomials of f and at least one of which is non-maximal. Let s ≥ 1 be the

number of non-maximal ul. By similar argument the former part of the proof of Lemma 37,

the number of i where σi,j = 0 is at most s. Clearly ∆(ul|n, t, p, p, q, q) ≤ δ − 1 for all

non maximal ul. Thus we see that
∑λ

i=0 σi,j ≤ δ(k − s) + (δ − 1)s + λ = δk − s + λ.

Considering the order with respect to Ψ of the term in Mk(f, α, β, 0)(x) from vj , we see

that

|{σi,j}>0| − 2
∑λ

i=0 σi,j
2

≥ 1 + s− 2δk − λ
2

>
1− 2δk − λ

2
. (3.87)

We notice that to minimize 1−2δk−λ
2

, we must maximize λ ≤ k, which is achieved when
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Ts ∈ Tk proving the result.

We now prove the main theorem using the above results.

Proof of Theorem 32. From Lemma 35, we have an expression for Mk(f, α, β, 0)(x). We

assume (WLOG) that the maximal monomials of fk are v1, · · · , vLmax . We now break the

proof into 2 cases.

Case 1: All the maximal monomial of f , u, are such that ∆(u|t, p, q) > 0. By Lemma

Lemma 37, for every maximal monomial of fk, vk, σi,j ≥ 1. By Lemma 38, to get the

most significant term with respect to Ψ we need only consider the maximal monomials of

fk when Ts ∈ Tk. For (Ts, C) ∈ F∗k , when Ts ∈ Tk, C = (1, 1, · · · , 1). We now see that

Mk(f, α, β, 0)(x) =
∑

(Ts,C)∈F∗k

L∑
j=1

wj ·
(
k

C

) λ∏
i=0

Ri,j(x, e
−α, e−β) (3.88)

=
∑
Ts∈Tk

WTs(f, x, a, b)Ψ
1−(2δ+1)k

2 +O
(

Ψ
2−(2δ+1)k

2

)
(3.89)

= Wf (x, α, β)Ψ
1−(2δ+1)k

2 +O
(

Ψ
2−(2δ+1)k

2

)
(3.90)

where, for Ts ∈ Tk,

WTs(f, x, a, b) = k!
Lmax∑
j=1

wj · Ak
(
e−αA

)∑λ
i=0 vd0 (i,j) (

e−βB
)∑λ

i=0 vd1 (i,j)×

(xX)
∑λ
i=0 vn(i,j) ·

( ∏
0≤i≤k

Zi(σi,j)

)
(3.91)

and Wf (x, a, b) =
∑

Ts∈TWTs(f, x, a, b).

We now assume further that for any maximal monomial u of f , ∆(u|t, n) = δn,

∆(u|p, p) = δd0 and ∆(u|q, q) = δd1 where δn, δd0 and δd1 are constants that depend only

on f and not u. Thus for any maximal monomial of fk, vj , we see that
∑λ

i=0 vn(i, j) =
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∆(vj|~t) = δnk. Similarly,
∑λ

i=0 vd0(i, j) = δd0k and
∑λ

i=0 vd1(i, j) = δd1k. Thus,

Wf (x, a, b) =
Ak (e−αA)

δd0k
(
e−βB

)δd1k (xX)δnk

xk+1(1− (e−β − 1)x)k
· k!

2(2+δ)k+1
×

∑
Ts∈T

Lmax∑
j=1

wj

( ∏
0≤i≤k

(2σi,j − 3)!!

mi!

)
(3.92)

Case 2: There exists a maximal monomial of f , u, are such that ∆(u|t, p, q) = 0. Combin-

ing Lemma Lemma 37 and Lemma 38, to get the most significant term with respect to Ψ

we need only consider the maximal monomials of fk when Ts is the bush on k edges. Thus

C = (1, 1, · · · , 1). Assume v1, · · · , vLmax are the maximal monomials of fk where σi,j = 0

for all i 6= 0. We now see that

Mk(f, α, β, 0)(x) =
∑

(Ts,C)∈F∗k

L∑
j=1

wj ·
(
k

C

) λ∏
i=0

Ri,j(x, e
−α, e−β) (3.93)

= Wf (x, α, β)Ψ
1−(2δ+2)k

2 +O
(

Ψ
2−(2δ+2)k

2

)
(3.94)

where

Wf (x, a, b) = k!
Lmax∑
j=1

wj · Ak
(
e−αA

)∑λ
i=0 vd0 (i,j) (

e−βB
)∑λ

i=0 vd1 (i,j)×

(xX)
∑λ
i=0 vn(i,j) · (Z ′)k · Z0. (3.95)

We now assume further that for any maximal monomial u of f , ∆(u|t, n) = δn,

∆(u|p, p) = δd0 and ∆(u|q, q) = δd1 where δn, δd0 and δd1 are constants that depend only

on f and not u. Thus for any maximal monomial of fk, vj , we see that
∑λ

i=0 vn(i, j) =
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∆(vj|~t) = λδn. Similarly,
∑λ

i=0 vd0(i, j) = λδd0 and
∑λ

i=0 vd1(i, j) = λδd1 . Thus,

Wf (x, a, b) =
Ak (e−αA)

δd0k
(
e−βB

)δd1k (xX)δnk

x
·
(

1 + (e−α − e−β)x

x(1− (e−β − 1)x)

)k
×

(2(1 + δ)k − 3)!!

2(2+δ)k+1
·
Lmax∑
j=1

wj. (3.96)

Let ρ = e−α + e−β + 2e−
α
2 and ρ = e−α + e−β − 2e−

α
2 . Notice that Mk(f, α, β, 0)(x)

is the sum of products of derivatives of G(x, e−α, e−β) and G∗(x, e−α, e−β). Thus, by

Lemma 13, the dominant singularity in Mk(f, α, β, 0)(z) occurs at z = 1
ρ
. Thus

Mk(f, α, β, 0)(z) =
Wf (z, α, β)

(1− ρz)Vk(f)
· (1− ρz)−Vk(f) +O

(
p(x) · (1− ρz)

1
2
−Vk(f)

)
(3.97)

where Vk(f) = (2δ+1)k−1
2

if for every monomial of f , u, such that ∆(u|t, n, p, p, q, q) = δ,

∆(u|t, p, q) > 0 and Vk(f) = 2(δ+1)k−1
2

otherwise. Notice that p(x) and Wf (x,α,β)

(1−ρx)Vk(f)
are

analytic in the disk R =
{
z ∈ C : |z| ≤ 1

ρ

}
. Thus by Taylor’s Theorem,

Mk(f, α, β, 0)(z) =
Wf

(
1
ρ
, α, β

)
(

1− ρ
ρ

)Vk(f)
· (1− ρz)−Vk(f) +O

(
(1− ρz)

1
2
−Vk(f)

)
(3.98)

This completes the proof of the theorem.

Remark 39. Specifically, when Vk(f) = (2δ+1)k−1
2

,

Qk(f, δd0 , δd1 , α, β) =

√
ρe−

α
2 ·

(
(e−

α
2 + 1)δd0−1 · e−α4 (2δd0−1) · e−βδd1√

ρ2δd0+2δd1−1

)k

(3.99)

and, when Vk(f) = 2(δ+1)k−1
2

,

Qk(f, δd0 , δd1 , α, β) =

√
ρe−

α
2 ·

(e−
α
2 + 1)δd0 · e−

αδd0
2 · e−βδd1

ρδd0+δd1

k

. (3.100)
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Corollary 40. Fix α, β ∈ R and f ∈ R[t, p, q][n, p, q]. Let δ = ∆(f |t, n, p, p, q, q).

Let V ′(f) = 2δ+1
2

if for every monomial of f , u, such that ∆(u|t, n, p, p, q, q) = δ,

∆(u|t, p, q) > 0 and V ′(f) = 2(δ+1)
2

otherwise. There is a unique distribution with kth

moment given by

lim
n→∞

E

(Pf(α,β,0)(Tn)

nV ′(f)

)k
 .

Proof. We first note that Vk(f) + 1
2

= V ′(f)k. Let

f =
L∑
i=1

wi · tai,1pai,2qai,3nai,4pai,5qai,6

where wi ∈ R, ai,j ∈ Z≥0. We notice that for any tree, the number of leaves and the

number of internal node is at most the number of edges in the tree. We thus see that for

t, p, q, n, p, q ∈ Z≥0 where p, q ≤ t and p, q ≤ n,

f ≤
L∑
i=1

|wi| · tai,1pai,2qai,3nai,4pai,5qai,6 (3.101)

≤
L∑
i=1

|wi| · t
∑3
j=1 ai,j · n

∑6
j=4 ai,j . (3.102)

We now break the proof into 2 cases as we did for the proof of Theorem 32.

Case 1: All the maximal monomial of f , u, are such that ∆(u|t, p, q) > 0. For t ≤ n,

f ≤
L∑
i=1

|wi| · t · n
∑6
j=1 ai,j−1 ≤

L∑
i=1

|wi| · t · nδ−1. (3.103)

Let f ′ = ω · t · nδ−1 and f ′′ = t where ω =
∑L

i=1 |wi|. We thus see that

Pf (T ) ≤ Pf ′(T ) = ω · n(T )δ−1
∑
v∈V

n(Tv) = ω · n(T )δ−1 · Pf ′′(T )
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for all T ∈ T≥0. Thus

E

(Pf(α,β,0)(Tn)

nV ′(f)

)k
 ≤ E

(ω · nδ−1 · Pf
′′

(α,β,0)(Tn)

n
2δ+1

2

)k
 = ωk ·E

(Pf ′′(α,β,0)(Tn)
√
n3

)k
 .

Let ρ = e−α+e−β+2e−
α
2 and ρ = e−α+e−β−2e−

α
2 . By the defintion ofMk,n(f ′′, α, β, 0),

E

(Pf ′′(α,β,γ)(Tn)
√
n3

)k
 =

Mk,n(f ′′, α, β, 0)

Z(n,α,β,0) ·
√
n3k

.

We now apply Theorem 9, Theorem 32, and Corollary 14, to see that

Mk = lim
n→∞

E

(Pf ′′(α,β,0)(Tn)
√
n3

)k
 =

Wf

(
1
ρ
, α, β

)
(

1− ρ
ρ

) 3k−1
2

· 2
√
π√

e−
α
2 ρ · Γ

(
3k−1

2

) .
Applying Remark Remark 39, we see that

lim
n→∞

E

(Pf ′′(α,β,0)(Tn)
√
n3

)k
 = c0 · ck1 · lim

n→∞
E

(Pf ′′(0,0,0)(Tn)
√
n3

)k


where c0, c1 are constants. Note thatPf ′′ is a simple subtree additive property with bounded

toll function. Thus by Lemma 30, the moments of
Pf
′′

(0,0,0)
(Tn)

√
n3

satisfy Carleman’s condition

(Theorem 1). This thus implies that the moments of
Pf
(α,β,0)

(Tn)

nV
′(f) also satisfy Carleman’s

condition. Thus we get the desired result.

Case 2: There exists a maximal monomial of f , u, are such that ∆(u|t, p, q) = 0. For

t ≤ n,

f ≤
L∑
i=1

|wi| · n
∑6
j=1 ai,j ≤

L∑
i=1

|wi| · nδ. (3.104)

Let f ′ = ω · nδ and f ′′ = 1 where ω =
∑L

i=1 |wi|. We note that Pf
′′

(α,β,0)(T ) = n for all
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T ∈ Tn (since this counted the number of subtrees in the tree). We thus see that

Pf (T ) ≤ Pf ′(T ) = ω · n(T )δ
∑
v∈V

1 = ω · n(T )δ · Pf ′′(T )

for all T ∈ T≥0. Thus

E

(Pf(α,β,0)(Tn)

nV ′(f)

)k
 ≤ E

(ω · nδ · Pf ′′(α,β,0)(Tn)

n
2(δ+1)

2

)k
 = ωk·E

(Pf ′′(α,β,0)(Tn)

n

)k
 = ωk.

(3.105)

We now apply the Carleman’s condition to get the desired result in this case.

Fix h ∈ N. Let Thn for h ∈ N be the set of plane trees on n edges with root degree at

most h. We define

Mk,n(f, α, β, γ|h) =
∑
T∈Thn

Pf (T )ke−E(T )

and

Mk(f, α, β, γ|h)(x) =
∑
n≥0

Mk,n(f, α, β, γ|h)xn.

Theorem 41. Fix k ∈ Z≥0 and α, β, γ ∈ R. Let f ∈ R[t, p, q][n, p, q]. Let δ = ∆(f |t, n, p, p, q, q).

Let Vk(f) = (2δ+1)k−1
2

if for every monomial of f , u, such that ∆(u|t, n, p, p, q, q) = δ,

∆(u|t, p, q) > 0 and Vk(f) = 2(δ+1)k−1
2

otherwise. We have

Mk(f, α, β, γ|h)(x) =
Jh(α, β, γ) ·W (α, β, f)

(1− ρx)Vk(f)
+O

(
1

(1− ρx)Vk(f)− 1
2

)

where ρ = e−α + e−β + 2e−
α
2 , Jh(α, β, γ) is a constant independent of f and W (α, β, f)

is the same as in Theorem 32.

Proof. This proof proceeds very similarly to the proof of Theorem 32. Thus we will only

describe how the proof of this theorem differs from the latter proof.
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Restricting the construction in the latter theorem to tree of root degree at most h, from

(Equation 3.69), when i = 0,

Ri,h(Ts, xi, ai, bi, c) =
1

mi!
· ∂Gh(x0, a0, b0, c)

∂am0
0

where Gh(x0, a0, b0, c) is the generating function for tree with root degree at most h where

the tree are weighted by number of edges, leaves, internal nodes and root degree. Adapting

Theorem 11, we see that

Gh(x0, a0, b0, c) =
h∑
r=0

[cG∗(x0, a0, b0)]r

=
h∑
r=0

cr

[(
1 + (a0 − b0)x0

2(1− (b0 − 1)x0)

)r
− r

(
1 + (a0 − b0)x0

2(1− (b0 − 1)x0)

)r−1

Ψ
1
2

]
+O(Ψ).

(3.106)

Recall that m0 ≥ 1 (since for k ≥ 0, the root of a tree with k edges has degree at least 1).

Thus for, i = 0,

Ri,h(Ts, xi, ai, bi, c) = Ri(Ts, xi, ai, bi, c) ·Wh(xi, ai, bi, c) +O
(

Ψ
2−2mi

2

)
(3.107)

where Wh(xi, ai, bi, c) =
∑h

r=0 c
r · r · 2xi

(
1+(ai−bi)xi

2(1−(bi−1)xi)

)r−1

and Ri(Ts, xi, ai, bi, c) is as in

(Equation 3.74). Thus, we adapt Lemma 34 to get that for i = 0,

Duxxi D
ua
ai
Dubbi [amii Ri,h(Ts, xi, ai, bi, ci)] = Wh(xi, ai, bi, c) · Duxxi D

ua
ai
Dubbi [amii Ri(Ts, xi, ai, bi, ci)]

+O

(
pi(xi) ·Ψ

2−2(u+mi)

2
i

)
, (3.108)

where ux, ua, ub,∈ Z≥0 and u = ux + ua + ub.
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From this point, it should be clear that

Mk(f, α, β, γ|h)(x) = Wh(x, e
−α, e−β, e−γ) ·Mk(f, α, β, γ)(x) +O

(
(1− ρx)

1
2
−Vk(f)

)
.

(3.109)

We see that Wh(z, e
−α, e−β, e−γ) is analytic in the disk R =

{
z ∈ C : |z| ≤ 1

ρ

}
(since

Wh(x, e
−α, e−β, e−γ) is a finite sum). Thus

Mk(f, α, β, γ|h)(x) = Wh

(
1

ρ
, e−α, e−β, e−γ

)
·Mk(f, α, β, γ)(x)+O

(
(1− ρx)

1
2
−Vk(f)

)
.

(3.110)

which is the desired result.

Let Pf(α,β,γ)(T
h
n) be defined similarly to Pf(α,β,γ)(Tn) conditioned on the tree chosen

having root degree at most h. From the above theorem, we can conclude the following.

Theorem 42. Let α, β, γ ∈ R and f ∈ R[t, p, q][n, p, q]. Assume every monomial of f ,

u, such that ∆(u|t, n, p, p, q, q) = δ is such that ∆(u|t, n) = δn, ∆(u|p, p) = δd0 and

∆(u|q, q) = δd1 where δn, δd0 and δd1 are constants that depend only on f . Let V ′(f) =

2δ+1
2

if for every monomial of f , u, such that ∆(u|t, n, p, p, q, q) = δ, ∆(u|t, p, q) > 0 and

V ′(f) = δ + 1 otherwise. We have

Pf(α,β,γ)(T
h
n)

nV ′(f)

d←→
Pf(α,β,0)(Tn)

nV ′(f)

d←→
Q(f, α, β) · Pf(0,0,0)(Tn)

nV ′(f)

where, for V ′(f) = 2δ+1
2

,

Q(f, α, β) = 2δd0+2δd1 · (e−
α
2 + 1)δd0−1 · e−α4 (2δd0−1) · e−βδd1√

ρ2δd0+2δd1−1
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and, for V ′(f) = δ + 1,

Q(f, α, β) = 2δd0+2δd1 · (e−
α
2 + 1)δd0 · e−

αδd0
2 · e−βδd1

ρδd0+δd1
.

Proof. We notice that Mk,n(1, α, β, γ) = nkZ(n,α,β,γ). For a random variable X , let

Momk(X) the kth moment of X . Fixed n ∈ Z≥0. By definition,

Momk(Pf(α,β,0)(Tn)) =
Mk,n(f, α, β, 0)

Z(n,α,β,0)

=
nk ·Mk,n(f, α, β, 0)

Mk,n(1, α, β, 0)

We now apply Theorem 32 and use the standard expression for the asymptotic coeffi-

cients of the Taylor series expansion of (1− x)k for k ∈ C. We use the Transfer Theorem

from [34], to get

Mk,n(f, α, β, 0) =
Qk(f, δd0 , δd1 , α, β) · Pk(f) · nVk(f)−1 · (e−α + e−β + 2e−

α
2 )n

Γ(Vk(f))

where we only consider the most significant terms.

Notice that Vk(1) = 2k−1
2

and every maximal monomial of 1 is independent of t, p, q.

Thus

Momk(Pf(α,β,0)(Tn)) =
Qk(f, δd0 , δd1 , α, β) · Pk(f) · Γ(Vk(1))

Qk(1, 0, 0, α, β) · Pk(1) · Γ(Vk(f))
· nVk(f)+ 1

2 +O
(
nVk(f)

)
Notice that V ′(f)k = Vk(f) + 1

2
. Thus

lim
n→∞

Momk

(
Pf(α,β,0)(Tn)

nV ′(f)

)
=
Qk(f, δd0 , δd1 , α, β) · Pk(f) · Γ(Vk(1))

Qk(1, 0, 0, α, β) · Pk(1) · Γ(Vk(f))
.

We now see that

Momk(Pf(α,β,γ)(T
h
n)) =

nk ·Mk,n(f, α, β, γ|h)

Mk,n(1, α, β, γ|h)
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Using Theorem 41 and nearly identical computation to above, we see that

lim
n→∞

Momk

(
Pf(α,β,γ)(T

h
n)

nV ′(f)

)
=
Qk(f, δd0 , δd1 , α, β) · Pk(f) · Γ(Vk(1))

Qk(1, 0, 0, α, β) · Pk(1) · Γ(Vk(f))
.

Finally, we set that

lim
n→∞

Momk

(
Pf(α,β,0)(Tn)

nV ′(f)

)
=

Qk(f, δd0 , δd1 , α, β) · Pk(f) · Γ(Vk(1))

Qk(1, 0, 0, α, β) · Pk(1) · Γ(Vk(f))

=
Qk(f, δd0 , δd1 , α, β) ·Qk(1, 0, 0, 0, 0)

Qk(f, δd0 , δd1 , 0, 0) ·Qk(1, 0, 0, α, β)

× lim
n→∞

Momk

(
Pf(0,0,0)(Tn)

nV ′(f)

)

= lim
n→∞

Momk

(
Q(f, α, β) ·

Pf(0,0,0)(Tn)

nV ′(f)

)

where Q(f, α, β) = k

√
Qk(1,0,0,0,0)

Qk(f,δd0 ,δd1 ,0,0)
· Qk(f,δd0 ,δd1 ,α,β)

Qk(1,0,0,α,β)
is a constant independent of k.

Corollary 43. Let α, β, γ ∈ R. For any h ∈ N, we have

PPL(α,β,γ)(T
h
n)

√
2n3

d←→
PPL(α,β,0)(Tn)
√

2n3

d→
√
ρ

(e−
α
2 + 1) · e−α4

∫ 1

0

e(t) dt

where e(t) is a normalized Brownian excursion on [0, 1].

Proof. We take f = t+ 1 then apply Theorem Theorem 42 and Theorem 5.

Corollary 44. Let α, β, γ ∈ R. For any h ∈ N, we have
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PWI
(α,β,γ)(T

h
n)

√
2n5

d←→
PWI

(α,β,0)(Tn)
√

2n5

d→
√
ρ

(e−
α
2 + 1) · e−α4

∫ ∫
0<s<t<1

(e(s) + e(t)− 2 min
s≤u≤t

e(u)) ds dt

where e(t) is a normalized Brownian excursion on [0, 1].

Proof. We take f = (t+ 1)(n− t) then apply Theorem Theorem 42 and Theorem 7.

Corollary 45. Let α, β, γ ∈ R. For any h ∈ N, we have

PLR(α,β,γ)(T
h
n)

√
2n3

d←→
PLR(α,β,0)(Tn)
√

2n3

d→ e−
α
4

√
ρ

∫ 1

0

e(t) dt

and

PIR(α,β,γ)(T
h
n)

√
2n3

d←→
PIR(α,β,0)(Tn)
√

2n3

d→ e−β
√
ρ · e−α4 · (e−α2 + 1)

∫ 1

0

e(t) dt

where e(t) is a normalized Brownian excursion on [0, 1].

Proof. For PLR, we take f = p. For PIR, we take f = q. We then apply Theorem

Theorem 42 and Corollary 31.

3.4 Other Results

3.4.1 Counting trees by leaves, internal nodes and root degree

In the study of the Nearest Neighbour Thermodynamic Model, the partition function,

Z(n,α,β,γ), is of general interest. Thus, we provide enumeration results to assist with the
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computation this quantity. We define Tn(m, k, r) to be the number of trees on n vertices

withm internal nodes, k leaves and root degree r. We will omit any of the above parameters

in Tn(m, k, r) to denote the number of trees summed over the omitted parameters.

It is well-known that Tn(k) is given by the Narayana numbers [92, 93]. Hence,

Theorem 46. For n ≥ k,

Tn(k) =
1

n

(
n

k

)(
n

k − 1

)
.

From the work of Dershowitz and Zaks [94], we also know that

Theorem 47. For n ≥ r,

Tn(r) =
r

n

(
2n− 1− r
n− 1

)
.

From the work of Donaghey and Shapiro [95], we know that the number of tree on n

edges with no internal nodes is given by the (n − 1)th Motzkin number. Hence, we have

the following result.

Theorem 48. For n > m,

Tn(m) =

(
n− 1

m

)
Mn−m−1,

where

Mn =

bn2 c∑
k=0

(
n

2k

)
Ck

are the Motzkin numbers.

The main result of this section is the closed form expression for Tn(m, k, r) given in

the following theorem.

Theorem 49. For n−m > k > r,

Tn(m, k, r) =
r

n

(
n

k +m

)(
k +m

k

)(
k − r − 1

n−m− k − 1

)
,
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and for n−m = k = r,

Tn(m, k, r) =

(
n− 1

m

)
.

Before proving this theorem, we first observe the following useful lemmas.

Lemma 50. The number of trees with root degree r, m internal nodes and k leaves is

equal to the number of trees with leftmost path with r edge, m leaves with a left sibling and

n+ 1− k leaves in total.

Proof. We briefly describe the following bijection from Tn to Tn given by Dershowitz and

Zaks [94], which we will denote as ψ. We describe ψ recursively. For T = T1 n T2 ∈ T≥1,

ψ(T ) = ψ(T2) n ψ(T1) and ψ(T ∗) = T ∗. (See top left of Figure 3.2 for illustration.)

Fix T ∈ Tn. We denote a leaf edge to be the edge incident to a leaf. Notice that leaf

edges in T become edges without a right sibling in ψ(T ) (the rightmost edge under each

vertex). Notice that the number of rightmost edges in a tree is the number of vertices with at

least 1 child, hence the number of non-leaf vertices. To describe the effect of ψ on internal

node, for an internal node, v, of T , we denote its parent edge and child edge by p(v) and

c(v). Since we assume the root cannot be internal, a vertex is an internal node if and only

if it has a parent edge and a child edge which has no siblings. Notice that the edge c(v) and

p(v) in T becomes a leaf in ψ(T ) and a left sibling of that leaf respectively. Furthermore,

every leaf and left sibling pair induce an internal node. Finally notice that the root degree

of T is the length of the path from the root to the leaf reached by moving down leftmost

edges. (See Figure 3.2 for illustration.)

Lemma 51. The number of trees with root degree r, no internal nodes and k leaves is

equal to the number of balanced parenthesis sequences with an initial run of r opening

parenthesis with n + 1 − k occurrences of ′()′ with the restriction that no ′()′ is preceded

by a closing parenthesis.
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T1

T2

ψ(T2)

ψ(T1)

ψ ψ

3

21 4

1

2

4

3ψ · · · ψ

Figure 3.2: Illustrations of the effects of map ψ from plane trees to plane trees. The top
left diagram illustrates the recurrence of ψ. The top right image illustrates what happens
to internal nodes under ψ. The red and blue egdes are the parent and child edges of the
internal node (and their new position under ψ). The bottom left image illustrates what
happens to leaves under ψ. The numbered orange edges are leaves (and their new position
under ψ). The bottom right image illustrates what happens to the root edges under ψ. The
purple edges are root edges (and their new position under ψ).

Proof. We consider the standard bijection from plane trees to balances parenthesis se-

quences, denoted ψ2. Fix T ∈ Tn. The length of the leftmost path of T is the length

of the initial run of opening parenthesis of ψ2(T ). A leaf in T corresponds to the sub-

sequence ′()′ in ψ2(T ). A leaf of T with a left sibling corresponds to the sub-sequence ′)()′

in ψ2(T ). Thus for T to have no leaves with left sibling, we must avoid the sub-sequence

′)()′. Applying Lemma 50, we achieve the result.

Lemma 52 (Cycle Lemma [96]). For any sequence p0p1 · · · pm+n−1 ofm open parentheses

and n close parentheses, where m > n, there exist exactly m− n cyclic permutations

pipi+1 · · · pm+n−1p0 · · · pi−1

such that the number of opening parenthesis is always greater than the number of closing

parenthesis. We will say these sequences are dominating.
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We adapt the Cycle Lemma to aid the computation that will following.

Corollary 53. For any sequence p = p0p1 · · · pm+n−1 of m open parentheses and n close

parentheses, where m > n, among all distinct cyclic permutation of p, the ratio between

the number of dominating sequences and total number of such permutations is m−n
m+n

.

Proof. We will denote the permutation pipi+1 · · · pm+n−1p0 · · · pi−1 by p(i) (where i is

modulo m + n). Let k ≤ m + n be smallest natural number such that p(0) = p(k).

Notice that p(0) = p(sk) for all s ∈ Z.

We now show that for any i, j ∈ Z, p(i) = p(j) if and only if i ≡ j mod k. It

should be clear that p(i) = p(i + sk) for all s, i ∈ Z, since p(0) = p(sk) and shifting

p(0) and p(sk) by i, we get p(i) and p(i + sk), respectively. Alternatively, if we assume

i 6≡ j mod k (thus i = j + sk + r where 0 < r < k) and p(i) = p(j), we see that

p(i) = p(j) = p(i + sk + r) = p(i + r). Shifting p(i) and p(i + r) by −i, we get that

p(0) = p(r), a contraction to the minimality of k.

Since p(0) = p(m + n), k divides m + n. We thus see that the set of distinct cyclic

permutations of p is P = {p(i) : 0 ≤ i < k} and each such permutation occurs l = m+n
k

times as a cyclic permutation of p. Let q be the number of element of P that are dominating

sequences. By the Cycle Lemma, m−n
m+n

= lq
lk

= q
k
, proving the result.

Proof of Theorem 49. We count the number of trees with root degree r, no internal nodes

and k leaves using the bijection in Lemma 51. Let l = n + 1 − k. The beginning of all

such balanced parenthesis sequences is fixed as a run of r opening parenthesis followed by

a closing parenthesis. So we need to count the number of valid suffixes with n− r opening

parenthesis, n−1 closing parenthesis and l−1 occurrences of ′(()′ and no other occurrences

of ′()′ or symmetrically, the number of valid prefixes with n− 1 opening parenthesis, n− r

closing parenthesis and l − 1 occurrences of ′())′ and no other occurrences of ′()′.
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We count this via the cycle lemma. We count the number of dominating sequence with

n opening parenthesis, n−r closing parenthesis and k′−1 occurrences of ′())′ and no other

occurrences of ′()′. We first count all possible cyclic permutations of all such sequences:

1. Starting with ′(′ and ending in ′)′.

All such sequence are achieved by partitioning the n opening parenthesis into l − 1

(ordered) parts of size 1 or more, denotes x1, · · · , xl−1 and partitioning the n − r

closing parenthesis into l− 1 parts of size 2 or more (since we want to guarantee that

every ′()′ is proceeded by a closing parenthesis), denotes y1, · · · , yl−1. The formed

sequence is then x1y1 · · ·xl−1yl−1. Thus the number of sequences is
(
n−1
l−2

)(
n−r−l
l−2

)
.

2. Starting with ′(′ and ending in ′(′.

Similarly to (1) with the extra step of adding another run of opening parenthesis

of size at least 1 at the end of the sequence. These are sequences of the form

x1y1 · · ·xl−1yl−1xl. The number of such sequences is
(
n−1
l−1

)(
n−r−l
l−2

)
.

3. Starting with ′)′ and ending in ′(′.

We notice that we lose an occurrence of ′()′ since it must be formed by the last open-

ing parenthesis and the first closing parenthesis (in a cyclic shift). These sequences

are similar to the sequences in (1) shifted so they are of the form yl−1x1y1 · · ·xl−1.

Thus the number of such sequences is
(
n−1
l−2

)(
n−r−l
l−2

)
.

4. Starting with ′)′ and ending in ′)′.

These are sequences of the form y0x1y1 · · · xl−1yl−1. Since, we are counting cyclic

permutations of dominating sequences of the desired type, the restriction of each run

of closing parenthesis sequences being of size 2 or more is loosen for the first and

last runs (since in any cyclic permutation that would lead to a dominating sequences,

these 2 runs will become 1 run). Thus the number of sequences is
(
n−1
l−2

)(
n−r−l+1

l−1

)
.
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Notice that we counted all the distinct cyclic permutations of the desired dominating

sequences. Using Corollary 53, for any sequence counted above, in the set of its distinct

cyclic permutations, r
2n−r of members of the set are valid dominating sequences. Thus the

number of tree with n edges, root degree of r and k leaves and no internal nodes is the sum

of the terms derived for each of the above cases scaled by the term r
2n−r . After simplifying

and setting l = n+ 1− k, we get this to be

r

n

(
n

k

)(
k − r − 1

n− k − 1

)
.

Adding internal nodes is now just a matter of deciding how many to put under each

edge. Thus for each tree on n−m edges with root degree of r and k leaves and no internal

nodes, there are
(
n−1
m

)
trees with n edges with root degree of r and k leaves and m internal

nodes giving us the desired expression (after simplification).

Corollary 54. For n−m > k,

Tn(m, k) =
1

n

(
n

k +m

)(
k +m

k

)(
k

n−m− k + 1

)
,

and for n−m = k,

Tn(m, k) =

(
n− 1

m

)
.

Proof. Let p, q ∈ N. We now evaluate the following sum.

∑
q≥0

∑
r≥0

r

(
q − r
p

)
xq = x

∑
r≥0

rxr−1
∑
q≥0

(
q − r
p

)
xq−r (3.111)

=
xp+1

(1− x)p+3
=
∑
q≥0

(
q + 1

p+ 2

)
xq. (3.112)

Thus we get ∑
r≥0

r

(
q − r
p

)
=

(
q + 1

p+ 2

)
.
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We now set q = k − 1 and p = n−m− k − 1 to achieve the desired result.

Corollary 55. For n > k > r,

Tn(k, r) =
r

n

(
n

k

)(
n− r − 1

n− k − 1

)
,

and for n = k = r,

Tn(k, r) = 1.

Proof. Let p, q ∈ N. We now evaluate the following sum.

∑
m≥0

∑
p≥0

(
n− k
m

)(
q

p−m

)
xp =

∑
m≥0

(
n− k
m

)
xm
∑
p≥m

(
q

p−m

)
xp−m (3.113)

= (1 + x)n−k+q =
∑
p≥0

(
n− k + q

p

)
xp. (3.114)

Thus we get

∑
m≥0

r

n

(
n

k +m

)(
k +m

k

)(
q

p−m

)
=
r

n

(
n

k

)∑
m≥0

(
n− k
m

)(
q

p−m

)
=
r

n

(
n

k

)(
n− k + q

p

)
.

We now set q = k − r − 1 and p = n− k − 1 to achieve the desired result.

3.5 Discussion

We have characterized the asymptotic behavior of many plane tree properties under a prob-

ability distribution where the weight of each tree depends on its number of leaves, number

of internal nodes, and root degree. We have shown that, in the case where the root degree

is bounded, the distribution of any subtree additive property under parameters (α, β, γ)
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is simply constant multiple of the distribution of that same property under the parameter

set (0, 0, 0), where the constant depends on the property in question and the parameters

(α, β, γ). The probability distribution and tree properties studied were inspired by ques-

tions from molecular biology, specifically RNA secondary structure. Of interest in the bi-

ological context, we have shown that the asymptotic distributions of total contact distance,

total ladder distance, total leaf to root distance, and total internal node to root distance de-

pend on the parameters (α, β, γ) in a relatively simple way. The fact that these asymptotic

distributions can vary only up to a constant multiplier suggests limitations in the Near-

est Neighbor Thermodynamic Model. The explicit form of the scaling constant given in

Theorem 42 may enable further insights about the exact role of the parameters α and β.

The results are also of independent mathematical interest, as they allow for the exam-

ination of a large set of plane tree properties under many natural probability distributions,

and show that the behavior of these distributions when changing the values of (α, β, γ) is

actually quite simple. In particular, this means that, in order to understand the asymptotic

distribution of a plane tree property where the plane trees are weighted according to a spe-

cific (α, β, γ), it is sufficient to understand the behavior of the property under parameters

(0, 0, 0). Since the (0, 0, 0) case can often be determined through combinatorial techniques

(or is already known), these theorems may be useful in studying combinatorial properties

of plane trees under different probability distributions.

We conclude with a few open questions.

1. In Theorem 17, we characterize the asymptotic behavior of simple subtree additive

properties with bounded toll functions. What (if anything) can be proved about the

asymptotic behavior simple subtree additive properties with an unbounded toll func-

tion?

2. What is the asymptotic behavior of the distributions of subtree additive properties

if we remove the restriction that the root degree of the tree must be bounded? Is a

generalization of Theorem 42 possible?
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3. The maximum ladder distance of a plane tree is the length of the longest path in

the tree, a.k.a. its diameter. Maximum ladder distance is not a subtree additive

property, but it is of interest in the molecular biology context. What is the asymptotic

distribution of maximum ladder distance? The framework constructed here does not

seem to address properties of this type, and we suspect an entirely different approach

would be necessary to answer this question.
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CHAPTER 4

MARKOV CHAIN-BASED SAMPLING FOR EXPLORING RNA SECONDARY

STRUCTURE UNDER THE NEAREST NEIGHBOR THERMODYNAMIC

MODEL AND EXTENDED APPLICATIONS

The content of this chapter has been published in the journal Mathematical and Computa-

tional Applications, with co-authors Cassie Mitchell, Chidozie Onyeze, and Prasad Tetali

[85].

4.1 Introduction

Computational and mathematical applications play a critical role in the analysis of the

structure and function of biological molecules, including ribonucleic acid (RNA). RNA is

an essential biological polymer with many roles including information transfer, regulation

of gene expression, and catalysis of chemical reactions. The primary structure of an RNA

molecule may be understood as a sequence of amino acids: arginine, urasil, guanine, and

cytosine. As is standard, we frequently abbreviate these as A, U, G, and C, respectively.

RNA molecules are single-stranded and may therefore interact with themselves, forming

A-U, G-U, and G-C bonds. The secondary structure of an RNA molecule is a set of such

bonds.

The determination of secondary structure is an important step to understanding an RNA

molecule’s full shape and therefore its function [11, 10]. Accordingly, secondary structure

information is commonly used in tertiary structure prediction algorithms, see e.g. [74, 75,

76, 77]. Identifying the secondary structure of RNA is crucial to understanding its function

and mechanism in a cell [9]. Thus, the structure of RNA is critical to the development

of biological and pharmaceutical therapeutics. Biologists use inexpensive and expedient

means to sequence RNA, but experimental determination of structure is more difficult and
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time-consuming. Therefore, computational methods are the primary means to determine

possible RNA secondary structures.

For decades, one of the main computational approaches for examining RNA structure

and branching properties has been thermodynamic free energy minimization using Nearest

Neighbor Thermodynamics Modeling (NNTM) [78, 79, 80]. This free energy is in turn

used in algorithms to predict secondary structure given an RNA sequence, see, e.g., [81,

82, 83]. Under the NNTM, the free energy of a structure is computed as the sum of the

free energy of its various substructures. Many common programs (e.g. mFold, RNAFold,

RNA Structure, sFold, Vienna RNA, etc.) intake a single sequence to produce secondary

structures based on NNTM energy minimizations performed via dynamic programming.

Nearest neighbor parameter sets include both a set of rules, referred to as equations or

features, and a set of parameter values used by the equations. Separate rules exist for pre-

dicting stabilities of helices, hairpin loops, small internal loops, large internal loops, bulge

loops, multi-branch loops, and exterior loops. Other branching properties of interest in-

clude, but are not limited to, average ladder distance, maximum ladder distance, maximum

branching degree, average contact distance, average branching degree, degree of branching

at the exterior loop, number of multi-loops with n braches, etc. The online NNDB (nearest

neighbor database) archives and stores complete nearest neighbor sets, including rules and

corresponding parameter values [97].

A common challenge is inferring whether the predicted results of NNTM for a set of

RNA structural features or branching properties are within expected dispersion thresholds

for a given energy model. For example, is the number of hairpins more than 2-3 standard

deviations greater than the expected mean for a given energy model? This challenge is

particularly vexing if the sequence is relatively long (greater than 1000 nucleotides). If

structural features or branching properties are determined to exceed expected energy model

dispersion thresholds, it relays potential scientific and/or mechanistic insight. Continuing

with our hairpin example, what if an NNTM model produces a result where the number
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of hairpins seems rather large for the given sequence length? If the number of hairpins

exceeds the expected dispersion of the NNTM model, it might be inferred that the greater

number of hairpins is evidence of natural selection.

The primary objective of the present study is to enable mathematical determination

of the dispersion of RNA secondary structural features for a given sequence length. We

present a Markov-based algorithm to provide samples of the branching structure under

the NNTM and Gibbs distribution, but without reference to a particular sequence of nu-

cleotides. The algorithm enables the determination of where the predicted feature or branch-

ing property for an actual sequence falls within this distribution, which in turn enables the

determination of whether the predicted NNTM feature or branching property is within ex-

pected dispersion limits.

In particular, this work investigates RNA substructures called multi-loops, the places

where three or more helices join. Though multi-loops are crucial to the overall shape of a

secondary structure, the models used to predict them algorithmically do not produce accu-

rate results [84]. This investigation builds on an existing model of RNA branching [12] and

provides a theoretical grounding for a Markov chain which may be used to algorithmically

investigate branching properties of secondary structure models. The investigational foun-

dation is a model for RNA secondary structure developed by Hower and Heitsch [12], in

which secondary structures are in bijection with plane trees and the minimal energy struc-

tures of the model have been previously characterized. The present study characterizes the

full Gibbs distribution of possible structures. Notably, Bakhtin and Heitsch [86] analyzed a

very similar model and determined degree sequence properties of the distribution of plane

trees asymptotically. However, the present study utilizes a Markov chain-based sampling

algorithm to investigate the Gibbs distribution in the finite case. A full explanation of the

plane tree model as well as the derivation of the energy functions is provided in subsec-

tion 4.2.1.
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4.2 Methods

The methods are divided into an overview of the RNA secondary structure NNTM plane

tree model and energy functions (subsection 4.2.1) and an all-encompassing explanation

of the mathematical preliminaries that lay the foundation for the derived results and corre-

sponding algorithms (subsection 4.2.2).

4.2.1 Derivation of Energy Functions

The energy function studied here is derived from the Nearest Neighbor Thermodynamic

Model (NNTM). The numerical parameters from the NNTM can be found in the NNDB

[97]. In calculating energy functions for the sequences, we consider thermodynamic pa-

rameter values published by Turner in 1989 [78], 1999 [79], and 2004 [80].

The plane trees that we study in this chapter come from two combinatorial RNA se-

quences, both of the form A4(Y 5ZA4Y Z5A4)n. The sequences of interest have (Y, Z) =

(C,G) or (Y, Z) = (G,C). For both of these sequences, the set of maximally-paired sec-

ondary structures is in bijection with the set of plane trees of size n [98]. Figure 4.1 shows

one example of a secondary structure and corresponding plane tree.

These specific combinatorial sequences are chosen because they allow for the study

of the relationship between NNTM multiloop parameters and the branching behavior of

secondary structures without interference from the energy contributions have specific base

pairing combinations.. In particular, the only places where the free energy differs between

different secondary structures (for the same sequence) is in the type and number of multi-

loops, the branching at the exterior loop, the number of hairpins, and the number of internal

nodes. All of these energies directly relate to branching, not to specific base pairs. This

simplification achieved by focusing only on multi-loops and branching both creates a model

that is more amenable to theoretical analysis and speeds computation.

Note that these secondary structures should not be considered representative of natu-

100



A
A
A
A
C

C
C

C
C

GAAA
A

CGGGGGA
A
A A

C C C C C G
AAAAC

G
G
G
G
G

A
A A

A
C
C
C
C
C
G A

A
A
A

C
G

G
G

G
G A A

A
A

C
C

C
C

C
G A

A
AA

C
G

G
G

G
GAAAA

(a) A maximally-paired secondary structure
for A4(C5GA4CG5A4)4 has 4 helices.

(b) The corresponding plane tree has 4 edges
and encodes the branching pattern seen in the
secondary structure.

Figure 4.1: An RNA secondary structure for one of the combinatorial RNA sequences used
in this work and its corresponding plane tree. The ordering of the edges in the plane tree
is derived from the 3’ to 5’ ordering of the RNA sequence. Note that the exterior loop
corresponds to the root of the plane tree. The diagram in Figure 4.1a was generated by
ViennaRNA [99].

rally occurring secondary structures. Instead, the only properties of interest in these struc-

tures are branching-related properties.

Three constants determine the free energy contribution of multiloops under NNTM, a,

b, and c. The value of a encodes the energy penalty per multiloop. The constant b specifies

the energy penalty per single-stranded nucleotide in a multiloop. The value of c gives the

energy penalty for each helix branching from a multiloop.

In addition to the multiloop parameters a, b, c discussed above, we must account for the

energy contributions of stacking base pairs, hairpins, interior loops, and dangling energy

contributions. The energy of one helix is given by h. The energy associated with a hairpin

is f , and the energy contribution of an interior loop is i. Finally, the parameter g encodes

the dangling energy contributions. All of these values can be computed directly from the

parameters found in the NNTM.

We wish to compute the energy of the structure corresponding to plane tree t having
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(down) degree sequence d0, d1, . . . , dn−1 and root degree r. Note that the down degree of a

node x is equal to the number of children of x, and, in the down degree sequence, di is the

number of non-root nodes with exactly i children. The energy contribution of all hairpin

loops will be d0f , and similarly the total energy of all interior loops will be d1i. For a multi-

loop having down degree j, the energy contribution will be a+4b(j+1)+c(j+1)+(j+1)g,

and so the contribution of all multi-loops is given by
∑n

j=2 dj(a+ 4b(j + 1) + c(j + 1) +

g(j + 1)). The root vertex of the tree corresponds to the exterior loop and has energy

contribution gr. Finally, our structure has n helices, each with energy h. Summing all of

these components gives the total energy.

d0f + d1i+
n∑
j=2

dj(a+ 4b(j + 1) + c(j + 1) + g(j + 1)) + nh+ gr (4.1)

= (f − a− 4b− c− g)d0 + (i− a− 8b− 2c− 2g)d1 + (−4b− c)r

+ (a+ 8b+ 2c+ h+ 2g)n, (4.2)

where we have used the facts
∑n−1

k=0 dk = n and
∑n−1

k=0 kdk = n− r.

Set α = f − a − 4b − c − g, β = i − a − 8b − 2c − 2g, γ = −4b − c, and δ =

a+ 8b+ 2c+ h+ 2g. Then, the energy function is αd0 + βd1 + γr + δn. Since n will be

fixed, we disregard the term δn, giving

E(t) = αd0 + βd1 + γr. (4.3)

Though we study these energy functions for arbitrary values of (α, β, γ), numerical

values for both the input energy parameters from NNTM and the resulting energy function

coefficients are given in Table 4.1.
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Y Z Turner a b c h f i g α β γ

C G 89 4.6 0.4 0.1 -10.9 3.8 3.0 -1.6 -0.9 -1.8 -1.7
G C 89 4.6 0.4 0.1 -16.5 3.5 3.0 -1.9 -0.9 -1.2 -1.7
C G 99 3.4 0 0.4 -12.9 4.5 2.3 -1.6 2.3 1.3 -0.4
G C 99 3.4 0 0.4 -16.9 4.1 2.3 -1.9 2.2 1.9 -0.4
C G 04 9.3 0 -0.9 -12.9 4.5 2.3 -1.1 -2.8 -3.0 0.9
G C 04 9.3 0 -0.9 -16.9 4.1 2.3 -1.5 -2.8 -2.2 0.9

Table 4.1: NNTM parameters and resulting energy functions. Energy functions are of the
form αd0 + βd1 + γr.

4.2.2 Mathematical Preliminaries

In subsection 4.2.2 we provide the necessary mathematical background, including a formal

introduction of combinatorial objects and a review of the relevant Markov chain mixing

results used to construct our resultant sampling Markov chain and corresponding mixing

time proof in section 4.3.

Combinatorial Objects

A plane tree is a rooted, ordered tree. We will use Tn to denote the set of plane trees with n

edges. It is known that |Tn| is given by the nth Catalan number Cn = 1
n+1

(
2n
n

)
. In a plane

tree, a leaf is a node with down degree 0, and an internal node is a non-root node with

down degree 1. For a given plane tree t, we will use d0(t) to denote the number of leaves

and d1(t) to denote the number of internal nodes.

For a plane tree t, the energy of the tree is given by

E(t) = αd0(t) + βd1(t), (4.4)

where α and β are real parameters of the energy function. Note that this function is a

simplification of the model due to Hower and Heitsch [12] discussed in subsection 4.2.1.

Making this simplification effectively disregards the energy contribution of the exterior

loop, which is small in comparison to the total energy of a structure, especially for the
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longer sequences that are of interest to us. Other authors have made similar simplifications,

e.g. [86].

For our purposes, we consider α and β to be arbitrary but fixed. We will consider a

Gibbs distribution g on the set Tn, where the weight of each tree t is given by

g(t) =
e−E(t)

Z
, (4.5)

where Z =
∑

y∈Tn e
−E(y) is a normalizing constant.

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0), which consists of steps

along the vectors U = (1, 1), H = (1, 0), and D = (1,−1) and never crosses below the

x-axis. We can also represent Motzkin paths as strings from the alphabet {U,H,D} where,

in any prefix, the number of Us is greater than or equal to the number of Ds. The number

of Motzkin paths of length n is given by the Motzkin numbers Mn where

Mn =

bn/2c∑
k=0

(
n

2k

)
Ck. (4.6)

Motzkin numbers and Motzkin paths have been well-studied in the combinatorics literature,

see e.g. [100, 101, 102, 103, 104].

A Dyck path is a Motzkin path with no H steps. It is easy to see that a Dyck path must

have even length, so we will use Dn to denote the set of Dyck paths on length 2n. It is well

known that |Dn| = Cn (see, e.g. [105]).

A 2-Motzkin path is a Motzkin path in which (1, 0) steps are given one of two distin-

guishable colors. Let M2
m be the set of all 2-Motzkin paths of length m. We can also

represent 2-Motzkin paths as strings from the alphabet {U,H, I,D}, where as before, the

number of Ds never exceeds the number of Us in any prefix. In a such a string x, we

denote by |x|a the number of times the symbol a appears in x, where a ∈ {U,H, I,D}.

Notice that we always have |x|U = |x|D. For any x ∈ M2
n and k ∈ {1, · · · , n}, let x(k)

denote the symbol at index k in the string representation of x. Additionally, the skeleton of
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a 2-Motzkin path x is the Dyck path of Us and Ds which results from removing all Hs and

Is from x. We will denote the skeleton of x by σ(x).

A Bijection Between Tn and M2
n−1

We will use the particular bijection Φ: Tn → M2
n−1 between plane trees and 2-Motzkin

paths from Deutsch [106], which neatly encodes information about d0 and d1. For clarity,

we will overview the bijection here.

For a given plane tree t with n edges, assign a label from the set {U,H, I,D} to each

edge e according to the following rules:

• If e is the leftmost edge off a non-root node of down degree at least 2, assign the label

U .

• If e is the rightmost edge off a non-root node of down degree at least 2, assign the

label D.

• If e is the only edge off a non-root node of degree 1, assign the label I .

• If e is an edge off the root node, or if e is neither the leftmost nor the rightmost edge

off its parent node, assign the label H .

Now, if we traverse t in preorder reading off these labels, we get a 2-Motzkin path of length

n. However, this path will always begin with H , so we define Φ(t) to be the 2-Motzkin

path of length n − 1 after this initial H is removed. Figure 4.2 gives an example of this

labeling process. From Deutsch, we know not only that Φ is a bijection, but also that if

x = Φ(t) then |x|I = d1(t) and |x|U + |x|H + 1 = d0(t).

Using this bijection, it is natural to extend our energy function to 2-Motzkin paths. We

define the energy of a 2-Motzkin path x to be

E(x) = α(|x|U + |x|H + 1) + β|x|I , (4.7)
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Figure 4.2: A plane tree with edges labeled according to the bijection Φ, along with its
corresponding 2-Motzkin path.

and we extend our definition of the distribution g to M2
n accordingly. We note that, while

this energy function does not capture all possible weightings on 2-Motzkin paths, it does

capture all weightings possible under our simplification of the model due to Hower and

Heitsch [12] after applying the bijection due to Deutsch [106].

Markov Chains

A Markov chainM is a sequence of random variables X0, X1, X2, · · · taking values in a

state space Ω subject to the condition that

Pr(Xt+1 = y | Xt = x, Xt−1 = st−1, · · · , X0 = s0) = Pr(Xt+1 = y | Xt = x). (4.8)

All Markov chains that we consider in this chapter will be implicitly time-homogeneous

(meaning Pr(Xt+1 = y | Xt = x) does not depend on t) and finite (meaning |Ω| < ∞).

The transition matrix of a time-homogeneous Markov chain is the matrix P : Ω×Ω→ [0, 1]

given by

P (x, y) = Pr(Xt+1 = y | Xt = x). (4.9)

It is easy to see that if X0 has distribution vector x, then Xt has distribution vector P tx.

A finite Markov chain with transition matrix P is said to be ergodic if it has the follow-

ing two properties.

1. Irreducibility: For any x, y ∈ Ω, there is some integer t ∈ N for which P t(x, y) > 0.
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2. Aperiodicity: For any state x ∈ Ω, we have gcd{t ∈ N : P t(x, x) > 0} = 1.

It is well known that if M is ergodic, then there exists a unique distribution vector π,

the stationary distribution, such that Pπ = π, and limt→∞ P
t(x, y) = π(y) for any

states x, y ∈ Ω. Additionally, we call M reversible if for all states x, y ∈ Ω, we have

π(x)P (x, y) = π(y)P (y, x).

For ε > 0, the mixing time τ(ε) ofM is given by

τ(ε) = min

{
t ∈ N : ∀s ≥ t, max

x∈Ω

(
1

2

∑
y∈Ω

|P s(x, y)− π(y)|

)
< ε

}
. (4.10)

Intuitively, the mixing time gives a measure of the number of steps required forM to get

sufficiently close to its stationary distribution from any starting state.

LetM be a finite ergodic Markov chain over a state space Ω with transition matrix P .

Let the eigenvalues of P be λ0, λ1, . . . , λ|Ω|−1 such that 1 = λ0 > |λ1| ≥ . . . ≥ |λ|Ω|−1|.

The spectral gap ofM is given by Gap(M) = 1−|λ1|. As is standard, it will be convenient

to denote the inverse of the spectral gap by relaxation time τrel(M) := 1/Gap(M).

Additionally, the spectral gap is given by the following functional definition [107].

Gap(M) = inf
f

∑
x,y∈Ω |f(x)− f(y)|2π(x)P (x, y)∑
x,y∈Ω |f(x)− f(y)|2π(x)π(y)

, (4.11)

where the infimum is taken over all non-constant functions f : Ω → R. A direct conse-

quence of this definition of the spectral gap is the following lemma.

Lemma 56. LetM1 andM2 be ergodic Markov chains over Ω with the same stationary

distribution. Let P1 and P2 be the transition matrices ofM1 andM2 respectively. If for

all x, y ∈ Ω and for some constant c > 0 we have P1(x, y) ≤ cP2(x, y), then Gap(M1) ≤

cGap(M2).

Additionally, spectral gap is related to the mixing time by the following lemma [42].
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Lemma 57. LetM be an ergodic Markov chain with state space Ω, and let λ0, λ1, . . . , λ|Ω|−1

be the eigenvalues of the transition matrix P as defined above. Then, for all ε > 0 and

x ∈ Ω, we have

|λ1|
Gap(M)

log

(
1

2ε

)
≤ τ(ε) ≤ 1

Gap(M)
log

(
1

π(x)ε

)
. (4.12)

We say that a Markov chain M, whose state space depends on a variable n ∈ N,

is rapidly mixing if τ(ε) is bounded above by some polynomial in n and log(ε−1). For

the specific chains studied in this chapter, we will show that τ(ε)(M) is bounded by a

polynomial in n and log(ε−1) if and only if τrel(M) is bounded by a polynomial in n and

log(ε−1). Our next lemma presents sufficient conditions.

Lemma 58. LetM be an ergodic Markov chain with state space Ω and let λ0, λ1, . . . , λ|Ω|−1

be the eigenvalues of its transition matrix. Let ε > 0. If τ(ε) is bounded by a polynomial in

n and log(ε−1), then τrel is also bounded by a polynomial in n and log(ε−1). Further, sup-

pose we have log(1/π(x)) bounded by some polynomial q(n) for all x ∈ Ω. Then, τrel(M)

being bounded by a polynomial in n and log(ε−1) implies that τ(ε) is also bounded by some

polynomial in n and log(ε−1).

Proof. Suppose that τ(ε) ≤ p(n, log(ε−1)), where p is a polynomial. Beginning with the

left hand side of Lemma 57, note that

|λ1|
1− |λ1|

log

(
1

2ε

)
= (τrel(M)− 1) log

(
1

2ε

)
.

Then, applying Lemma 57 and the bound on τ(ε),

τrel(M) ≤ τ(ε)

log((2ε)−1)
+ 1 ≤ p(n, log(ε−1))

log((2ε)−1)
+ 1 ≤ p′(n, log(ε−1)),

where p′ is again a polynomial in n and log(ε−1).

Turning now to converse, suppose that we have τrel ≤ p(n, log(ε−1)) , for some poly-
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nomial p. Additionally suppose log(1/π(x)) ≤ q(n) for all x ∈ Ω, for some polynomial

q.

Applying Lemma 57,

τ(ε) ≤ τrel(M) log

(
1

π(x)ε

)
≤ p(n, log(ε−1)) log(ε−1)q(n) ≤ p′(n, log(ε−1)),

where p′ is some polynomial.

Coupling

A coupling of a Markov chain M on Ω is a chain (Xt, Yt)
∞
t=0 on Ω × Ω for which the

following properties hold.

1. Each chain (Xt)
∞
t=0 and (Yt)

∞
t=0, when viewed in isolation, is a copy of M, given

initial states X0 = x and Y0 = y.

2. Whenever Xt = Yt, we have Xt+1 = Yt+1.

Formally, item one. above requires that the joint distribution of (Xt, Yt) given (Xt−1, Yt−1)

should satisfy the property that the marginal of Xt (and also Yt) is consistent with the

probability transitions ofM. We define the coupling time T to be

T = max
x,y∈Ω

E [min{t : Xt = Yt | X0 = x, Y0 = y}] (4.13)

The following lemma [108] is useful in bounding the coupling time T .

Lemma 59. Suppose that (Xt, Yt)
∞
t=0 is a coupling of a Markov chain M . Let ϕ be an

integer-valued distance function on Ω × Ω taking values in the range [0, B], and suppose

that ϕ(x, y) = 0 if and only if x = y. Let ϕ(t) = ϕ(xt, yt). Suppose that the coupling

satisfies E (ϕ(t+ 1)− ϕ(t)|Xt, Yt) ≤ 0. Additionally, suppose that whenever ϕ(t) > 0,

E (|ϕ(t+ 1)− ϕ(t)|2|Xt, Yt) ≥ V . Then, the expected coupling time satisfies E (T x,y) ≤

ϕ(0)(2B − ϕ(0))/V .
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Coupling time and mixing time are then related by the following theorem [42].

Theorem 60. A Markov chain M with coupling time T has mixing time τ(ε) bounded by

τ(ε) ≤ dTe log ε−1e. (4.14)

Decomposition

We use two disjoint decomposition methods for bounding the spectral gap, one developed

by Martin and Randall [43], and a very recent one given by Hermon and Salez [44], building

on the work by Jerrum, Son, Tetali and Vigoda [109]. We use both theorems because, while

the latter gives better bounds, the former has more relaxed conditions, which is necessary

in one of our applications. The setup for both methods is the same.

Let M be an ergodic, reversible Markov chain over a state space Ω with transition

matrix P and stationary distribution π. Suppose Ω can be partitioned into disjoint subsets

Ω1, . . . ,Ωm. For each i ∈ [m], let Mi be the restriction of M to Ωi, which is obtained

by rejecting any transition that would leave Ωi. Let Pi be the transition matrix of Mi

Additionally, we define M to be the projection chain of M over the state space [m] as

follows. Let the transition matrix P ofM be given by

P (i, j) =
1

π(Ωi)

∑
x∈Ωi
y∈Ωj

π(x)P (x, y). (4.15)

One can check thatM is reversible and has stationary distribution

π(i) = π(Ωi),

while eachMi has stationary distribution

πi(x) =
π(x)

π(i)
.
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With this notation, we have the following theorem by Martin and Randall [43].

Theorem 61. DefiningMi andM as above, we have

Gap(M) ≥ 1

2
Gap(M) min

i∈[m]
Gap(Mi). (4.16)

The theorem due to Hermon and Salez obtains better bounds if, for each pair (i, j) ∈

[m]× [m] with P (i, j) > 0, we can find an effective joint distribution (often referred to as

a ”coupling”) κij : Ωi×Ωj → [0, 1] of the distributions πi and πj . In other words, we must

have

∀x ∈ Ωi,
∑
y∈Ωj

κij(x, y) = πi(x), (4.17)

∀y ∈ Ωj,
∑
x∈Ωi

κij(x, y) = πj(y). (4.18)

The quality of the joint distribution κ is defined as

χ := χ(κ) := min

{
π(x)P (x, y)

π(i)P (i, j)κij(x, y)

}
, (4.19)

where the minimum is taken over all (x, y, i, j) with x ∈ Ωi, y ∈ Ωj for which P (i, j) > 0

and κij(x, y) > 0. Hermon and Salez [44] prove the following.

Theorem 62. With P , P̄ , Pi, and χ defined as above,

Gap(M) ≥ min

{
χGap(M),min

i∈[m]
Gap(Mi)

}
. (4.20)

The utility of these decomposition theorems is that they allow us to break down a more

complicated Markov chain into pieces that are easier to analyze. If we can show that the

pieces rapidly mix, and the projection chain rapidly mixes, then we may conclude that the

original chain rapidly mixes as well.
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Additionally, to aid with the analysis of some projection chains, we will need an-

other lemma from [43]. LetMM be the Markov chain on [m] with Metropolis transitions

PM(i, j) = 1
2∆

min{1, π(Ωj)

π(Ωi)
} whenever P (i, j) > 0, where ∆ is the maximum degree of

vertices in the transition graph of M Let ∂i(Ωj) = {y ∈ Ωj : ∃x ∈ Ωi with P (x, y) > 0}.

Then we have the following

Lemma 63. WithMM as defined above, suppose there exist constants a > 0 and b > 0

with

1. P (x, y) ≥ a for all x, y such that P (x, y) > 0.

2. π(∂i(Ωj)) ≥ bπ(Ωj) for all i, j with P (i, j) > 0.

Then Gap(M) ≥ ab ·Gap(MM).

In order to help analyze the mixing time ofMM , we will also require the following two

lemmas. Note that Lemma 64 is used only in the proof of Lemma 65.

Lemma 64. Let (ai)
m
i=1 be a log concave sequence, with ai > 0 for all 1 ≤ i ≤ m. Then,

ai+1

ai
≥ aj+1

aj
(4.21)

for all 1 ≤ i ≤ j ≤ m.

Proof. In order to use induction, we will slightly reframe the statement. We will prove

ai+1

ai
≥ ai+1+k

ai+k

for all i+ k ≤ n.

We now proceed by induction on k. The base case, k = 0, is trivial.

Now fix l > 0 and suppose that the induction hypothesis is true for k = l − 1, that is,

ai+1

ai
≥ ai+l
ai+l−1

.
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By log concavity a2
i+l ≥ ai+l−1ai+l+1, or, equivalently,

ai+l
ai+l−1

≥ ai+l+1

ai+l
.

Therefore,
ai+1

ai
≥ ai+l
ai+l−1

≥ ai+l+1

ai+l
,

where the first inequality follows from the induction hypothesis, and the second inequality

follows from log concavity.

Lemma 65. Let π be a probability distribution on [m]. LetM be a Markov chain on [m]

with the transition probabilities

P (i, j) =


1
4

min
{

1, π(j)
π(i)

}
if |i− j| = 1

0 if |i− j| > 1

(4.22)

and the appropriate self-loop probabilities P (i, i). If π(i) is log concave in i, thenM has

mixing time (and hence also relaxation time) O(m2).

Proof. We define a coupling (Xt, Yt) onM as follows. If Xt 6= Yt, then at time step t+ 1,

flip a fair coin.

• If heads, set Yt+1 = Yt. Let l be either 1 or−1, each with probability 1/2. If possible,

let Xt+1 = Xt + l with probability 1
2

min
{

1, π(Xt+l)
π(Xt)

}
. Otherwise, let Xt+1 = Xt.

• If tails, set Xt+1 = Xt, and update Yt+1 the same way as we did for Xt+1 in the

previous case.

Now, suppose that for some t we have Xt = i and Yt = j for i 6= j. WLOG, assume

that i < j. Let ϕ(t) = ϕ(Xt, Yt) = j − i, and let ∆ϕ(t) = ϕ(t) − ϕ(t − 1). Note that

we have two moves, with probabilities P (i, i− 1) and P (j, j + 1), which will increase the
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distance ϕ by 1 and similarly two moves, with probabilities P (i, i+1) and P (j, j+1), will

decrease the distance by 1. Then we have

E(∆ϕ(t)) = −P (i, i+ 1) + P (i, i− 1) + P (j, j + 1)− P (j, j − 1).

By the log-concavity of π(i) and Lemma 64, we have P (i, i + 1) ≥ P (j, j + 1) and

P (i, i − 1) ≤ P (j, j − 1). Therefore, the expected change in ϕ(t) is always non-positive.

We also have

E
(
(∆ϕ(t))2 |Xt, Yt

)
= P (j, j + 1) + P (i, i+ 1) + P (j, j − 1) + P (i, i− 1)

=
1

4

(
min

{
1,
π(j + 1)

π(j)

}
+ min

{
1,
π(i+ 1)

π(i)

}
+ min

{
1,
π(j − 1)

π(j)

}
+ min

{
1,
π(i− 1)

π(i)

})
.

We claim that E
(
(∆ϕ)2 |Xt, Yt

)
≥ 1

4
. Suppose, for contradiction, that the expectation is

less than 1
4
. Then, for each of the minimum functions in the above expression, 1 must be

the larger argument. Equivalently, π(i − 1) < π(i), π(i) > π(i + 1), π(j − 1) < π(j),

and π(j) > π(j + 1). Therefore, π(i) is not unimodal in i and is therefore also not log

concave in i, contradicting our hypothesis. Therefore we have E
(
(∆ϕ)2 |Xt, Yt

)
≥ 1

4
, as

desired.

4.3 Results

Here we present the constructed Markov chain and corresponding algorithms devised for

the sampling task and the proof of an upper bound on the relaxation time - that the chain

mixes rapidly. Collectively, the results illustrate an analytical approach to calculate dis-

persion of the secondary structure and corresponding branching properties of RNA based

on the NNTM energy function minimization and without reference to a specific nucleotide

sequence.
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4.3.1 Our Markov Chain on M2
m

We define a Markov chainM = X0, X1, X2, · · · on M2
m to sample 2-Motzkin paths as a

representation of plane trees. Here, we usem = n−1 to denote the length of the 2-Motzkin

paths corresponding to plane trees with n edges.

We define each step ofM as follows. First, pick a random element l uniformly from

{1, 2, 3, 4}. Now choose y as follows.

• If l = 1, pick a random pair of consecutive symbols in Xt, and call this pair s. If

s is UD or HH , let s′ be either UD or HH with probabilities 1
1+e−α

and e−α

1+e−α

respectively. Let y be the string Xt with s replaced by s′. Otherwise, let y = Xt.

• If l = 2, pick i uniformly from {1, · · · ,m}. If Xt(i) is H or I , choose a symbol

c to be either H or I with probabilities e−α

e−α+e−β
and e−β

e−α+e−β
respectively. Let y be

the 2-Motzkin path given by changing the symbol in Xt(j) to c. Otherwise, we let

y = Xt.

• If l = 3, pick i and j each uniformly from {1, · · · ,m}. If each of Xt(i) and Xt(j)

are either U or D, let y be the string Xt with the symbols at indices i and j swapped.

Otherwise, let y = Xt.

• If l = 4, pick a random pair of consecutive symbols in Xt, and call this pair s. If s is

of the form ab or ba for some a ∈ {U,D} and b ∈ {H, I}, let s′ be the reverse of s,

and let y be the string Xt with s replaced by s′. Otherwise, let y = Xt.

If y is a valid 2-Motzkin path, set Xt+1 = y with probability 1
2
. Otherwise, set Xt+1 =

Xt.

One can see thatM is irreducible by noting that every path can be transformed to the

path consisting of all H’s. To make this transformation, first use the l = 4 rule to move

all H’s and I’s to the end of the path. If there are any U ’s in the path, we must now have

at least one consecutive pair UD. Use the l = 1 rule to convert the UD to a HH . From
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here we can repeat, again moving allH’s to the end and replacing UD withHH , until only

H’s and I’s remain. Finally, we can use the l = 2 rule to convert all I’s to H’s. Since

all of these steps can also be taken in reverse, this gives a procedure to move between two

arbitrary paths, demonstrating irreducibility. We can also conclude that M is aperiodic,

due to the existence of self loops. Combined with irreducibility, this establishes thatM is

ergodic.

We claim thatM is reversible with respect to the stationary distribution π(x) = e−E(x)

Z
,

where Z =
∑

y∈M2
m
e−E(y). This can be easily verified by considering the 4 move types

listed above. For example, for the first move type given above (transforming UD to HH

and vice versa), let x and y be the states of interest. Suppose that y has the consecutive

symbols HH where x contains UD. Then,

π(x)P (x, y) =
e−α(|x|U+|x|H+1)−β|x|I

Z
· e−α

1 + e−α

=
e−α((|y|U+1)+(|y|H−2)+1)−β|y|I

Z
· e−α

1 + e−α

=
e−α(|y|U+|y|H+1)−β|y|I

Z
· 1

1 + e−α

= π(y)P (y, x).

One can verify that similar computations hold for the remaining 3 types of moves.

Therefore, we conclude that the chainM has stationary distribution π(x) = e−E(x)

Z
.

The Markov chainM can be implemented in pseudocode as in Algorithm 1. Here, the

Ber(p) function returns true with probability p, and false otherwise. We also use addition

of strings to denote concatenation.

Additionally, in order to convert the 2-Motzkin path Xt into a plane tree, we use the

algorithm in Algorithm 2, which assumes the existence of a Node object with children and

parent attributes.
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4.3.2 Mixing Time Results

Our main result is to prove the rapid mixing of the Markov chain defined in subsec-

tion 4.3.1. An upper bound on the relaxation time is achieved by bounding the spectral

gap from below. A spectral gap bound for the complex chain at hand is obtained through

the use of multiple decomposition theorems, which give bounds on the spectral gap of

the complex chain in terms of the spectral gaps of multiple simpler chains. The disjoint

decomposition theorem due to Martin and Randall [43] provides a flexible approach to de-

composition of Markov chains. Very recent work by Hermon and Salez [44], building on

the work of Jerrum, Son, Tetali, and Vigoda [109], proves a decomposition theorem with

tighter bounds but stronger hypotheses.

Since this proof involves multiple decomposition steps, we provide an overview here.

The primary tools used in this proof are the two decomposition theorems presented in

subsubsection 4.2.2. We first partition the state space of all 2-Motzkin paths by the number

of Us in the path. The projection chain from this first decomposition is linear and is proved

to be rapidly mixing using a result of Martin and Randall [43] (Lemma 66). Each of the

restriction chains are decomposed again, this time by the pattern of H and I symbols. The

projection chains for this second decomposition are shown to be rapidly mixing by coupling

(Lemma 67). The restriction chains are decomposed a third time, this time according to

the skeleton of U and D steps. The projection chains for this third decomposition are

shown to be rapidly mixing by comparison to the classic mountain valley moves chain

on Dyck paths (Lemma 68). This last set of restriction chains are found to be rapidly

mixing by isomorphism to the chain consisting of adjacent transpositions on binary strings

(Lemma 69). Finally, starting from the most restricted chains, we use the decomposition

theorems to obtain a bound on the spectral gap of the original chain (Theorem 70).

We now proceed with a formal presentation. We will use a series of decompositions of
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M2
m

Sk

Tk,q

Uk,q,s

S0· · · Sk · · · Sbm/2c

Tk,q

Uk,q,s

0 · · · k · · · bm/2c
M

Mk

Mk,q

Mk,q,s

q

s

Figure 4.3: The four level decomposition of M2
m (left), and the projection chains corre-

sponding to each decomposition (right).

M. We will first decompose our state space M2
m into S0, · · · , Scm/2b, where

Sk = {x ∈M2
m : |x|U = k}.

LetMk denote the Markov chainM restricted to the set Sk, and letM be the projection

chain over this decomposition as outlined for Theorem 61.

Additionally, we will decompose each Sk into the sets {Tk,q : q ∈ (H+ I)m−2k}, where

(H + I)m−2k denotes the set of strings with length m − 2k from the alphabet {H, I}. We

define Tk,q to be the set of 2-Motzkin paths x ∈ Sk such that the substring of H and I

symbols in x is q. Let Mk,q denote the chain Mk restricted to Tk,q, and let Mk be the

projection chain ofMk over this decomposition.

Finally, we decompose each Tk,q into the partition {Uk,q,s : s ∈ Dk} based on the skele-

tons of the 2-Motzkin paths. For each s ∈ Dk, we define

Uk,q,s = {x ∈ Tk,q | σ(x) = s}.

As before, we letMk,q,s be the Markov chainMk,q restricted to Uk,q,s, and letMk,q be the
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appropriate projection chain. For clarity, this four-level decomposition is summarized in

Figure 4.3.

Lemma 66. M has relaxation time τrel(M) = O(m4) .

Proof. The chainM is a linear chain with states k in {0, . . . , bm/2c}, and with stationary

distribution

π(k) = π(Sk) =
Ck
Zm
·
m−2k∑
i=0

(
m

2k

)(
m− 2k

i

)
e−α(k+i+1)−β(m−2k−i)

=
e−α(k+1)

Zm

(
m

2k

)
Ck · (e−α + e−β)m−2k,

where π is defined as in subsubsection 4.2.2. Notice that transitions in M which move

between the Sk sets are those which change a HH substring into a UD or DU substring,

or vise versa. Thus, the transitions inM only increase or decrease k by at most 1. We seek

to apply Lemma 63. To choose a, notice that for x ∈ Sk and y ∈ Sk±1 with P (x, y) > 0,

we have

P (x, y) =
1

4(m− 1)

1

1 + eα
or P (x, y) =

1

4(m− 1)

1

1 + e−α
.

Note that the factor 1/4 comes from the choice l = 4, and the factor 1/(m−1) comes from

the fact that there are m− 1 adjacent pairs to pick from. Then,

P (x, y) ≥ 1

4(m− 1)(1 + e−|α|)
.

Thus, we pick a = 1
4(m−1)(1+e−|α|)

.

To pick b, we let

∂−(Sk) = {y ∈ Sk : ∃x ∈ Sk−1, P (x, y) > 0}
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for k ∈ {1, · · · , bm/2c}, and we let

∂+(Sk) = {y ∈ Sk : ∃x ∈ Sk+1, P (x, y) > 0}

for k ∈ {0, · · · , bm/2c − 1}.

Additionally, let Ak for k ∈ {1, · · · , bm/2c} be the subset of Sk consisting of the

2-Motzkin paths in which the first D symbol appears immediately after a U . Let Bk for

k ∈ {0, · · · , bm/2c − 1} be the subset of Sk consisting of the 2-Motzkin paths in which a

pair of adjacent H symbols occurs before all other H or I symbols. It is easy to see that

Ak ⊂ ∂−(Sk) and Bk ⊂ ∂+(Sk). We have

π(Ak) =
Cke

−α(k+1)

Zm

(
m− 1

2k − 1

)
(e−α + e−β)m−2k,

as there are Ck ways to arrange the U and D symbols and
(
m−1
2k−1

)
ways to insert m − 2k

H or I symbols (treating H and I as being identical for now) without placing anything

between the first D and the U immediately before it. The energy contribution of the U and

D symbols is given by e−α(k+1), and the energy contribution of the H and I symbols is(
e−α + e−β

)m−2k. The required normalizing constant is Zn. Similarly, we also get

π(Bk) =
Cke

−α(k+3)e−2β

Zm

(
m− 1

2k

)
(e−α + e−β)m−2k−2

because there are Ck ways to arrange the U and D symbols and
(
m−1

2k

)
ways insert m −

2k − 1 H or I symbols (treating the initial pair of H’s as a single symbol gives us only

m− 2k− 1 symbols to insert). The energy contribution of the U ’s, D’s, and the initial two

H’s is given by e−α(k+3)e−2β , and the energy contribution of the remaining H’s and I’s is

(e−α + e−β)m−2k−2. Finally, Zm is again a normalizing constant.
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Hence combining these two results, we have

π(∂−(Sk))

π(Sk)
≥ π(Ak)

π(Sk)
=

2k

m

and

π(∂+(Sk))

π(Sk)
≥ π(Bk)

π(Sk)
=
m− 2k

m

(
e−αe−β

e−α + e−β

)2

.

Thus, we may let b = 1
m

(
e−αe−β

e−α+e−β

)2

.

Applying Lemma 63, we get that Gap(M) ≥ Gap(MM )
O(m2)

. Additionally, one can check

that π(i) is log concave in i. Hence, using Lemma 65, we get τrel(MM) = O(m2), and in

turn τrel(M) = O(m4) , as claimed.

Lemma 67. Mk has mixing time τ(Mk) = O(m logm), for all k.

Proof. Notice that Mk appears as a chain with states q in the set Q = (H + I)m−2k.

Additionally, transitions in Mk only occur between strings in Q that differ at only one

index. The stationary distribution of Mk is given by πk(q) ∝ e(β−α)|q|H , where we have

intentionally used the constant of proportionality to remove all dependence on k, which we

consider in this context to be fixed.

Additionally, for q1, q2 ∈ Q which differ at exactly one index, we have the transition

probability

P k(q1, q2) =


(m−2k)e−α

4m(e−α+e−β)
if |q2|H = |q1|H + 1

(m−2k)e−β

4m(e−α+e−β)
if |q2|H = |q1|H − 1

.

We may show thatMk rapidly mixes by a simple coupling argument. Let (Xt, Yt)
∞
t=0 be

our coupled Markov chain on Q×Q. We define one step in this coupled chain as follows.

1. With probability 1− m−2k
4m

, set (Xt+1, Yt+1) = (Xt, Yt).

2. Otherwise, pick a random index j ∈ [m− 2k]. Let a ∈ {H, I} be a random symbol
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such that Pr(a = H) = e−α

e−α+e−β
and Pr(a = I) = e−β

e−α+e−β
. Now let Xt+1 and Yt+1

be Xt and Yt respectively, each with the jth symbol changed to a.

One can check that each of (Xt)t and (Yt)t are indeed copies ofMk. Additionally, notice

that we will have Xt = Yt after all m − 2k possible indices j have been updated. By

the Coupon Collector Theorem, we have the coupling time of this chain to be TMk
=

4m
m−2k

· O((m − 2k) log(m − 2k)) = O(m logm). Thus, using Theorem 60, we have the

mixing time (and the relaxation time) also O(m logm).

Lemma 68. Mk,q has relaxation time τrel(Mk,q) = O(m2), for all pairs (k, q).

Proof. Notice that all x ∈ Tk,q have equal energy, and that |Uk,q,s| =
(
m
2k

)
for all s. Thus,

Mk,q has a uniform stationary distribution. If we represent each set Uk,q,s by the Dyck path

s, we can think of Mk,q as a chain over Dk. Since all the transitions in Mk,q that move

between the Uk,q,s sets are moves that exchange the positions of a U and aD, the transitions

inMk,q are simply the moves on elements of Dk which exchange a U with a D. We call

these moves on the elements of Dk, transposition moves.

For each s1, s2 ∈ Dk that differ by a transposition move, the transition probabilities in

our projection chain are given by

P k,q(s1, s2) =
1

π(Uk,q,s1)

∑
x∈Uk,q,s1
y∈Uk,q,s2

π(x)P (x, y) =
1

|Uk,q,s|
∑

x∈Uk,q,s1
y∈Uk,q,s2

P (x, y)

=
1(
m
2k

) ∑
x,y

P (x,y)>0

1

4m2
=

1

4m2
.

The last equality above relies on counting the number of terms in the sum. Notice that

for each x ∈ Uk,q,s1 , there is a unique y ∈ Uk,q,s2 for which P (x, y) > 0. Therefore, the

number of terms is simply |Uk,q,s1| =
(
m
2k

)
. Compare this chain to the traditional mountain

valley Markov chain on Dk, which we will denote byM′. The transition probabilities of
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M′ are given by P ′(s1, s2) = 1
k2

for each pair (s1, s2) which differ by a mountain-valley

move. It is known from Cohen [110] that Gap(M′) = 1
O(k2)

. Thus, applying Lemma 56 to

Mk,q andM′, we see that Gap(Mk,q) = 1
O(m2)

.

Lemma 69. Mk,q,s has relaxation time τrel(Mk,q,s) = O(m3) , for all valid triples (k, q, s).

Proof. Notice that transitions inMk,q,s consist only of moves which involve swapping an

H or an I with an adjacent U or D. Additionally, all 2-Motzkin paths in Uk,q,s have equal

energy, so for all x, y ∈ Uk,q,s such that P (x, y) > 0, we have P (x, y) = 1
8(m−1)

.

To determine the mixing time ofMk,q,s, consider an isomorphic chain. Let U ′ be the

set of all binary strings of length m with 2k zeros and m− 2k ones. LetM′ be the Markov

chain on U ′ where each step does nothing with probability 7/8 and swaps a random pair of

adjacent (potentially identical) digits with probability 1/8. From Wilson [111], we know

that the spectral gap ofM′ is 1
O(m3)

.

Finally, we can combine our bounds on the spectral gaps of all of these chains to prove

our main result.

Theorem 70. The Markov chainM has relaxation time τrel(M) = O(m7) , for all α, β ∈

R.

Proof. We use Lemma 69 and Lemma 68 along with Theorem 62 to obtain a bound

on Gap(Mk,q). We define a coupling κs1,s2 for each pair (s1, s2) ∈ Dk × Dk with

P k,q(s1, s2) > 0. For each such pair, notice that the set of pairs (x, y) ∈ Uk,q,s1 × Uk,q,s2

with P (x, y) > 0 is a perfect matching. Thus, we may set

κs1,s2(x, y) =


1

(m2k)
if P (x, y) > 0

0 P (x, y) = 0

.

To compute χ, we begin by observing π(x) = π(y) for all x, y ∈ Mk,q. Also note

|Uk,q,s| =
(
m
2k

)
for all skeletons s of length 2k. Before computing χ, we start by finding
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P (s1, s2).

P (s1, s2) =
1

π(Uk,q,s1)

∑
x∈Uk,q,s1 ,y∈Uk,q,s2

π(x)P (x, y)

=
1

π(Uk,q,s1)

∑
x∈Uk,q,s1 ,y∈Uk,q,s2

π(x)
1
4

(
m
2

)
=

1

π(Uk,q,s1)
|Uk,q,s1 |

4π(x)(
m
2

)
=

4(
m
2

) .
We now proceed with the calculation of χ. Recall that the minimum is taken over all

tuples x, y, s1, s2 where P (s1, s2) > 0 and κ01,s2(x, y) > 0.

χ = min

{
π(x)P (x, y)

π(s1)P (s1, s2)κs1,s2(x, y)

}

= min

 π(x) 4

(m2 )

π(Uk,q,s1)
4

(m2 )
1

(m2k)


=

(
m
2k

)(
m
2k

) = 1.

Theorem 62 then gives

Gap(Mk,q) ≥ min
{
χGap(Mk,q),min

s
Gap(Mk,q,s)

}
min

{
1

O(m2)
,

1

O(m3)

}
=

1

O(m3)
.

Similarly, we define a coupling κq1,q2 for each pair (q1, q2) ∈ (H+I)m−2k×(H+I)m−2k

with P k(q1, q2) > 0 to apply Theorem 62 to Mk. Notice that once again, the set of pairs
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(x, y) ∈ Tk,q1 × Tk,q2 for which P (x, y) > 0 forms a perfect matching. Thus, we take

κq1,q2(x, y) =


1

(m2k)Ck
if P (x, y) > 0

0 P (x, y) = 0

.

To compute χ for this coupling, we again begin with a few preliminary computations. In

all of the following, let x ∈ Tk,q1 , y ∈ Tk,q2 with P (q1, q2) > 0. Note that q1 and q2 have

the same length and differ at only one index. We will show the computations for the case

where q1 has a I where q2 has aH . The computations for the other case are nearly identical.

Note that P (x, y) = e−α

e−α+a−β
. Also note

π(q1) = π(Tk,q1) = π(x) |Tk,q1| = π(x)Ck

(
m

2k

)

and

P (q1, q2) =
1

π(Tk,q1)

∑
x′∈Tk,q1 ,y

′∈Tk,q2

P (x′, y′)

=
1

|Ts,q1|
· e−α

e−α + e−β
|Ts,q1|

=
e−α

e−α + e−β
.

Now we can compute

χ = min

{
π(x)P (x, y)

π(q1)P
(q1, q2)κq1,q2(x, y)

}

= min

 π(x) e−α

e−α+e−β

π(x)Ck
(
m
2k

)
e−α

e−α+e−β
· 1

Ck(m2k)


= 1.
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Applying Theorem 62 then gives

Gap(Mk) ≥ min

{
χGap(Mk),min

q
Gap(Mk,q)

}
= min

{
1

O(m logm)
,

1

O(m3)

}
=

1

O(m3)
.

Unfortunately, we have not been able to find a useful coupling forM, so for the last step

of our decomposition, we apply Theorem 61. Since Gap(M) = O
(

1
m4

)
and Gap(Mk) =

O( 1
m3 ) for all k, we have

Gap(M) ≥ 1

2
Gap(M) min

k∈[m/2]
Gap(Mk)

=
1

2O(m4)O(m3)

=
1

O(m7)
,

establishing Theorem 70.

Finally, an application of Lemma 58 allows us to conclude that the mixing time is also

polynomially-bounded.

Corollary 71. M is rapidly mixing.

Proof. In order to apply Lemma 58, we need to obtain a polynomial bound on log(1/π(x))
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for all x ∈ Ω. Let t ∈ Ω have maximum energy among all elements of Ω. For any x ∈ Ω,

log

(
1

π(x)

)
= log

(∑
y∈Ω e

−αd0(y)−βd1(y)

e−αd0(x)−βd1(x)

)

≤ log

(
Cne

−αd0(t)−βd1(t)

e−αd0(x)−βd1(x)

)
≤ log

(
Cne

−αn−βn

e−α

)
= log

(
Cne

−α(n−1)e−βn
)

≤ n log (2n) + log

(
1

n+ 1

)
− α (n− 1)− βn.

This gives us the required polynomial bound, and therefore Lemma 58 implies thatM is

rapidly mixing.

4.4 Discussion and Conclusions

The goal of this work was to identify a Markov chain and construct a corresponding al-

gorithm by which to examine the non-uniform distribution and dispersion properties of

NNTM RNA secondary structures and branching properties independent of a specific nu-

cleotide sequence. This study successfully identifies the existence of a Markov chain, with

a provably polynomial mixing time, which generates a Gibbs distribution on plane trees.

This stationary probability distribution models branching characteristics of RNA secondary

structure under the NNTM. While exploration of sampled structures obtained from this al-

gorithm are beyond the scope of the presented results, pseudocode (see subsection 4.3.1) is

provided to facilitate future work in this area. Below we discuss the direct applications and

implications of this work to RNA modeling, the possibility of implementing a dynamic pro-

gramming approach, the possibility of an approach using stochastic context free grammars,

other biological applications of this work, contributions of this work towards independent

mathematical research interests, and limitations and future directions of the present work.
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4.4.1 Applications to RNA modeling

The most straightforward application of this work is in understanding the background dis-

tribution of the branching behavior for secondary structures predicted under the NNTM.

While the NNTM is widely used to predict secondary structures from sequence data, little

is known about the general branching characteristics of the predicted structures, indepen-

dent of a specific input sequence. Quantities such as the number of hairpins, the maximum

branching in a multiloop, the average branching in a multiloop, and the maximum ladder

distance of the structure [9, 88] help to characterize the branching behavior and could be

computed from samples obtained from this algorithm. These quantities also have been

studied in native structures and/or could be easily obtained from databases such as the

RNA Secondary Structure and Statistical Analysis Database (RNA STRAND) [112]. The

parameter values of α, β, and γ corresponding to various revisions of the NNTM are given

in Table 4.1 in subsection 4.2.1. The Markov chain and corresponding algorithms presented

will enable biologists to calculate the dispersion of key branching properties for a specific

energy function. As described with the detailed hairpin dispersion example in the Introduc-

tion (section 4.1), knowing whether branching properties fall within acceptable dispersion

limits is crucial for deducing potential functional insight or hypothesizing other scientific

ramifications.

Another key application to RNA modeling of the presented algorithms is the ability to

explore the parameter space of possible values for α and β. While the various revisions of

the NNTM correspond to specific values for these parameters, in principle any real-valued

parameters could be used. Finding values for these parameters that approximate reality re-

mains an open question. Yet, determination of how differences in parameter values change

the distribution of NNTM branching properties, such as maximum ladder distance, is cru-

cial. Moreover, parameter space exploration is necessary to identify and further explore

the phase transitions that exist. The presented Markov chain and corresponding algorithms

expedite such future computational experimentation. Therefore, collectively, the presented
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algorithm enables exploration that will greatly improve understanding of NNTM-basesd

RNA secondary structures and branching properties, as well as identify potential limita-

tions or specific branching structures where the NNTM models do not sufficiently emulate

reality. For example, NNTM-based free energy minimization algorithms achieved an ac-

curacy of at least 60% in only 9% of 16S secondary structures analyzed by Doshi et. al.

[84].

The algorithm presented here can only sample under an energy function of the form

αd0 + βd1, and this does not capture the entirety of the model presented in [12], which

considers energy functions of the form αd0 + βd1 + γr. However, the missing term, γr,

represents the energy contribution of exterior loop, and the exterior loop contributes less of

the total free energy as sequence length increases. Therefore, when interested in sequences

of at least moderate length, this algorithm may be able to provide insight, as long as in-

formation about the exterior loop is not the specific object of study. Also note that other

authors have made similar simplifications with respect to the exterior loop, e.g. [86].

4.4.2 Possibility of a dynamic programming approach

This sampling problem to calculate the dispersion of NNTM RNA secondary structure and

properties utilized Markov chain techniques. However, is it possible to utilize a dynamic

programming algorithm? It is straightforward to sample Dyck paths under a uniform proba-

bility distribution using dynamic programming techniques. However, it is not clear whether

a similar technique could be used for the Gibbs distribution we define here, due to the com-

plexity of the energy function. In particular, large numeric computations may be required

to handle the variable k, the number of U steps in a path. While Alonso presents a way

to sample from the unweighted distribution Pr(k = l) ∝
(
m
2l

)
Cl in O(n) time without

large computations [113], it is unclear if a similar method may be used for the present

application.
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4.4.3 Possibility of an SCFG approach

Stochastic context free grammars (SCFGs) have been widely used in the field of RNA sec-

ondary structure prediction, e.g. [114, 115, 116, 117]. Most commonly, the probabilities

for production rules in an SCFG are determined by training on a set of known secondary

structures, often including covariance information from homologous structures. These ap-

proaches are not immediately applicable to the problem we study here, as they do not give

any insight into the NNTM multiloop energy parameters.

However, some authors have constructed SCFGs based on the NNTM. In particular,

Nebel and Scheid [114] construct a SCFG with 29 distinct production rules to mirror the

NNTM features. They also present a sampling algorithm allowing for sampling structures

of a fixed size using the grammar. However, they do not actually compute probabilities

for the production rules that would allow one to sample from a Gibbs distribution (with

NNTM energy) and instead rely on training on a set of known structures. Indeed, it is not

clear from the paper whether such a set of probabilities must exist.

Even in the case of the simplified model we present in this chapter, it is not clear how

to assign probabilities to production rules in an SCFG so that the probability of obtaining

a given structure matches the Gibbs probability under the NNTM. See section 4.5 for more

details.

Even if a suitable SCFG could be formulated, the SCFG approach is not necessarily

superior. The sampling algorithm presented by Nebel and Scheid has time complexity

O(n3) and space complexity O(n2). While the algorithm we present does have large time

complexity, it only requires linear space, which may be an advantage for some applications.

Even though we cannot easily formulate a SCFG, it is reasonable to consider whether

a context free grammar (such as that presented in section 4.5) could nonetheless be used as

the basis for a dynamic programming algorithm. In fact, this is possible. The key idea is to
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create a table for each non-terminal symbol X and then populate entry k of the table with

∑
eE(t),

where the sum is taken over all trees t ∈ Tk which can be derived from symbol X .

Once the tables been populated with these (non-normalized) probabilities, a stochastic

backtracking procedure can be used to obtain samples.

However, as in subsection 4.4.2, an assumption that each arithmetic operation can be

performed in unit time is not appropriate here. Because the elements of our dynamic pro-

gramming tables are in fact parts of the partition function, we can conclude that the num-

bers involved could have up to O(n) digits. Each arithmetic operation therefore becomes

much more expensive. While a polynomial time dynamic programming algorithm based

on a context free grammar is possible, an efficient dynamic programming algorithm would

require substantially more work.

4.4.4 Extended applications

The Markov chain mixing analysis techniques explored in this chapter have potential for

useful application in a variety of fields. Markov chain Monte Carlo algorithms are widely

used in several fields including, machine learning [118], econometrics [119], and Bayesian

Statistics [120]. In virtually all applications, an understanding of mixing time increases

confidence in the results. In some situations, an understanding of mixing time may also

allow for more efficient algorithm selection and implementation.

While many Markov chains with nonuniform stationary distributions have been used

for biological applications (e.g. [35, 36, 37, 38]), theoretical guarantees on the mixing

time are generally not known. Instead, researchers must rely on convergence heuristics,

and if fact many introductions to Markov chain Monte Carlo written for biologists explain

such heuristic techniques [121, 39, 40, 41]. Of course, heuristics can be misleading, and
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rigorous mixing time guarantees would be significantly preferable. The same techniques

used in this work might be used to generate algorithms with rigorous mixing time bounds

for other biological problems concerning a nonuniform distribution.

The mathematical techniques used in this chapter have been widely used in mathe-

matics, physics, and computer science, demonstrating their broader applicability. For nu-

merous examples, we direct the reader to the books of Levin, Peres, and Wilmer [122];

Montenegro and Tetali [123]; and Jerrum [45].

As an example where similar techniques have found utility in biological applications,

it is interesting to briefly consider the study of cladograms, which arise from phylogenetic

trees. Mathematically, a cladogram is a binary tree with n labeled leaves and n−2 unlabeled

internal nodes. While an explicit formula is known for the exact number of cladograms of

a given size, mixing time under certain dynamics has also been studied. For example,

Aldous [124] studied a Markov chain where a leaf is removed at random and then attached

to a random edge in the tree, obtaining a proof that the mixing time is bounded below by

O(n2) and bounded above by O(n3). Further work by Schweinsberg [125] later proved an

upper bound of O(n2), closing the gap between the upper and lower bounds.

4.4.5 Independent mathematical research interests

The plane trees examined as a model for RNA secondary structure are of independent

mathematical interest. As Catalan objects, they have been studied combinatorially (see,

for example, [126, 105]), and Markov chains on Catalan objects have received significant

attention over the years [110, 127, 128, 129, 111], but with very few results providing

tight estimates on the corresponding mixing times; most commonly these are discussed in

the language of Dyck paths. Cohen’s thesis [110] gives an overview of the known mixing

time results for chains on Catalan objects. All of the chains surveyed there have uniform

distribution over the Catalan-sized state space as their stationary distribution. Among these,

essentially the only known chain with tight bounds (upper and lower bounds differing by

132



a small multiplicative constant) is due to Wilson [111] and gives the relaxation time of

O(n3) for the walk consisting of adjacent transpositions on Dyck paths. In comparison, in

[127] the chain using all (allowed) transpositions has been shown to have relaxation time

of O(n2), and further conjectured to have O(n) as the relaxation time, in analogy with the

random transposition shuffle of n cards.

Judging from the lack of progress on several of these chains, it is evident that determin-

ing mixing or relaxation time for these chains is typically a challenging problem, even in

the case where the stationary distribution is uniform.

In the current work, the RNA secondary structure modeling naturally leads to a state

space on Catalan objects with a nonuniform distribution, making the corresponding mixing

time analysis even more challenging. Another example where mixing times are estimated

for Markov chains on Catalan objects with nonuniform stationary distribution is the work

of Martin and Randall [43], which examines a Gibbs distribution on Dyck paths weighted

by the number of returns to the x-axis.

4.4.6 Limitations and Future Directions

While the mixing time proved here is polynomial, it is almost certainly too large to allow

for any practical computational sampling experiments. However, we conjecture the ac-

tual mixing time to be much smaller, and future work may provide a better bound. Even

without additional theoretical results, interesting work is possible using the algorithm we

present and heuristic methods for evaluating Markov chain mixing. See [130, Ch. 8] for a

discussion of heuristic methods for monitoring Markov chain convergence.

The results of this study provide an important mathematical foundation for examining

dispersion of RNA secondary structures and branching properties using a Markov chain.

However, more work is necessary to optimize the developed computational application for

incorporation into the software utilized by biologists that study RNA. Example questions

that strongly compel further investigation include:

133



1. Can the mixing time bound in our main result be improved?

2. Is there a rapidly mixing chain, with the same stationary distribution studied here,

whose transitions correspond naturally to moves on the set plane trees? Mixing time

bounds on the chain of matching exchange moves, as defined in [131], would be

especially interesting, as such a chain may relate to RNA folding kinetics.

3. Is there a rapidly mixing chain converging to the Gibbs distribution using the full

energy function for the utilized NNTM model [12]? The chain presented here uses

only the parameters α and β, setting γ = 0.

4. Is there a stochastic context free grammar which generate secondary structures (in

our simplified model or using the full NNTM) according to a Gibbs distribution with

NNTM energy?

4.5 Supplement: SCFG

This section attempts to illustrate it is not apparent how to formulate stochastic context

free grammar based on the work of Rivas and Eddy [116]and Nebel and Scheid [114] that

generates a given NNTM Gibbs distribution. To do so, we will attempt to formulate such

a grammar, making the most natural or logical choices at each step. We do not claim that

finding such a grammar is impossible; we only claim that is not apparent from the existing

literature.

We first give a description of a stochastic context free grammar similar to that described

by Nebel and Scheid [114] but restricted to the plane tree model of RNA secondary struc-

ture. Notably, each of the production rules corresponds to a specific change in free energy

under the NNTM.

Plane tree are represented as strings of parentheses, using the typical Catalan bijection.

The notation for the free energy is consistent with subsection 4.2.1.
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The alphabet of terminal symbols is {(, )}, and the non-terminals are s, t, u, with s

being the initial state. We additionally use ε to denote the empty string.

For the time being, we leave the probabilities undetermined.

probability production rule description free energy

s1 s→ (t)s branch on exterior loop g

s2 s→ ε end of exterior loop 0

t1 t→ (t)u first branch on a multiloop a+ 8b+ 2c

t2 t→ (t) internal node i

t3 t→ ε hairpin f

u1 u→ (t)u additional branches on a multiloop 4b+ c

u2 u→ (t) last branch on a multiloop 4b+ c

4.5.1 Determination of production rule probabilities

Given specific values for the free energy parameters a, b, c, f, g, i, we need to pick specific

values for the production rule probabilities s1, s2, t1, t2, t3, u1, u2 so that the probability of

generating a given string with the grammar, given the length of the string, is the Gibbs

probability.

That is, given a plane tree with n edges, root degree r, and down degree sequence

(excluding the root) d0, d1, . . . , dn−1, the free energy should be given by

gr + id1 + fd0 +
n−1∑
i=2

(di(a+ 8b+ 2c) + di(i− 1)(4b+ c)) ,

and hence the probability (given the number of edges n) should be

e−(gr+id1+fd0+
∑n−1
i=2 (di(a+8b+2c)+di(i−1)(4b+c)))

Zn
, (4.23)
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where Zn is the appropriate normalizing constant:

Zn =
∑
t∈Tn

e−(gr(t)+id1(t)+fd0(t)+
∑n−1
i=2 (di(t)(a+8b+2c)+di(i−1)(4b+c))).

Note that a plane tree with n edges, degree sequence d0, d1, . . . , dn−1, and root degree

r has probability in the grammar

sr1s2t
d1
2 t

d0
3

n−1∏
i=2

tdi1 u
di
2 u

(i−1)di
1 .

Conditioning on the requirement that the length of the string be 2n (or, equivalently, that

the plane tree has n edges) gives

sr1s2t
d1
2 t

d0
3

∏n−1
i=2 t

di
1 u

di
2 u

(i−1)di
1

Yn
, (4.24)

where Yn is the probability that the grammar generates a string of length 2n.

Based on the similarity between Equation 4.23 and Equation 4.24, it is natural to try

setting

s1 = e−g/Zs

s2 = 1/Zs

t1 = e−(a+8b+2c)/Zt

t2 = e−i/Zt

t3 = e−f/Zt

u1 = e−(4b+c)/Zu

u2 = e−(4b+c)/Zu,
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where

Zs = e−g + 1

Zt = e−(a+8b+2c) + e−i + e−f

Zu = 2e−(4b+c)

are normalizing constants which ensure s1 + s2 = 1 as well as t1 + t2 + t3 = 1 and

u1 + u2 = 1.

We note that, if not for these normalizing constants Zs, Zt, Zu, we would be able to

obtain equality between the probability given by the grammar and that given by the Gibbs

distribution. However, the normalizing constants are necessary to satisfy the definition of a

stochastic context free grammar.

Proceding with the definitions of s1, s2, t1, t2, t3, u1, u2 given above, we see that the

probability that a given tree is generated by the grammar is

sr1s2t
d1
2 t

d0
3

∏n−1
i=2 t

di
1 u

di
2 u

(i−2)di
1

Yn

=
e−rge−d1ie−d0f

YnZr+1
s Zd1+d0

t

n−1∏
i=2

(
edi(a+8b+2c)e−di(4b+c)e−(i−2)di(4b+c)

ZdiZ
(i−1)di
u

t

)

=
e−(rg+d1i+d0f+

∑n−1
i=2 (di(a+8b+2c)+di(i−1)(4b+c)))

YnZr+1
s Zn

t Z
d0−r
u

Note that the numerator now matches exactly with the numerator in Equation 4.23. In

order to obtain equality for the whole expression, we would need

YnZ
r+1
s Zn

t Z
d0−r
u = Zn

for all trees with n edges.
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The left hand side expands to

Yn
(
e−g + 1

)r+1 (
e−(a+8b+2c) + e−i + e−f

)n (
2e−(4b+c)

)d0−r
.

Even without an explicit expression for Yn, we know that Yn is constant for fixed n.

However, the non-constant portion

(
e−g + 1

)r+1
(2e)−(4b+c)(d0−r)

clearly varies among trees with n edges. Hence, the denominator we obtain when comput-

ing the probability of obtaining a string using the stochastic context free grammar clearly

cannot be equal to the constant Zn.

Therefore, we have shown that one clear approach to formulating a stochastic context

free grammar based on the work of Rivas and Eddy (1999) and Nebel and Scheid (2011)

fails. We do not claim that no such grammar exists. We only claim that the approach which

seems most obvious does not work.
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Algorithm 1 The main Markov chain algorithm. This pseudocode calculates Xt given X0.
Input: X0 is a valid 2-Motzkin path of length m.

x← X0

for s = 1→ t do

y ← x

l← randInt(1, 4)

if l = 1 then

i← randInt(1,m− 1)

if x[i : i+ 1] = UD and Ber
(

e−α

2(1+e−α)

)
then

y[i : i+ 1]← HH

else if x[i : i+ 1] = HH and Ber
(

1
2(1+e−α)

)
then

y[i : i+ 1]← UD

else if l = 2 then

i← randInt(1,m)

if x[i] = I and Ber
(

e−α

2(e−α+e−β)

)
then

y[i]← H

else if x(i) = H and Ber
(

e−β

2(e−α+e−β)

)
then

y[i]← I

else if l = 3 then

i← randInt(1,m)

j ← randInt(1,m)

if (x[i] ∈ {U,D} and x[j] ∈ {U,D}) and Ber
(

1
2

)
then

y[i]← x[j]

y[j]← x[i]

if y is not a valid 2-Motzkin path then

y ← x

else if l = 4 then

i← randInt(1,m− 1)

if (x[i] ∈ {U,D} and x[j+ 1] ∈ {H, I}) or (x[i] ∈ {H, I} and x[j+ 1] ∈ {U,D})
and Ber

(
1
2

)
then

y[i : i+ 1]← x[j + 1] + x[j]

x← y

return x
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Algorithm 2 Algorithm to convert a sampled 2-Motzkin path to a plan tree. The pseu-
docode calculates Φ−1(x).
Input: x is a valid 2-Motzkin path of length m.

root← new Node()

// u will be where a new node will be added for an H or D symbol

u← root

// v will be always the last node added

v ← new Node()

// the stack will keep track of previous values of u

stack = new Stack()

root.children.append(v)

for i = 1→ m do

node← new Node()

if x[i] = U then

v.children.append(node)

stack.push(u)

u← v

else if x[i] = I then

v.children.append(node)

else if x[i] = H then

u.children.append(node)

else if x[i] = D then

u.children.append(node)

u← stack.pop()

v ← node

return root
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CHAPTER 5

EXPLORING OPTIMIZATIONS TO HETESIM FOR COMPUTING

RELATEDNESS IN HETEROGENEOUS INFORMATION NETWORKS

The content of this chapter is in preparation for submission to a journal, with co-authors

Chidozie Onyeze, David Kartchner, Stephen Allegri, Davi Nakajima-An, Evie Davalb-

hakta, and Cassie Mitchell.

5.1 Introduction

5.1.1 Background and Motivation

Heterogeneous information networks, or knowledge graphs, are valuable tools for collect-

ing and analyzing insights from the vast number of papers published in the biomedical

sciences. Informally, a heterogeneous information network is a directed graph in which

each node corresponds to a biomedical concept and each directed edge encodes a rela-

tionship between concepts. Additionally, each node in the graph has an associated type.

Heterogeneous information networks are further constrained by a schema which lists all

possible edge types and the allowed node types which may serve as the source and target

for a given edge type. Formal definitions for these concepts are given in subsection 5.1.2.

SemNet is a heterogeneous information network with approximately 300,000 nodes and

20,000,000 edges built from the abstracts of papers in the PubMed database [15]. SemNet

has proven useful in ongoing unpublished research, as well as in a published study of link

prediction for drug discovery [132]. However, long algorithm runtimes have limited the

application of this valuable tool.

This work will build on the SemNet codebase with the goal of making revisions and

introducing new algorithms that can reduce algorithm runtimes. Throughout this work, the
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version of SemNet described by Sedler and Mitchell in [15] will be referred to as SemNet

version 1. The new version of SemNet, after the applying improvements described in this

manuscript, will be referred to as SemNet version 2.

This work will focus on the similarity score HeteSim [14]. HeteSim-based similarity

scoring on heterogeneous information networks has been successfully applied to multiple

biomedical research problems [133, 134, 135, 136, 137, 138] Therefore, the implementa-

tion of a faster HeteSim scoring algorithm will have the potential for significant benefit to

the biomedical research community.

Several techniques will be used to improve the performance of SemNet. First, investi-

gation of runtimes in SemNet will highlight bottlenecks, especially the reliance on Neo4j

to store the knowledge graph. Based on this insight, optimizations in data structures will

lead to significant performance improvements.

Algorithmic improvements will also be investigated. In particular, approximation al-

gorithms using randomness will be explored. An approximation algorithm is an algorithm

which returns a value within a specified error (generally additive or multiplicative) of the

true answer, with some known or bounded probability. The power of approximation algo-

rithms lies in their ability, for some problems, to provide a fast approximation to a solution

even when computing the exact solution requires exponential time (assuming P 6= NP).

Though approximation algorithms have existed in the literature for some time, Garey, Gra-

ham, and Ullman [46] and Johnson [47] both introduced the idea formally in 1973 and

1974, respectively. Since then, the computer science and combinatorics literature has fea-

tured many advancements in the field of randomized approximation algorithms. For an

overview of basic techninques and more recent results, see [48, 49, 50].

In addition to reducing the required computation time for HeteSim scoring in SemNet,

this paper will also address a flaw in SemNet version 1, namely the reliance on ULARA

[139] for aggregating HeteSim scores over multiple metapaths. subsection 5.2.1 will ex-

plain the flaw in ULARA and propose an alternative, which will be implemented and fur-
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ther discussed in subsequent sections.

Throughout this manuscript, we will consider metapaths between the node for Alzheimer’s

disease (CUI C0002395) and several possible source nodes. Specifically, we will consider

insulin (CUI C0021641), hypothyroidism (CUI C0020676), and amyloid (CUI C0002716)

as possible source nodes. These examples were selected because of their relevance to other

ongoing work on Alzheimer’s disease.

5.1.2 Definitions and Mathematical Preliminaries

In this section, we will formally define a schema and a knowledge graph / heterogeneous

information network. A schema tells us which node and edge types may be present in

our knowledge graph, while the knowledge graph tells us which relations apply to specific

concepts nodes.

Definition 1. A schema S = (A,R) is a setA of node types and a setR of relations. Each

relation R ∈ R has a source type A ∈ A and a target type B ∈ A.

Definition 2. Let S = (A,R) be a schema with |A| > 1 . Then, a heterogeneous infor-

mation network (also called a knowledge graph) is a directed graph G = (V,E) with an

object type mapping function ϕ : V → A and a link type mapping function ψ : E → R. If

e = (u, v) ∈ E, then the source type of ψ(e) must be ϕ(u) and similarly the target type of

ψ(e) must be ϕ(v).

Relations are a key concept in understanding knowledge graphs. We may understand

both individual edges and entire metapaths as relations. We start by defining the simplest

relation, the self relation.

Definition 3. The relation I is the self-relation. So, a I−→ b if and only if a = b. We also

define the function δ by δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.

We now define our primary object of study: the metapath. Note that the metapath may
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be viewed as a list of node and edge types or as the relation equivalent to the composition

of all individual relations in the metapath.

Definition 4. Let S = (A,R) be a schema. Then, a metapath P is a sequence of node

and edge types, denoted A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, with Ai ∈ A and Ri ∈ R. The

length of P is l. Note that a metapath may also be understood as the composition of the

relations given by its metaedges: R = R1 ◦ R2 ◦ · · · ◦ Rl. Let p = a1a2 . . . al+1 with

ai ∈ V and (ai, ai+1) ∈ E be a path in G. Then, p is a path instance of the metapath P if

ϕ(ai) = Ai∀i ≤ l + 1 and ψ((ai, ai+1)) = Ri∀i ≤ l. We denote the fact that p is a path

instance of P by p ∈ P .

Given these definitions, we are nearly ready to define the function of interest: HeteSim,

which was defined by Shi et. al. [14]. We start by defining a function h which is a non-

normalized version of HeteSim.

Definition 5. Let l > 0. Let P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1. Let ϕ(s) = A1 and

ϕ(t) = Rl+1. Then the non-normalized HeteSim score between s and t with respect to the

relevance path P is defined recursively as follows. When R1 ◦R2 ◦ . . . Rl 6= I ,

h(s, t|R1 ◦R2 ◦ · · · ◦Rl)

=
1

|O(s|R1)| |I(t|Rl)|
∑

a∈O(s|R1)

∑
b∈I(t|Rl)

h(a, b|R2 ◦R3 ◦ · · · ◦Rl−1), (5.1)

where O(s|R1) is the set of out-neighbors of node s based on relation R1, and I(t|Rl) is

the set of in-neighbors of node t based on the relation Rl.

In the base case, we define

h(a, b|I) = δ(a, b). (5.2)

Note that this definition only works for relevance paths of even length. We will need

an extension for paths of odd length. We briefly explain the definition of HeteSim for odd
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paths here. For more detail, see Shi et. al. [14].

The basic idea to define h for paths of odd length is to transform those paths into paths

of even length. Suppose we have a relevance path of odd length P = A1
R1−→ A2

R2−→

. . .
Rl−→ Al+1. We now modify P by adding a new object type E and two new relation

types RE and RF . We then define P ′ = A1
R1−→ A2

R2−→ . . .
R l+1

2 −1

−−−−→ A l+1
2

RE−−→ E
RF−−→

A l+1
2

+1

R l+1
2 +1

−−−−→ . . .
Rl−→ Al+1. Additionally, in the underlying graph G, for any edge

g = (u, v) with ψ(g) = R l+1
2

, we add a new node, Eg and 2 new edges: e1 = (u,Eg) and

e2 = (Eg, v). We additionally assign ϕ(Eg) = E, ψ(e1) = RE , and ψ(e2) = RF . This

procedure allows us to transform any odd path into an even path, giving a definition for the

non-normalized HeteSim score h for odd length paths.

As a final step, HeteSim is normalized so that the normalized score for any two nodes

lies in the interval [0, 1]. To do so, we will cast the problem in the language of transition

matrices.

Definition 6. Given a relation A R−→ B, let WAB be an adjacency matrix between type

A and type B. Let UAB be WAB normalized along each row vector. That is, UAB is the

transition probability matrix A −→ B based on relation R where each allowed transition is

given equal probability. Similarly, let VAB be a normalized form of the matrix WAB, this

time normalized along its column vectors. So, VAB is the transition probability matrix for

B −→ A based on relation R−1. Note that UAB = V T
BA.

Definition 7. Given a metapath P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, the reachable probabil-

ity matrix PM for that metapath is given by

PMP = UA1A2UA2A3 . . . UAlAl+1
. (5.3)

Note that PMP(i, j) gives us the probability of object i ∈ A1 reaching object j ∈ Al+1

under the path P , under the assumption that at each step all valid transitions have equal

probability.
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The following lemma is implicit in [14], but it is stated here for clarity.

Lemma 72. Let s ∈ A1, t ∈ Al+1. Let P = (A1A2 . . . Al+1) be a metapath. Then,

h(s, t|P) = PMPL(s, :)(PMP−1
R

(t, :))T , (5.4)

where PMPL(a, :) is used to denote the ath row of the matrix PMP , and P = PLPR is the

decomposition of P into two paths of equal length.

Proof. First, notice that we only need to prove this result for even values of l. We proceed

by induction.

In the base case, we have l = 0. This is the trivial metapath, and its corresponding

relation is the self relation. We have

h(s, s) = δ(s, s) = 1, (5.5)

and

PMPL(s, :)(PMP−1
R

(s, :))T = 1 · 1 = 1. (5.6)

Therefore, the base case holds.

For the induction step, let k ≥ 2 be an even integer. Assume that the lemma holds for

all metapaths of length k. We will prove the lemma for paths of length k + 2. Beginning

with the definition of h, we have

h(s, t|R1 ◦R2 ◦ · · · ◦Rk+2)

=
1

|O(s|R1)| |I(t|Rk+2)|
∑

a∈O(s|R1)

∑
b∈I(t|Rk+2)

h(a, b|R2 ◦ · · · ◦Rk+1) (5.7)

=
1

|O(s|R1)| |I(t|Rk+2)|
∑

a∈O(s|R1)

∑
b∈I(t|Rk+2)

PMP ′L(a, :)
(
PM(P ′)−1

R
(b, :)

)T
, (5.8)

where P ′ = R2◦· · ·◦Rk+1, and the second equality follows from the induction hypothesis.

146



Recalling the interpretation of PMP as the product of transition matrices, we see

1

|O(s|R1)| |I(t|Rk+2)|
∑

a∈O(s|R1)

∑
b∈I(t|Rk+2)

PMP ′L(a, :)
(
PM(P ′)−1

R
(b, :)

)T
=

∑
a∈O(s|R1)

1

|O(s|R1)|
PMP ′L(a, :)

∑
b∈I(t|Rk+2)

1

|I(t|Rk+2)|

(
PM(P ′)−1

R
(b, :)

)T
(5.9)

=
(
UA1A2PMP ′L(s, :)

) (
VAk+1Ak+2

PM(P ′)−1
R

(t, :)
)T

(5.10)

= PMPL(s, :)
(
PMP−1

R
(t, :)

)T
, (5.11)

which establishes the result.

Finally, the HeteSim score is given by the cosine of the angle θ defined by vectors

PMPL(s, :) and PMP−1
R

(t, :).

Definition 8. The normalized HeteSim score between two objects a and b based on the

relevance path P is

HS (s, t|P) = cos(θ) =
PMPL(s, :)(PMP−1

R
(t, :))T∣∣∣PMPL(s, :)

∣∣∣∣∣∣(PMP−1
R

(t, :))T
∣∣∣ . (5.12)

The above definition uses the multiplication of transition matrices to obtain reachable

probability matrices, which in turn give the HeteSim score with respect to a given metap-

ath. We can recast this matrix multiplication in the language of random walks. Consider

the example graph and metapath given in Figure 5.1. Beginning with node s, we assign the

probability value 1, since this is the specified source node. Next, we distribute that proba-

bility among all neighbors of s with type A2 joined by an edge of typeR1. These neighbors

are a, b and c, and each of these three nodes gets labeled with the probability 1/3. We repeat

the same process with the neighbors of a, b, c having type A3 and joined by an edge of type

R2. The probability 1/3 assigned to node a is split between its neighbors d and f , with

each neighbor receiving 1/6. Node b has no eligible neighbors, and so its probability mass

does not propagate to the next layer of the graph. Node c splits its probability mass of 1/3
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Figure 5.1: Example graph, metapath, and HeteSim computation.

between d and e. Therefore, d is labeled with probability mass 1/3, with 1/6 coming from

a and 1/6 from c. Node e only receives probability mass from c and is therefore labeled

with 1/6. Similarly, node f receives probability mass only from a, and therefore has total

probability mass 1/6. This computation, which is equivalent to the matrix multiplication

described above, gives

PMPL(s, :) =


1/3

1/6

1/6

 . (5.13)

To obtain PMP−1
R

(t :), we repeat the same procedure on the second half of the metapath,

this time working backwarde towards A3 from t. To start, t gets probability mass label 1.

That probability is split among its 2 neighbors in A4, giving g and h each probability mass

1/2. The mass of g is split evenly among d and e, so both of these nodes have probability

mass 1/4. All of the probability mass of h goes to f , giving f a probability mass 1/2.

Note that we have now labeled nodes d, e and f twice, once from the left and once from
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the right. While the labels from the left gave us PMPL(s :), the labels from the right give

PMP−1
R

(t, :) =


1/4

1/4

1/2

 . (5.14)

Finally, we can compute

HS (s, t|P) =
PMPL(s, :)(PMP−1

R
(t, :))T∣∣∣PMPL(s, :)

∣∣∣∣∣∣(PMP−1
R

(t, :))T
∣∣∣ =

1/4

1/2 ·
√

6/4
=

√
6

3
. (5.15)

5.1.3 Overview of SemNet’s existing HeteSim implementation

The implementation of HeteSim in SemNet version 1 includes more than just the single-

metapath HeteSim computation described in subsection 5.1.2. In SemNet, HeteSim is not

just used to give a score of the relatedness of two specific nodes with respect to a fixed

metapath. Instead, it is used as a tool to rank a set of candidate source nodes based on their

relatedness to a fixed target node.

Figure 5.2 gives an overview of this ranking algorithm as it exists in SemNet version 1.

As input, the algorithm accepts a set of candidate source nodes S and a single target node t.

In step 1, the set of all metapathsMP which have an instance joining some element of S to

t is enumerated. This enumeration depends upon the underlying knowledge graph, which

is stored in Neo4j. Step 2 is the computation of HeteSim scores for each triple (s, t,m)

for s ∈ S,m ∈ MP . For any fixed metapath m ∈ MP , the results from step 2 induce

a ranking on the source nodes S by HeteSim score. Step 3 takes these |MP| rankings

and combines them to form a single ranking using a technique called ULARA (see [139]).

Finally, this combined ranking is returned to the user and is used as an indication of which

nodes from S are most closely related to t.

In this work, we will keep the overall structure of the HeteSim algorithm outlined in
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Input: S, t

Step 1: Enumerate
MP , the set of all

metapaths from S to t

Step 2: Compute
HeteSim for all

triples (s, t,m) for
s ∈ S,m ∈ MP

Step 3: Aggregate
source node rankings

using ULARA

Output: ranking
of elements of S

Knowledge graph
datastructure (Neo4j)

queries

queries

Figure 5.2: Overview of SemNet version 1 HeteSim implementation.

Figure 5.2, but will make several substantial changes to the various subroutines. First,

we will replace the knowledge graph data structure using Neo4j with one based solely on

Python dictionaries. Second, we will explore algorithms using randomization as candidate

replacements for Step 2. Finally, we will discuss a flaw in ULARA and will replace Step

3 with the generation of a ranking based on mean HeteSim score over all metapaths. We

will also explore an approximate version of Step 3 where only a subset of metapaths are

selected for inclusion in the mean.
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5.2 Methods

5.2.1 A new method for combining HeteSim scores from multiple metapaths

SemNet version 1 outputs a ranking of many candidate source nodes with respect to a

fixed target node. This ranking is intended to reflect the overall relatedness of each source

node to the target node. SemNet version 1 computes the HeteSim scores for all requested

source nodes and for all possible metapaths (up to some length bound) joining those source

nodes to the target node. Each metapath induces a ranking of the source nodes according

to HeteSim score. In order to combine these many rankings into a single ranking, SemNet

version 1 uses a technique called ULARA (Unsupervised Learning Algorithm for Rank

Aggregation) [139]. Due to a flaw in ULARA, this work replaces ULARA with a ranking

based on mean HeteSim scores.

Before proceeding to describe the flaw in ULARA, it is necessary to give some back-

ground. We explain ULARA in the full generality with which it is presented in [139] in

order to explain the flaw, but note that SemNet version 1 does not require the full general-

ity of ULARA and may be thought of as using a special case of ULARA. Let X be a set

of objects to be ranked, and let Q be a set of valid queries. Let x, x′ ∈ X , q ∈ Q. Let

r : Q×X → N be a ranking function, so that r(q, x) < r(q, x′) means that x has a higher

ranking than x′ with respect to the query q.

Let N ∈ N. Given a set of ranking functions {ri}Ni=1, ULARA produces a ranking

function of the form

R(q, x) =
N∑
i=1

wiri(q, x), (5.16)

for some real numbers {wi}Ni=1 satisfying 0 ≤ wi ≤ 1 for all 1 ≤ i ≤ N and
∑N

i=1wi = 1.

The value of each wi is determined by an optimization problem.

Let

µ(q, x) =

∑
i:ri(q,x)≤κi ri(q, i)

|{i : ri(q, x) ≤ κi}|
, (5.17)
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where κi is a threshold which allows for the possibility that not every ranking function

returns a rank for every x ∈ X . The function µ(q, x) is intended to represent the mean

ranking of element x with respect to query q over all ranking functions ri. Let

σi = (ri(q, x)− µ(q, x))2 . (5.18)

This variance-like function is used to measure the agreement of ranking functions with each

other, with the goal of giving ranking functions that agree with the mean a higher weight.

Let

δi(q, x) = wiσi(q, x). (5.19)

We can now finally state the optimization problem at the center of ULARA:

arg min
w1,...,wN

∑
q∈Q

∑
x∈X

N∑
i=1

δi(q, x), (5.20)

subject to the constraints
n∑
i=1

wi = 1 and ∀i, wi > 0. (5.21)

ULARA solves this optimization problem using gradient descent, the details which are not

relevant here. The flaw in ULARA can be seen simply by examining the optimization

problem itself. Let

ai =
∑
q∈Q

∑
x∈X

σi(q, x). (5.22)

Then, the optimization problem becomes

arg min
w1,...,wN

N∑
i=1

wiai, (5.23)

subject to the constraints
N∑
i=1

wi = 1 and ∀i, wi > 0. (5.24)
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Let j be such that aj = mini ai. Then, an optimal solution is given by

wi =


1 if i = j

0 if i 6= j

. (5.25)

Further, the solution is unique if aj is the unique minimum of the set A = {a1, . . . , aN}.

The case where the optimization problem does not have a unique solution is not mentioned

in [139], and it seems this case should be rare in practice. Therefore, any unique optimal

solution of the ULARA optimization problem places all of the available weight on a single

ranking function. That is, ULARA does not give an aggregation of ranking functions; it

simply selects a single raking function which shows most agreement with the others. In the

language of SemNet, this means that only one metapath is used to give the final ranking of

source nodes.

In the case of SemNet version 1, the implementation of ULARA was reexamined, and

a bug was found that resulted in the algorithm terminating before the gradient descent had

converged. As a result, a linear combination of multiple ranking functions (with nonzero

coefficients) was actually returned, and multiple metapaths therefore are reflected in the

rankings given by SemNet. This likely explains the observed utility of SemNet version 1

in spite of the flaw in ULARA.

As a replacement for ULARA, in SemNet version 2 the mean HeteSim score of a source

node with respect to all metapaths is used to generate a ranking of source nodes.

5.2.2 Computational analysis of HeteSim runtimes: SemNet version 1

To better understand the run time of the HeteSim computation, the Python module time

[140] was used to record the time required to compute HeteSim for each of the metapaths

from the studied source nodes to Alzheimer’s Disease. Additionally, the total time spent on

the required Neo4j queries was recorded for each metapath. This allows separate analysis
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of the time required to query the graph and the time required to perform the HeteSim

computations.

5.2.3 Development, implementation, and testing of algorithms

The core development work for this project can be divided into three general categories:

reimplementation of the knowledge graph data structure, development and implementation

of algorithms, and testing.

Knowledge graph data structure

SemNet version 1 used Neo4j to store the knowledge graph. After preliminary testing

showed that Neo4j was likely a significant bottleneck, the knowledge graph data struc-

ture was re-implemented using nested Python dictionaries. Because these dictionaries use

hashing for lookup, they have average lookup time O(1) (see, e.g. [141]). As a result, dic-

tionaries allow for quickly examining the neighborhood of a node in the knowledge graph,

restricted to edge and node types of interest. Consequently, it is also efficient to traverse

paths within the graph.

After testing on artificial examples, a knowledge graph object was built using an edge

set derived from SemMedDB. This is an updated version of the edge set, and is not identical

to the edge set from SemNet version 1.

Development of approximation algorithms

In addition to the data structure improvements, approximation algorithms based on ran-

domization were explored as a way of further increasing performance. In particular, ap-

proximation algorithms were investigated as possible replacements for the computation of

HeteSim on a single metapath (step 2 in Figure 5.2) and aggregation of rankings (step 3 in

Figure 5.2).
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Implementation and Testing

All code with implemented in Python 3. Testing was performed using Jupyter Notebook

5.5.0 [142] and Python 3.6.10 [143]. All code was run on a server with 1 NVIDIA TESLA

v100 GPU with 32 GB RAM and 48 core CPU with 320 GB RAM.

For all code not involving randomization, the correctness of implementation was as-

sessed using unit tests, which may be found in the source code repository. The one ran-

domized function of significant complexity, randomized pruned HeteSim, was assessed on

artificially-constructed example knowledge graphs. These examples were constructed by

hand by the authors, and the full examples may be found in the source code repository.

The algorithm was run on each graph 100 times with parameters ε = 0.05 and r = 0.95.

As with the SemNet version 1 implementation, the speed of the new implementation was

assessed using the Python time module [140].

5.3 Results

5.3.1 Computational Analysis of HeteSim runtimes: SemNet version 1

For each of the three source nodes, the run time of the HeteSim computation on each

metapath from the source node to Alzheimer’s disease was recorded. The computation

time results are given in Table 5.1, and the distribution of runtimes is depicted graphically

in Figure 5.3. Note that SemNet version 1 incorporated parallelization, allowing multiple

HeteSim computations for different metapaths to occur simultaneously. Therefore, the

computation time per metapath times the number of metapaths does not equal the total

computation time. Time required for the Neo4j graph queries was also measured and is

displayed in Figure 5.4.
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source node insulin hypothyroidism amyloid
number of metapaths 4873 2148 3095
total computation time (min) 79.1 36.5 52.3
computation time per metapath (s) 38.9± 5.7 40.7± 3.8 40.5± 3.7
Neo4j query time, per metapath (s) 38.0± 4.8 39.9± 3.2 39.8± 3.2
time per metapath, excluding query (s) 0.9± 2.5 0.8± 1.8 0.6± 1.6

Table 5.1: SemNet version 1 HeteSim computation times for all metapaths between each
of the three source nodes and Alzheimer’s disease. Per-metapath values are given a mean
± standard deviation.

(a) Insulin (b) Hypothyroidism (c) Amyloid

Figure 5.3: Distribution of SemNet version 1 HeteSim computation times for all metapaths
joining the given source node and Alzheimer’s disease.

5.3.2 Algorithms

In this section, we present several algorithms for computing HeteSim and variants. Proofs

of correctness are also given where appropriate.

We consider two main algorithms for computing HeteSim on a single metapath and two

algorithms for aggregating HeteSim scores across multiple metapaths. For computing Het-

eSim on a single metapath, we consider the deterministic HeteSim algorithm used in Sem-

Net version 1 and a new algorithm, randomized pruned HeteSim. For aggregating HeteSim

scores over multiple metapaths we consider computing the exact mean over all metapaths

and also an algorithm which approximates the mean by taking the mean over a random

subset of metapaths. We also combine these algorithms to get 3 distinct algorithms for

computing (an approximation to) the mean HeteSim score: deterministic HeteSim with ex-

act mean, deterministic HeteSim with approximate mean, and randomized pruned HeteSim

with approximate mean. Using approximate mean HeteSim as an example, an overview of
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(a) Insulin (b) Hypothyroidism (c) Amyloid

Figure 5.4: Distribution of Neo4j query times in SemNet version 1 HeteSim computation
for all metapaths joining the given source node and Alzheimer’s disease.

the new algorithm structure, emphasizing changes, is shown in Figure 5.5.

Deterministic HeteSim

For completeness, we summarize the deterministic algorithm for computing HeteSim. While

this same algorithm is used in SemNet version 1, SemNet version 2 significantly improves

the implementation by changing the underlying data structure for the knowledge graph.

Where version 1 used Neo4j, version 2 uses a knowledge graph object built from Python

dictionaries.

Given a source node s, a target node t, and a metapath P , the deterministic HeteSim

algorithm begins by splitting P into two halves: PL and PR. If P has odd length, the

construction described in subsection 5.1.2 is applied before constructing PL and PR. An

identical subroutine is now applied to both PL and P−1
R . The following exposition will

consider only PL.

Recall that the algorithm must compute PMPL(s, :), which may be understood as the

probability that a random walk along the given metapath starting from s arrives at a given

node in Al/2. The algorithm iteratively computes the probability of arriving at each node in

Ai for step i of the metapath for 1 ≤ i ≤ l/2.

Let vi(x) be the probability of arriving at node x of type Ai at step i of the metapath.
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Input: S, t

Step 1a: Enumerate
MP , the set of all

metapaths from S to t
Step 1b: Select an

M ′, a multiset contain-
ing an appropriately
number of random

metapaths with
repetition from MP

Step 2: Compute
HeteSim for all

triples (s, t,m) for
s ∈ S,m ∈ M ′

Step 3: Compute
mean HeteSim score
for each node in S

Output: mean
HeteSim score for
each element of S

Knowledge graph
data structure

(Python dictionaries)

queries

queries

Figure 5.5: Overview of SemNet version 2 approximate mean HeteSim implementation.

To compute vi for i > 1, note that it is sufficient to know vi−1, as

vi(x) =
∑

y∈δ−Ri−1
(x)

1

δ+
Ri−1

(y)
vi−1(y). (5.26)

Therefore, beginning with v1(s) = 1, the algorithm iteratively computes v2, . . . , vl/2,

and PMPL = vl/2.
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After completing the analogous computation for P−1
R , the algorithm returns

PMPL(a, :)(PMP−1
R

(b, :))T∣∣∣PMPL(a, :)
∣∣∣∣∣∣(PMP−1

R
(b, :))T

∣∣∣ . (5.27)

Pseudocode is given in Algorithm 3 and Algorithm 4.

Algorithm 3 HeteSim

Input: start node s, end node t, metapath P of even length {odd relevance paths must be
preprocessed}

Output: HeteSim score
Construct PL, PA
vL ← oneSidedHS(s,PL)
vR ← oneSidedHS(t,P−1

R

return (vL · vR)/(|vL||vR|)

Algorithm 4 oneSidedHS subroutine
Input: start node s, metapath P
Output: vector vlength(P), the one-sided HeteSim vector

for i = 1 to length(P)/2 do
vi ← [0]‖Ai‖ {Vector of zeros, indexed by elements of Ai}

v1[s] = 1
for i = 2 to length(P) do

for x ∈ Ai do
vi[x]←

∑
y∈δ−Ri−1

1
δ+Ri−1

[y]
vi−1[y]

return vlength(P)

Pruning the graph

Given a metapath PL = A1
R1−→ A2

R2−→ . . .
R l

2−1

−−−→ A l
2
, a random walk starting from

s ∈ A1 may arrive at node u ∈ Ai such that the out degree of u along edges of type Ri

is 0. Informally speaking, the random walk has reached a dead end. As an example, node

b in Figure 5.1 is a dead end . The presence of these dead ends reduces the probability

that a random walk starting from s actually reaches any node of type A l
2
. In fact, we can

construct graphs that make this probability arbitrarily small. Therefore, a basic random
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Figure 5.6: An example knowledge graph. Here, we use the convention that nodes are
organized by type into vertical columns in the order that they appear in the metapath. We
also only show edges that may appear in some metapath instance. This example hasm1−1
dead end nodes on the left and m2 − 1 dead end nodes on the right. The HeteSim score of
s and t with respect to the metapath is 1 for all values of m1 and m2.

walk algorithm may have arbitrarily long run time. We will address this limitation by

defining a new but closely related quantity: pruned HeteSim.

Before proceeding, we provide two additional examples to explore the effect of dead

ends on HeteSim scores. In Figure 5.6, a simple knowledge graph is shown, organized

according to one metapath. The nodes are organized into columns by type, and the columns

are given in the order that those types appear in the metapath. The only edges shown are

those which appear in some instance of the metapath. This graph has m1 − 1 dead end

nodes on the left-hand side and m2 − 1 dead end nodes on the right-hand side. We can

compute its HeteSim score as follows.

HS (s, t|P) =
1 · 1
1 · 1

= 1. (5.28)

Note that this score does not change with m1 or m2. In particular, the HeteSim score

with the given graph is identical to the HeteSim score when all dead ends are removed from

the graph. As we will later see, this result generalizes to all metapaths of length less than

or equal to 4.

In contrast, the metapath and knowledge graph depicted in Figure 5.7 create a situation
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Figure 5.7: An example metapath and knowledge graph, drawn with the same conventions
as in Figure 5.6. Note that, in this example, the removal of dead ends does change the
HeteSim score.

where the removal of dead ends does change the HeteSim score. If we take m = 2, then

we have removed all dead end nodes. In this case, the HeteSim score is

HS (s, t|P) =

[
3/4 1/4

]([
1/2 1/2

])T
∣∣∣∣[3/4 1/4

]∣∣∣∣ ∣∣∣∣[1/2 1/2

]∣∣∣∣ =
1/2√

5/8
√

1/2
=

2
√

5

5
. (5.29)

If we instead take m = 3, then the HeteSim score is 5
√

34
34

, and, in the limit as m→∞, the

HeteSim score approaches
√

2
2

.

We now introduce a new score: Pruned HeteSim. This new score is identical to HeteSim

on relevance paths of length at most 4. To rigorously define Pruned HeteSim, we must first

formally define a dead end node at step i of a given metapath and with respect to nodes s

and t.

Let G = (V,E) be a heterogeneous information network, and let P = A1
R1−→ A2

R2−→

. . .
Rl−→ Al+1 be a metapath in G. Let s ∈ V with ψ(s) = A1 and t ∈ V with ψ(t) = Al.

Let C1 be the set of nodes of type Al/2 reachable from s along metapath PL. Similarly, let

C2 be the set of nodes of typeAl/2 reachable from t along metapath P−1
R . Let C = C1∩C2,

and label the elements of C so that C = {c1, c2, . . . , cj}. For i ≤ j, let Xi be the event that
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a random walk starting at s along PL ends at node ci. Similarly, let Yi be the event that a

random walk starting at t along P−1
R ends at node ci. Let xi = P (Xi) and yi = P (Yi). Let

x = (x1, x2, . . . , xj) and let y = (y1, y2, . . . , yj).

Let Z be the event that a random walk starting from s along PL reaches some node in

C. Similarly, let W be the event that a random walk starting from t along P−1
R reaches

some node in C.

Definition 9. For a node v belonging to any of A1, A2, . . . , Al/2, we define a dead-end as

follows. Let metapath P and source node s be fixed. Let A be the event that a random walk

beginning from s and following metapath PL contains node v at step i (so that the type of

v is Ai). Then, v is a dead end at step i of metapath P and with respect to source node s if

and only if P (Z|A) = 0. For a node w belonging to any of Al/2+1, . . . , Al+1, the definition

is analogous. Let metapath P and target node t be fixed. Let B be the event that a random

walk starting from t and following metapath P−1
R contains node w at step i. Then, w is a

dead end with respect to step i of metapath P and target node t if and only if P (W |B) = 0.

For fixed nodes s, t and fixed metapath P , let Di be the set of dead end nodes at step i

of metapath P with respect to source node s and target node t.

Informally, this definition means that a node v is a dead end at step i of a metapath if

no random walk which reaches the set of central nodes C has v as its ith node.

Recall that non-normalized HeteSim is defined by

h(s, t|R1 ◦R2 ◦ · · · ◦Rl)

=
1

|O(s|R1)| |I(t|Rl)|
∑

a∈O(s|R1)

∑
b∈I(t|Rl)

h(a, b|R2 ◦R3 ◦ · · · ◦Rl−1), (5.30)

where O(s|R1) is the set of out-neighbors of node s based on relation R1, and I(t|Rl) is

the set of in-neighbors of node t based on the relation Rl.

To define the non-normalized version of pruned HeteSim, we simply exclude dead end

nodes from the sets of neighbors.
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Definition 10. Let P = R1 ◦R2 ◦ · · · ◦Rl be a metapath in some graph G. Let s, t belong

to the vertex set ofG, and letDi be the set of dead end nodes at step i of metapath P . Then,

the non-normalized pruned HeteSim score is given by

g(s, t|R1 ◦R2 ◦ · · · ◦Rl)

=
1

|O(s|R1) \D1| |I(t|Rl) \Dl|
∑

a∈O(s|R1)\D1

∑
b∈I(t|Rl)\Dl

h(a, b|R2 ◦R3 ◦ · · · ◦Rl−1),

(5.31)

where O(s|R1) is the set of out-neighbors of node s based on relation R1, and I(t|Rl) is

the set of in-neighbors of node t based on the relation Rl.

The normalization of pruned HeteSim proceeds exactly like that for HeteSim. We ob-

tain a restricted adjacency matrix W ′
AB,i for the relation A Ri−→ B by removing any 1’s in

WAB corresponding to a dead end node in B at step i of the metapath. As before, we nor-

malize W ′
AB,i along its row vectors to obtain U ′AB,i. As before, we can obtain a reachable

probability matrix by multiplying the normalized restricted adjacency matrices:

PM ′
P = U ′A1A2,2

U ′A2A3,3
. . . U ′AlAl+1,l+1. (5.32)

Definition 11. The normalized pruned HeteSim score is given by

PHS (a, b|P) =
PM ′

PL(a, :)(PM ′
P−1
R

(b, :))T√∣∣∣PM ′
PL(a, :)

∣∣∣∣∣∣(PM ′
P−1
R

(b, :))T
∣∣∣ . (5.33)

Note that, for metapaths with no repeated node types, pruned HeteSim may be com-

puted by simply removing all dead end nodes from the graph and then computing HeteSim

on this pruned graph.

Importantly, pruned HeteSim has value equal to plain HeteSim for metapaths of length

at most 4. Since these shorter paths are often the ones of most interest in small-diameter
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knowledge graphs, pruned HeteSim may be thought of as a replacement for HeteSim in

these circumstances.

Additionally, note that Equation 5.33 gives rise to a deterministic algorithm for com-

puting pruned HeteSim, much like the deterministic algorithm for HeteSim. The algorithm

now requires 2 passes over the data structure. In the first pass over the data, dead ends

are identified. In a second pass, Equation 5.33 allows for the computation of the non-

normalized pruned HeteSim score. Normalization is applied as the final step. Because our

computational focus in this manuscript is on short paths of length at most four, and because

HeteSim and pruned HeteSim have the same values for paths of length at most four, we do

not pursue the deterministic algorithm for pruned HeteSim further. For these short paths, a

deterministic computation of HeteSim is faster than a deterministic computation of pruned

HeteSim.

Theorem 73. Let P = A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1 be a metapath with length l ≤ 4. Then,

PHS (s, t|G,P) = HS (s, t|G,P) . (5.34)

Proof. First, note that we only need to consider metapaths with even length, as odd meta-

paths will simply be transformed to even length metapaths before HeteSim is computed.

Next, note that the result is trivial for metapaths with length 2, as these can have no dead

ends. We may therefore focus only on the case where the metapath has length 4.

Let P = A1
R1−→ A2

R2−→ A3
R3−→ A4

R4−→ A5 be a metapath in G. Note that there can be

no dead ends of type A3. Additionally, if s or t is a dead end, then HS (s, t|G,P) = 0 =

PHS (s, t|G,P). Therefore, we may assume that all dead ends are of type A2 or A4.

Recall thatXi is the event that a random walk inG from s reaches node ci, and similarly

Yi is the event that a random walk in G starting at t arrives at node ci. Let X ′i be the event

that a random walk in G′ along metapath PL starting from s arrives at node ci. Similarly

let Y ′i be the event that a random walk in G′ along metapath P−1
R arrives at node ci. Let
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pL be the probability that a random walk starting from s arrives at a dead end node in A2.

Similarly, let pR be the probability that a random walk beginning at t will arrive at a dead

end in A4. Note that, once a random walk has reached a non-dead end node of type A2 or

A4, that random walk must reach some node of type A3. Therefore,

P (Xi) = (1− pL)P (X ′i) (5.35)

and

P (Yi) = (1− pR)P (Y ′i ) . (5.36)

Letting xi = P (Xi), yi = P (Yi), x′i = P (X ′i), and y′i = P (Y ′i ), observe

HS (s, t|G,P) =

∑k
i=1 xiyi√∑k

i=1 x
2
i

∑k
i=1 y

2
i

(5.37)

=

∑k
i=1(1− pL)x′i(1− pR)y′i√∑k

i=1(1− pL)2(x′i)
2
∑k

i=1(1− pR)2(y′i)
2

(5.38)

=

∑k
i=1 x

′
iy
′
i√∑k

i=1(x′i)
2
∑k

i=1(y′i)
2

(5.39)

= PHS (s, t|G,P) . (5.40)

Pruned HeteSim

We now present alternate algorithm for computing a variant of the HeteSim score. This

algorithm is much more computationally tractable, and we have shown that the HeteSim

and pruned HeteSim scores are identical for relevance paths of length at most 4.

Let P be a metapath, and let s and t be source and target notes, respectively. Let N be

a positive integer, the required value of which will be determined later. Starting from s the

algorithm takes N random walks along PR, never visiting any node that has been marked

165



as a dead end for the current step of the metapath. At any point, if the algorithm encounters

a dead end, it marks the current node as a dead end for the current step of the metapath and

then retraces its steps until a non-dead end node is reached, marking dead ends along the

way as necessary. Note that any dead end at a given step in the metapath will only need

to be marked once, and the algorithm will avoid it for all future random walks. The same

algorithm is repeated along metapath P−1
L starting from t.

The frequency vectors of the terminal nodes of the random walks give an approximation

for PM ′
PL and PM ′

P−1
R

, which are used to approximate the pruned HeteSim score. Psue-

docode is given in Algorithm 5, Algorithm 6, and Algorithm 7. Analysis of the algorithm,

determination of N , and a formal proof of correctness are given in subsubsection 5.3.2.

Algorithm 5 Randomized Pruned HeteSim
Input: start node s, end node t, relevance path P of even length, error tolerance ε, success

probability r {odd relevance paths must be preprocessed}
Output: approximate HeteSim score
S ← breadthFirstSearch(s, PL)
T ← breadthFirstSearch(t, P−1

R )
k ← |S ∪ T |
c← (5 + 4

√
2)/4

C ← 2(c+
√
c2 + 2ε)2 + ε(c+

√
c2 + 2ε)

N ← dC
ε2
ek ln(4k/(1− r))

return RandomizedPrunedHeteSimGivenN(s, t, P , N )

Runtime Analysis of the Pruned HeteSim Algorithm

We now provide guarantee on the number of random walks required to approximate pruned

HeteSim with a given error tolerance ε and success probability r.

Let Sk = {v ∈ Rk :
∑

i vi = 1 and vi ≥ 0}. We consider arbitrary v, w ∈ Sk for fixed

k where v = PM ′
PL(s, :) and w = PM ′

P−1
R

(t, :). We will show that if all the entries in the

vectors are sufficiently close to their true value, then the cosine will be sufficiently close to

the true value. We consider v̂, a random approximation of v after some number of steps.

Notice that v̂ = v + λ where λ ∈ Rk such that
∑k

i=1 λi = 0 and vi + λi ≥ 0 (since v̂ is

166



Algorithm 6 RandomizedPrunedHeteSimGivenN subroutine
Input: start node s, end node t, relevance path P of even length, number of iterations N
Output: approximate HeteSim score

for i = 0 to length(PL)) do
B[i]← ∅

vL ← [0]k {array of 0’s indexed by elements of K}
vR ← [0]k

{random walks from s}
for n = 1 to N do

(B, x)← restrictedRandomWalkOnMetapath(s, PL, B)
vL[x] = vL[x] + 1
{random walks from t}
for i = 0 to length(PL)) do

B← ∅
for n = 1 to N do

(C, x)← restrictedRandomWalkOnMetapath(t, P−1
R , B)

vR[x]← vR[x] + 1
{compute approximate probability vectors and approximate pruned HeteSim}
v′L ← vL/N
v′R ← vR/N
return (v′L · v′R)/(|v′L||v′R|)

Algorithm 7 restrictedRandomWalkOnMetapath subroutine
Input: start node s, metapath P , badNodes B
Output: (B, node), where node is the final node reached, and B is the updated list of

dead-end nodes
i← 1
nodeStack← [ ]
x← s
while i > 0 do
Y ← neighbors(x, Ri) \B[i]
if Y 6= ∅ then
{pick a neighbor with probability proportional to edge weight}
w ←

∑
y∈Y edgeweight(x, y)

z ← SelectWithProbability( [(y, edgeWeight(x, y)/w) for y ∈ Y ] )
nodeStack.push(x)
x← z
i← i+ 1

else
{x is a dead end}
B[i-1]← B[i-1] ∪{x}
x← nodeStack.pop()
i← i− 1

return (B, x)
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always a probability vector). Let

Ek(v, δ, α, β) =

{w ∈ Wk : vi + wi ≥ 0, vi ≥ α⇒ |wi| ≤ δ|vi|, and vi < α⇒ |wi| ≤ βδ}, (5.41)

where Wk = {w ∈ R :
∑

iwi = 0}. We now consider λ ∈ Ek(v, δ, α, β). Note that the

bound imposed by Ek(v, δ, α, β) treats small entries and large entries in v differently. This

will be important to achieve an O(k log k) bound on the number of required random walks

(N ) later in the section.

We start by giving sufficient conditions for a bound on |cos θ′ − cos θ| , where θ′ is the

angle between v̂ and ŵ and θ is the angle between v and w.

Theorem 74. Fix ε > 0. Let 0 ≤ β, β ≤ 1. Let α, α ≥ 0. Let v, w ∈ Sk. Let

b =
2 + kβ2

2|v|2

1 + 1
|v|
√
k

+

√
kβ2

|v|2
+ 1 and a =

kβ2

|v|2 + 1

1 + 1
|v|
√
k

,

and

b =
2 + kβ

2

2|w|2

1 + 1
|w|
√
k

+

√
kβ

2

|w|2
+ 1 and a =

kβ
2

|w|2 + 1

1 + 1
|w|
√
k

.

Let δ = ε
b+
√
b2+2aε

and δ = ε

b+
√
b
2
+2aε

. If λ ∈ Ek(v, δ, α, β) and λ ∈ Ek(w, δ, α, β) then

∣∣∣∣(v + λ) · (w + λ)

|v + λ||w + λ|
− v · w
|v||w|

∣∣∣∣ ≤ ε.

Proof. Follows from Lemma 88 in subsection 5.5.1 and the triangle inequality.

We now need to understand the probability that any given entry of v̂ (or ŵ) is close to

the corresponding entry of v (or w). Since the number of walks arriving at a given node

is binomial, we apply a Chernoff bound (Lemma 75) to the binomial distribution to get

Corollary 76.
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Lemma 75 (Chernoff Bound [144]). Let X ∼ Binom(n, p). Let µ = E(X) = np. For

δ > 0,

P (X ≤ (1− δ)µ) ≤ exp
(
−δ

2µ

2

)
and

P (X ≥ (1 + δ)µ) ≤ exp
(
− δ2µ

2 + δ

)
.

Corollary 76. Let X ∼ Binom(n, p). For δ > 0,

P

(∣∣∣∣Xn − p
∣∣∣∣ > δp

)
≤ 2 · exp

(
− nδ

2p

2 + δ

)

and

P

(∣∣∣∣Xn − p
∣∣∣∣ > δ

)
≤ 2 · exp

(
− nδ2

2p+ δ

)
.

Having bounded the probability of any one vector entry having small error, we now use

a union bound to bound the probability that all entries have small error.

Lemma 77. Fix n, k ∈ N. Fix δ ≥ 0 and 0 ≤ α, β ≤ 1. Let v = (v1, · · · , vk) such that

vi ≥ 0 and
∑

i vi = 1. Let Xi ∼ Binom(n, vi) such that
∑

iXi = n. Let λi = Xi
n
− vi and

let λ = (λ1, · · · , λk). We have that

P (λ 6∈ Ek(v, δ, α, β)) ≤ 2k exp
(
−nδ2 ·min

{
β2

2α + δβ
,

α

2 + δ

})
. (5.42)

Proof. Since Xi ≥ 0, vi + λi ≥ 0. We now apply the Chernoff bound. For vi ≥ α, we see

that

P (|λi| ≥ δvi) = P

(∣∣∣∣Xi

n
− vi

∣∣∣∣ ≥ δvi

)
(5.43)

≤ 2 · exp
(
−nδ

2vi
2 + δ

)
≤ 2 · exp

(
−nδ

2α

2 + δ

)
. (5.44)
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For vi < α, we see that

P (|λi| ≥ βδ) = P

(∣∣∣∣Xi

n
− vi

∣∣∣∣ ≥ βδ

)
(5.45)

≤ 2 · exp
(
− nβ2δ2

2vi + βδ

)
≤ 2 · exp

(
− nβ2δ2

2α + βδ

)
. (5.46)

The result then follows by the union bound.

Finally, we can combine the previous results to bound the required number of random

walks, given error tolerance ε and success probability r.

Lemma 78. Let ε > 0 and 0 < r < 1. For c(ε) = 2(c+
√
c2 + 2ε)2 +ε(c+

√
c2 + 2ε)) and

c = 5+4
√

2
4

. Let δ as in Theorem 74. After making n (non-deadend) walks in the randomized

pruned HeteSim algorithm,

P

(
λ 6∈ Ek

(
v, δ,

|v|√
k
,
|v|√
k

))
≤ 2k exp

(
−n
k
· ε

2

c(ε)

)
.

Proof. We apply Lemma 77 and Theorem 74. We set α = β = |v|√
k
≤ 1 and δ = ε

b+
√
b2+2aε

.

Thus,

P (λ 6∈ Ek(v, δ, α, β)) ≤ 2k exp
(
−n · |v|√

k
· ε2

2(b+
√
b2 + 2aε)2 + ε(b+

√
b2 + 2aε)

)
.

(5.47)

We notice that the content of the exponent is a decreasing function in |v| (for |v| > 0).

Thus,

P (λ 6∈ Ek(v, δ, α, β)) ≤ 2k exp

(
−n
k
· ε2

2
(
c+
√
c2 + 2ε

)2
+ ε(c+

√
c2 + 2ε)

)
. (5.48)
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Corollary 79. Under the same assumptions as Lemma 78, let n > c(ε)
ε2
· k ln( 4k

1−r ), after

making n (non-deadend) walks in the randomized pruned HeteSim algorithm (on both sides

of the computation),

P
(∣∣∣PHS (a, b|P)− P̃HS (a, b|P)

∣∣∣ < ε
)
> r.

Proof. Follows from Lemma 78 (applied to both sides of the computation), Theorem 74

and the union bound.

Deterministic aggregation

In order to rank the overall relatedness of source nodes to a fixed target node, SemNet

version 2 uses the mean HeteSim score between the source and target node, averaged over

all metapaths which exist for any source node in the set under study. For completeness,

pseudocode for computing exact mean HeteSim scores is given in Algorithm 8.

Algorithm 8 Exact Mean HeteSim score
Input: set of start nodes S, end node t, path length p
Output: vector of mean HeteSim scores h, indexed by elements of S

Construct M , the set of all metapaths between any element of S and t
for s ∈ S do

HSscores = []
for m ∈M do

HSscores.append(HeteSim(s, t, m))
h[s] = mean(HSscores)

return h

Randomized Aggregation

As an alternative to taking the exact mean HeteSim score over all metapaths, we also con-

sider an approximation to the mean given by the mean over a random subset of metapaths.

Let S be a set of source nodes in the graph and T be a set of target nodes. LetMPST be

the set of all metapaths in the knowledge graph with at least one instance between some

node in S and some node in T . Let (s, t) ∈ S × T . Let P = A1
R1−→ A2

R2−→ . . .
Rl−→ A+1
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by a metapath. Recall that HS (s, t|P) is the HeteSim score between s and t relative to

the metapath P . Similarly, let PHS (s, t|P) be the Pruned HeteSim score between s and t

relative to the metapath P .

The aggregated HeteSim score of a source-target pair (s, t) is defined to be

Q(s, t) =
1

|MPST |
∑
P∈MP

HS (s, t|P) , (5.49)

and the aggregated Pruned HeteSim Score is defined to be

R(s, t) =
1

|MP|
∑
P∈MP

PHS (s, t|P) . (5.50)

Notice that if we select a metapath fromMP uniformly at random and took the Het-

eSim score relative to that metapath, the expected value of the score is precisely Q(s, t).

Thus, we may approximate Q(s, t) by taking m independent and uniformly chosen math-

paths, P1, · · · ,Pm, and taking the mean of the HeteSim scores relative to these metapaths.

Let

Q̂(s, t) =
1

m

m∑
i=1

HS (s, t|Pi) . (5.51)

Hence, E(R̃(s, t)) = R(s, t).

Let P̃HS (s, t|P) be the approximation of PHS (s, t|P) derived from our randomized

algorithm after taking n(s, t|P) random walks. Let k(s, t|P) be the number of reachable

nodes of type Al/2+1 when considering source s, target t and metapath P . Let kmax =

max{k(s, t|P1), · · · , k(s, t|Pm)}, forMPST = {P1, . . . ,Pm}. By the construction of the

algorithm, E(P̃HS (s, t|P)) = PHS (s, t|P) for a fixed P . Let

R̃(s, t) =
1

m

m∑
i=1

PHS (s, t|Pi)
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and

R̂(s, t) =
1

m

m∑
i=1

P̃HS (s, t|Pi) . (5.52)

Similarly to above, E(R̃(s, t)) = R(s, t). We now see that

E(R̂(s, t)) =
1

m

m∑
i=1

E(E(P̃HS (s, t|Pi) |Pi)) = E

(
1

m

m∑
i=1

PHS (s, t|Pi)

)

= E(R̃(s, t)) = R(s, t). (5.53)

We now provide bounds on the number of random metapaths (m) we require to have

Q̂(s, t) and R̂(s, t) be within some error of Q(s, t) and R(s, t), respectively, with at least

some probability.

Lemma 80 (Bounded Differences Inequality [145]). Let Z1, · · · , Zk be independent ran-

dom variables such that Zi ∈ Λi. Let f : Λ1 × · · · × Λk → R. Assume there exist

c1, · · · , ck ∈ R such that, for all i,

|f(a1, · · · , ai−1, ai, ai+1, · · · ak)− f(a1, · · · , ai−1, a
′
i, ai+1, · · · ak)| ≤ ci

for all aj ∈ Λj and a′i ∈ Λi. Let X = f(Z1, · · · , Zk). We have that

P (|X − E(X)| ≥ t) ≤ 2 exp

(
− 2t2∑k

i=1 c
2
i

)
. (5.54)

Lemma 81. For all (s, t) ∈ S × T ,

P
(∣∣∣Q̂(s, t)−Q(s, t)

∣∣∣ ≥ ε
)
≤ 2e−2mε2 (5.55)

and

P
(∣∣∣R̃(s, t)−R(s, t)

∣∣∣ ≥ ε
)
≤ 2e−2mε2 . (5.56)
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.

Proof. Fix (s, t) ∈ S × T . We utilize the bounded differences inequality. We take

P1, · · · ,Pm to be our independent random variables. Let

Q̂(P1, · · · Pk · · · ,Pm)(s, t) =
1

m

m∑
i=1

HS (s, t|Pi) .

Notice that for any k ∈ [m],

∣∣∣Q̂(P1, · · · Pk · · · ,Pm)(s, t)− Q̂(P1, · · · P ′k · · · ,Pm)(s, t)
∣∣∣

=

∣∣∣∣HS (s, t|Pk)− HS (s, t|P ′k)
m

∣∣∣∣ ≤ 1

m
. (5.57)

Thus ci = 1
m

is sufficient to apply the bounded differences inequality. Hence,

P
(
|Q̂(s, t)− E(Q̂(s, t))| ≥ ε

)
≤ 2 exp

(
− 2ε2∑m

i=1 c
2
i

)
= 2e−2mε2 .

A similar argument holds for R̃(s, t).

Corollary 82. For m = 1
2ε2

ln
(

2|S||T |
r

)
, with probability at least 1− r,

∣∣∣Q̂(s, t)−Q(s, t)
∣∣∣ < ε

for all (s, t) ∈ S × T .

Proof. Applying Equation 81, we see that

P

 ⋃
(s,t)∈S×T

|Q̂(s, t)−Q(s, t)| ≥ ε

 ≤ ∑
(s,t)∈S×T

P
(
|Q̂(s, t)−Q(s, t))| ≥ ε

)
≤ 2|S||T |e−2mε2 . (5.58)
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Thus the probability that
∣∣∣R̃(s, t)−R(s, t)

∣∣∣ < ε for all (s, t) ∈ S × T is at least

1 − 2|S||T |e−2mε2 . To have this probability at least 1 − r, it is hence sufficient to have

2|S||T |e−2mε2 = r, proving the result.

Theorem 83. Fix 0 < ε, r < 1. For

n(s, t|Pi) =
4c
(
ε
2

)
· k(s, t|Pi)
ε2

ln

(
4m|S||T |kmax

r1

)
, (5.59)

and

m =
2

ε2
ln

(
2|S||T |
r − r1

)
, (5.60)

where r1 = r · 4 ln( 2|S||T |
r )kmax

4 ln( 2|S||T |
r )kmax+ε2

, with probability at least 1− r,

|R̂(s, t)−R(s, t)| < ε

for all (s, t) ∈ S × T .

The proof of this result is deferred to subsection 5.5.2.

The results from this section give rise to 2 algorithms for computing approximations to

mean HeteSim scores. First, Corollary 82 gives an algorithm for approximating the mean

HeteSim score using the deterministic HeteSim algorithm given in Algorithm 3. Pseu-

docode for this approximate mean HeteSim computation is given in Algorithm 9. Second,

Theorem 83 shows how to compute an approximation to the mean pruned HeteSim score,

and pseudocode for this computation is given in Algorithm 10.
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Algorithm 9 Approximate Mean HeteSim score
Input: set of start nodes S, end node t, path length p, approximation parameters ε and r
Output: vector of approximate mean HeteSim scores h, indexed by elements of S, with

error bounds as in Corollary 82
m← 1

2ε2
ln
(

2|S|
r

)
Construct M , the set of all metapaths of length p between any element of S and t
if m < M then

select M ′ ⊆M with |M ′| = m uniformly at random
else
M ′ ←M

for s ∈ S do
HSscores = []
for m ∈M ′ do

HSscores.append(HeteSim(s, t, m))
h[s] = mean(HSscores)

return h

Algorithm 10 Approximate Mean Pruned HeteSim score
Input: set of start nodes S, end node t, path length p, approximation parameters ε and r
Output: vector of approximate mean HeteSim scores h, indexed by elements of S, with

error bounds as in Theorem 83
r1 ← r · 4 ln( 2|S||T |

r )kmax

4 ln( 2|S||T |
r )kmax+ε2

m← 2
ε2

ln
(

2|S|
r−r1

)
N ← 4c( ε2)·k(s,t|Pi)

ε2
ln
(

4m|S||T |kmax

r1

)
Construct M , the set of all metapaths of length p between any element of S and t
if m < M then

select M ′ ⊆M with |M ′| = m uniformly at random
else
M ′ ←M

for s ∈ S do
PHSscores = []
for m ∈M ′ do

PHSscores.append(RandomizedPrunedHeteSimGivenN(s, t, m, N ))
h[s] = mean(PHSscores)

return h
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(a) Test graph 1 (b) Test graph 2 (c) Test graph 3

Figure 5.8: Computed approximate pruned HeteSim values for each of the three test graphs.

5.3.3 Algorithm Runtimes: SemNet version 2

Verification of randomized algorithm performance

For each of the three test graphs and corresponding metapaths, the randomized pruned

HeteSim algorithm was run 100 times, with ε = 0.05 and r = 0.95. For each of the three

test graphs, an error less than ε was observed in all 100 iterations. Histograms showing the

distribution of computed values are given in Figure 5.8.

Comparison of Algorithm Runtimes

For two of the three main algorithm variants, runtime on length 2 metapaths was measured,

using Alzheimer’s disease as a target node and a set of three source nodes: insulin, hy-

pothyroidism, and amyloid. Each of these source nodes has some amount of real-world

domain significance; all three have, at some point, acted as a source node to the target node

Alzheimer’s disease in other ongoing research in the authors’ lab. This ongoing work aims

to investigate and discover causes and treatments (re-purposed or otherwise) within the

active body of biomedical academic literature. As a more specific example, SemNet ver-

sion 1 was used to investigate how hypothyroidism and Alzheimer’s disease are related via

the combined rankings of shared source nodes. This is a slightly different application than

what is being investigated in this manuscript, but the results definitively show that hypothy-

roidism and Alzheimer’s disease are closely related. These previous runs have historically

been extremely slow while utilizing SemNet version 1, taking up to an hour to complete
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(see Table 5.3). Decreasing runtime is the main motivation for the new algorithms and

implementations.

Of the two chosen algorithms associated with SemNet version 2, each computation was

repeated 10 times. The results are summerized in Table 5.2. The third algorithm variant,

approximate mean pruned HeteSim, was not run on the actual knowledge graph, due to

excessive runtime when using realistic values for ε and r.

Algorithm Runtime (sec)
Mean exact HeteSim 0.37± 0.0082

Approximate mean of exact HeteSim 0.29± 0.0017

Table 5.2: Run times for algorithms over all metapaths of length 2, in seconds. Each
of the algorithms was run with target node Alzheimer’s disease and a set of three source
nodes: insulin, hypothyroidism, and amyloid. Values given are the mean and standard
deviation obtained from running each computation 10 times, and each value is stated with
2 significant figures. For the approximation algorithm, parameters ε = 0.1 and r = 0.9
were used.

For the fastest algorithm, approximate mean HeteSim, time spent on each of the three

steps show in Figure 5.5 was also recorded. Results are given in Table 5.3.

Additionally, the time to compute HeteSim using the new data structure for a single

metapath was analyzed. For comparison, 5 unique metapaths were computed between

source and target nodes for each target node, using an iterator based on a standard path

finding algorithm. The randomized pruned HeteSim algorithm was run on these metap-

aths with approximation algorithm parameters ε = 0.1 and r = 0.9. Randomized pruned

HeteSim was not run on all metapaths due to excessive runtime. Results are given in Ta-

ble 5.4. Further detail on the randomized pruned HeteSim results, including the number of

iterations is given in Table 5.5.

For each source node, 20 metapaths of length 4 were generated, and the deterministic

HeteSim algorithm was run on each metapath. Runtimes are shown in Table 5.6.
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Source node Insulin Hypothyroidism Amyloid
Num metapaths 1069 864 825
SemNet 1: Step 1 mean (s) 81 35 84
SemNet 1: Step 1 std (s) 5.3 2.4 5.3
SemNet 1: Step 2 mean (s) 220, 000 96, 000 220, 000
SemNet 1: Step 2 std (s) 2300 270 2700
SemNet 1: Step 3 mean (s) 0.80 0.39 0.80
SemNet 1: Step 3 std (s) 0.0021 0.0093 0.014
SemNet 2: Step 1 mean (s) 0.077 0.042 0.042
SemNet 2: Step 1 std (s) 0.0010 0.00026 0.00019
SemNet 2: Step 2 mean (s) 0.0025 0.0020 0.0021
SemNet 2: Step 2 std (s) 0.000046 0.00038 0.000046
SemNet 2: Step 3 mean (s) 0.00010 9.9× 10−5 0.00010
SemNet 2: Step 3 std (s) 1.9× 10−6 1.7× 10−6 3.3× 10−6

Runtime ratio: Step 1 1100 830 2000
Runtime ratio: Step 2 8.8× 107 4.8× 107 1.0× 108

Runtime ratio: Step 3 8000 3900 8000

Table 5.3: Runtimes for approximate mean HeteSim algorithm in SemNet version 2, broken
down by step as in Figure 5.5 and runtimes for HeteSim algorithm in SemNet version 1,
broken down by step as in Figure 5.2. For approximate mean HeteSim, approximation
parameters were ε = 0.1 and r = 0.9. All values are given with 2 significant figures. For
each algorithm, means were taken over 10 iterations. Number of metapaths are given for
SemNet version 2.

5.4 Discussion

The results presented in this manuscript show that algorithmic and data structure changes

have reduced the runtime of HeteSim computations, while fixing an error in the rank aggre-

gation algorithm. However, the need to compute all metapaths between the specified nodes

is still a computational bottleneck.

5.4.1 Computational improvements

Both the mean HeteSim score and approximate mean HeteSim score show runtime reduc-

tions compared to SemNet version 1. These improvements are evident both in the overall

algorithm runtimes (Table 5.1 and Table 5.2) and in the speed of the deterministic Het-

eSim subroutine (Table 5.1 and Table 5.4). Note that, though the number of metapaths
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Source Node Deterministic HeteSim Randomized pruned HeteSim
Insulin 9.2× 10−5 ± 2.9× 10−4 1400± 2800

Hypothyroidism 5.8× 10−5 ± 9.3× 10−5 8.9± 11
Amyloid 5.5× 10−5 ± 9.9× 10−5 76± 130

Table 5.4: Mean and standard deviation of runtime for HeteSim algorithms on a single
length 2 metapath. For the deterministic HeteSim algorithm, means are computed over
all metapaths of length 2 between source and target nodes. For the randomized pruned
HeteSim algorithm, the means are computed over 5 unique metapaths. Each value is stated
with 2 significant figures.

Source node Insulin Hypothyroidism Amyloid
Max num iterations (N ) 40, 485, 730 2, 208, 823 9, 464, 267
Min num iterations (N ) 50, 937 117, 988 117, 988

Mean num iterations (N ) 8, 927, 127 590, 025 2, 545, 180
Max runtime (s) 7, 100 32 340
Min runtime (s) 0.35 2.7 0.91

Mean runtime (s) 1, 400 8.9 76

Table 5.5: Computation details for the randomized pruned HeteSim algorithm on a single
metapath. For each source node, 5 distinct metapaths were used as input to the algorithm.
Approximation parameters were ε = 0.1 and r = 0.9. Runtimes and runtime means are
given to 2 significant figures. Iteration counts are exact. Iteration means are rounded to the
nearest whole number.

decreased in the graph used to test SemNet version 2 and this reduction must account for

some speedup, computation time per metapath also decreased. However, we have not col-

lected any information about the complexity of the metapaths (e.g. how many instances

of each metapath exist). Table 5.3 shows that the largest improvement happened in step 2,

likely because the implementation of step 2 in SemNet version 1 used many Neo4j queries.

Since we have already shown that Neo4j queries made up the majority of the runtime in

SemNet version 1 (see Table 5.1), it is likely that the substitution of the Python dictionary-

Source node Single metapath HeteSim runtime
Insulin 0.034± 0.034

Hypothyroidism 0.024± 0.031
Amyloid 0.013± 0.013

Table 5.6: SemNet version 2 HeteSim runtime for a single length 4 metapath, averaged
over 20 distinct metapaths for each source node. All results are given with 2 significant
figures.
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(a) Insulin (b) Hypothyroidism (c) Amyloid

Figure 5.9: HeteSim computation times per metapath for all metapaths of length 2 from the
given source node to Alzheimer’s disease, using the deterministic HeteSim implementation
from SemNet version 2.0.

based data structure for the knowledge graph was the largest source of runtime reduction

for step 2. Similarly, step 1 involves querying the knowledge graph, and the replacement

of Neo4j with a custom dictionary-based data structure is likely the largest source of im-

provement here as well.

Step 3 is a bit different because the changes here were motivated by the replacement

of a flawed rank aggregation technique, rather than runtime considerations. As a ratio, we

do see an improvement reduction in runtime of over 1000, but the absolute runtime values

for step 3 are quite small in relation to the entire algorithm. The most important result

regarding step 3 is the replacement ULARA with a sensible alternative (mean HeteSim

score) that is also is amenable to approximation based on randomization.

In the length 2 metapath tests reported in Table 5.2, the approximate mean HeteSim

algorithm achieves a runtime of approximately 20% less than the exact mean HeteSim

score computation. This reduction is due to the need to run the HeteSim subroutine on

fewer metapaths. Since the bound on the number of metapaths for which HeteSim must be

computed depends only on the number of candidate source nodes and the approximation

parameters ε and r (see Corollary 82), the performance advantage of the approximate mean

computation should be even larger in situations involving more metapaths. In particular,

computations on longer metapaths will generally involve more metapaths and therefore will

benefit even more from the approximate mean algorithm.

It should also be noted that the use of approximation algorithms is appropriate in this
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context. The knowledge graph is inherently noisy, as it is generated using natural language

processing techniques on biomedical paper abstracts. Additionally, the primary use of

SemNet is in hypothesis generation. Both of these factors make the trade off of some

accuracy for speed an acceptable one.

5.4.2 Mathematical Limitations

In Corollary 79, we prove that it is sufficient to take O
(

1
ε2
k ln

(
k

1−r

))
random walks in

the randomized Pruned HeteSim algorithm. As illustrated by Table 5.5, the bound we

achieved may, at times, result in a large number of required walks, when considering re-

alistic knowledge graphs and modest values for ε and r. We acknowledge that the bound

achieved may be crude, especially in our frequent use of the, generally loose, union bound.

Hence, we leave open the possibility of substantial improvement to both the constant we

achieve (c(ε) ≤ 71) and the order with respect to the various variables.

One possible area of improvement is in the order with respect to k. We conjecture that

the required number of walks is at least order k, thus leaving room for the possibility of the

true value to be between order k and k log k (inclusive). Considering the order with respect

to ε, we note that most standard general concentration inequalities necessitate O
(

1
ε2

)
. This

being said, the distribution we are considering is binomial. While the authors are not aware

of any stronger results for the binomial distribution, we are also not aware of any reason

why such a result could not exist.

We also note that to achieve Lemma 78, we utilize an error allocation scheme that

bounds large entries with error proportional to the value of the entry but bounds small en-

tries with a fixed bound. This is just one possible scheme which leaves open the possibility

of achieving tighter results using another, possibly more individualized, scheme.
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5.4.3 Limitations and future directions

The knowledge graph used to test SemNet version 2 has substantially fewer edges than the

knowledge graph used in SemNet version 1, as seen by the reduced number of metapaths

between vertices of interest (see Table 5.1 and Table 5.3). Future work will address this

limitation and give more accurate runtime comparisons by building a knowledge graph of

comparable size to that used in SemNet version 1.

Though the new implementation has significantly reduced the runtime required to enu-

merate metapaths, metapath enumeration remains a computational bottleneck. This bottle-

neck is a barrier to HeteSim computations on longer metapaths. Since counting the number

of paths between two specified nodes in a directed graph is #P-complete [146], metap-

ath enumeration is likely also a computationally hard problem. In order to make further

progress, future work will need to address this metapath enumeration problem. One pos-

sible approach is to devise an algorithm for sampling metapaths under a uniform (or other

useful) probability distribution, perhaps using a Markov chain Monte Carlo technique. If

such an algorithm could be devised, it could be used directly with the randomized aggre-

gation scheme described in Algorithm 9.

5.5 Technical Lemmas and Proofs of Theorems

5.5.1 Technical Lemmas

Lemma 84. For v ∈ Sk, 1√
k
≤ |v| ≤ 1.

Proof. By method of Lagrange Multipliers.

Lemma 85. Let δ > 0, α > 0 and 0 < β ≤ 1. Let v, w ∈ Sk and λ ∈ Ek(v, δ, α, β). We

have that

|λ · v| ≤ δ

(
|v|2 +

kβ2

4

)
and

∣∣∣∣λ · w|w|
∣∣∣∣ ≤ |λ| ≤ δ

√
kβ2 + |v|2.
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Proof. Assume vi has m entries less than α and these are the first m entries. Clearly,

m ≤ k. We see that

λ · v ≤
k∑
i=1

λi · vi ≤
m∑
i=1

βδ · vi +
k∑

i=m+1

δ · v2
i (5.61)

≤ δ
m∑
i=1

vi(β − vi) + δ

k∑
i=1

·v2
i (5.62)

≤ δ|v|2 + δ
kβ2

4
. (5.63)

We get the lower bound similarly. Clearly, m ≤ k. Thus we also see that

∣∣∣∣λ · w|w|
∣∣∣∣ ≤ ∣∣∣∣|λ| · λ|λ| · w|w|

∣∣∣∣ ≤ |λ| (5.64)

≤

√√√√ m∑
i=1

(βδ)2 + δ2

k∑
i=m+1

v2
i (5.65)

≤ δ
√
kβ2 + |v|2. (5.66)

Lemma 86. For v, λ ∈ Rk such that v, v + λ ∈ Sk,

||v + λ| − |v|| ≤ 2|λ · v|+ |λ|2

|v|+ 1√
k

.

Proof. We first see that

||v + λ| − |v|| = ||v + λ|+ |v|| · ||v + λ| − |v||
||v + λ|+ |v||

=
||v + λ|2 − |v|2|
||v + λ|+ |v||

≤ ||v + λ|2 − |v|2|
|v|+ 1√

k

.
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Next, note

|v + λ|2 = (v + λ) · (v + λ) (5.67)

= v · v + 2λ · v + λ · λ (5.68)

= |v|2 + 2λ · v + |λ|2 (5.69)

|v + λ|2 − |v|2 ≤ 2|λ · v|+ |λ|2 (5.70)

Similarly, we get that |v|2 − |v + λ|2 ≤ 2|λ · v|+ |λ|2. The desired result then follows.

Lemma 87. Let β ≤ 1. Let 0 < δ and α, β ≥ 0. For v ∈ Sk and λ ∈ Ek(v, δ, α, β),

∣∣∣∣(v + λ) · w
|v + λ||w|

− v · w
|v||w|

∣∣∣∣ ≤ δ

(
2 +

kβ2

2|v|2
+

√
k

|v|2
β2 + 1

)
+ δ2

(
kβ2

|v|2
+ 1

)
(5.71)

Proof. We see that

(v + λ) · w
|v + λ||w|

− v · w
|v||w|

=
(v + λ) · w
|v + λ||w|

− (v + λ) · w
|v||w|

− λ · w
|v||w|

(5.72)

=
(v + λ) · w
|w|

(
1

|v + λ|
− 1

|v|

)
− λ · w
|v||w|

(5.73)

=
(v + λ) · w
|v + λ||w|

· |v| − |v + λ|
|v|

− 1

|v|
·
(
λ · w
|w|

)
(5.74)∣∣∣∣(v + λ) · w

|v + λ||w|
− v · w
|v||w|

∣∣∣∣ ≤ 1

|v|

(
||v| − |v + λ||+

∣∣∣∣λ · w|w|
∣∣∣∣) (5.75)

≤
2δ
(
|v|2 + kβ2

4

)
+ δ2 (kβ2 + |v|2)

|v|2 + |v|√
k

+ δ

√
kβ2

|v|2
+ 1 (5.76)

≤
δ
(

2 + kβ2

2|v|2

)
+ δ2

(
kβ2

|v|2 + 1
)

1 + 1
|v|
√
k

+ δ

√
kβ2

|v|2
+ 1 (5.77)

The above inequality follows from
∣∣∣ v·w|w||v|∣∣∣ ≤ 1, Lemma 85 and Lemma 86.
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Lemma 88. Fix ε. Let β ≤ 1 and α ≥ 0. For v ∈ Sk and λ ∈ Ek(v, α, δ, δ′). Let

b =
2 + kβ2

2|v|2

1 + 1
|v|
√
k

+

√
kβ2

|v|2
+ 1 and a =

kβ2

|v|2 + 1

1 + 1
|v|
√
k

.

For δ ≤ ε
b+
√
b2+2aε

, ∣∣∣∣(v + λ) · w
|v + λ||w|

− v · w
|v||w|

∣∣∣∣ ≤ ε

2
.

Proof. The result follows from Equation 87.

5.5.2 Proofs of Theorems

Theorem 83. Fix 0 < ε, r < 1. For

n(s, t|Pi) =
4c
(
ε
2

)
· k(s, t|Pi)
ε2

ln

(
4m|S||T |kmax

r1

)
, (5.59)

and

m =
2

ε2
ln

(
2|S||T |
r − r1

)
, (5.60)

where r1 = r · 4 ln( 2|S||T |
r )kmax

4 ln( 2|S||T |
r )kmax+ε2

, with probability at least 1− r,

|R̂(s, t)−R(s, t)| < ε

for all (s, t) ∈ S × T .
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Proof. For ε1, ε2 > 0 such that ε1 + ε2 = ε, we see that

P
(
|R̂(s, t)−R(s, t)| ≥ ε

)
≤ P

(∣∣∣R̂(s, t)− R̃(s, t)
∣∣∣+
∣∣∣R̃(s, t)−R(s, t)

∣∣∣ ≥ ε
)

(5.78)

P
(
|R̂(s, t)−R(s, t)| ≤ ε

)
≥ P

(∣∣∣R̂(s, t)− R̃(s, t)
∣∣∣+
∣∣∣R̃(s, t)−R(s, t)

∣∣∣ ≤ ε
)

≥ P
(∣∣∣R̂(s, t)− R̃(s, t)

∣∣∣ ≤ ε1
⋂∣∣∣R̃(s, t)−R(s, t)

∣∣∣ ≤ ε2

)
(5.79)

P
(
|R̂(s, t)−R(s, t)| ≥ ε

)
≤ P

(∣∣∣R̂(s, t)− R̃(s, t)
∣∣∣ ≥ ε1

⋃∣∣∣R̃(s, t)−R(s, t)
∣∣∣ ≥ ε2

)
≤ P

(∣∣∣R̂(s, t)− R̃(s, t)
∣∣∣ ≥ ε1

)
+ P

(∣∣∣R̃(s, t)−R(s, t)
∣∣∣ ≥ ε2

)
(5.80)

Recall from Equation 81 that

P
(∣∣∣R(s, t)− R̃(s, t)

∣∣∣ ≥ ε2

)
≤ 2 exp

(
−2m · ε22

)
.
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Furthermore, from Lemma Equation 81,

P
(∣∣∣R̂(s, t)− R̃(s, t)

∣∣∣ ≥ ε1

)
= P

(∣∣∣∣∣ 1

m

m∑
i=1

PHS (s, t|Pi)−
1

m

m∑
i=1

P̃HS (s, t|Pi)

∣∣∣∣∣ ≥ ε1

)
(5.81)

≤ P

(
1

m

m∑
i=1

∣∣∣PHS (s, t|Pi)− P̃HS (s, t|Pi)
∣∣∣ ≥ ε1

)
(5.82)

P
(∣∣∣R̂(s, t)− R̃(s, t)

∣∣∣ ≤ ε1

)
≥ P

(
1

m

m∑
i=1

∣∣∣PHS (s, t|Pi)− P̃HS (s, t|Pi)
∣∣∣ ≤ ε1

)
(5.83)

≥ P

(
m⋂
i=1

∣∣∣PHS (s, t|Pi)− P̃HS (s, t|Pi)
∣∣∣ ≤ ε1

)
(5.84)

P
(∣∣∣R̂(s, t)− R̃(s, t)

∣∣∣ ≥ ε1

)
≤ P

(
m⋃
i=1

∣∣∣PHS (s, t|Pi)− P̃HS (s, t|Pi)
∣∣∣ ≥ ε1

)
(5.85)

≤
m∑
i=1

P
(∣∣∣PHS (s, t|Pi)− P̃HS (s, t|Pi)

∣∣∣ ≥ ε1

)
(5.86)

≤
m∑
i=1

4k(s, t|Pi) exp
(
−n(s, t|Pi)
k(s, t|Pi)

· ε21
c(ε1)

)
. (5.87)

Hence, for all (s, t) ∈ S × T ,
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P
(
|R̂(s, t)−R(s, t)| ≥ ε

)
≤ 2 exp

(
−2mε22

)
+

m∑
i=1

4k(s, t|Pi) exp
(
−n(s, t|Pi)
k(s, t|Pi)

· ε21
c(ε1)

)
(5.88)

P

 ⋃
(s,t)∈S×T

|R̂(s, t)−R(s, t)| ≥ ε

 ≤ ∑
(s,t)∈S×T

P
(
|R̂(s, t)−R(s, t)| ≥ ε

)
(5.89)

≤ 2|S||T | exp
(
−2m · ε22

)
+

∑
(s,t)∈S×T

m∑
i=1

4k(s, t|Pi) exp
(
−n(s, t|Pi)ε21
k(s, t|Pi)c(ε1)

)
(5.90)

Fix r1, r2 > 0 such that r1 + r2 = r. We now see that for

n(s, t|Pi) =
c(ε1) · k(s, t|Pi)

ε21
ln

 1

r1

∑
(s,t)∈S×T

m∑
i=1

4k(s, t|Pi)

 (5.91)

≤ c(ε1) · k(s, t|Pi)
ε21

ln

(
4m|S||T |kmax

r1

)
(5.92)

and

m =
1

2ε22
ln

(
2|S||T |
r2

)
, (5.93)

we have

P

 ⋃
(s,t)∈S×T

|R(s, t)− R̃(s, t)| ≥ ε

 ≤ r. (5.94)

We now notice that the total number of walks taken to run the algorithm (ignoring dead

ends) is at most m ·max{n(s, t|Pi)} = mn where n = c(ε1)·kmax

ε21
ln
(

4m|S||T |kmax

r1

)
. We aim

to minimize nm by setting ε1 = ε
2

and r1 = r · 2m0kmax

2m0kmax+1
where m0 = 1

2ε22
ln
(

2|S||T |
r

)
is

some approximation for m. (We do not claim that these choices are optimal.)
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5.5.3 Analysis of Just-in-Time (JIT) Dead end Removal

In our given algorithm, whenever a dead end node is found, it is removed from the graph

for all future walks. We model this as follows. Assume there are m ∈ N dead end nodes.

Let w ∈ R≥0 be the maximum probability of reaching any single dead end. Thus, the

probability of reaching a dead end is at most mw. Let α ∈ R≥0 be the probability of any

given walk not ending in a dead end and let β = mw + α.

We now analyse the number of non-dead end walks we expect to take by the time we

hit some fixed number of dead ends and the number of dead ends we expect to take by the

time we hit some fixed number of non-dead ends.

In the JIT algorithm, whenever we hit a dead end, the probability of hitting a dead end

in the future is affect as follows. Let X1, · · · ∈ {0, 1} where Xi = 1 is the ith walk is not a

dead end and Xi = 0 otherwise. For all i,

P (Xi = 1) =
α

β − wYi
,

where Yi is the number of Xj = 0 for j < i. (Thus, treating w as the weight of each dead

end and α as the weight on non-dead ends, each time we hit a dead end, the weight of the

dead end hit is lost as we can no longer get to that dead end. This means that overtime the

probability of hitting a dead end decreases.)

Let Si be the number ofXj = 1 before the i-thXj = 0. Let Ti be the number ofXj = 0

before the i-th Xj = 1.

Theorem 89. For all i ∈ N,

Si =
i−1∑
j=0

Zj − i

where Zj is geometrically distributed with parameter (m−j)w
β−wj .

Proof. Notice that after the kth Xj = 0, there probability of Xj = 1 is (m−k)w
β−wk . Thus
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the number of Xj = 1 between the k-th Xj = 0 and (k + 1)-th Xj = 0 is geometrically

distributed with parameter (m−k)w
β−wk . (We subtract i to not count the Xj = 0.)

Theorem 90.

E(Si) =
α

w

i−1∑
j=0

1

m− j

and

Var(Si) =
α

w2

i−1∑
j=0

α + w(m− j)
(m− j)2

Proof. Follows from linearity of expectation and standard results about the geometric dis-

tribution.

Remark 91. We can get a bound of the deviation from the mean using Chebyshev’s in-

equality.

Lemma 92. For i ≥ 2 and ki−1 ≤ ki ≤ m,

P (Ti = ki|Ti−1 = ki−1) =
α

β − wki
·
ki−1∏
t=ki−1

(m− t)w
β − tw

and

P (T1 = k1) =
α

β − wk1

·
k1−1∏
t=0

(m− t)w
β − tw

We now see that

P (Tn = kn, · · · , T1 = k1) = P (T1 = k1)
n∏
i=2

P (Ti = ki|Ti−1 = ki−1) (5.95)

= αn

(
n∏
i=1

1

β − wki

)
·

(
kn−1∏
t=0

(m− t)w
β − tw

)
(5.96)

and

P (Tn = kn) =

(
α

β

)n(kn−1∏
t=0

(m− t)w
β − tw

)
kn∑

kn−1=0

· · ·
k2∑
k1=0

(
n∏
i=1

1

1− w
β
ki

)
(5.97)
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Lemma 93. For all n ≥ 1,

kn∑
kn−1=0

· · ·
k2∑
k1=0

(
n∏
i=1

1

1− w
β
ki

)
≤ (−1)n−1

(n− 1)!

(
β

w

)n−1 ln
(

1− w
β

(kn + n− 1)
)n−1

1− w
β
kn

.

Proof. We note that for increasing f ,

∫ b

a−1

f(x) dx ≤
b∑

k=a

f(k) ≤
∫ b+1

a

f(x) dx.

We prove this result inductively. Assume the result hold for n = m. For the upper

bound, we now see that

km+1∑
kn−1=0

· · ·
k2∑
k1=0

(
m+1∏
i=1

1

1− w
β
ki

)
=

1

1− w
β
km+1

km+1∑
km=0

 km∑
km−1=0

· · ·
k2∑
k1=0

(
m∏
i=1

1

1− w
β
ki

)
≤ 1

1− w
β
km+1

· 1

(m− 1)!

(
β

w

)m−1 km+1∑
km=0

(−1)m−1 ln
(

1− w
β

(km +m− 1)
)m−1

1− w
β
km

.

(5.98)

We note that [
− ln

(
1− w

β
(km +m− 1)

)]m−1

1− w
β
km
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is increasing as a function in km and positive for km ≥ 0 for all m ∈ N. Hence,

km+1∑
kn−1=0

· · ·
k2∑
k1=0

(
m+1∏
i=1

1

1− w
β
ki

)

≤ 1

1− w
β
km+1

· (−1)m−1

(m− 1)!

(
β

w

)m−1 ∫ km+1+1

0

ln
(

1− w
β

(x+m− 1)
)m−1

1− w
β
x

dx

≤ 1

1− w
β
km+1

· (−1)m−1

(m− 1)!

(
β

w

)m−1 ∫ km+1+1

0

ln
(

1− w
β

(x+m− 1)
)m−1

1− w
β

(x+m− 1)
dx

≤ (−1)m

m!

(
β

w

)m [ln(1− w
β

(km+1 +m)
)m
− ln

(
1− w

β
(m− 1)

)m]
1− w

β
km+1

≤ (−1)m

m!

(
β

w

)m ln
(

1− w
β

(km+1 +m)
)m

1− w
β
km+1

.

Theorem 94.

P (Tn = kn) ≤
(α
w

)n(kn−1∏
t=0

(m− t)w
β − tw

)
(−1)n−1

(n− 1)!
·

ln
(

1− w
β

(kn + n− 1)
)n−1

β
w
− kn

(5.99)

Proof. Follows from Lemma 93.
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CHAPTER 6

CONCLUSION

The previous four chapters have presented examples of combinatorial models in predic-

tive medicine. Several different biomedical topics motivate the chapters, and these top-

ics together relate to multiple key goals of predictive medicine. The Markov models for

Alzheimer’s disease progression developed in chapter 2 contribute to improving patient

care by providing insight into which variables best predict the rate of progression of the

disease, enabling clinicians to provide better information to patients and families. The

plane tree model for RNA secondary structure analyzed in chapter 3 and chapter 4 can

aid research into the mechanisms of disease through more accurate structural predictions.

The algorithmic improvements presented in chapter 5 will enable further research into the

causes of and treatments for disease.

The mathematical techniques employed in this thesis are somewhat more unified. Ran-

domized algorithms play central roles in chapter 4 and chapter 5, and stochasticity is a

central part of the models studied in chapter 2, chapter 3, and chapter 4.

Taken together, these chapters show the potential for mutual benefit among the fields

of predictive medicine and combinatorics. Combinatorics is a valuable tool which can pro-

vide useful modeling frameworks, explore the boundaries of models, and devise improved

algorithms for use in predictive medicine. The problems arising from predictive medicine

can, in turn, inspire new combinatorial questions and results.

Beyond predictive medicine, combinatorial models have the potential to shed light in

many fields dealing with complex systems. Indeed, the published literature contains many

examples. Random walks have been used as a model for the movement of animals in an

ecosystem [147, 148, 149, 150]. Random trees have been used in the study of evolution and

phylogenetics [151, 152, 153, 154]. Hidden Markov models have been used as the basis
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for speech recognition software [155, 156]. These are, of course, just a few examples.

The power of combinatorial models to simplify complex systems so that meaningful

analysis and/or computation is possible is evident both from the content of this thesis

and from the many other cases were combinatorial modeling has been applied. Combi-

natorics is a valuable tool with the potential to shed light on problems in fields ranging

from medicine to ecology to engineering. Future work applying combinatorial methods

to these and other fields holds promise in building understanding of complex natural and

man-made systems.
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