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1. Computability, Complexity and Algorithms

Problem (dismantling a tree). You are given a weighted tree and your task is to dismantle
it in the cheapest possible way. The only operation you are allowed is the following: you can
erase any path such that all edges in the path have the same weight w, and the price of doing
this is w. The tree is dismantled once you erased all its edges. Design an algorithm that returns
the minimal cost to dismantle a given tree with weights.

Your input is a tree T = (V,E) with vertex set V := {0,1,...,n — 1} and edge set
E = {(uy,v1), (u2,v9), ..., (Up_1,v,-1)}, where u;,v; € V, for all i. You are also given the
weight of each edge: let an integer 0 < w; < K be the weight of edge (u;,v;). Your output
should be a single integer denoting the minimal cost to dismantle the input tree. Explain why
your algorithm is correct and analyze its running time in terms of n and K.

Solution. We start by making the following observation: if a node v has m adjacent edges
with weight w, then it costs w(m/2) if m is even, and w((m + 1)/2) if m is odd. To simplify the
notation, below we call this value ¢(w, m) regardless of the parity of m. This observation follows
from the fact that on each path you can only erase none or two such edges (because the graph
is a tree). Observe that this cost is also tight: we cannot erase these edges cheaper than this.

We propose the following algorithm:

e Root the tree at vertex 0, and set p(v) to be the parent of vertex 1 <v <n—1and —1 to
be the parent of the root and w_; = 0.

e For each vertex, set variables £, = (p(v), wp(), freq|]), where wy., is the weight of the edge
connecting v to its parent, and freq[| is a list of length K which stores the number of edges
connected to v of weight ¢, at position i. We also set a variable Cost that we initialize to
Zero.

e Run DFS from the root. When visiting a vertex v for the first time, decrease freq|w,.)| by
one, to account for the edge connected to the parent that will be considered (i.e., erased)
for some ancestor node. Then update Cost by adding ¢(w, freq[w]) for all 1 < w < K with
W # Wp(v), and update Cost with c(w, freqw]) — 1, for w = wy().

e Return Cost.

As for the running time, there are O(n) rounds of DFS, and each round populates an array
of length K. The running time is O(nk).
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2. Theory of Linear Inequalities

Problem. Let P={z € R": >, qxi — > jogw; <1, VS C{1,2,...,n}}. Show that
1. (4 pts) e; and —e; are vertices of P, where ¢; is the ith standard vector in R™.
2. (3 pts) All the 2" inequalities, > ;g @ — > ;092 < 1 (for each subset S), are facets of P.

3. (3 pts) Show that P = conv({ey, ea, ..., €n, —€1,—€2,...,—€n}).

Solution.

1. Consider any e; and constraints for sets Sy = {i},S; = {i,1},5 = {1,2,i},...,5;1 =
{1,...,i—1,i},S;iv1 = {1, ..., i—1,4,i+1},..., S, = {1,...,n}. Observe that e; satisfies all
these n constraints at equality. Moreover, the characteristic vectors of these constraints are
linearly independent (Please verify). Thus e; is a vertex. For —e;, consider the complements
of sets Sy, ..., 9, as the corresponding n constraints.

2. Consider the constraint » ;g @; — > 452 < 1 for some S. Then F'={z € P: 3}, ox; —
> igs Ti = 1} contains the vertices {e; : i € S} U {—e; : i € S}. Since these are n affinely
independent vectors in F', we obtain dimension of F' is at least n — 1. Since F # P, this
implies that F' must be a facet of P.

3. Clearly, @ := conv({ei,...,en,—€1,...,—€,}) € P. We now show that P C Q. First
observe that 0 € ). Let x € P. We claim that )" | |z|; < 1foralli. Let S = {i: z; > 0}.
Then we have > 77 7| = > ,cg % — Y igg @ which is at most 1 from the constraint in

P. But then x = "7 | |zy]sign(x;)e; + (1 — .7, 2;)0. Since sign(z;)e; € Q and 0 € Q,
we obtain that x is a convex combination of points in ) and therefore is in () proving the
equality.

3. Graph Theory

Problem. Let £ > 3,t > 3 be positive integers and let G be a graph with clique number k.
Show that if G' does not contain K ; as an induced subgraph then x(G) < R(k,t), where x(G) as
usual denotes the chromatic number of G and R(k,t) denotes the Ramsey number with respect
to clique of size k and independent set of size t.

Solution. First, we show A(G) < R(k,t). Let v € V(G) and consider H := G[N(v)], the
subgraph of G induced by the neighborhood N(v) of v in G. Suppose d(v) > R(k,t). Then H
contains a clique K = K or an independent set S of order ¢t. If H contains K then G[V (K)U{v}]
is a clique of order k + 1, a contradiction. So H contains S. Now G[S U {v}] is an induced K ;
in (G, a contradiction.

Therefore, by Brooks’ theorem, x(G) < R(k,t). Now suppose x(G) = R(k,t). Then, A(G) =
R(k,t) — 1 and G is a complete graph or G is an odd cycle. Note that R(k,t) > k when
k > 3 and t > 3. Thus G cannot be complete as the clique number of G is k. Moreover,
A(G) = R(k,t)—1 > 3, so G cannot be an odd cycle. This contradiction implies x(G) < R(k,t).
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4. Analysis of Algorithms

Problem. Suppose that we have n unit squares 51, ..., .S, in the Euclidean plane, each of which
has side length 1. They may not align with the axes and may overlap with each other. You are
given the positions (coordinates of the four vertices) of all squares. Let S = S, U---US, be the
union of these squares.

Part (a): Consider the following algorithm:
Pick i from {1, ..., n} uniformly at random and then pick a point = from S; uniformly at random.
If v ¢ S, for all 1 < j <4, then the algorithm succeeds and outputs x; otherwise it fails.
Prove that this algorithm succeeds with probability at least 1/n, and when it succeeds the point
it outputs is from the uniform distribution over S.

Part (b): Give a randomized algorithm that approximately estimates the area of S. More
specifically, for given 0 < ¢ < 1, the output Z of your algorithm should satisfy

Pr((1—¢)[S| < Z < (1+¢)|S]] > 3/4 (+)

where |S| denotes the area of S. The running time of your algorithm should be polynomial in n
and 1/e.

State your algorithm and its running time, and include the analysis of your algorithm. You
may assume that for every square S;, in O(1) time you can check membership (is € S;7), and in
O(1) time you can generate a point uniformly at random from .S;. You may neglect all numerical
issues caused by real numbers.

Solution.
Part (a): The probability of success is

ZPr )-Pr(Vl<j<t:z¢S;)

_21 [SA(SiU---U S, )|
ISt\

=- Z 1SA\(S1U---U S, 1)
t=1

1
— Slu...ugn’

> —

3 H3|§3

Let p denote the distribution of the output of the algorithm when it succeeds. For every x € S
let i(x) be the smallest index i such that € S;. Then

o Pr(i =i(x)) - ‘1i| 1
M) = "p(SUCCESS) — |8|
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Part (b): The algorithm is as follows: in the k’th round, we pick i from {1, ..., n} uniformly
at random and then pick a point z;, from S;, uniformly at random (this can be done in constant
time by our assumption). If x; ¢ S; for all 1 < j < i, then let Y, = 1; otherwise let Y, = 0.

The output of the algorithm is
N
n Z
Z - N - Yk

where N is the number of rounds.
First we show that E[Yy] = |S|/n for every k.

= Pr(iy=1i)-Pr(V1 < j <i:xy ¢ 5))

=1

1 [S\(S1U---U S )|
_Z |5|

== Z 1S\(S1 U+~ US;_y)]
=1

=1|51U~--U5n|
n
_ 18l
n
Note that |Si|=--- = |5, = 1.
Then by the Chernoff bounds and the fact |S| > |Si| =1,

NISI

5N|S|
n

Pr(|Z —|S|| =z €lS]) = (i
§2exp( ’S|€>
(5

)

< 2exp
<1/4

when

for some constant c.
The running time is O(nN).

An alternative algorithm is the following: in the £’th round, we pick i from {1, ...

;n}

uniformly at random and then pick a point z; from .S;, uniformly at random. We then check
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how many squares \S; contain z; and let

afrg) = [{j : zr € S5}

Let i = 1/a(xg). The output of the algorithm is

where N is the number of rounds.
We again show that E[Y;] = |S|/n for every k.

ZZ

=1 xE€S; S
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The remainder of the analysis proceeds as before.

5. Combinatorial Optimization

Problem. Given a planar graph G = (V| E) with weighted (multiple) edges, give a polynomial
time algorithm to find the minimum-weight edge set M that can be removed such that the graph
H = (V,E\ M) is 2-colorable (i.e., every vertex can be colored with two colors, such that no
two adjacent vertices have the same color).

Solution. We may assume that G is connected. Let G* = (V*, E*) be the dual graph. Then H
is 2-colorable if and only if the graph H* = (V* E*/M™*) obtained by contracting the edges dual
to M is Eulerian. The latter condition is equivalent to M* being a T™-join in G*, where T™ is the
set of vertices of odd degree in G*. Thus the problem is equivalent to finding a minimum weight
T*-join in G*, which can be done by Theorem 29.1 in [Schrijver, Combinatorial Optimization)].

6. Probabilistic methods

Problem. Given a finite set I', let I', denote the random subset where each element x € I'
is included independently with probability p. Given any event £ (a family of subsets of I'), to
avoid clutter we write Pr(£) = Pr(I', € &), as usual. Furthermore, we say that & is increasing
if X CXtCT and X € € imply Xt € £. Similarly, we say that £ is decreasing if X~ C X
and X € £ and imply X~ € €.
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Setup/What you may assume: Let Z;,7,, ... denote increasing events, and let D denote a
decreasing event. In the following sub-tasks you may only assume Harris inequality (a special
case of the FKG inequality), which states that any two increasing events Z and J are positively
correlated, i.e., satisty Pr(Z N J) > Pr(Z) Pr(7).

(a) Show that Pr(Zy N ---NZy) > Pr(Zy) - - - Pr(Zy) for all integers k& > 1.
(b) Show that Pr(Z,|D) < Pr(Z;).
(c) Show that if Z; and Z, are independent, then Pr(Z; | Zo N D) < Pr(Zy).

Solution.

(a) We proceed by induction on k, where the base case k = 1 is trivial. For the induction
step k > 2, note that the intersection of two increasing events is again an increasing event.
Repeated application of this observation imply that Z; N---NZ,_; is an increasing event. Using
first Harris inequality and then the induction hypothesis, we thus obtain

Pr(Zin---NZ) =Pr((Zin---NTy) NI)
>Pr(ZiN---NTiy) - Pr(Ty)
> Pr(Zy) - Pr(Zy_1) - Pr(Zy),

completing the proof.

(b) Noting that the complement of an increasing event is a decreasing event, we infer that D¢ is
an increasing event. Hence, after rewriting the desired probability, Harris inequality implies

Pr(Z; N D) = Pr(Z;) — Pr(Z; N D°)
< Pr(Zy) — Pr(Z,) - Pr(D°)
— Pr(T,) - (1 - Pr(D"’)) — Pr(Z,) - Pr(D),
from which the claimed inequality follows.

(c) We use the same ‘complement rewriting idea’ as for (b): noting that Z, N D¢ is an increasing
event, Harris inequality implies that

PI‘(Il N IQ N D) = PI‘(Il N :Z:Q) - PI‘(Il N IQ N DC)
S PI’(Il N IQ) - PI’(Il) . PI‘(IQ N DC>

Using independence of Z; and Z,, it now follows that

PI‘(Il ﬂIg N D) S PI‘(Il> . PI‘(IQ) - PI(Il) PI‘(IQ N DC)
— Pr(T}) - (PI(IQ) — Pr(ZxN DC)) — Pr(T}) - Pr(Z, N D),

from which the claimed inequality follows.
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