
ACO Comprehensive Exam, Part I January 11, 2021

1. Computability, Complexity and Algorithms

Problem (Olympic training).

Two GeorgiaTech runners are training to compete in the next Olympic Games marathon
competition. They need a route to train on. They got a map of Atlanta divided into N neigh-
borhoods connected by N−1 roads in a way such that it is possible to go from any neighborhood
to another. They noticed the map also shows M trails connecting some neighborhoods and de-
cide to set a route to train using roads and trails.

(a) The runners find out that trails are nicer to exercise and decide to choose a running map
that connects all neighborhoods and has the longest total distance over trails, without creating
cycles. Design an algorithm that finds such optimal route, or report no if it does not exist.

Your input is a list L1 of neighborhoods, a list L2 of pairs of neighborhoods connected by a
road, and a list L3 of pairs of neighborhoods connected by a trail. Furthermore, for each trail
a nonnegative number is given, representing its length. Make sure to justify the correctness of
your design and state and analyze its running time.

(b) Now that the team knows the city, they agree to set a new route that does not visit a
neighborhood nor travel a road or trail twice. The training route can start at any neighborhood,
does not need to visit every neighborhood, but must end where it started. Also, for training
purposes, they need to pick a route with an even total number of roads plus trails. The issue is
that a rival team hears of the plan and set to block certain trails (roads cannot be blocked!) in
a way that it is impossible to build a valid training route. There is a cost ci to block trail i, for
each 1 ≤ i ≤ M . Design an algorithm that finds the smallest total cost needed to block some
trails such that no training route exists satisfying the above requirements.

As input you get the same lists Li, i = 1, 2, 3, from part (a), and the cost ci > 0 for blocking
the ith trail. You also notice that every neighborhood has at most four roads/trails connecting to
it. Make sure to state and briefly analyze the running time of your design in terms of N and M .

Solution. (a) Consider the graph given by the N neighborhoods and the trails. Get a spanning
forest F of this graph of maximal weight. This can be done by running a classical algorithm such
as Kruskal’s, or simply describing a procedure to keep track of the cycle free property, likely using
Union-Find, making sure the heaviest edge/trails are added first. Add the roads back to the
map and get a spanning tree containing F . Again, this can be done by either running Kruskal’s
algorithm, but initializing the spanning tree at F , or continuing the Union-Find procedure.
The resulting tree is the desired route.

To see why this is correct, note that the maximum distance over trails is given by the forest
F , and adding another trail will create a cycle. Also, since we find a spanning tree, the route
will visit every neighborhood.

ACO Comprehensive Exam, Part I January 11, 2021

The running time is O((M + N) logN), as we need to check N + M many roads and trails,
and it is possible to maintain the datastructure performing each update in time O(logN) .

∗ ∗ ∗

(b) Use dynamic programming. Pick a neighborhood and consider the rooted tree given by
the neighborhoods and the roads. Call this tree T . The question is equivalent to finding the
maximum total cost of trails that can be added to this tree such that no cycle has even length.

Let t1, t2, . . . , tM be the trails. We can start by deleting those ti such that the cycle they
create when added to T has even length. Note that, if two trails form odd cycles that share
some tree-edges (roads) then their union forms an even-length cycle. So the problem reduces to
finding the max cost of trails we can add while creating odd-length disjoint cycles. The states
of our dynamic programming are indexed by subtrees of T . Each subtree can be rooted at the
highest vertex (highest means closer to the root). To get a recursion among states, consider the
two cases:

1. No cycle passes through o, the root of the subtree. In this case, we simply add the cases
corresponding to the subtrees rooted at the children of o.

2. A cycle passes through o. We delete the tree-edges in such a cycle, and proceed to add the
states corresponding to the resulting subtrees.

If we encode each tree by its root and the children we delete, we can see that the number of
states is O(N × 24) = O(N). The number of transitions is bounded by M , which is the number
of trails, and every transition takes O(N), as a result of deleting the tree-edges in the cycle of
every trail (this is equivalent to finding the lowest common ancestor). The running time is then
O(MN).

2. Theory of Linear Inequalities

Problem. Let P = {x ∈ Rn : Ax = b, x ≥ 0} be a polytope and let V be the set of vertices of
P . Let S be a subset of V with the property that, for every v ∈ V \S, the set S contains all the
vertices adjacent to v. Recall, two vertices are adjacent if the segment joining them is an edge
(face of dimension 1) of P . Consider the following algorithm.

1. Compute a vertex v of P minimizing {cTx : x ∈ P}. If v ∈ S, return v.

2. Otherwise return a vertex v′ of P minimizing {cTx : x is adjacent to v}.

Show the following for the algorithm.

1. (3 points) The algorithm can be implemented in polynomial time. (Here A, b is the input
to the problem. |V | and |S| can be exponential in size of input. Moreover you are also
given a polynomial time algorithm to check if x ∈ conv(S) for any x.)

ACO Comprehensive Exam, Part I January 11, 2021

2. (5 points) Show that the algorithm solves the problem min{cTx : x ∈ S}.

3. (2 points) Give a polynomial algorithm to optimize a linear function over the set of 0,1
vectors in Rn with an even number of 1’s.

Solution.

1. Clearly, the first step of the algorithm can be implemented using any polynomial time
algorithm for linear programming (say Ellipsoid algorithm). For the second step, we can
use one iteration of the simplex algorithm to find the best neighboring vertex, or even be
more profligate and check for all possible neighboring bases (at most n2 of such bases) and
pick the best one.

2. If the algorithm returns v ∈ S in the first step, it minimizes cTx over all x ∈ P ⊇ conv(S)
and therefore it is the optimum solution. In the other case, suppose the optimum vertex v
for min{cTx : x ∈ P} is not in S. Then the algorithm returns the best neighboring vertex
v′ of v. Firstly, v′ ∈ S by the hypothesis of the problem. Now suppose that the optimum
vertex for min{cTx : x ∈ S} is ṽ that is not a neighbor of v. Consider running the simplex
algorithm starting from ṽ to solve min{cTx : x ∈ P}. The algorithm will improve in each
step and end at v. In the last step of the algorithm it visits a neighbor of v that must be
in S and must have objective at least as good as ṽ. Thus there is a neighbor of v that is
optimum to min{cTx : x ∈ S} as required.

3. Let P be the convex hull of all {0, 1}-vectors, i.e., P = {x ∈ Rn : 0 ≤ x ≤ 1}. Let S be
the set of all vectors that have even number of 1’s. Apply the above algorithm.

3. Graph Theory

Problem. Let G be a connected graph and assume that G admits a Z2 × Z2-flow.

(1) Use a Z2×Z2-flow in G to construct a simple cycle cover of G, i.e., a collection C of cycles
in G such that every edge of G appears in at least one but at most two cycles in C.

(2) Show that the C in (1) may be chosen to satisfy
∑

C∈C |E(C)| ≤ |E(G)|+ |V (G)| − 1.

Solution. Since we are dealing with Z2 × Z2, we will ignore the orientations of edges. For each
vertex v ∈ V (G), let E(v) denote the set edges of G incident with v.

For (1), let f be a Z2×Z2-flow in G. Let E1 = {e ∈ E(G) : f(e) = (1, 0) or f(e) = (1, 1)} and
E2 = {e ∈ E(G) : f(e) = (0, 1) or f(e) = (1, 1)}. Since f is a Z2×Z2-flow,

∑
e∈E(v) f(e) = (0, 0)

for all v ∈ V (G). Hence, |E(v)∩Ei| ≡ 0 (mod 2) for i = 1, 2 and v ∈ V (G). Thus, Gi := G[Ei],
i = 1, 2, are even subgraphs of G. Now each Gi admits a cycle decomposition, say Ci. Clearly,
C = C1 ∪ C2 gives the desired collection for (1).

ACO Comprehensive Exam, Part I January 11, 2021

For (2), we choose the flow f in (1) so that the set S := {e ∈ E(G) : f(e) = (1, 1)} is minimal.
We claim that G[S] is acyclic. For, suppose C is a cycle in G[S]. Then let g(e) = f(e) − (0, 1)
for all e ∈ e(C), and let g(e) = f(e) for all e /∈ E(C). We see that g is also Z2 × Z2-flow in G.
This is a contradiction, as {e ∈ E(G) : g(e) = (1, 1)} is properly contained in S.

Define E1, E2, G1, G2, C1, C2, C as in (1). Then E1 ∩ E2 = S. Since G[E1 ∩ E2] is acyclic,
|E1 ∩ E2| ≤ |V (G)| − 1. We have

∑
C∈C |E(C)| ≤ |E(G)|+ |V (G)| − 1.

