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SUMMARY

The work contains two major lines of research: subset selection and multi-criteria dimensional-
ity reduction with an application to fairness. Subset selection can be applied to a classical problem
Optimal Designin statistics and many others in machine learning when learning is subject to a
labelling budget constraint. This thesis also extends the arguably most commonly used dimen-
sionality reduction technique, Principal Component Analysis (PCA), to satisfy a fairness criterion
of choice. We model an additional fairness constrainmadti-criteria dimensionality reduction
where we are given multiple objectives that need to be optimized simultaneously.

Our first contribution is to show that approximability of certain criteria for optimal design
problems can be obtained by novel polynomial-time sampling algorithms, improving upon best
previous approximation ratios in the literature. We also show thatitbptimal design problem is
NP-hard to approximate within a fixed constant whies d.

One of the most common heuristics used in practice to sélaad D-optimal design problems
is the local search heuristic, also known as the Fedorov’s exchange mdtedd2[ This is due
to its simplicity and its empirical performanc€IN80, MN94, ADTO7]. However, despite its wide
usage, no theoretical bound has been proven for this algorithm. We bridge this gap and prove
approximation guarantees for the local search algorithms f@nd D-optimal design problems.

Our model of multi-criteria dimensionality reduction captures several fairness criteria for di-
mensionality reduction such as the Fair-PCA problem introduced by Samadi 8aai+{L§ and
the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into
k groups, and the goal is to find a singlelimensional representation for all groups for which the
maximum reconstruction error of any one group is minimized. In NSW, the goal is to maximize
the product of the individual variances of the groups achieved by the common low-dimensional
space. We develop algorithms for multi-criteria dimensionality reduction and show their theoreti-

cal performance and fast implementations in practice.
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CHAPTER 1
INTRODUCTION

This thesis composes of two topics: subset selection and multi-criteria dimensionality reduction.
Each topic outlines the introduction which includes the problem formulation and motivation, pre-

vious and related work, summary of contribution, and future directions.

1.1 Diverse Subset Selection

1.1.1 Introduction

Choosing a diverse representative subset of items from a given large set arises in many settings such
as feature selectioiBMI13], sensor placemendB09, matrix sparsificationBSS12aSS1], and

column subset selection in numerical linear algeB&13]. In statistics, this subset selection prob-

lem captures a classical problédptimal Desigrin statistics, also known as design of experiments
[Fed72 Puk0q. Its real-world applications include efficient design of science experiments and
CPU processorsfYS17], and material desigri’/JUSK18§. In order to motivate the mathematical
formulation of this problem, we first outline the motivation from the optimal design problem. We

later present several applications of the mathematical formulation in the related work section.

Motivation and Problem Formulation from Optimal Design. In many settings of supervised
learning, obtaining labels is costly, but analysts have an ability choose from the pool of datapoints
from which labels are obtained, also known as an active learning setting. The probdgrtmnadl
designis to choose the best smaller set of datapoints to obtain labels to maximize the accuracy
and confidence of the model that learns from those labelled datapoints. The standard form of

optimal design concerns linear regression model, which is arguably the most fundamental concept



in supervised machine learning.

Optimal design can be defined mathematically as follows. t.ets, ..., v, € R? be given
unlabelled datapoints. We assume a linear regression model: there exists an unknown regression
coefficient vectorx* € R? such that, for any € [n], the labely; received from the datapoint
satisfies

yi=vi X 41

wherern; is a random i.i.d. Gaussian noise. Our goal of optimal design is to approxxkhatéh
least amount of error. We are allowed to choose at rhasdtthe design point$ C [n] to observe
y; = v; - x* +n; for eachi € S.

Suppose we have picked a subSet [n| of sizek. Let Vg be ad-by-k matrix whose columns
arev;’s, i € S andygs be the column vector af;’s, i € S. The best unbiased estimatofor x* is

the least square error estimator:

x = argmin|ys — Vg x||3

x€ER4

which has a closed-form solution

)A( = (stsT)il Z Y;U;

icS
Supposey;'s are i.i.d. Gaussian noise with ~ N (0, ¢), thenx—x* is distributed ag-dimensional
GaussianN (0, (VsV4 )~!). The matrix$ = (VsV4 )~! characterizes the error of the estimate,
and thus the goal is to minimizes. Multiple criteria are proposed to minimi2e. Some of the
common ones arg-, D-,andE-optimal designs, whose objectives are to minimizg, det(X), Apnax(2) =
|1 X]|spec respectively. Therefore, optimal design can be stated as a discrete optimization problem:

min f ((VsVs)™) (1.1)

SCnl,IS|=k



for a given criterionf of interest.
Similarly to variants of the objectives, one may generalize to obtain variants of constraints
beyond the cardinality constraift| = k. For example, each datapoints belong to an experi-
ment in one ofn laboratories, and each laboratory has its own size budg@&his ispartitioning
constraint wherewv;’s are partitioned inton sets, each of which has its own cardinality constraint.
Though optimal design is motivated from statistics, the optimizatlof) (s general enough to
capture many problems in other areas including in graph and network design, welfare economy,

and diversity. We provide more details in the related work section.

Previous results. It is known that optimal design fob, E criteria is NP-hard CMI09]. As a

result, the work focuses on efficient approximation algorithms, both randomized and determinis-
tic, for solving optimal design. Previous approaches to optimal design in statistics have no strong
theoretical guarantees (only guarantee with approximation ratio dependindAB13] exists).
Existing common approaches studied in theory and used practice include local search heuristics,
such as Federov exchangeef+53, and approximate design which solves the continuous relax-
ation of the problem and uses heuristics rounding. Only until recently, a new perspective to optimal
design problem through a more sophisticated randomized rounding algorithm gave a reasonable

approximation ratio guarantee within a polynomial running tim&/[517, ALSW174.

1.1.2 OtherApplicationsof SubseSelectiomandRelated Work

As mentioned earlier, subset selection not only applies to optimal design, but also many other

problems. This section lists some of those applications and related topics in some details.

Welfare economics of indivisible goods. There are indivisible items to be distributed among
d individuals, and the utility of iter to persony is p; ;. The utility u; of personj is the sum of
utilities of items person receives. One criteria to distribute items is to maximize the project of

u;’s, as known as Nash social welfat&N79]. The other is to maximize the minimum of’s, also

3



known as Santa Claus problef@304. Both Nash social welfare and Santa Claus problems are
special cases ab- and E-optimal designs with partitioning constraints, where each item is one

partition containingl vectors in each of thé axes, and the budget for each partition is one.

Graph sparsification. Given a graplG = (V, ), graph sparsification is the problem of finding

a subsetS C F of size at mosk which retains the values of all graph cuB3S12aSS11. This

is closely related t@Z-optimal design where one wants to maximize the minimum eigenvalue of
the sum of rank-1 matricesv,”, A\uin (Zies v, ) To relateE-optimal to graph sparsification,
one can define an instance Bfoptimal with input vectors as;;, {i,j} € E. We note that there
are two stark differences of two problems: we requinaveightedselection of edges i-optimal

design, and that graph sparsification requires two-sided bound of eigenval(@:sfegfviviT )

Network design. Similar to graph sparsification, we are given a gréph- (V, E') which cor-
responds to an instance of an optimal design problem with input vectars @ We want to

pick a subset of edges C F so that the subgrapH = (V, F') is well-connected. To maximize

the connectivity, one measureaffective resistancgGBS08 SS11], a notion of connectivity in

the middle between the two notions of edge connectivity and shortest path distance. The effective
resistance in an electric circuit corresponds to theptimal objective GBS0§. There is also
another notion of connectivity, which is to maximize the number of spanning tree in the subgraph
H (see LPYZ19] and references in the work for other applications). This notion corresponds to
maximizing the determinant of the covariance matrix of selected vector, i.&-tatimal design

problem.

Diversity sampling. Intuitively, the analyst in the optimal design setting seeks to find a small set
of datapoints that spreads over a wide region of space in order to maximize learning over the entire
space. Optimal design naturally gives rise to a notion of diversity sampling, where one seeks to

maximize the diversity of a smaller set from a given pool of items. Diversity sampling has many



Problems Pr_evious vmrk_ _ _ Our_v\ork_ _
By relaxation | Combinatorial| Byrelaxation | Combinatorial| Integrality
gaps
A-optimal, | N/A z:gﬁ k * N/A %M *
k close tod
A-optimal, | 1 + ¢, for k > Z:ji} l4+efork>]14¢fork>1]1+e¢ fork >
k>>d | Q(% Q(¢+ln2%) Q<d1nj%>* Q(9)*
. € € €
D-optimal, | 1 + €, forlk: > Z:jﬂ 1+ ¢, forlkr > | 1+e¢ fork > | NA
b>>d () Q(i+5) |00)”
E-optimal, | 1+ ¢ fork > | N/A N/A N/A 1+¢ fork >
E>>d Q (%) Q%)

Table 1.1: Summary of approximation ratios of optimal design of previous work and our work.
The cells with asterisk * indicates our results that improve the previous ones. No integrality gap
result exists before our work.

connections with machine learning, such as determinantal point processes (BPP$2][and

fair representation of the data in machine learni@®KV16].

1.1.3 Summaryof Contribution

The work in this direction consists of two papers: proportional volume sampling-fiqutimal de-

sign with Mohit Singh and Aleksandar NikoloNET19 and combinatorial algorithms for optimal
design with Mohit Singh, Vivek Madan, and Weijun XigIETX19]. Results from both papers are
summarized in Table 1. The natural relaxation of optimal design refers to relaxing the space of
solutionS C [n],|S| = kin(1.)byr € R",1 > 7 > 0,>"" , m = k and replacing/s with

>, muv, . The integrality gap refers to the worst-case ratio between optimum of the relaxation

and (L.2).

Proportional volume sampling. To solve the optimal design problemN$T19 first solves the
natural relaxation of optimal design, then use the solution of the relaxation to define propor-

tional volume sampling. Sampling from this distribution provably obtained the best approximation



ratio for A-optimal design and best-known ratio fB-optimal design fork >> d, and thek-
approximation for anyt > d. [NST19 does not improve approximation guaranteeEsoptimal,

but shows a tight integrality gap result which implies that any rounding algorithm based on natural
relaxation cannot improve upon the previous work. AdditionaM&T19 also shows integrality

gap and NP-hardness dfoptimal design.

Combinatorial algorithms. In [MSTX19], we give the first approximation guarantees which is
independent of. for optimal design with combinatorial algorithms, i.e. algorithms that do not rely
on solving the convex relaxation of optimal designs. The approximation ratio provéndptimal

also is the best proven in the literature. This work gives theorectical underpinning of known simple
heuristics Fed+59 which are observed to work well in practice. The heuristics also avoid solving
the convex relaxation, which in practice is observed to be the bottleneck compared to the existing

rounding scheme®ALSW174.

1.2 Fair Dimensionality Reduction

1.2.1 Introduction

Fairness in machine learning is a recent growing area in computer science. There are many in-
stances of machine learning algorithms’ output that are perceived as bias, unfair, or by users.
For example, Google Photos returns queries for CEOs with images overwhelmingly male and
white [KMM15]; record advertisements with higher frequency than searches white néme%3;
facial recognition has wildly different accuracy for white men than dark-skinned woB@ag;
and recidivism prediction software labels low-risk African Americans as high-risk at higher rates
than low-risk white peopleALMK18].

There are many speculations on the source of bias. The past literature focuses on either bias
in training data or in the algorithms (see a surv€8R[Lg, for example). We (Jamie Morgenstern,

Samira Samadi, Mohit Singh, and Santosh Vempala, and I) discover another source of bias: in

6



the data processingspm+18. Using one of the most common prepossessing algorithm PCA
(Principle Component AnalysisPpa01Jol86 Hot33 RSA99 IP91]), we show the gap of PCA's
performance between majority and minority groups in real datasets. This gap exists even after
reweighting the groups to have equal weights.

[Sam+18 and [Tan+19 propose d&air dimensionality reductiomproblem, which seeks to re-

solve the bias found. The problem can stated as follows.

Definition 1.2.1. (Fair dimensionality reductionGivenm data points irR™ with subgroupsi and

B, thefair PCA problem with social welfare objectivgis to find low-rank datd/ by optimizing

1
|A]

1
|A = Uall%, —||B — Usl%) (1.2)

min f( B

Uermxn ranku)<d

whereU, andUpg are matrices with rows corresponding to rowdofor groupsA and B respec-

tively.

The choice off can be chosen by the context. One natural choice is tb et the max of two
reconstruction errors, which equalizes the error to both groups. Also, the problem can be naturally

generalized to more than two groups wiiéims partitioned intat parts andf hask arguments.

1.2.2 Related Work

This line of work is new, and therefore has minimal related work comparable to our work. How-
ever, related work that are helpful in developing our algorithms are listed in Summary of Contri-

bution.

1.2.3 Summaryof Contribution

Both [Sam+18 and [Tan+19 develop algorithms for approximately solvirigir dimensionality

reductionfor a wide class of functiong. We summarize the algorithms and results as follows.



Convex relaxation and LP rounding.

[Sam+18 solves the convex relaxation of fair dimensionality reduction problenyfaer, ug) =
max{aus + «, bup + [} for real constants, b, o, 3. The technique relies on solving the convex
relaxation of the problem, defining a polytope whose objective are guarantee to perform as good as
the optimal, then rounding the fractional solution to the extreme point of that polytope. Using the
property of duals of an LP, the solution is guaranteed to perform as good as optimum, and violates

the rank constraint by at most one dimension.

Convex relaxation and SDP rounding.

[Tan+19 generalizes and improves the theorectical guarante8arif+13 to solving anyf for
k groups that is concave and decreasing in each group’s reconstruction error. The technique also
replies on convex relaxation, and then defining a semi-definite cone instead of a polytope than
maintains the objective value. We build on the low-rank property of extreme solution of an SDP
by [Pat98§ and show that the solution is guaranteed to perform as good as optimum, and violates
the rank constraint by at mog‘/% + % — gj dimension. In particular, in the case of two groups,
we can solve the problem exactly.

[Tan+19 also generalizes iterative LP roundingyS11]] to iterative SDP rounding and applies
the result to fair dimensionality reduction. Additionallyfgn+19 discusses some complexity
results including NP-hardness and integrality gap of the convex relaxation formulation for the

dimensionality reduction problem.

1.2.4 Experiments

We run our algorithms on two real datasets: Default Credit dat®9] and Adult Income data
[UC]. We evaluate the performance of PCA solutions based on two fairness criteria motivated

from welfare economics. Our results show that our algorithms are significantly better based on



both criteria of fairness than standard PCA. The experiment details can be found in Seftion

We also present two heuristics to scale our algorithms to large datasets in practice. We show
their efficiency on Census datAA] containing more than 600,000 datapoints lying in thousands
of dimensions. The details can be found in Sectich The experiments and heuristics are publicly

available athttps://github.com/SDPforAll/multiCriteriaDimReduction.



CHAPTER 2
SAMPLING APPROXIMATION ALGORITHM FOR SUBSET SELECTION

2.1 Introduction

Given a collection of vectors, a common problem is to select a subset of size: thatrepre-
sentsthe given vectors. To quantify the representability of the chosen set, typically one considers
spectral properties of certain natural matrices defined by the vectors. Such problems arise as ex-
perimental design fed72 Puk0q) in statistics; feature selectiorBMI13]) and sensor placement
problems (JB09) in machine learning; matrix sparsificatiorBgS12aSS1]) and column sub-
set selection §B13]) in numerical linear algebra. In this work, we consider the optimization
problem of choosing the representative subset that aims to optimizé-tpgimality criterionin
experimental design.

Experimental design is a classical problem in statistisikDg) with recent applications in
machine learning BO9 WYS16]). Here the goal is to estimate an unknown veciorc R?
via linear measurements of the fogn= v, w + 7; wherev; are possible experiments andis
assumed to be smalli.i.d. unbiased Gaussian error introduced in the measurement. Gigeof a set
linear measurements, the maximum likelihood estiniatd «w can be obtained via a least squares
computation. The error vectar—w has a Gaussian distribution with me&aand covariance matrix
(ZZ_GS viv;)fl. In the optimal experimental design problem the goal is to pick a cardinatist
S out of then vectors such that the measurement error is minimized. Minimality is measured
according to different criteria, which quantify the “size” of the covariance matrix. In this thesis,
we study the classicad-optimality criterion, which aims to minimize the average variance over
directions, or equivalently the trace of the covariance matrix, which is also the expectation of the

squared Euclidean norm of the error veator w.

10



Problem Ouresult Previous wark
Casek =d d* n—d+ 1 (AB13])

Asymptotick >> d d | logl/e d
without Repetition L+efork =0 (E T ) e fork =0 (52) (ALSW17d)

Arbitrary k£ andd E
With Repetition F—dt1 n—d+1([AB13])

With Repetition

Table 2.1: Summary of approximation ratios 4foptimal results. We list the best applicable
previous work for comparison. The cells with asterisk * indicate that the ratios are tight with
matching integrality gap of the convex relaxati@lj-(2.3).

We letV” denote thel x n matrix whose columns are the vectoss. . ., v, and[n] = {1, ..., n}.

For any setS C [n], we letVy denote thel x |S| submatrix ofl” whose columns correspond to
vectors indexed bys. Formally, in theA-optimal design problem our aim is to find a subset

of cardinality & that minimizes the trace dfVsVy )™ = (3,4 vivf)_l. We also consider the

A-optimal design problem with repetitions, where the chaSean be a multi-set, thus allowing a
vector to chosen more than once.

Apart from experimental design, the above formulation finds application in other areas such
as sensor placement in wireless networkd3(]9), sparse least squares regressiadD(/111]),
feature selection fok-means clustering gMI13]), and matrix approximation §B13]). For ex-
ample, in matrix approximationffM07, HM11, AB13)]) given ad x n matrix V', one aims to select
a setS of k such that the Frobenius norm of the Moore-Penrose pseudoinverse of the selected ma-
trix Vs is minimized. It is easy to observe that this objective equalsittoptimality criterion for

the vectors given by the columns Bt

2.1.1 Our Contrilutionsand Results

Our main contribution is to introduce thpgoportional volume samplinglass of probability mea-

sures to obtain improved approximation algorithms for fheptimal design problem. We obtain
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improved algorithms for the problem with and without repetitions in regimes wherelose tad
as well as in the asymptotic regime where> d. The improvement is summarized in Tal2d.
Let U, denote the collection of subsets|of of size exactlyt andi{/<; denote the subsets pf] of
size at most. We will consider distributions on sets ), as well ad/<; and state the following

definition more generally.

Definition 2.1.1. Let i be probability measure on sets@fy (or U/<;). Then the proportional
volume sampling with measure picks a setS € U, (or U<;) with probability proportional to

p(S) det(Vs V).

Observe that whep is the uniform distribution anél < d then we obtain the standard volume
sampling (DR10) where one picks a se&f proportional todet(VsVyd ), or, equivalently, to the
volume of the parallelopiped spanned by the vectors indexefl. byhe volume sampling mea-
sure has received much attention and efficient algorithms are known for sampling fr@® it
GS17). More recently, efficient algorithms were obtained even whend ([LIS17 SX1§). We
discuss the computational issues of sampling from proportional volume sampling in L2rh@a
and Sectior2.6.2

Our first result shows that approximating tiAeoptimal design problem can be reduced to
finding distributions ord4;, (or U<;) that areapproximately independerttirst, we define the exact

formulation of approximate independence needed in our setting.

Definition 2.1.2. Given integers! < k < n and a vector: € [0, 1]" such thatl "z = k, we call a
measure: on sets ifl4, (or U<;), a-approximated — 1, d)-wise independent with respect taf

for any subset§’, R C [n| with |T| = d — 1 and|R| = d, we have

PI’SNM[T g S] xT
PVSNM[R Q S]

IN
Q
|

wherex” := [T, _; z; forany L C [n]. We omit “with respect ta" when the context is clear.
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Observe that if the measurecorresponds to picking each elemeimidependently with prob-

Prs~u[TCS] _

ability z;, thenPrS—[RCS] =
~uIRC

j—; However, this distribution has support on all sets and not just sets
in U, or U<y, so itis not allowed by the definition above.

Ouir first result reduces the search for approximation algorithmslfoptimal design to con-
struction of approximatéd — 1, d)-wise independent distributions. This result generalizes the
connection between volume sampling afteptimal design established iAB13] to proportional
volume sampling, which allows us to exploit the power of the convex relaxation and get a signifi-

cantly improved approximation.

Theorem 2.1.3.Given integers! < k < n, suppose that for any a vectar < [0, 1]" such that
1"z = k there exists a distributiop on sets irl4;, (or U<;) that isa-approximate(d — 1, d)-wise
independent. Then the proportional volume sampling with measugjiges ana-approximation

algorithm for theA-optimal design problem.

In the above theorem, we in fact only need an approximately independent distripdtiothe
optimal solutionz of the natural convex relaxation for the problem, which is giverid)&(2.3).
The result also bounds the integrality gap of the convex relaxatian Gyheoren?.1.3is proved
in Section2.2

Theorem2.1.3reduces our aim to constructing distributions that have approxi(datel, d)-
independence. We focus our attention on the general cldsardfcore distributionsWe calli, a
hard-coredistribution with parametex € R’ if 1.(.5) o< N = [Lcq i for each set iy, (orid<y).
Convex duality implies that hard-core distributions have the maximum entropy among all distribu-
tions which match the marginals pf([BV04]). Observe that, whilg places non-zero probability
on exponentially many sets, it is enough to spegifsuccinctly by describing. Hard-core distri-
butions over various structures including spanning treéSg11) or matchings (Kah96 Kah0Q)
in a graph displayapproximate independenead this has found use in combinatorics as well as

algorithm design. Following this theme, we show that certain hard core distributiotfs and
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U< exhibit approximatéd — 1, d)-independence whelh= d and in the asymptotic regime when

kE>>d.

Theorem 2.1.4.Given integersl < k < n and a vector € [0, 1]" such thatl "z = k, there exists
a hard-core distributior: on sets irt4,, that is d-approximate(d — 1, d)-wise independent when
k = d. Moreover, for any > 0, if k = Q (¢ + S log 1), then there is a hard-core distribution
onl thatis(1+ ¢)-approximate(d — 1, d)-wise independent. Thus we obtaid-approximation
algorithm for the A-optimal design problem whel = d and (1 + ¢)-approximation algorithm

whenk = Q (f + élog %)

The above theorem relies on two natural hard-core distributions. In the first one, we consider

the hard-core distribution with parameter= z on sets iri/, and in the second we consider the

19@?31 (defined co-ordinate wise) on setdlia;. We

hard-core distribution with parametér=
prove the theorem in Secti¢h3.

Our techniques also apply to theoptimal design problem with repetitions where we obtain
an even stronger result, described below. The main idea is to introduce multiple, possibly exponen-
tially many, copies of each vector, depending on the fractional solution, and then apply proportional

volume sampling to obtain the following result.

Theorem 2.1.5.For all £ > dand0 < ¢ < 1, there is a(k+.l+1 + €)-approximation algorithm
for the A-optimal design problem with repetitions. In particular, there i§lat+ ¢)-approximation

whenk > d + 2.

We remark that the integrality gap of the natural convex relaxation is at%g@ﬁ (see Sec-
tion 2.7.2 and thus the above theorem results in an exact characterization of the integrality gap
of the convex progran2(1)—(2.3), stated in the following corollary. The proof of Theoré&n..5

appears in Sectiop.6.3

Corollary 2.1.6. For any integers: > d, the integrality gap of the convex progrgi 1)—2.3) for

the A-optimal design with repetitions is exacl;gy’;—ﬂ.
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We also show tha#i-optimal design idNP-hard fork = d and moreover, hard to approximate

within a constant factor.

Theorem 2.1.7.There exists a constant> 1 such that thed-optimal design problem iNP-hard

to c-approximate whetw = d.

The k£ < d case. The A-optimal design problem has a natural extension to choosing fewer than
d vectors: our objective in this case is to select a$eC [n] of size k£ so that we minimize
Zle At where), ..., A\, are thek largest eigenvalues of the matfig V' . While this problem
no longer corresponds to minimizing the variance in an experimental design setting, we will abuse
terminology and still call it thed-optimal design problem. This is a natural formulation of the
geometric problem of picking a set of vectors which are as “spread out” as possibje..If, v,,
are the points in a dataset, we can see an optimal solution as a maximally diverse representative
sample of the dataset. Similar problems, but with a determinant objective, have been widely studied
in computational geometry, linear algebra, and machine learning: for example the largest volume
simplex problem, and the maximum subdeterminant problem ($&&5%] for references to prior
work). [CMI09] also studied an analogous problem with the sum in the objective replaced by a
maximum (which extendg’-optimal design).

While our rounding extends easily to the< d regime, coming up with a convex relaxation
becomes less trivial. We do find such a relaxation and obtain the following result whose proof

appears in Sectiop.5.1

Theorem 2.1.8.There exists aoly(d, n)-time k-approximation algorithm for thel-optimal de-

sign problem whet < d.

Restricted Invertibility Principle for Harmonic Mean.  As an application of Theorer.1.8
we prove a new restricted invertibility principle (RIPB{[87]) for the harmonic mean of singular

values. The RIP is a robust version of the elementary fact in linear algebra that &d x n rank
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r matrix, then it has an invertible submatfik for someS C [n] of sizer. The RIP shows that if

V' has stable rank, then it has a well-invertible submatrix consisting(effr) columns. Here the
stable rank o/ is the ratio(||V'[|%¢/||V||?), where| - ||lzs = +/tr(VV ) is the Hilbert-Schmidt,

or Frobenius, norm of’, and|| - || is the operator norm. The classical restricted invertibility princi-
ple ([BT87, Ver0l, SS1Q) shows that when the stable rankdfis r, then there exists a subset of
its columnsS of sizek = Q(r) so that thek-th singular value oVs is Q (||V || zs/+/m). [Nik15]
showed there exists a submatvix of & columns ofl” so that the geometric mean its tbigingular
values is on the same order, even wltegguals the stable rank. We show an analogous result for
the harmonic mean whéhis slightly less tham. While this is implied by the classical restricted
invertibility principle, the dependence on parameters is better in our result for the harmonic mean.
For example, whek = (1 —¢)r, the harmonic mean of squared singular valuegsodan be made

at leastQ) (¢||V||%s/m), while the tight restricted invertibility principle of Spielman and Srivas-
tava ([5S11) would only givee? in the place ot. See Theorer2.5.4for the precise formulation

of our restricted invertibility principle.

Integrality Gap. Experimental design problems come with many different objectives including
A, D, E,G, T, each corresponding to a different function of the covariance matrix of thewerror

w. A natural question is whether they all behave similarly in terms of approximation algorithms.
Indeed, recent results oALSW173 ALSW17hH and WYS1€ give the (1 + ¢)-approximation
algorithm in the asymptotic regimé, > () (6%) andk > Q (%) for many of these variants.

In contrast, we show theptimal boundghat can be obtained via the standard convex relaxation
are different for different objectives. We show that for theoptimality criterion (in which we
minimize the largest eigenvalue of the covariance matrix) gettifigtae)-approximation with the
natural convex relaxation requirés= Q(-%), both with and without repetitions. This is in sharp
contrast to results we obtain here fdroptimality. Thus, different criteria behave differently in

terms of approximability. Our proof of the integrality gap (in Sect®on.1) builds on a connection
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to spectral graph theory and in particular on the Alon-Boppana boétad®, Nil91]). We prove
an Alon-Boppana style bound for the unnormalized Laplacian of not necessarily regular graphs

with a given average degree.

Computational Issues. While it is not clear whether sampling from proportional volume sam-
pling is possible under general assumptions (for example given a sampling oraclevierobtain

an efficient sampling algorithm whenis a hard-core distribution.

Lemma 2.1.9.There exists aoly(d, n)-time algorithm that, given a matrikx n matrix V', integer
k < n, and a hard-core distributiop on sets irl4; (or U<;) with parameter), efficiently samples

a set from the proportional volume measure defined.by

Whenk < d andy is a hard-core distribution, the proportional volume sampling can be im-
plemented by the standard volume sampling after scaling the vectors appropriatelyx\A#*hén
such a method does not suffice and we appeal to properties of hardcore distributions to obtain the
result. We also present an efficient implementation of Thedtenbwhich runs in time polyno-
mial in log(1/¢). This requires more work since the basic description of the algorithm involves
implementing proportional volume sampling on an exponentially-sized ground set. This is done in
Section2.6.3

We also outline efficient deterministic implementation of algorithms in Thea2ehvt and

2.1.5in Section2.6.2and2.6.4

2.1.2 Related Work

Experimental design is the problem of maximizing information obtained from selecting subsets of
experiments to perform, which is equivalent to minimizing the covariance rr(aEi;&S viviT)_l

We focus onA-optimality, one of the criteria that has been studied intensely. We restrict our
attention to approximation algorithms for these problems and refer the readeuk6d for a

broad survey on experimental design.
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[AB13] studied theA- and E-optimal design problems and analyzed various combinatorial
algorithms and algorithms based on volume sampling, and achieved approximatio,@fﬁﬁio
[WYS14 found connections between optimal design and matrix sparsification, and used these
connections to obtain @ + ¢)-approximation whert > dﬁ—Q and also approximation algorithms
under certain technical assumptions. More recenfiiygW178 ALSW171 obtained &1 + ¢)-
approximation whei = (g) both with and without repetitions. We remark that their result also
applies to other criteria such asand D-optimality that aim to maximize the minimum eigenvalue,
and the geometric mean of the eigenvalue$ vf ; v;v,", respectively. More generally, their result
applies to any objective function that satisfies certain regularity criteria.

Improved bounds foP-optimality were obtained bygX18 who give ane-approximation for
all £ andd, and(1+¢)-approximation algorithm wheh = Q(gjtei2 log %), with a weaker condition
of k > %d if repetitions are allowed. Thé&-optimality criterion whenk < d has also been
extensively studied. It captures maximum a-posteriori inference in constrained determinantal point
process models[T+12]), and also the maximum volume simplex problemil15], improving
on a long line of work, gave a-approximation. The problem has also been studied under more
general matroid constraints rather than cardinality constraiNS1§ AG17, SV17).

[CMIQ9] also studied several related problems in the< d regime, includingD- and E-
optimality. We are not aware of any prior work ahRoptimality in this regime.

The criterion of E-optimality, whose objective is to maximize the minimum eigenvalue of
> i viv; , is closely related to the problem of matrix sparsificatid®S§$12aSS1]) but incom-
parable. In matrix sparsification, we are allowed to weigh the selected vectors, but need to bound
both the largest and the smallest eigenvalue of the matrix we output.

The restricted invertibility principle was first proved in the work &T[87], and was later
strengthened byer01], [SS1Q, and [NY17]. Spielman and Srivastava gave a deterministic al-
gorithm to find the well-invertible submatrix whose existence is guaranteed by the theorem. Be-

sides its numerous applications in geometry (Séer(1] and [Youl4)), the principle has also
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found applications to differential privacyN[TZ16]), and to approximation algorithms for discrep-
ancy (NT15)).

Volume sampling where a sétis sampled with probability proportional tet(VsVy ) has
been studied extensively and efficient algorithms were giverdi®A[J and improved by ¢GS13.
The probability distribution is also called determinantal point proces®©PP) and finds many
applications in machine learning{J+12]). Recently, fast algorithms for volume sampling have
been considered ilW17g DW17h.

While NP-hardness is known for th®- and E-optimality criteria (CMI109]), to the best of
our knowledge nd\P-hardness ford-optimality was known prior to our work. Proving such a

hardness result was stated as an open problemBa 3].

2.2 Approximation via Near Independent Distributions

In this section, we prove TheorePnl.3and give arx-approximation algorithm for thd-optimal
design problem given am-approximated — 1, d)-independent distributiop.

We first consider the convex relaxation for the problem given below for the settings without
and with repetitions. This relaxation is classical, and already appears inCagb3. It is easy
to see that the objective (Z?Zl xiviv;)_l is convex (BV04], section 7.5). For this section, we

focus on the case when repetitions are not allowed.
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With Repetition Without Repetition

n -1 n -1
min tr (Z a:ww?) min tr (Z xwwj) (2.1)
i=1 i=1

st Y mi=k st Y mi=k (2.2)
i=1 i=1
0<uz; Vieln 0<z; <1 Vie|[n]
2.3

Let us denote the optimal value d.0)—(2.3) by CP. By plugging in the indicator vector of
an optimal integral solution far, we see thaCP < OPT, where OPT denotes the value of the

optimal solution.

2.2.1 Approximatelylndependent Distributions

Let us use the notation® = [Lics @i, Vs @ matrix of column vectors; € R< for i € S, and
Vs(x) a matrix of column vectorg/z;v; € R? for i € S. Lete(zy,...,x,) be the degreé
elementary symmetric polynomial in the variables. .., z,, i.e. ex(z1,...,2,) = ZSG% z°.
By convention,ey(z) = 1 for any z. For any positive semidefinite x n matrix M, we define
Ei(M) to beeg(A,...,\,), where\(M) = (Aq,...,\,) is the vector of eigenvalues dff.
Notice thatE; (M) = tr(M) andE,, (M) = det(M).

To prove Theoren2.1.3 we give the following algorithm4 which is a general framework to
sampleS to solve theA-optimal design problem.

We first prove the following lemma which is needed for proving Theo?eti3

Lemma 2.2.1.LetT C [n] be of size no more thah Then

det(Vip(z) "Vi(z)) = 27 det(V,) Vi)
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Algorithm 2.1 The proportional volume sampling algorithm

1: Given an inpu’ = [vy, ..., v,] wherev; € R?, k a positive integer, and measyren sets in
U, (or Uy).

2: Solve convex relaxatioiP to get a fractional solutiom € R"} with " | z; = k.

3: Sample sef (from/<, orif,) wherePr [S = S] oc u(S) det(VsVy ) foranyS € Uy (ortdy,).
> u(S) may be defined using the solutian

4: OutputS (If |S| < k, addk — |S| arbitrary vectors ta first).

Proof. The statement is true by multilinearity of the determinant and the exact formulafoy ' Vo (z)

as follows. The matri¥’;(z) "V (x) has(i, j) entry

(VT(IL’)TVT(l’))Z.J = VT - \JTj0; = \JTT;0; - V;

for each pair, j € [|T']]. By the multilinearity of the determinant, we can take the factar out
from each rowi of V-(z) "V (z) and the factor,/z; out from each column of Vi (z) Vi (x).

This gives
det(Vr(z) "Vi(x) = [ vai [ va;det(Vy Vi) = 2" det(Vy! Vi)
i€[|T] JENT]

]

We also need the following identity, which is well-known and extends the Cauchy-Binet for-

mula for the determinant to the functiofs.

Ey(VVT) = B (VIV) = det(Vy V). (2.4)
Sely,

The identity @.4) appeared inNIS17] and, specifically foik = d — 1, as Lemma 3.8 inAB13].
Now we are ready to prove Theore2ri.3
Proof of Theorem2.1.3 Let i/ denote the sampling distribution oVt whereld = U, or Uy,

—1
with probability of samplings € U proportional tg:(S) det(VsVy ). Becauser <Zi€[n] xiviv;r> =
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CP < OPT, itis enough to show that

. -1
S]E |:tr <Z Uﬂj;r> ] < atr (Z xivw; ) (2.5)
~H €S i€[n]

Note that in caséS| < k, algorithm.4 addsk — |S| arbitrary vector taS, which can only decrease
the objective value of the solution.

First, a simple but important observatioAB13]): for any d x d matrix M of rankd, we have

Lo b e s(AM)  Ega(M)
tr M :;Ai(m: OOD) — de il

(2.6)

Therefore, we have

—1
E | tr (Z ij) = Z P/r [S = S]tr (VSVST)—I
S ics seu "
_ p(S)det (VsVs')  Eaa(VsV)
= S e (S) det(Var V) ) det (VsV)

_ > seu M(S)Ea—1(VsVy)

S gey 1(S) det(Vs V)

We can now apply the Cauchy-Binet formua4) for £, ,, £, = det, and the matrixVSVST to

the numerator and denominator on the right hand side, and we get

-1
Srop! > seu MS) Z|R\:d,R§S det(Vy V)

_ Z|T|:d71,Tg[n} det (VTTVT) ESEM,SQT u(S)
Z|R|=cl,R§[n] det (VRTVR> ZSGL{,SQR u(S)
Z|T|=d71,Tg[n} det (V;VT) F;r [S 2 T]

i€S

22



where we change the order of summation at the second to last equality. Next, weZafphn(

the Cauchy-Binet formula2(4) in a similar way to the matri¥/ (z)V (z) "

(V@)V(@)T) _ Xirjea-rrgm et(Ve(2) Vi)

C det(V(@)V(2)T) X gicarep det(Va(z) T Va(z))

_ D (T|=d—1,7C[n) det (Vy Vr) 2™
Z|R|:d,3g[n} det (VJVR) ft

where we use the fact thdtt(Vz(z) " Vz(z)) = 2% det(Vy Vi) anddet (Vi (2) Vi (x)) = 2 det (V7 V)
in the last equality by Lemm2a.2.1

Hence, the inequality2(5) which we want to show is equivalent to

-
> rimd1rcp det (V7 Vr) Iir S DT S i ey det (VTVr) o7

<a (2.7)
Z\R|:d,R§[n] det (VRTVR) F;r [S 2 R Z|R|:d,Rg[n} det (VRTVR) 't
which is equivalent to
> det (Vi Vi) det (V4 Vi) - 2™ - Pr(S D T
T|=d—1,|R|=d :
<a Y det (Vi Vi) det (Vg V) 2" -Pr[S 2 R]. (2.8)
T|=d—1,|R|=d .
) Pr[SDT] T .
By the assumption thaém < o’y for each subsefl, R C [n] with |T| = d — 1 and|R| = d,

det (V! V) det (Vg Vg) - 2™ - Pr[S D T] < ardet (V! Vi) det (Vi Vi) - 2" - Pr[S 2 R] (2.9)
iz M

Summing R.9) over allT, R proves £.9). O
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2.3 Approximating Optimal Design without Repetitions

In this section, we prove Theorethl.4by constructingr-approximate(d — 1, d)-independent
distributions for appropriate values af We first consider the case whén= d and then the
asymptotic case wheh = Q (¢ + L log 1). We also remark that the argument for= d can be

generalized for alk < d, and we discuss this generalization in Secdn 1

2.3.1 d-approximatiorfor k = d

We prove the following lemma which, together with Theor2rh.3 implies thed-approximation

for A-optimal design whei = d.

Lemma 2.3.1.Letk = d. The hard-core distributiom on/, with parametetrr is d-approximate

(d — 1,d)-independent.

Proof. Observe that for any € U, we haveu(S) = § whereZ =3 ¢ o, 2% is the normaliza-

tion factor. For anyl" C [n] such thatT| = d — 1, we have

T
pen- ¥ 55 (£ )<

Z ,
SeUy,:S2OT €[n\T

PriSOR= Y. %:x—.

S~pu
SeUr:SOR

Thus for anyT', R C [n] such thatT| = d — 1 and|R| = d, we have

Pr|iS§2T
—SNr“[ _ ]<d£
Pr[SDR] = af
S~pu
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2.3.2 (1 + ¢)-approximation

Now, we show that there is a hard-core distributioon/<. thatis(1 + ¢)-approximatgd — 1, d)-

independent wheh = Q (¢ + % log 1).

Lemma 2.3.2.Fix some) < ¢ < 2, and letk = (g + bgi#) The hard-core distributiop on

U<, with parameter), defined by
Ly

M=

is (1 + €)-approximate(d — 1, d)-wise independent.

Proof. For simplicity of notation, let us denote= 1+ ¢, and$; = % Observe that the probability
mass undey of any setS of size at most is proportional to(]];. &) (Higs (1-— &)). Thus,
w is equivalent to the following distribution: sample a #tC [n] by including everyi € [n] in
B independently with probability;; then we have.(S) = Pr[B = S | |B| < k| for every S of
size at mosk. Let us fix for the rest of the proof arbitrary sétsRk C [n] of sized — 1 andd,

respectively. By the observation above, 1isampled according te, andB as above, we have

Pr[SOT] Pr[B2Tand|B| < k] < Pr[B 2 T

Pr[SD R] Pr[B2 Rand|B| <k| ~ Pr[BD Rand|B| < k]

zT

ﬂd—l
for eachi € [n], the indicator random variablg, defined to bd if ; € B and0 otherwise. By the

We havePr[B D T| = ¢T = . To simplify the probability in the denominator, let us introduce,

choice ofB, theY;’s are independent Bernoulli random variables with mgamespectively. We

can write

Pr[B2> Rand|B| < k| =Pr

VieR:YizlandZYigk—d]
iR

=PrVie R:Y,=1]Pr

iZR
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where the last equality follows by the independence ofitheThe first probability on the right

hand side is jusg? = and plugging into the inequality above, we get

ﬁd1

Pr[S D T <3 xt
TPy g Yi <k —df

(2.10)

We claim that
€
P <k—-d>1-—-
r[ZYZ <k-—d>1-
i€R
aslongas = (g + Eiz log %) The proof follows from standard concentration of measure argu-

ments. Lety” = >, .Y, and observe th@[Y] = 5(k — z(R)), wherez(R) is shorthand for

1
g
> _icr Ti- By Chernoff's bound,

PrlY > k—d] <e ~ 45 (k=2 (R) (2.11)
where
s_ Blk—d) . (B=Vk+a(R)—d
 k—2(R) B k—z(R) '

The exponent on the right hand side 8f1) simplifies to

0°(k —x(R)) _ (B=1Dk+x(R) = pd)* _ ((8=1k— pd)*
30 36(k — z(R)) = 36k '

For the bound’r[Y > k — d] < {, it suffices to have

(B—1)k — Bd > \/3B1log(4/e)k.

Clog (4/¢)

Assuming that > for a sufficiently big constant’, the right hand side is at mo%i So,

as long as > 3 the inequality is satisfied areék[Y" > k — d] < {, as we claimed.

16’
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The proof of the lemma now follows since for aj§y| = d — 1 and|R| = d, we have

Pr[S D T] zt <1+in

217 _ z
- ﬁxRPr[ZigRY; <k—d —1-%al’

Pr[S D R] (2.12)

145
=

and <l+e O

The (1 + ¢)-approximation for large enough in Theorem2.1.4 now follows directly from

Lemma2.3.2and Theoren2.1.3

2.4 Approximately Optimal Design with Repetitions

In this section, we consider thé-optimal design without the bound, < 1 and prove Theo-
rem2.1.5 That is, we allow the sample s&tto be a multi-set. We obtain a tight bound on the
integrality gap in this case. Interestingly, we reduce the problem to a special casepimal
design without repetitions that allows us to obtained an improved approximation.

We first describe a sampling Algorithih2 that achieves é(_ld—ﬁ-approximation forany > 0.
In the algorithm, we introduceoly(n, 1/¢) number of copies of each vector to ensure that the
fractional solution assigns equal fractional value for each copy of each vector. Then we use the
proportional volume sampling where the measure distribyticdefined on sets of the new larger
ground setlU over copies of the original input vectors. The distributjors just the uniform dis-
tribution over subsets of size of U, and we are effectively using traditional volume sampling
overU. Notice, however, that the distribution over multisets of the original set of vectors is dif-
ferent. The proportional volume sampling used in the algorithm can be implemented in the same
way as the one used for without repetition setting, as described in Sécéadh which runs in
poly(n,d, k,1/¢) time.

In Section2.6.3 we describe a new implementation of proportional volume sampling procedure

which improves the running time tpoly(n, d, k,log(1/¢)). The new algorithm is still efficient
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even wherlJ has exponential size by exploiting the facts thas uniform and that/ has only at

mostn distinct vectors.

Algorithm 2.2 Approximation Algorithm forA-optimal design with repetitions
1: Givenz € R with ™7 | x; =k, e > 0, and vectors, . . ., v,,.

2: Letq = %, Setx : ’“‘”/qxl for eachi, and round each/ up to a multiple ofl /q.
<H | I <k addl/qto anyz; until " 2l = k.
4

i=1"1

: Creategz); copies of vectop; for eachi € [n]. DenotelV the set of sizé """ | gz} = ¢k of all

those copies of vectors. Dendtethe new index set dfi’of sizeqk. > This implies that we

can assume that our new fractional solutigr= 1/q is equal over alf € U

Sample a subs&t of U of sizek wherePr[S = S| oc det(WsWJ ) for eachS C U of sizek.

6: SetX; =), cw, L(wis acopy ofy;) forall i € [n] > Get an integral solutioX by counting
numbers of copies af; in S.

7. OutputX.

a

Lemma 2.4.1. Algorithm 2.2, when given as input € R} s.t.> " 2, =k, 1 > ¢ > 0, and

v1,. .., Uy, OUtputs arandonk € Z7 with >~ | X; = k such that

—1 -1
- 1+ 6
X0, <« A2 TE
tr (; mzvl) ST dr <Z T;0;0; )

Proof. Definex},y, W,U, S, X as in the algorithm. We will show that

-1 -1
tr (Zl wa?) ST a1 d ) (Zw UV, ) < k 7 j 1 (Z Ti0;0; >

The second inequality is by observing that the scalihg= ’“‘T”/qxl multiplies the objective
tr (>0, xivivf)_l by a factor of('“T"/q)_l = (1—¢/2)"! <1+ ¢, and that rounding; up and
addingl/q to anyz; can only decrease the objective.

To show the first inequality, we first translate the two key quantﬂre{i " T30 vf)fl and
tr (30, X, )_ from the with-repetition setting ovér and|n] to the without-repetition set-

ting overW andU. First, tr (3.7, @ W}T)—1 =tr (Xer yiwiwiT)_l, wherey; = é are all equal
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over alli € U, andw; is the copied vector ifl” at indexi € U. Secondtr (Z?Zl Xivivf)_l =

tr (ZiGSQU wiwiT)

Let 1/ be the distribution over subsefsof U of sizek defined byu/'(S) oc det(WsWy4 ). Itis,

-1

therefore, sufficient to show that the sampling distributibsatisfies

W;W; < Y Wi Wi (2.13)
& (S ) | et (gee)

Observe thaj/ is the same as sampling a setC U of size k with probability proportional to
w(S) det(WsW4 ) wherep is uniform. Hence, by Theoreth1.3 it is enough to show that for all
T,RCUwith |T|=d—1,|R| =d,

I
< = :
Pr[SQR]_(k—d—H) (2.19)
I
With ¢ being uniform and;; being all equal td /¢, the calculation is straightforward:
PriSDT -
PSSR (P kil Ty
Therefore, 2.14) holds because
ST N kst 1 gk 1k
Pr(SD R] \y®  k—d+1 ¢ k—d+1 q k—d+1
w
[

Remark 2.4.2. The approximation ratio for A-optimality with repetitions fbr> d is tight, since

it matches the integrality gap lower bound stated in Thedzeh8
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2.5 Generalizations

In this section we show that our arguments extend to the regimel and give a-approximation
(without repetitions), which matches the integrality gap of our convex relaxation. We also derive a

restricted invertibility principle for the harmonic mean of eigenvalues.

2.5.1 k-ApproximationAlgorithm for £ < d

Recall that our aim is to select a s&tC [n] of sizek < d that minimizesy." , A\7!, where
A1, ..., A\, are thek largest eigenvalues of the matri% V. We need to reformulate our convex
relaxation since wheh < d, the inverse ofM/(S) = Y, _qvv/ for |S| = k is no longer well-

defined. We write a new convex program:

L (Z?:l xivi”z‘T)

i 2.16
YR, (>, zvw]) (2.10)
S.t.

in — k (2.17)
=1
0<z;<1 Vi€]ln] (2.18)

Once again we denote the optimal value »f16—(2.18 by CP. While the proof that this re-
laxes the original problem is easy, the convexity is non-trivial. Fortunately, ratios of symmetric

polynomials are known to be convex.

Lemma 2.5.1. The optimization probleni2.16—2.18 is a convex relaxation of thd-optimal

design problem wheh < d.

By (M)

Proof. To prove convexity, we first note that the functig\/) = o GD

IS concave on positive
semidefinite matriced/ of rank at leask. This was proved bygM61, Theorem 4] for positive

definite M, and can be extended id of rank at least: by a limiting argument. Alternatively, we
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can use the theorem d¥IL57] that the functiory(\) = e:f(f&) is concave on vectors € R¢ with

non-negative entries and at leagpositive entries. Becaugels symmetric under permutations of

its arguments and concave, afid/) = g(A\(M)), where\(M ) is the vector of eigenvalues of,
by a classical result ofjav57 the functionf is concave on positive semidefinite matrices of rank
at leastk.

Notice that the objective2(16 equals for the linear matrix-valued functiot/ (z) =
Sz . Therefore, to prove tha2(16) is convex inz for non-negativer, it suffices to show

that 1~ is convex in} for positive semidefinitd/. Since the functiod is convex and monotone

f(M)
decreasing over positive reats and f is concave and non-negative over positive semidefinite
matrices of rank at least, we have tha% is convex inM, as desired. Ther2(16—(2.18
is an optimization problem with a convex objective and affine constraints, so we have a convex
optimization problem.

Let OPT be the optimal value of thé-optimal design problem, and I&tbe an optimal solu-
tion. We need to show th&@P < OPT. To this end, let be the indicator vector of, i.e.z; = 1

if and only ifi € .S, andz; = 0 otherwise. Then,

B (M(S)  SL IHW Z

CETHmME) T LA

= OPT.

Above,\;(M(S9)), ..., \(M(S)) are, again, the nonzero eigenvaluedbfs) = >, gviv) . O

We shall use the natural analog of proportional volume sampling: given a measorgibsets
of sizek, we sample a sef with probability proportional tqu(S)E,(M(S)). In fact, we will
only takes(S) proportional tox®, so this reduces to samplirfgwith probability proportional to
Ei(Xc miviv] ), which is the standard volume sampling with vectors scaleg/By and can be
implemented efficiently using, e.g. the algorithm BH10Q.

The following version of Theorem2.1.3still holds with this modified proportional volume

sampling. The proof is exactly the same, except for mechanically replacing every instance of
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determinant by, of £, by E;_1, and in general of by k.

Theorem 2.5.2.Given integers: < d < n and a vectorz € [0, 1]" such thatl"z = k, sup-
pose there exists a measyreon U, that is a-approximate(k — 1, k)-wise independent. Then
for z the optimal solution 0{2.16—(2.18), proportional volume sampling with measuyreayives a

polynomial timex-approximation algorithm for thel-optimal design problem.
We can now give the main approximation guarantee we have fou.

Theorem 2.5.3.For any k& < d, proportional volume sampling with the hard-core measuren
U, with parameter: equal to the optimal solution q2.16—2.18) gives ak-approximation to the

A-optimal design problem.

Proof. In view of Theorem2.5.2 we only need to show that is k-approximatek — 1, k)-wise
independent. This is a straightforward calculation: ot p, and anyl’ C [n] of sizek — 1 and

R C [n] of sizek,
Pr[SDT] 2" Y zT
Pr[S D R] zlt - xR

This completes thproof. n

The algorithm can be derandomized using the method of conditional expectations analogously
to the case of = d that we will show in Theorer2.6.5

The k-approximation also matches the integrality gap216—(2.18. Indeed, we can take a
k-dimensional integrality gap instanee, .. ., v,, and embed it ilR? for anyd > k by padding
each vector witl’s. On such an instance, the convex progr&i§—(2.18 is equivalent to the
convex programd4.1)—(2.3). Thus the integrality gap that we will show in Theor@n?.3implies

an integrality gap ok for all d > k.

2.5.2 Restricted Inertibility Principlefor Harmonic Mean

Next we state and prove our restricted invertibility principle for harmonic mean in a general form.
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Theorem 2.5.4.Letv1, ...,v, € R4 andey, ..., ¢, € R, and defineV/ = Yo, cvv, . Forany

k<r= , there exists a subsstC [n] of sizek such that the: largest eigenvalues,, ..., \x

HMH

of the matrixy_,_¢ v;v; satisfy

k -1
1 1 r—k+1 tr(M)
—_ E — > . .
(/{7 i1 Az) - T Z?:l C;

Proof. Without loss of generality we can assume thaf , ¢c; = k. Then, by Theoren2.5.3

proportional volume sampling with the hard-core meaguval{, with parametet = (ci,...,¢,)

gives a random se&f of sizek such that

r 1
B2 ars)

where);(M(S)) is thei-th largest eigenvalues af/ (S) = >, vv; . Therefore, there exists a

setS of sizek such that

1& 1 L BO) _ abon)
(k: 2 Ai(M<S))> = Ep (M) ep1(A(M))

i=1

where\(M) is the vector of eigenvalues 8f. In the rest of the proof we compare the right hand
side above withr(M).

Recall that a vector € R? is majorized by a vectoy € R%, writtenz < v, if Zézl z(j) <
> 1y holds for alli € [n], and}"}" , ; = _I" , y;. Herex;) denotes thg-th largest coor-
dinate ofz, and similarly fory;). Recall further that a functiorf : RY — R is Schur-concave
if 2 < yimplies f(z) > f(y). The function-%L was shown to be Schur concave §913;
alternatively, it is symmetric under permutationsccdnd concave, as shown ikI[L57] (and men-

tioned above), which immediately implies that it is Schur-concave. We define a vweutbich

majorizes\(M) by settingz; = %Zle Ai(M) fori € [r], andz; = 0 for ¢ > r (we assume here
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that\; (M) > ... > A\y(M)). By Schur concavity,

ex(A(M)) en(r)  r—k41g
O = () 2 M),

Sincer:1 Ai(M) = tr(M), and we assumed that_, ¢; = k, this completes the proof of the

theorem. u

2.5.3 TheGeneralizedRatio Objective

In A-optimal design, givelv = [v; ... v,] € R¥" we state the objective as minimizing

-1
E, T
EAVsVY)
over subsefS C [n] of sizek. In this section, for any givefi < I’ < [ < d, we consider the

following generalized ratio problem

. Ez'(VsVsT)> =
min P — 219
SCn],|S|=k (El<VSVST) @19

The above problem naturally interpolates betwdeoptimality andD-optimality. This follows

since forl = d andl’ = 0, the objective reduces to

1 d
i S 2.20
SCln)18=k (det(VSVST)) (2.20)

A closely related generalization betwednand D-criteria was considered itMS17]. Indeed,
their generalization corresponds to the case wheni and!’ takes any value frorfi andd — 1.

In this section, we show that our results extend to solving generalized ratio problem. We begin
by describing a convex program for the generalized ratio problem. We then generalize the propor-

tional volume sampling algorithm faroportional/-volume samplingFollowing the same plan as

34



A-optimal By (VsVd D-optimal
Problem ' =d P Li=—d) | [ in (5 vsv ) (= (?,z )
Casek = d d L= <4 e
Asymptotick >> d 1+ ¢, for 1 +e, for 1 + ¢, for
without Repetitions| & > Q (g + %) k>Q (ﬁ + %) k>0 (g + %)
Arbitrary k andd ok kL K
With Repetitions k—d+1 k=141 k—d+1
Asymptotick >> d 1+ ¢, for 1+ ¢, for 1+ ¢, for
With Repetitions k>d+ 4 k>1+! k>d+ 4

Table 2.2: Summary of approximation ratio obtained by our work on generalized ratio problem.

in the proof of A-optimality, we then reduce the approximation guarantee to near-independence
properties of certain distribution. Here again, we appeal to the same product measure and obtain
identical bounds, summarized in Tald€, on the performance of the algorithm.

Convex Relaxation

As in solving A-optimality, we may define relaxations for with and without repetitions as follows.

With Repetitions Without Repetitions

min (El/ (V(x)V@)T))lll, (2.21)

st. Y xm=k st. Y xm=k (2.22)
i=1 i=1
0<uxz; Vie]ln] 0<z; <1 Vie|[n] (2.23
x T T ﬁ . .
We now show tha( : ((“//(x))“//((m)T)) ) is convex inx.
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Lemma 2.5.5.Letd be a positive integer. For any given pair< I’ < [ < d, the function

= (50 ) (2.29

is convex ovetl x d positive semidefinite matrix/.

_1
Proof. By Theorem 3 in BM61], (fr (M)~ = <1§f,((]z\\44)>> """ is concave on positive semidefinite
matricesM foreach0 <!’ <1 < d. The function% is convex and monotone decreasing over the
positive realsz, and this, together with the concavity of, ;(M))~! and that(f, ;(M))~! > 0,

implies thatf, ;(M) is convex in)/. O]
Approximation vig!’, [)-Wise Independent Distribution
Let0 < I' <l < dandU € {Ux,U<}. We first show connection of approximation guarantees

1
Ey(VsVJ )\ =7 d Ey(VsVy)
E(VsVd) E(VsVd) "

on objectives( Suppose we already solve the convex relaxation of
generalized ratio problen2(21)-(2.23 and get a fractional solution Suppose that a randomized

algorithm A4, upon receiving input’ € R*>" andx € R, outputsS € U/ such that

_|
~—

= [Ez«vsv; )| < BV 225

for some constant’ > 0. By the convexity of the functiorf(z) = 2'~" over positive reals, we

have

/

e [E00) - g (M)] 2.26)

Ey (M) Ey(M)

for any semi-positive definite matrikx/. Combining .25 and @.26) gives

M o o Ep(V(z)V(x)") =
(EZWSVST)) ]S (EI(V(x)V(x)T)> (2.27)

S~A
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wherea = (a’)ﬁ. Therefore, it is sufficient for an algorithm to satis®.25 and give a bound
onc<’ in order to solve the generalized ratio problem up to faator
To show @.25), we first define the proportion&lvolume sampling and-approximate(l’, )-

wise independent distribution.

Definition 2.5.6. Let 1, be probability measure on setsiify (or /<;). Then the proportionak
volume sampling with measurepicks a set of vectors indexed Sye U, (orU<,) with probability

proportional tou(S) E;(VsVy ).

Definition 2.5.7. Given integersl, k, n, a pair of integer® < I’ < [ < d, and a vector: €
0, 1]" such thatl "> = k, we call a measurg on sets irl4;, (or Us},), a-approximatg(l’, [)-wise

independent with respect toif for any subsetd”, 7" C [n| with |7”| = I’ and|T'| = [, we have

wherez!” := [T, ; z; forany L C [n]. We omit “with respect ta" when the context is clear.

The following theorem reduces the approximation guarante2 &%yto a-approximate!’, [)-

wise independence properties of a certain distributidsy utilizing proportionall-volume sam-

pling.

Theorem 2.5.8.Given integersl, k,n, V = [v; ... v,] € R¥", and a vectorr € [0, 1]" such that
1Tz = k, suppose there exists a distributipron sets in4;, (or U<;) and isa-approximate(l’, )-

wise independent for some< [’ < [ < d. Then the proportionalvolume sampling with measure

_1
1 gives am-approximation algorithm for minimiziné%) " over subsets C [n] of size
S

k.

Proof. Let 1/ denote the sampling distribution ovdr whereld = U, or Uy, with probability of

samplingS € U proportional tou(S) E;(VsV ). We mechanically replacg, R, d — 1,d,and det
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in the proof of Theoren2.1.3with 77, 7', ', [, and E; to obtain

-1

-1
T -l T
S@u' tr (Z Vi, > < a7t tr Z Ti0;0;

€S i€[n]
We finish the proof by observing th&2.@5 implies 2.27), as discussed earlier n

The following subsections generalize algorithms and proofs for with and without repetitions.
The algorithm for generalized ratio problem can be summarized in Algo2tdmNote that effi-

cient implementation of the sampling is described in Seién

Algorithm 2.3 Generalized ratio approximation algorithm

1: Given an inputl’ = [vy,...,v,] wherev; € R?, k a positive integer, and a pair of integers
0<I'<I<d.
By (V(@)V(@)T)

2: Solve the convex relaxatian = argmin,c jn.q 7, (W
1 T xT

) " whereJ = 0,1] if
without repetitions oR* if with repetitions.
if £k =1[then
Sampley/(S) < 2% E; (VsVy') for eachS € U,
else ifwithout repetition setting ank > (C;l + bgi#) then
Sampley/(S) o< A9E; (VsVy') for eachS € U<, where); :=
else ifwith repetition settinghen
Run Algorithm2.2, except modifying the sampling step to sample a suSs#tU of size
k with Pr[S = S] oc E{(WsWg ).
9: OutputS (If |S| < k, addk — |S| arbitrary vectors t& first).

T
1+€/4—.'L’1'

© N g ~w

Approximation Guarantee for Generalized Ratio Problem without Repetitions

We prove the following theorem which generalize Lemrg&1and?2.3.2 The a-approximate
(I’,1)-wise independence property, together with Theo2m8 implies an approximation guar-
antee for generalized ratio problem without repetitions for= [ and asymptotically fork =

Q(L—i—e%log%).

€
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Theorem 2.5.9.Given integersl, k, n, a pair of integerd) < !’ <[ < d, and a vector € [0, 1]"
such thatl "z = k, the hard-core distribution: on sets i/}, with parameterr is a-approximate

(I',1)-wise independent when= [ for

a=1-[1-1)77 < lf—ll, (2.28)

Moreover, for anyd < ¢ < 2 whenk = Q (£ + % log ), the hard-core distribution on /<,

€

with parameter\, defined by
T

M=

Y

is (1 4 ¢)-approximate!’, [)-wise independent.
1
e e e . . 1 (V VT) - .
Thus for minimizing the generalized ratio probl %) over subset$' € [n] of size

k, we obtain
* (27)-approximation algorithm wheh = [, and
* (1 + ¢)-approximation algorithm wheh = Q (£ + L log1).

Proof. We first prove the result fok = [. For all7”, T C [n] such thalT’| = ', |T| =,

> v T L T L
SPNrM [52T] B 218|150 z® _ . ZLG([ZB[T/ )* < . ZLE(k[f]u) ‘
SPr [S2T] Z\S\:k sor T° x’ B at
NM ’ -

We now use Maclaurin’s inequalityl(J 93]) to bound the quantity on the right-hand side

S whmen@ < (" ) @ < = T (22)
B AV R0 (=1 '
Le(k[:l]l/)
Therefore,
Pr [S 2 T,] -1 T
S~ l xz
< il 2.30
SPr [SOT] — (I=U)aT ( )
~p
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which proves thd!’, [)-wise independent property of with required approximation ratio from
(2.28.

We now prove the result fof = Q (1 + % log 1). The proof follows similarly from Lemma
2.3.2by replacindl’, R with 7", T' of sizesl’, [ instead of sized — 1, d. In particular, the equation

(2.10 becomes
T/

Pr[S§ D 17 < (1 n E>ll’ x
PriS§O>T] — 4 T P30 Yi <k =1

(2.31)

and the Chernoff's bound®(11) still holds by mechanically replacing R with [, T' respectively.

The resulting approximation ratio satisfies

-
! 1 E /
al—l — ( + 4)E S (1 _}_e)l—l‘
=7

where the inequality holds becausg 2. ]

Approximation Guarantee for Generalized Ratio Problem with Repetitions

We now consider the generalized ratio probleth repetitions The following statement is a

generalization of Lemma.4.1

Theorem 2.5.10.GivenV = [v; vy...v,] Wherev; € RY, a pair of integers) < I’ < [ <

d, an integerk > [, and1 > ¢ > 0, there is ana-approximation algorithm for minimizing

1
Ey(VsVd )\ =7 . . -
< i (VSVSST)> over subsets$' C [n] of sizek with repetitions for

k(1+¢€)

Proof. We use the algorithm similar to Algorithia 2 except that in stepd), we sampleS C U
of sizek wherePr[S = S] « E;(WsWy ) in place of Pr[S = S| o« E;(WsWJ ). The anal-
ysis follows on the same lines as in Lem2&.1 In LemmaZ2.4.1 it is sufficient to show that

the uniform distributiory: over subsets C U of sizek is k%m-approximate(d — 1,d)-wise
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independent (as i2(13). Here, it is sufficient to show that the same uniform distributiors
Pr[SDT’]
#ﬂ-approximate(l’, [)-wise independent. Far, 7" C [n] of sizel’, [, the calculation ofs 5577

andZiT is straightforward

PAS O T (/) _ -
F;r [S D T] - (‘fkll)/(zi) < (k—1)! and y_T =4q (2.33)

k—1 k

Thereforeu is a-approximatg!’, [)-wise independent for

PriSDT = » o
ur[S_ ]i < (qk)”(k_l)!qzuz !
PriS2> 1] y” - (k—1")!
1
k k
— <
(k=1 k=1 —=1)-(k—1+1)]rr ~ k=l+1

as we wanted to show O

We note that thé-proportional volume sampling in the proof of Theor@wb.10can be imple-

mented efficiently, and the proof is outlined in Sectif.5

Integrality Gap

1
-

. . . e . . . (VsVd)
Finally, we state an integrality gap for minimizing generalized ratio ob1en<t%> over
subsetsS C [n] of sizek. The integrality gap matches our approximation ratio of our algorithm

with repetitions wherk is large.

Theorem 2.5.11.For any given positive integerk, d and a pair of integers) < I’ < [ < d

with & > ', there exists an instancé = [vy,...,v,] € R¥" to the problem of minimizing
_1
<%) " over subsets§ C [n] of sizek such that

k
> — — .
OPT > (k:—l’ 6) CpP
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for all 6 > 0, whereOPT denotes the value of the optimal integral solution &#ldenotes the

value of the convex program.

1

This implies that the integrality gap is at Ie%ég— for mmmmmg(m%%)) ~ over subsets

S C [n] of sizek. The theorem applies to both with and without repetitions.

Proof. The instancé” = [vy,. .., v,] will be the same for with and without repetitions. For each

1 <7 < d, lete; denote the unit vector in the direction of axisChoose

VN -e; fori=1,...,1I

V; =
€; forizl,...,l,

whereN > 0 is a constant to be chosen later. 8et > [ to be at leask copies of each of these
for ¢ < [, as we can make as big as needed. Hence, we may assume that we are allowed to pick
only v;, 7 < [, but with repetitions.

Let S* represent the set of vectors in OPT apdbe the number of copies af in S* for
1 <i<I. Clearlyy; > 1foralli =1,...,[ (else the objective is unbounded). The eigenvalues of
Vs V4. are

A(VS*VSI) = (lea y?Na s 7yl’N7yl’+17yl’+27 s 7yl707 o 70)

Hence, bothEy (Vs V) = ey ()\) and Ey(Vs-V4.) = e()\) are polynomials in variabled’ of

degred’.
Now let N — oco. To compute(OPT)!!" = % we only need to compute the co-

efficient of the highest degree monomisil’. The coefficient ofN" in e;()), e;()\) are exactly

Hilzl Yis Hﬁzl y;, and therefore

-1
T
(OP_I_)lfl/ _ EZI(VS*Vi*) _ Hz 1% H n
EI(VS*VS*) Hi:l Yi i=l'+1
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Observe thaﬂﬁ.:l,+1 y; IS maximized under the budget constraEi:1 y; = |5*] = kwheny,; =1

forj=1,...,I'. Therefore,

! ] I =¥ N
Hyiﬁ(l_l,zyz) :(l—l’)

i=l'+1 i=l'+1

where the inequality is by AM-GM. Hence, OPT is lower bounded by a quantity that converges to

=
k-l

asN — oo.

We now give a valid fractional solutianto upper boundP for eachN > 0. Choose

;

k . /
i fori=1,...,1
k_kz’
Ti = % fori=10+1,...,1
0 fori > 1

Then, eigenvalues df (z)V (z)" are

N o= )\(V(l’)V(l’)T) = (l’lN, ng, R ,:L'l/N, LY 41, LY 425« -+ 5 L, 0, ey 0)

= (k\/ﬁ,k’\/ﬁ, .. .,k\/ﬁ,xl/+1,xl/+2, c.e ,.13[,0, .. ,0)

Now asN — oo, the dominating terms o, (V (z)V (z)T) = ey (X) is [, (kvV/N) = k' (V/N)!.
Also, we have

U l

E(V(@)V(x)) =ea)=][kVN) T] =

i=1 i=l'+1

o k—% = / e\ /
—kl(l_l,) VR k() v

Hence,




Therefore,%_ is lower bounded by a ratio which convergesté, - £ = . O

2.6 Efficient Algorithms

In this section, we outline efficient sampling algorithms, as well as deterministic implementations

of our rounding algorithms, both for with and without repetition settings.

2.6.1 EfficientRandomizedProportional Volume

Given a vecton\ € R", we show that proportional volume sampling wjthS) oc A for S € U,
whereld € {Uy, U<} can be done in time polynomial in the sizeof the ground set. We start
by stating a lemma which is very useful both for the sampling algorithms and the deterministic

implementations.

Lemma 2.6.1.Let\ € R? vy,...,v, € R% andV = [vq,...,v,]. Let], J C [n] be disjoint. Let

1 <k <n,0<dy<d. Consider the following function
F(tl, to, t3> = det (In + tldlaQy) + tltgdiaq;/)1/2VVTdiag(y)1/2)

wherety, t5,t3 € R are indeterminate/,, is then x n identity matrix, andy € R™ with

(

Mts, ficl

Yi =140, ifieJ

Ais otherwise

\

ThenF'(t1,ts,t3) is a polynomial and the quantity

> A>T det(V] V) (2.34)

|S|=k,ICS,JNS=0  |T|=do,TCS
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is the coefficient of the monomi&td¢/!. Moreover, this quantity can be computedirin3dok|I| - log(dok|I]))

number of arithmetic operations.

Proof. Let us first fix some5 C [n]. Then we have

D> det(V Vi) = By (Vi Vi) = [t5°) det(Is + 12Vs Vs ),

‘T|:d07T§S

where the notatioriti]p(t,) denotes the coefficient af° in the polynomialp(t,) = det(Is +
t, VsV ). The first equality is just Cauchy-Binet, and the second one is standard and follows from

the Leibniz formula for the determinant. Therefor234) equals
[td0] > A det(Is + t VsV ).
|S|=k,ICS,JNS=0
To complete the proof, we establish the following claim.
Claim 1. Let L be ann x n matrix, and let\, I, J, k, y be as in the statement of the Lemma. Then,

> Ndet(Lys) = [t B (diagly) L diag(y)'*)
|S|=k,ICS,JNS=0

= [t5e) det (I, + t,diag(y)"/*L diag(y)"/?) .
Proof. By Cauchy-Binet,

Ey, (diag(y)"/*L diag(y)"/?) = > y* det(Lss)

S|=k

= Z t\gSﬂH)\S det(LS,S).
|S|=k,JNS=0

The first equality follows. The second is, again, a consequence of the Leibniz formula for the

determinant. ]
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Plugging inL = I,, + t,VV " in Claim 1 gives that 2.34) equals

5ot det (I, + t1diag(y) /(1 + t,V'V T )diagly)"/?)

= [thedotl) ] det (I, + tydiagly) + t1todiag(y) >V V  diagly)/?) .

This completes the proof. For the running time, the standard computation time of matrix mul-
tiplication and determinant ofi x n matrices isO(n?) entry-wise arithmetic operations. We
need to keep all monomials in the fortfrbts wherea < kb < dy,c < |I], of which there
areO(dpk|1]) of those. By representing multivariate monomials in single variatitar(93), we

may use Fast Fourier Transform to do one polynomial multiplication of entries of the matrix in
O (dok|I| - log(dok|I|)) number of arithmetic operations. This gives the total running time of

O (n3dok|I| - log(dok|I])). O
Using the above lemma, we now prove the following theorem that will directly imply Leeghin8

Theorem 2.6.2.Let\ € R%,vy,...,v, € R, 1 <k < n, U € {U, Ui}, andV = [v1, ..., v,).

Then there is a randomized algorithihwhich outputsS € U such that

AS det (Vs V)
P S - S - = / S
S~|:4 [ ] ZS’EM /\Sl det(VS/VST,) H ( )

That is, the algorithm correctly implements proportional volume samplingith hard-core mea-
sure . on U with parameter\. Moreover, the algorithm runs i® (n'dk?log(dk)) number of

arithmetic operations.

Observation 2.6.3.[WYS16 shows that we may assume that the support of an extreme fractional
solution of convex relaxation has size at mbst d?. Thus, the runtime of proportional volume
sampling isO ((k + d*)*dk?1og(dk)). While the degrees id, k are not small, this runtime is

independent of..
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Observation 2.6.4.1t is true in theory and observed in practice that solving the continuous re-
laxation rather than the rounding algorithm is a bottleneck in computation time, as discussed in
[ALSW174. In particular, solving the continuous relaxationfebptimal design take® (n*** log n)
number of iterations by standard ellipsoid method ah@n + d?)*5) number of iterations by

SDP, where&)(n“) denotes the runtime of x n matrix multiplication. In most applications where

n >> k, these running times dominates one of proportional volume sampling.
Proof. We can sample by starting with an empty Set (). Then, in each step=1,2,...,n, the

algorithm decides with the correct probability

PrieS|IICS,JNS =0

S~/

whether to include in S or not, given that we already know that we have includad S and

excluded/ from S from previous steps, 2, ...,i — 1. LetI’ = I U{i}. This probability equals to

PrI'CS,JNS =10

. S~/
P S[ICS,JnS=0]=
srliesircs, 0 Priics Jns=1
N/J/

D seurcs, ns=o A% det(VsVy)
N ZSEU,IQS,JHS:Q) AS det(VsVd )
 2oseurcs,Jns—i AS > |Rl=d,RCS det(VaVy)
- Ysauicsns=o N 2iri—ancs det(VaVy )

where we apply the Cauchy-Binet formula in the last equality. #fox Uy, both the numer-
ator and denominator are summations oyerestricted to|S| = k, which can be computed in
O (n*dk?log(dk)) number of arithmetic operations by Lemre6.1 For the casé( = Uy,
we can evaluate summations in the numerator and denominator restrigt€d o i, for each
ko = 1,2,...k by computing polynomiaF'(t,t,,t3) in LemmaZ2.6.1only once, and then sum

those quantities ovely. n
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2.6.2 Efficient DeterministicProportional Volume

We show that for hard-core measures there is a deterministic algorithm that achieves the same
objective value as the expected objective value achieved by proportional volume sampling. The

basic idea is to use the method of conditional expectations.

Theorem 2.6.5.Let\ € R, vy,...,v, € RY1 <k < n, U € {Us, Ui}, @andV = [y, ..., vy,).

Then there is a deterministic algorithil which outputsS* C [n] of sizek such that
T\ 1 T\ —1
tr (Voo V) ™ 2 B [t (VaVd) 7|
1

wherey/ is the probability distribution defined hy(S) o A% det(VsVy4 ) forall S € U. Moreover,

the algorithm runs irO (ndk? log(dk)) number of arithmetic operations.

Again, with the assumption that < k + d? (Observatior2.6.3, the runtime for deterministic

proportional volume sampling © ((k + d?)*dk? log(dk)).

Proof. To prove the theorem, we derandomize the sampling algorithm in Thedr@@by the

method of conditional expectations. The deterministic algorithm starts $tite= (), and then
chooses, at each stép- 1,2, ..., n, whether to pick to be inS* or not, given that we know from
previous steps to include or exclude each eleme®t. .. i — 1 from S*. The main challenge is

to calculate exactly the quantity of the form

X(1,]):= E [tr (VsVd) I c8,InS =0

~p

wherel,J C [n] are disjoint. If we can efficiently calculate the quantity of such form, the al-
gorithm can, at each step= 1,2,...,n, calculateX (I’ U {:},J") and X (I', J' U {i}) where
I'.J C [i — 1] denote elements we have decided to pick and not to pick, respectively, and then

includei to S* ifand only if X (1" U {d},J') > X (I, J' U {i}).
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Note that the quantity (7, /) equals

E [tr (VsVs) I CS8,JNnS = @} = ) PrS=S[IcS,.8nJ =0t [(VsVs) ]

o seu, "
1CS,JNS=0
AS det (Vs V) L
> 3 detvev T LVYs )]
Seu, S'eld, 1CS,JNS=0 S Vg
1CS,JNS=0

_ Y seutcs.ans—o N Ea-1(VsVy)

- D seu1c5,0n5=0 N Do\R|=d,Rc s det(VRV})
 2Seuics,uns=o AN Y piea1res det (Ve Vi)
N > seu1C5,In5=0 A D_|Rl=d,RCS det(VrVy )

where we write inverse of trace as ratio of symmetric polynomials of eigenvalues in the third
equality and use Cauchy-Binet formula for the third and the fourth equality. The rest of the proof
is now identical to the proof of Theoreth6.2 except with different parametetis = d — 1,d in

f(t1,ta,t3) when applying Lemma.6.1 n

2.6.3 EfficientRandomizedmplementatiorof #-ApproximationAlgorithm With Repetitions

First, we need to state several Lemmas needed to compute particular sums. The main motivation
that we need a different method from Sectihf.1and2.6.2to compute a similar sum is that we

want to allow the ground séf of indices of all copies of vectors to have an exponential size. This
makes Lemm&.6.1not useful, as the matrix needed to be computed has dimejigjon|U|. The

main difference, however, is that the parameté& now a constant, allowing us to obtain sums by

computing a more compadtx d matrix.

Lemma 2.6.6.LetV = [vy,...,v,,] be a matrix of vectors; € R¢ with n > d distinct vec-

tors. LetF C [m| and let0 < r < dand0 < dy < d be integers. Then the quantity
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> (7o i det(V7 Vi) is the coefficient of{~“¢50~"¢5 in

f(tl, tQ, tg) = det (tlld + Z t3UZ"UiT + Z tz’U{UJ) (235)
i€l i¢F
wheret,, t5, t3 € R are indeterminate and; is thed x d identity matrix. Furthermore, this quantity

can be computed i® (n(d — dy + 1)d3d? log d) number of arithmetic operations.

Proof. First, note thatlet (¢, + Y, tsv;0] + > ier b)) = [T, (t: + v;) wherev(M) =
{v1,...,vq} is the vector of eigenvalues of the matfix = >, _,. tsv;v + digr tyvv;. Hence,
the coefficient of{ ™ in det (t1 + Y, taviv, + Y g p t2vivy ) iS eq, (v(M)).

Next, observe thad/ is in the formV’V'T whereV’ is the matrix where columns akgts;uv;,

i € F andy/tov;,i ¢ F. Applying Cauchy-Binet tdz,, (V'V'T), we get

By, (Z tsvi] + Y tovw] ) = Eg,(V'V'T) = > det(V{V7)

i€F i¢F |T|=do
||

=Y > det(Vp'V)

1=0 |T|=do,|TNF|=I
||

=> >t det(V V),
1=0 |T|=do,|TNF|=I

where we use Lemm2.2.1for the last equality. The desired quant®y ;. _, rr/= det(V/ V)
is then exactly the coefficient at= r in the sum on the right hand side.

To compute the running time, since there are amlglistinct vectors, we may represent sets
V, F' compactly with distincty;’s and number of copies of each distingts. Therefore, com-
puting the matrix sum take® (nd?) entry-wise operations. Next, the standard computation time
of determinant ofl x d matrix is O(d®) entry-wise arithmetic operations. This gives a total of
O (nd* + d) = O (nd?) entry-wise operations.

For each entry-wise operation, we keep all monomials in the 6t wherea < d —dy, b <
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dy — r,c < r, of which there ar@((d — dy + 1)d?). By representing multivariate monomials in
single variable (Pan94) of degreeO((d—dy+1)d3), we may use Fast Fourier Transform to do one
polynomial multiplication of entries of the matrix i ((d — dy + 1)d? log d) number of arithmetic

operations. This gives the total runtime®@fn(d — dy + 1)d2d* log d) arithmeticoperations. []

Lemma 2.6.7.LetV = [vy,...,v,,] be a matrix of vectors; € R? with n > d distinct vectors.
Let ¥ C [m] and letd0 < r < dand0 < dy < d be integers. There is an algorithm to compute

> |S|=k.SOF E4,(VsV{ ) with O (n(d — dy + 1)d2d? log d) number of arithmetic operations.

Proof. We apply Cauchy-Binet:

Y B,V = DY D det(Vi V)

|S|=k,SDF |S|=k,SDF |T|=do,TCS

m—|F|—dy+ |FNT)|
= det(V V;

2 det(Vy T>(k— IF|—do+ |FNT)

|T'|=do

d

m—|F| —do+r T

Z(k—|F|—do+r) >, det(VyVi)

r=0 |T|=do,| FNT|=r
where we change the order of summations for the second equality, and enumerate over possi-
ble sizes ofF' N T to get the third equality. We compui#t,,t.,t3) in LemmaZ2.6.6once with
O (n(d — dy + 1)dgd* log d) number of arithmetic operations, so we obtain valu€siof,_,  pg—, det(Vy V)

forallr =0,...,dy. The restis a straightforwaihlculation. [

We now present an efficient sampling procedure for Algoritbild We want to samples
proportional todet(WsW4 ). The setS is a subset of all copies of at mastistinct vectors, and
there can be exponentially many copies. However, the key is that the quamtity,, ¢3) in (2.39

is still efficiently computable because exponentially many of these copies of vectors are the same.

Theorem 2.6.8.Given inputsn, d, k,e,z € R with Y°" , z; = k, and vectorsy, ..., v, to

Algorithm 2.2 we defineg, U, W as in Algorithm2.2. Then, there exists an implementatign
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that samplesS from the distributiory’ over all subsetss C U of sizek, wherey/ is defined by
Prs..[S = S] o« det(WsW{ ) for eachS C U, |S| = k. Moreover,A runs in O (n*d*k log d)

number of arithmetic operations.

Theorem2.6.8says that stepgH-(5) in Algorithm 2.2 can be efficiently implemented. Other
steps exceptd)-(5) obviously useD (n?d*k log d) number of arithmetic operations, so the above
statement implies that Algorithr.2 runs in O (n?d*klog d) number of arithmetic operations.

Again, by Observatio2.6.3 the number of arithmetic operations is in fact(k + d?)?d*k log d).

Proof. Let m; = gz, be the number of copies of vectoy (recall thatg = z—g). Let w; ; denote
the jth copy of vectow;. Write U = {(i,7) : i € [n],j € [m;]} be the new set of indices after the
copying procedure. Denotg a random subset (not multiset) Bfthat we want to sample. Write
W as the matrix with columns; ; for all (¢, j) € U. LetE; = {w;; : j = 1,...,m;} be the set of
copies of vecton;. For anyA C U, we say thatd hask; copies ofy; to mean thatA N E;| = k;.
We can define the sampling algorithhby sampling, at each stgp= 1,...,n, how many

copies ofy; are to be included iv C U. Denoteu’ the volume sampling o/ we want to sample.

The problem then reduces to efficiently computing

Pr [S hask; copies ofv,|S hask; copies ofv;, Vi = 1,...,t — 1]
H,
Pr[S hask; copies ofv;, Vi = 1,...,1]
,LLI

= . 2.36
P/r [S hask; copies ofv;, Vi = 1,...,t — 1] ( )
W

foreachk;, =0,1,... . k— Zﬁ;} k;. Thus, it suffices to efficiently compute quanti.36) for any
givenl < ¢ <nandk,,...,k suchthal ! k; < k.

We now fixt, ki, ..., k. Note that for anyi € [n], getting any set of; copies ofv; is the
same, i.e. event§ N £; = F; andS N E; = F/ underS ~ p’ have the same probability for

any subsetd;, I/ C E; of the same size. Therefore, we fix one setkpitopies ofv; to be
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F,={w;; :5=1,... k;}foralli € [n] and obtain

t
Pr [S hask; copies ofv;, Vi = 1,. . H ( )Pr [SNE; =F,Vi=1,...1]

=1

Therefore, 2.36 equals

T, (m) PriSNE; = F;,Vi=1,...1] _ (Tm) D S| =k, SNE = F; Mie1,.t det(WsWy)
1 (ml)Pr SNE; =F,Vi=1,...t —1] ke ) 32 51=k 5005, =Fy i1, .11 Aet(Ws W)

(2.37)

To compute the numerator, defifi¢ a matrix of vectors in¥’ restricted to indice&\ (U;_, E; \ F}),

andF := |J;_, F;, then we have

> det(WsWg ) = > det(WiWg') (2.38)
|S|=k,SCW,SNE;=F; Vi=1,...t |S|=k,SCW' SDF
By Lemma2.6.7, the number of arithmetic operations to comp@&8) is O (n(d — dy + 1)d2d*logd) =
O (nd*log d) (by applyingd, = d). Therefore, because in each step 1,2, ...,n, we compute
(2.36 at mostk times for different values of;, the total number of arithmetic operations for

sampling algorithmA is O (n?d*k log d). O

Remark 2.6.9. Although Theorem2.6.8 and Observatior?2.6.3 imply that randomized round-
ing for A-optimal design with repetition takes ((k + d?)2d*k log d) number of arithmetic oper-
ations, this does not take into account the size of numbers used in the computation which may

scale with input. It is not hard to see that the sizes of coefficiefits, t», t3) in Lemma2.6.6

m—|F|—do+r

of the number( e

) in the proof of Lemma2.6.7, and of (") in (2.37) scale linearly
with O(klog (m)) wherem = 1" m;. As we applym < gk = 2 in the proof of Theo-
rem2.6.8 the runtime of randomized rounding féroptimal design with repetition, after taking

into account the size of numbers in the computation, has an extra factdeg(f” ) and becomes
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0 ((k + d?)2d%? log dlog(#))).

2.6.4 EfficientDeterministidmplementatiorof ﬁ-ApproximationAlgorithm With Repetitions

We show adeterministicimplementation of proportional volume sampling used for %ﬁgﬁ
approximation algorithm with repetitions. In particular, we derandomized the efficient implemen-
tation of steps4)-(5) of Algorithm 2.2, and show that the running time of deterministic version is

the same as that of the randomized one.

Theorem 2.6.10.Given inputsn, d, k,e,z € R’ with " , z; = k, and vectorsy,,...,v, to
Algorithm 2.2, we defingy, U, W as in Algorithm2.2 Then, there exists a deterministic algorithm

A’ that outputsS* C U of sizek such that

r(We-Wg) "' > E

S~p!

e (Wswd) ™|

wherey/’ is a distribution over all subsetS C U of sizek defined byu/(S) o< det(WsW4 ) for

each setS C U of sizek. Moreover,A’ runs inO (n?d*k log d) number of arithmetic operations.

Again, together with Observatioh.6.3and Remark2.6.9 Theorem2.6.10implies that the
k%m-approximation algorithm foA-optimal design with repetitions can be implemented deter-
ministically in O ((k + d?)?d*k log d) number of arithmetic operations and, after taking into ac-

count the size of numbers in the computatior()ilé(k + d*)2d*k? log dlog(@)) time.

Proof. We can define the deterministic algorith#i by deciding, at each step=1,...,n, how

many copies of; are to be included i8* C U. The problem then reduces to efficiently computing
X(ki,.... k) =E [tr (I/VSW‘;)_1 |S hask; copies ofv;, Vi =1,...,t — 1,t] (2.39)
u/

whereky, ..., k;_, is already decided by previously steps of the algorithm, and now we compute

(2.39 foreachk, =0,1,...,k— ZE k;. A’ then chooses value &f which maximizesZ.39 to
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complete step.
Recall the definitions from proof of Theore6.8that I, F; are the sets of fixed; copies
and all copies ofv;, respectively,)l/’’ is the matrix of vectors iV restricted to indiced/ \

(Uizy E: \ ), andF := J;_, F. Consider that

X(ki,. .. k) = Z Pr[S = S|S hask; copies ofv;, Vi = 1,...t] tr [(WsWg)™']
scuysi=k; "
|SNE;|=k;,Vi=1,...,t
det(WsW4 _
— Z ( S S) tr [(WSWST) 1}

=
SCU;|S|=k; ZS’QU;|S’\:k;|S/ﬂEi|:ki,Vi:1 ..... t det(WS’Ws')
|SNE;|=k;,Vi=1,...,t

77777

-----

- H§:1 (73) ngU;|S|:k;ng Ed—1<W§W§T)
- TT (8 Cscuysiorsor det(WeW5T)
o ZSgU;|S|:k;SgF Ed—l(Wé*WéT)
N > SCU|S|=kiSOF det(WEW4 ")

By Lemma2.6.7, we can compute the numerator and denominatéx(in(d — dy + 1)d3d? log d) =
O (nd*log d) (by applyingdy, = d — 1, d) number of arithmetic operations. Therefore, because in
each steg = 1,2,...,n, we compute Z.39 at mostk times for different values of;, the total

number of arithmetic operations for sampling algorithnis O (n2d*k log d). n

2.6.5 Efficientimplementation$or the GeneralizedRatio Objective

In Section2.6.1-2.6.2we obtain efficient randomized and deterministic implementations of pro-
portional volume sampling with measurewhen . is a hard-core distribution over all subsets
S € U (whereld € {Uy,, U< }) with any given parametex € R”. Both implementations run in

O (n'dk?*log(dk)) number of arithmetic operations. In Sect®i6.32.6.4 we obtain efficient ran-

domized and deterministic implementations of proportional volume sampling over exponentially-

55



sized matrixiV = [w; ;] of m vectors containing: distinctvectors inO (n?d*k log d) number of
arithmetic operations. In this section, we show that the results from Set6dh2.6.4generalize

to proportional-volume sampling for generalized ratio problem.

Theorem 2.6.11.Letn, d, k be positive integers\ € R, U € {Up, U<}, V = [v1,...,0,] €
R™>" and0 < I’ < | < d be a pair of integers. Let’ be thel-proportional volume sampling
distribution over/ with hard-core measurg of parameter), i.e. 1//(S) o A E, (VSVST) for all

S € U. There are

 an implementation to sample fropd that runs inO (n*lk?log(ik)) number of arithmetic

operations, and

» a deterministic algorithm that outputs a s&t € I/ of sizek such that

TV o7 TN 7
<El/<vs»fv5*>)” . (Emvsvs)) ] (2.40)
Nl,[/

E, (Vs Vd,) E,(VsVd)

that runs inO (n'lk? log(Ik)) number of arithmetic operations.

Moreover, letV = [w; ;] be a matrix ofn vectors wherev; ; = v; for all i € [n] andj. Denotel/
the index set oft/. Let ' be thel-proportional volume sampling over all subséts” U of sizek

with measure. that is uniform, i.ex/(S) « E, (WsW{ ) forall S C U,|S| = k. There are

 an implementation to sample fropd that runs inO (n?(d — [ + 1)I*d*k log d) number of

arithmetic operations, and

» a deterministic algorithm that outputs a s&t € I/ of sizek such that

TN =7 TN o7
<El’(WS*WS*))l b s E <_El’(WSWs)>Z l] (2.41)

E,(Ws-W4.) E,(WsWJ)

that runs inO (n? ((d — I' + 1)I”” + (d — I + 1){?) d®k log d) number of arithmetic opera-

tions.
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As in Observatior2.6.3 note that we can replage= k + d? in all running times in Theorem
2.6.11so that running times of all variants of proportional volume sampling are independent of
We also note, as in Remagk6.9 that running times of-proportional volume sampling oven
vectors withn distinct vectors has an extra factor lofog m after taking into account the size of

numbers in computation, allowing us to do sampling over exponential-sized groumd set

-
Proof. By the convexity off(z) = z!~" over positive realg, we haveE [X] > (E [X ﬁ])

for a nonnegative random variahlé. Therefore, to show 40, it is sufficient to show that

Ey(Vs-Vg) Ep(VsVs ) } (2.42)

— = 2 7 >
El(Vs*VS—E) TS~ {EZ(VSVST)

That is, it is enough to derandomized with respect to the obje%tz%%, and the same is true
for showing @.41). Hence, we choose to calculate the conditional expectations with respect to this
objective.

We follow the exact same calculation feproportional volume sampling for generalized ratio
objective as original proofs of efficient implementations of all four algorithm4-mptimal objec-
tive. We observe that those proofs.nroptimal objective ultimately rely on the ability to, given

disjoint 7, J C [n] (or in the other caséjn)), efficiently compute

X D det(VgVg)and > AT > det(Vi Vy)

SeU,ICS,JNS=¢  |R|=d,RCS SeU,ICS,JNS=¢  |T|=d—1,T7CS

(or in the other case, repladéwith W and\® = 1 for all S). The proofs for generalized ratio
objective follow the same line as those proofs of four algorithms, except that we instead need to

efficiently compute

SN Y det(ViVp)and Y AT ) det(VE Vi)

SeU,ICS,JNS=¢  |T|=1,RCS Seu,1CS,JNS=¢  |T'|=l',T'CS
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(note the change ok, T" of sized,d — 1 to T, T’ of sizel,l’ respectively). But the computations
can indeed be done efficiently by using differépt= ', [ instead ofd, = d — 1, d when applying
Lemmas2.6.1, 2.6.6 and2.6.7in the proofs and then following a similar calculation. The proofs

for running times arédentical. n

2.7 Integrality Gaps

2.7.1 Integrality Gapfor £-Optimality

Here we consider another objective for optimal design of experimentg;-thigimal design objec-
tive, and show that our results in the asymptotic regime do not extend to it. Once again, the input
is a set of vectors,, . .., v, € R?, and our goal is to select a S&tC [n] of sizek, but this time we

minimize the objective| (3", s vv;")~*||, where]| - || is the operator norm, i.e. the largest singu-

lar value. By taking the inverse of the objective, this is equivalent to maximizigy_, g viv;'),
where\;(M) denotes theth smallest eigenvalue af/. This problem also has a natural convex

relaxation, analogous to the one we use forAhebjective:

max \q (Z xiviv;) (2.43)
i=1

S.t.
Y =k (2.44)
1=1
0<z;<1 Vi€ ]ln] (2.45)

We prove the following integrality gap result fa2.43—(2.45).

Theorem 2.7.1.There exists a constant> 0 such that the following holds. For any small enough

e > 0, and all integersd > dy(e), if k < 2—;1 then there exists an instaneg, ... v, € R? of the
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E-optimal design problem, for which the valGe of (2.43—2.45 satisfies

CP > (1+¢€¢)OPT=(1+¢) Sgﬁf\%ﬁ:k A1 (; vw?)

Recall that for theA-objective we achieve &l + )-approximation fork = Q(¢ + %).
Theorem?2.7.1shows that such a result is impossible for theobjective, for which the results
in [ALSW17h cannot be improved.

Our integrality gap instance comes from a natural connection to spectral graph theory. Let us
first describe the instance for any givénWe first definen = (d“) vectors inR4*!, one for each
unordered paifi, j) € ([d‘g”). The vector corresponding (@, j), i < j, is w;; and has valué
in the i-th coordinate—1 in the j-th coordinate, an@ everywhere else. In other words, thg
vectors are the columns of the vertex by edge incidence matakthe complete grapk,;,,, and
UUT = (d+ 1)Igy1 — Jay1 is the (unnormalized) Laplacian &f,,,. (We usel,, for them x m
identity matrix, and/,,, for them x m all-ones matrix.) All theu,;; are orthogonal to the all-ones
vector1; we define our instance by writing; in an orthonormal basis of this subspace: pick any
orthonormal basig,, . .., b, of the subspace d&“*! orthogonal tol, and definey;; = BTuZ-j for

B = (b)L,. Thus

d+1 d+1

M=) > wvu,=(d+1)]

i=1 j=i+1
We consider the fractional solutian= (dﬂ) 1, i.e. each coordinate afis k/(*}"). ThenM (z) =
S S wivgvl = 215, and the objective value of the solutionZs

Consider now any integral solutiofi C (11" of the E-optimal design problem. We can
treatS as the edges of a gragh = ([d + 1], S), and the Laplaciarl of this graph isLs =
> (ij)es u;;u;-. If the objective value of5 is at most(1 + ¢)CP, then the smallest eigenvalue of
M(S) = Z(MGS vijv;; IS at least;zh— > (1— €)%, SinceM (S) = B' L¢ B, this means that the

d(1+¢€)

second smallest eigenvalue &f; is at least1 — )2’“ The average degrek of G is =% d+ So, we

1°
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have a grapli- ond + 1 vertices with average degréefor which the second smallest eigenvalue

of its Laplacian is at leagtl — ¢)(1 — 7:7)A > (1 — 2¢)A, where the inequality holds fatlarge
enough. The classical Alon-Boppana bounal@B6, Nil91]) shows that, up to lower order terms,

the second smallest eigenvalue of the Laplacian Afr@gular graph is at mosk — 2v/A. If our

graphG were regular, this would imply th%ﬁ_ﬁl =A> }Z In order to prove Theorer®.7.1, we

extend the Alon-Boppana bound to not necessarily regular graphs, but with worse constants. There
is an extensive body of work on extending the Alon-Boppana bound to non-regular graphs: see the
recent preprint$T17 for an overview of prior work on this subject. However, most of the work

focuses either on the normalized Laplacian or the adjacency matéx ahd we were unable to

find the statement below in the literature.

Theorem 2.7.2.Let G = (V, E) be a graph with average degre® = % and letLg be its
unnormalized Laplacian matrix. Then, as longZss large enough, angy/| is large enough with
respect taj,

)\2<LG) S A — C\/Z7
where),(L¢) is the second smallest eigenvaluegf, andc > 0 is an absolute constant.

Proof. By the variational characterization of eigenvalues, we need to find a unit veaahogo-
naltol, such that:" Loz < A — ev/A. Our goal is to use a vectarsimilar to the one used in the
lower bound on the number of edges of a spectral sparsifi@3S[L2h. However, to apply this
strategy we need to make sure tltahas a low degree vertex most of whose neighbors have low
degree. This requires most of the work in the proof.

So that we don't have to worry about making our “test vector” orthogona| ttoserve that

T
L
)\Q(LG’) = min v Gt

. 2.4
zerV x'x — (1T2)2/|V| (2.46)

Indeed, the denominator equalSy for the projectiony of = orthogonal tol, and the numerator
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is equal toy" Lgy. Here, and in the remainder of the proof, we workiH, the space ofV|-
dimensional real vectors indexed by and think ofL as being indexed by as well.
Observe that if7 has a vertex; of degreeA (u) at mostA — %\/K we are done. In that case

we can pickz € R such thatr, = 1 andz, = 0 for all v # u. Then

z' Loz Vuner T = )" A= VA

T (172 /1 1 = — 1
xte—(1T2)?/n 1 -7 1 —

which, by .46, implies the theorem for all large enough|. Therefore, for the rest of the proof
we will assume that\ (u) > A — L/Aforallu € V.
DefineT = {u € V : A(u) > A + 1V/A} to be the set of large degree vertices, and let

S =V \ T. Observe that

VIA 2 (71(A + 5 VE) +15](5 - 15 VB)

1 1
= [VIA+ (5I7] - 1—0151)@.

Therefore|S| > 5|T'|, and, sincd’ and.S partitionV/, we have(S| > 2|V|.

Define

A — LA

~ U T
oz:min{Hv u:ve H:uES},
10
wherev ~ v means that is a neighbor of:.. We need to find a vertex ifi such that only a small
fraction of its neighbors are if, i.e. we need an upper bound @nTo show such an upper bound,

let us define”(S, T') to be the set of edges betwegrandT’; then

1 1 > 1
—AlV|=|E| > |E(S,T)| > A——VA|>- All———].
SAVI =18 2 (BT 2 18l (8- 5VE) 2 2IVia (1- )

3 1 \—1
Thereforep < 2(1 — 10\/5) .

Letu € S be a vertex with at mostA — £+/A neighbors iril’, and let§ = |{v ~ u : v € S}|.
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By the choice ofu,

52A(u)—aA+1%\/K2(l—a)A<1—%>

10f = 25

We are now ready to define our test vectaand complete the proof. Let, = 1, z, = \/Lg for

Assume that\ is large enough so th{ > > 5. Then,d > (1 — a)A.
any neighbow of v which is in S, andz,, = 0 for anyw which is inT" or is not a neighbor of;.

We calculate

v Lex = |{v~u: UES}]<1—7> +H{v~u:veT} + Z Z

v~u,veES wev w;éu

1\? 1
< - _ — _
_5<1 \/3) AW — 6+ A+ VA,

where we used the fact for anye S, A(v) < A + $+/A by definition of S. The right hand side
simplifies to

A(u)—2\/5+A+%\/Z§2A— (g (1—04)—%) VA,

Sincea < 2(1 — — )_1, 8/(1—a)—1>1foralllarge enoughy, and by @.46), we have

ot

x' Lgx 1\/_ A ~1
w2 )

The theorem now follows as long 88| > C'A for a sufficiently large constardt. ]

To finish the proof of Theorer®.7.1, recall that the existence of(&+ ¢)-approximate solution
S to our instance implies that, for all large enoughthe graphG = ([d + 1], S) with average
degreeA = Z& satisfies\s(L¢) > (1 — 2¢)A. By Theoren.7.2 Ay(Lg) < A — /A for large

enoughd with respect taA. We haveA > <, and re-arranging the terms proves the theorem.

421
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Note that the proof of Theore.7.2does not require the gragh to be simple, i.e. parallel
edges are allowed. This means that the integrality gap in The@rérholds for theF-optimal

design problem with repetitions as well.

2.7.2 Integrality Gapfor A-optimality

Theorem 2.7.3.There exists an instance of the A-optimal design. ., v, such that

k

OPT= (a7

— 5)CP

foranyo > 0.

This implies that the gap is at Ieaﬁ’;—ﬂ. The theorem statement applies to both with and

without repetitions.

Proof. The exampley, ..., v, will be the same for the problem either with or without repetitions.
Pick v; to be paralleled to axisfor eachl < i < d. We will set the rest;, 7 > d to be at leask
copies of each of these for i < d, as we can pick as big as needed. Hence, we may assume
that we are allowed to pick only;, i < d, but with repetition.

Choosey; = N -¢; foreachi =1,...,d — 1, andv, = ¢4. AS N — oo, the fractional optimal
solution (can be calculated by Lagrange’s multiplier technique) is- (4o, dg, - .., 00,k — (d —

1)éo) for a very smalb, = The optimal integral solutionig* = (1,1,..., 1,k —d+1).

k
VN+d-1"

— 1, and OPT= <! — ——. Hence,

_ a1 1
We haveCP = §—= + N T a7 Eedil

1
50N T k—(d—1)d

OPT k
— .
Cp E—d+1
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2.8 Hardness of Approximation

In this section we show that thé-optimal design problem i&lP-hard to approximate within a
fixed constant whe = d. To the best of our knowledge, no hardness results for this problem
were previously known. Our reduction is inspired by the hardness of approximatiérdptimal
design proved in$EFM15. The hard problem we reduce from is an approximation version of
Partition into Triangles.

Before we prove our main hardness result, Theazehi/, we describe the class of instances we
consider, and prove some basic properties. Given a graph([d], £'), we define a vector, for
each edge = (i, j) so that its-th andj-th coordinates are equal tpand all its other coordinates
are equal td). Then the matrid” = (v.).c IS the undirected vertex by edge incidence matrix of

G. The main technical lemma needed for our reduction follows.

Lemma 2.8.1.LetV be the vertex by edge incidence matrix of a grépk- ([d], £), as described
above. LetS C E be a set ofd edges ofG so that the submatri¥s is invertible. Then each
connected component of the subgrdph-= ([d], S) is the disjoint union of a spanning tree and an

edge. Moreover, if of the connected componentsibfare triangles, then

o fort =4, tr((VeVy )™ =24,

e for anyt, tr((VsVd )™1) > d — 3.
Proof. Let Hy, ..., H. be the connected componentsiéf First we claim that the invertibility

of Vs implies that none of thé, is bipartite. Indeed, if somé/, were bipartite, with bipartition

L U R, then the nonzero vectardefined by

(

1 1€ L

T,=4-1 1€R

0  otherwise
\
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is in the kernel ofVs. In particular, eacti{, must have at least as many edges as vertices. Because
the number of edges @f equals the number of vertices, it follows tleaeryconnected component

H, must have exactly as many edges as vertices, too. In particular, this means thdi eisettye
disjoint union of a spanning tree and an edge, and the edge creates an odd-length cycle.

Let us explicitly describe the invers& '. For eache € S we need to give a vectar, € R¢ so
thatu! v, = 1 andu/v; = 0 foreveryf € S, f # e. ThenU" = V!, whereU = (u.).cs is the
matrix whose columns are the vectors. LetH, be, as above, one of the connected components of
H. We will define the vectors, for all edges: in Hy; the vectors for edges in the other connected
components are defined analogously. Cebe the unique cycle aff,. Recall thatC, must be an
odd cycle. For any = (i, j) in Cy, we set the-th and thej-th coordinate of., to % LetT be the
spanning tree off, derived from removing the edge We set the coordinates aof corresponding
to vertices of H, other thani and j to either—% or +§, so that the vertices of any edge Bf
receive values with opposite signs. This can be done by setting the coordinateasfesponding
to vertexk in H, to $(—1)°v("¥) wheredr (i, k) is the distance if” between: andk. Because
Cy is an odd cyclegr (i, j) is even, and this assignment is consistent with the values we already
determined fori andj. Finally, the coordinates af. which do not correspond to vertices &f
are set td). See Figure2.1for an example. It is easy to verify that v. = 1 anduv; = 0 for
any edgef # e. Notice that||u.[|3 = %, whered, is the number of vertices (and also the number

of edges) ofH,.

Figure 2.1: The values of the coordinatesipfor e € C,.

It remains to describe, whene = (i, j) ¢ C,. LetT be the tree derived frorfl, by contracting
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C, to a vertexr, and set- as the root of/". Without loss of generality, assume thas the endpoint
of e which is further fromr in 7. We set the'-th coordinate ofi, equal tol. We set the coordinates
of u. corresponding to vertices in the subtreelobelow ; to either—1 or +1 so that the signs
alternate down each path frojnto a leaf of 7" below j. This can be achieved by setting the
coordinate ofz, corresponding to vertekto (—1)°70:F), wheredr(j, k) is the distance betwegn
andk in T. All other coordinates ofi. are set equal t0. See Figure.2for an example. Notice

that||u.||? > 1 (and in fact equals the number of nodes in the subtré&é lmélow the nods).

Figure 2.2: The values of the coordinatespfor e ¢ C,.

We are now ready to finish the proof. Clearly[ifi can be partitioned into = g disjoint

triangles, and the union of their edgesSisthen

- 3|8 3d
e((VoVd) ™) = (0T = Y iy = 2 = 3
eeS
In the general case, we have
tr((VsVg ) ™) = tr(UUT) = Z e 2
ecS
~ |y - dy
= +dy—|C
- zz:; 4 ¢ | e|

9t 3t
> —4+d—-3t=d— —
_4+ 1

where|C,| is the length ofC,, andd, is the number of edges (and also the number of vertices)

in H,. The final inequality follows because any connected compofenthich is not a triangle

66



contributes at least, to thesum. ]

Recall that in the Partition into Triangles problem we are given a géaph(V, E), and need
to decide ifi¥ can be partitioned intévgl| vertex-disjoint triangles. This problem MP-complete
([GJ79 present a proof in Chapter 3 and cite personal communication with Schaeffer), and this,
together with Lemma&.8.1, suffice to show that thél-optimal design problem iBlP-hard when
k = d. To prove hardness of approximation, we prove hardness of a gap version of Partition into
Triangles. In fact, we just observe that the reduction from 3-Dimensional Matching to Partition
into Triangles in (379 and known hardness of approximation of 3-Dimensional Matching give

the result we need.
Lemma 2.8.2.Given a graphZ = (W, E), itis NP-hard to distinguish the two cases:

1. W can be partitioned inté‘g—/' vertex-disjoint triangles;

wi
3 )

2. every set of vertex-disjoint triangles@hhas cardinality at most
wherea € (0,1) is an absolute constant.

To prove Lemm&.8.2we use a theorem of Petrank.

Theorem 2.8.3([Pet94). Given a collection of tripled” C X x Y x Z, whereX, Y, andZ are
three disjoint sets of size& each, and each element &fU Y U Z appears in at most triples of

F, itis NP-hard to distinguish the two cases

1. there is a set of disjoint tripled/ C F' of cardinalitym;

2. every set of disjoint tripled/ C F' has cardinality at mostm,
wheres € (0, 1) is an absolute constant.

We note that Petrank gives a slightly different version of the problem, in which th&/g9st

allowed to have intersecting triples, and the goal is to maximize the number of elefernts) 7
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that are covered exactly once. Petrank shows that it is hard to distinguish between the cases when
every element is covered exactly once, and the case when at3moestlements are covered

exactly once. It is immediate that this also implies TheoBe&3

Proof of Lemma 2.8.2 We will show that the reduction ifdJ79 from 3-Dimensional Matching

to Partition into Triangles is approximation preserving. This follows in a straightforward way from

the argument inGJ79, but we repeat the reduction and its analysis for the sake of completeness.
GivenF' C X UY UZ such that each element &fUY U Z appears in at mosttripes of F', we

construct a graply = (W, E') on the vertices UY U Z and9|F'| additional verticesuy, ... ayo

for eachf € F. For each triplef € F', we include inE' the edged?; shown in Figure2.3. Note

that the subgraphs spanned by the ggtsE, for two different triplesf andg are edge-disjoint,

and the only vertices they share areXnJ Y U Z.

ars are ar9
afi afz' afq ‘af7 afs
CLf5
X Yy z

Figure 2.3: The subgraph with edggs for the triple f = {z, v, z}. (Adapted from 5J79)

First we show that iff" has a matching/ covering all elements ok U Y U Z, thenG can
be partitioned into vertex-disjoint triangles. Indeed, for ech {z,y, 2z} € M we can take the
triangles{x, as1,ar}, {y,ar, ars}, {2z, apr,aps}, and{ayss, as, ape}. FOr eachf ¢ M we can
take the triangle$as, aro, ars}, {asa, a5, a6}, and{asr, ars, apo}.

In the other direction, assume there exists dset at Ieas‘a@ vertex disjoint triangles i,
for a value ofa to be chosen shortly. We need to show thatontains a matching of at leastn

triples. To this end, we construct a sSgtwhich contains all tripleg, for eachZ; which contains
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at least! triangles ofI’. Notice that the only way to pick three vertex disjoint triangles frBimis
to include the lower three triangles (see Figure), so any two tripksdg in M must be disjoint.

The cardinality of" is at mosti| M| + 3(|F'| — |M]|) = |M| + 3|F|. Therefore,

W
|M| + 3|F| > a|—3’ = a(m + 3|F)),
and we haveM| > am — (1 — «)3|F| > (10a — 9)m, where we used the fact thgt| < 3m
because each element®fappears in at mosttriples of F. Then, ifac > 9%05 we haveg M| > fm.

This finishes the proof of the lemma. O

We now have everything in place to finish the proof of our main hardness result.

Proof of Theorem 2.1.7 We use a reduction from (the gap version of) Partition into Triangles
to the A-optimal design problem. In fact the reduction was already described in the beginning of
the section: given a grapghl = ([d], E), it outputs the columns, of the vertex by edge incidence
matrix V' of G.

Consider the case in which the vertices(étan be partitioned into vertex-disjoint triangles.
Let S be the union of the edges of the triangles. Then, by Ler@rdd, tr((VsVy)™!) = 22

Next, consider the case in which every set of vertex-disjoint trianglés s cardinality at
mostag. Let S be any set ofl edges in~ such thatls is invertible. The subgrapl = ([d], S)
of G can have at mosﬂyg connected components that are triangles, because any two triangles
in distinct connected components are necessarily vertex-disjoint. Therefore, by L2i@aMa
tr((VsVg) ™) > B,

It follows that ac-approximation algorithm for the-optimal design problem, for any< 4*7‘1

can be used to distinguish between the two cases of Leth&3 and, therefore, thel-optimal

design problem i8lP-hard toc-approximate. O
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2.9 Regularized Proportional Volume Sampling for Ridge Regression

In this section, we consider the problem of optimal design with a regularizer cadigel regres-
sion, and extend the sampling algorithms #optimal design to ridge regression. We first start

with the background and motivation of ridge regression.

2.9.1 Background

Notations

We recall notations used throughout this thesis. et [v; ... v,] be thed-by-n matrix of vectors
v; € R Thesey;’s are also called datapoints. We want to select a subsein| of sizek so that
learning the model with label of is as efficient as possible. L&t = [v;];cs be a matrix with
columnsu;,i € S. Lety be the label column vector, and is thek x 1 column vector(y; );cs. We

denoteX as the datapoints we want to predict, which is most cases is the sdme as

Linear Model Assumption

In optimal design throughout the thesis, we assumegthatz; w* + n; wherer); are independent
Gaussian noise with mean zero and same variance. In this section, we note that we may also
assume is a random Gaussian vectdr(0, Cov (n)) with Cov () < ¢*I. Under this assumption,
the errors to be presented in this section is upper bounded by in the settingmheke(0, o21).
Hence, for simplicity we assumg~ N (0, 0*1) as earlier.

After obtaining labelg)s, we are interested in fitting linear modék by minimizing square

loss with a regularizer with parametir
g = argmin { ||ys — Vg w3 + Aljwl[3} (2.47)

wERL

This problem is calledidge regressionand whem = 0, the problem reverts to linear regression.
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Errors W — w* XT (g — w*)
A=0 = N (0,02 (VsVd) ') = N (0,0°X7 (VsVd) ' X)
A>0
= N(=\Zs(N)"w, = N(=AXT Zs(N) ",
0 [Zs(N) ' = AZs(\)?) | o?XT[Zs(N) = AZs(N)*] X)

Table 2.3: Distributions of model and prediction errors in ridge regression

It is also known that the above ridge regression is equivalent to linear regression under Gaussian
prior assumption. Ridge regression with> 0 increases the stability the linear regression against
the outliar, and forces the optimization problem to have unigue solution even when datapoints in

V' do not span full-ranki.

Model Error and Prediction Error

In order to motivate a good objective for subset selection problem, we calculate the model error
g — w* and prediction erroX " (s — w*) when the predictor is used to predict datapoikits
In many applications, the matric of error conceiso be the same ds. These errors are random
with distributions summarized in Tab&3.

The calculations used to obtain distribution in TaBl8is similar in each of four cases. Here
we will compute only one examplé&l' " (s — w*). This example is the most complicated one of
the four, and enough to guide the reader to obtain other three.

DenoteZs()) := (VsV4 + AI). We first state some facts that will help in this calculation.

Claim 2. For a fixed matrix4 and randomZ, we haveCov (AZ) = ACov (Z) A". ! Hence, we

can obtain linear transformation of a multivariate normal random vecior.

Proof. We split calculations into the following steps.

Ihttps://stats.stackexchange.com/questions/113700/covariance-of-a-random-vector-after-a-linear-transforma
2https://www.statlect.com/probability-distributions/normal-distribution-1linear-combinations
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1. Find closed-form solution abs by taking the gradient:

12)5 = ZS(/\)_IVSyS (248)

2. Substitutingy; from the linear model assumption. This finishes obtaining the distribution of

model error.

wg —w" = ZS()\)”VSyS —w”
= Zs(\) Vs (V4 w* +ns) — w*
= Zs(A\) ' [Zs(N)w* — (A w* + Veng] — w*

= —AZs(\) w4+ Zg(\) ' Vans

3. To obtain prediction error, we simply left multiply by the data matrix:

XT (g —w*) = = AX"Zs(\)rw* + X T Zg(\) " Vans

4. Linear transformation of random Gaussian vectors is Gaussian, so we use the claim above to

get that the mean of prediction error is

IXT (g = —AX | Zg(N) " w* (2.49)
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Errors E [[[is — w*[3] E[IXT (s — w)[3]
ns ns I

A=0 = o’ tr VsVg =t X (VsV4) ' X
\ >0 =o%tr Zg(\) ™!
= —A{(Zs(\)72, 0% — Mw*w* ") — o2 tr X Zg(\) ' X

M Zs(N)'XXTZs(A\) 7!, 0%] — dw*w* ")

Table 2.4: Expected square loss of model and prediction errors in ridge regression

and the covariance is
Cov (X T (tbg — w*)) = X T Zs(A) Vs Cov (ns) (X T Zs(A)'Vs)
= X" Zs(\)"Ws Cov (ns) V§ Zs(A\) X

< * X Zs(N\) "WV Zs(N) X

=’ X" [Zs(\)" = AZs(N)7?] X

Expected Square Loss of Ridge Regression Predictor

There are several metric to minimize the error distribution. One common metric is expected square
loss under the distribution. We can find this expectation as follow(s). First, we calculate expected

square-loss of model error:

E [|lds - wl5] = 3B [((ts): = (w):)’]

= > (Eltds) = @) + V(o) - ()

= ||E [ws — w*]||§ + tr Cov (wg — w")
n
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where we us& [X2] = E [X]* + Var (X) (bias-variance decomposition). Similarly, for prediction

error,
E [IXT (s —w)[5] = ZIE X (dg)i = (w*),)I3]

=2 (E (X7 ((ds); — (w*))]” + Var (X7 ((tbs); — <w*>i>>)

= ||Ig} (X (s — w)] |5+ tr Cov (X (g — w*))

As we know mean and variance of the model and prediction errors (Zak)leve can substitute

those means and variances:

E [lws = w*[)3] = |=AZs(N\) "™l + tro® [Zs(A) ™ = AZs(A) 7]
= )2 <Zs()\)’2,w*w*T> 4o tr Zs(A\) "t — Ao tr Zs(\) 2

— o2 tr Zg(A) "L — A <Zg()\)‘2, o2 — )\w*w*T>
If we assume thak < ﬁ we have\w*w* ! < ¢2I [DW174. Then,
E [ —w*[3] < 0 tr Zs(A) ™ (2.50)
For prediction error,

15 X T (0s —w)|)3] = [|[-AX " Zs(N) w5 + tro® X T [Zs(A\) ™" = AZg(N)7*] X
= \2 <Z5()\)‘1XXTZS(/\)‘1, w*w*T> + 0% tr X Zs(AN) X — Ao? tr X T Zg(N) 2 X

— o2 tr X Zs(A) 71X — A <ZS(/\)‘1XXTZS()\)‘1, o2 — Aw*w”>
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[

If we assume that < "f -, we have\w*w* T < 2] [DW174d. Then,
E[|XT (s —w")|3] <o*tr X" Zg(N)'X (2.51)
n

The bound 2.50 is the analog of thé-optimal design objective, and is the motivation for the

ridge regression objective to be considered in the next subsection.

2.9.2 )\-RegularizedA-Optimal Designand A\-RegularizedProportional Wlume Sampling

In this section, we consider an approximation algorithm to the optimization problem that, given

V =[vi...v,] € R™>" integerk > d, and)\ € R, solve

Eq1Z5(\)

min 2.52
SCinl|S|=k  E4Zs(\) o2

whereZs(\) := VsV¢ + M. Though this objective is motivated from the square loss from ridge
regression (see Tab®4), it is not the same objective. However, if we assuime ﬁ then the
loss is bounded above % Due to this motivation and its similarity with objective from
A-optimal design, we call problen2 (62 \-regularizedA-optimal design.

Denoteld;, (U<;) the set of all subsetS C [n] of sizek (of size< k). Given\ > 0,y €
R™ U € {Ux, U<}, andp a distribution ovet/, we define the\-regularized proportional volume
sampling with measurg to be the distribution.’ over i wherep/(S) o< u(S)det Zg(\) for
all S e U . Giveny € R", we say a distribution. over!/ is hard-core with parametet if
p(S) o< 25 :=[],cq z for all S € U. Denote|| A||» the spectral norm of matri®.

To solve A-regularizedA-optimal design, we solve the convex relaxation of the optimization

75



problem

Ea(V(@)V(2) | + A1) subject to (2.53)

> a=k, (2.54)

=1

1>2>0 (2.55)
whereV (z) = [\/z1v1...1/Zs0,), tO get a fractional solution: € R”. Note that convexity

follows from the convexity of function%%) over the set of all PSD matrice¥ € R™"*".
Then, we use\-regularized proportional volume sampling with hard-core meaguséth some
parametey € R” which depends om to sample outpu$ € U<;. The summary of the algorithm
is in Algorithm 2.4. The overall goal is to show that with= (2 (% + bgi#) Algorithm 2.4 has

(1 + ——————)-approximation guarantee to solvingregularizedA-optimal design.

A
VI Tveven

Algorithm 2.4 Solving mingc ), |s|=k
tional volume sampling

Ed_lzs(k)

FaZs () with convex relaxation and-regularized propor-

1: Given an inpul’ = [vy, ..., v,] wherev; € RY, k a positive integer) > 0
Eq_1(V(2)V(2)T+I)
=k By(V(2)V(z)T+AI)

2: Solve to get a fractional solution€ argmin, ¢ (g yjn ;7

. . m - € A
3 Letz = g2 whereg =1+ 4\/1 RO
4: SampleS from /() oc 2% det Zg(\) for eachS € U,

5. OutputS (If |S| < k, addk — |S| arbitrary vectors te first).

Theorem 2.9.1.GivenV = [v;...v,] € R¥", integerk > d, and\ € R*, Algorithm2.4 has

(1 + e)-approximation guarantee to solvingregularizedA-optimal design.

We note that the approximation ratio is in fact a slightly tighter fadtef ——~——, as
VI vEven
will be shown later in this section. This ratio shows that the algorithm’s performance improves as
A increases, and is asymptotically optimabas> oo.

The proof of Theoren2.9.1relies on showing that proving an approximation guarantee of a
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A-regularized proportional volume sampling with measunmeduces to showing a property an
which we calledhear-pairwise independencé&his reduction is explained in Theore2r0.4 We
then construct: based on fractional solutionand prove that: has such property in Secti@9.5
Finally, we note that our constructedis hardcore, and show that we can efficiently implement

A-regularized proportional volume sampling with amgrd-coremeasureu.

2.9.3 Related Work

Ridge regression or regularized regression is introducediby’{] to ensure a unique solution
of linear regression when data matrix is singular, i.e. when labeled datapoints do not span full
dimensions. Ridge regression has been applied to many practical probSv§ [and is one of

classical linear methods for regression in machine learriid-p9.

A-regularized volume sampling. [DW174 introduced\-regularized volume sampling and gave
theoretical guarantee bound for the model eBoftws — w*||3], which equals tor (VsVy + M)_l,

ns
the objective of focus in this section. We explain the similarity and difference of their guarantees

here. PW174 showed that foCov (1) < 02] and\ < 2

[[w ]2

o*n tr(VV I+ M)
kE—dy+1

-1
E |t (VsVd + A1) < (2.56)
whered, = tr(VT(VV T+ XI)~1V) (recall thatn is the number of vectors to choose from). For
A =0, d\ = d, andd, decreases asincreases.
The bound 2.56) is different from our goal of approximation ratio in this thesis. Indeed,

suppose that™* is an optimal subset of the problem, then in expectation over the run of the our
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algorithm,

d—1

= o tr((Ve-Vge + AI)™H)
(k—d+ 1)\/1 + VEven

E [tr (VsVy + A[)ﬂ <1+
(2.57)

for some fixed constant(we assumé is large compared tb so that? + £60/9 — O (4)). When

A = 0, our bound 2.57) simplifies to a bound similar t®(56):

O'zk' tr((VS*Vs*‘i‘/\I)_l)
k—dy+1

E [tr (VsV4 + M)*l} <

The main difference between our guarantee and oneBWi[/d is that ours is in comparison
to the best possible subs&t, whereas .56 compares the performance to labelling the whole

original dataset.

2.9.4 Reductionof Approxibility to Near-Rirwise Independence

In this section, we show that an approximation guarantee)efegularized proportional volume
sampling with measurg to A\-regularizedA-optimal design reduces to showing a property.on
which we callednear-pairwise independencalNe first definenear-pairwise independencd a

distribution.

Definition 2.9.2. Let i be a distribution o/ € {U},, U<, }. Letz € R}, We sayy is (c, o)-near-

pairwise independemith respect tae if for all 7', R C [n] each of size at most,

Pr[SDT]

S o ca|R‘—\T|£ (2.58)
SPr [SDR] xh '
~p

We omit the phrase "with respect 1§ when the context is clear. Before we prove the main

result, we make some calculation which will be used later.
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Lemma 2.9.3. For any matrix PSDX € R%*? anda € R,

d

Eq(X +al) =Y E(X)a"" (2.59)
=0
and
d—1
By (X +al)=) (d—i)E(X)a™" (2.60)

Proof. Let X be eigenvalues oX. Then,

d d
Eg(X +al) =[N +a) =D e;(Na™ =) Ei(X)a""

i=1 =0 =0

proving the first equality. Next, we have

d
By (X +al) =) (\i +a)
J=14€[d),i#j
d d—1 d—1
= Z ei(A_j)a® 1 = Z (Z ez()\J)) ad=t
j=1 i=0 i=0 \j=1

where)_; is A with one elemen); deleted. For each fixede {0,...,d — 1}, we have

Y eAy) = (d—ie(N) (2.61)

j=1

by counting the number of each monomiakig\). Notinge;(\) = E;(X) finishes theproof.

Now we are ready to prove the main result.

Theorem 2.9.4.Letx € [0,1])". Letu be a distribution o/ € {U, U<} that is (¢, a)-near-

pairwise independent. Then theregularized proportional volume sampling with measureu
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satisfies

(2.62)

[Ed_l (ZS(/\))] _ B (V(z)V(2)" + aX)
S| By (Zs(N) | = Es(V(x)V(x)T + all)

That is, the sampling givesv-approximation guarantee ta\-regularized A-optimal design in

expectation.

By 1 (V(@)V(2)T+ar) Ba_1(V(2)V(2)T+AI)
Note that by Ba(V(@)V(@) T+arl) =  Eq(V(@)V(e)T+AI)

guarantee to the originatregularizedA-optimal design. However, we can exploit the gap of these

, (2.62 also impliesca-approximation

two quantities to get a better approximation ratio which converges to\l-asx. This is done in

Theorem2.9.6

Proof. We apply Lemma.9.3to RHS of .62 to get

E; (V(2)V(z)T +aX) S BV (2)V (2)T)(aN)d*
_ S o Yorien (d — B) (@A) R T det (VI V)
Sio Yor—e(@N) el det (V] V)

Byt (V(@)V(2)T + al) 40(d = h)EL(V(2)V (2)T)(aX) 1"

where we apply Cauchy-Binet to the last equality. Next, we apply Le2u@8to LHS of (2.62

to get
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[Edl (ZS()\))] _ Dseu tUS) EalZsON ST S i(S) Eaa Zs(N)
s~ | Eq(Zs(N)) > seu H(S)EaZs(N) > seu M(S)EaZs(A)

_ 2 seu 1(5) Z;é(d — h)En(VsVg )N ="

P seu 1(0S) Eig Ee(VsV )X

_ Yseui(S) > ho > rienres(d = WA det (Vi Vr)

- > seu M(S) Z?:o > |RI=t,RCS Xi=tdet (V7 Vi)

B ZZ;%) Z|T|:h > seusor M(S)(d — h)AT R det (VTTVT)

- Z?:o Z\m:e ZSEL{,SQR p(S)A det (VRTVR>

3 hmo Spren(d — )X det (VT Ve) Pr[S 2 T]

Z?:o > IR A=t det (Vi Vi)

Pr
Srop
[S 2 R|

Pr
S~

Eg_1(Zs™)
1| Egq(zsV)

Therefore, by cross-multiplying the numerator and denominator, the i T Yy

1
Eg(V(z)V(z) T +aXI)

S0 Yomien Yoto Soymi—e(d — ) det (VI V) det (ViVY) /\d‘l‘h(a)\)d‘%RF;r [S DT
e Y St Xy rie(d — ) det (VT V) det (VRVT) A (a\)1=haTPr [S D R

I

. N=1=h ()= RPr[SDT]
For each fixedh, T, ¢, R, we want to upper boungd,g(M)d,l,hﬂé‘r@m.

By the definition of

near-pairwise independencz§8),

d—1—h d—{,..R
A (Oj)\) T Izr [8 2 T] )\d*“h(a}\)d*‘f —h

AN T TPr[S D R — AT {(an)d 1 (2.63)
o
=a" et = ca (2.64)
[Ed—l(zs()\)):|
Therefore, the ratigS~/ L +(*s™)  is also bounded above . O

By 1 (V(2)V(e) T +arl
Eq(V(2)V(z) T +aXI)

81



2.9.5 Constructinga Near-Rirwise-Independent Distribution

In this section, we want to construct a distributioron U<, and prove its , a)-near-pairwise-

independent property. Our proposeds hard-core with parametere R™ defined byz; := /8’07
Pr [SDT]

(coordinate-wise) for some € (1, 2]. With this choice ofu, we upper bound the rati%j“[s—DR] in
S~p T

terms of 3. Later in SectiorR.9.6 after getting an explicit approximation ratio in term/@here,

we found that under the assumptibnr= €2 (% + bgi#) the choice3 = 1 + i\/l + m

gives(l + ————)
VI TEven

Lemma 2.9.5.Letx € [0,1]" such thaty " | z; = k. Lety be a distribution ori/<, that is hard-

-approximation guarantee to Algorithew.

core with parameter € R"™ defined by:; := Yo (coordinate-wise) for somg < (1,2]. Then,

forall T, R C [n] of sizeh, ¢ between 0 and, we have

Pr[S§2T] (—h T
SPNH SoR - . (B-Dk—Bd)?) o7 (2.65)
SNL = 1 —exp <_T> x
Thatis,u is ( (ﬁlfl)kfﬁdﬂ ,B) -near-pairwise independent.
1—exp<—W>

Proof. Fix T, R of size0 < h,¢ < d. DefineB C [n] to be the random set that includes each

i € [n] independently with probability; /5. LetY; = 1[i € B] andY = > ... Y;. Then, noting

thatz; = -8 we have

1—z;/8"
PrISOT) PBOTIBI<K  Pr(B2T]
= <
PrSOR  PrBORIB[<K PrBORIB<K
~p
— ﬂf—hﬁ 1

'l Pr [ZigﬁRYi <k-—{

Letxz(R) = ), . xi. Then by Chernoff bound,

PrV >k — (] <exp (—((5 _315)2“6;_9”352»_ g0 ) < exp <—((6 — 13);; fd) > (2.66)
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which finishes thgroof. ]

2.9.6 TheProofof theMain Result

The main aim of this section is prove thié + m)-approximaﬁon guarantee of the
A-regularized proportional volume sampling algorithm feregularizedA-optimal design. The
main result is stated formally in Theorer.6

Lemma2.9.5 shows that our constructed is (c, 3)-near-pairwise independent for some
dependent ors. Theorem2.9.4translates this property to the3)-approximation guarantee to
BA-regularizedA-optimal design problem. However, this is a gap between the optimus-of
regularizedA-optimal design and that of-regularizedA-optimal design. This gap obviously
depends o and is quantified in Claid. Therefore, we want to pick small enough to bound
(c¢)-approximation guarantee but also big enough to exploit this gap. The optimizati@sof

1 + +/\
N g T
IV (2)V(z)ll2

Before proving the main theorem, we first simplify the parametef (c, 3)-near-pairwise

done formally in Theorern2.9.6 giving the( )-approximation guarantee.

independenj: that we constructed. The calculation shows that () (f + l‘)gg#) is a right

condition to obtairc < 1 + .

Claim 3. Lete’ > 0,3 > 1. Suppose

d
k> ;fl + (53—ﬁ1>2 log(1/€) (2.67)
Then
exp (_(ﬁ — 13)21; M)Q) <¢ (2.68)

Proof. (2.68) is equivalent to

(B =1k — pd > /3Blog(1/€)k
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which, by solving the quadratic equationvf¥;, is further equivalent to

V/3Blog(1/€) + /3Blog(1/€) + 4(3 — 1)3d
vi= 20— 1)

Using inequalityy/a + Vb < 1/2(a + b), we have

V/3Blog(1/€) + \/3Blog(1/e') + 4(3 — 1)5d < V/3B3log(1/€) +2(8 —1)3d
2(6-1) N B—1

e 29
_\/w—l)?lg(” N

so the result follass. ]

Next, we quantify the gap of the optimum @f\-regularizedA-optimal design and that of

A-regularizedA-optimal design.

Claim 4. Let M € R%*? be a PSD matrix, and lgt, A\ > 0. Then,

Bay (M+BA) _ 14 pi Eax (M + M)
Eq(M +BA) 14 By Ea (M + M)

i YitA [Mll2+A IlMHz
Proof. Lety be eigenvalues af/. Then, o < Ao = 1+/3” for all i € [d]. Therefore,

Eg_1 (M + BAI) i

E4 (M + BAI) Vi + 3

A d A
1+ mr T Z 1 MR Be (M + D)

A

2 1=
asdesired. O

Now we are ready to state and prove the main result of this section.

84



Theorem 2.9.6.LetV = [vy,...,v,] € R*" ¢ € (0,1),A > 0, z € [0,1]" and suppose

1
k> —Od + 2 log(4/¢) (2.69)
€ €

Denote) = A

= Teve L Then the\-proportional volume sampling’ with hard-core measurg

with parameter; := 7%~ (coordinate-wise) witht = 1 + {v/1 + X’ satisfies

E {M} < <1+ ‘ ) Ea (V(SE)V(QT + D)

Ea(ZsOV) VITw) E(V@)V(e) +AD) (.70)

Therefore, Algorithn2.4gives(1 + \/ljj,)-approximation ratio to\-regularized A-optimal design

problem.

The approximation guarantee of Algoritha follows from z being a convex solution to the
A-regularizedA-optimal design, so the objective given bys at most the optimal integral solution

of the \-regularizedA-optimal design problem.

Proof. Denoteg, = 1 + 5—“4“ andg, = 1+ §. By inequality .69,

k> %l 4 g log(4/€) — Q(ﬁfd_ gt 4(6013 172 o8(4/9) 2.71)
> ;06 fdl 7 ﬁ03f01)2 log(4/€) (2.72)
The last inequality is by, = 1+ £ < 2. We have; % > ﬁffil and
b _ 1, 1 m+<m>2 . \/1+X+ VIFN
(Bo—1)2 Bo—1 (Bo—1)2 Bv—1 (Bv—127 Bv—1 (Bv—1)
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Therefore, 2.72 implies

20xd
k> + V14 MNlog(4/e 2.73
Prv =1 (5»—1) g(4/e€) (2.73)
By Lemmas2.9.5 y is (¢, §)-near-pairwise independent for= — (gl,l)k,m?)' We now use
—exp( ——=35r

)m

Claim 3 to boundc: with the choice of3 = 3y ande’ = (£ in Claim 3, we haver < -

Therefore, by Theorerd.9.4 Algorithm 2.4 guarantees objective with factor at mest =

from optimum ofg\-regularizedA-optimal design, i.e.

(2.74)

{Ed—l (Zs()\))l < B Ed L (V(@)V(2)" + B
Ei(Zs(N\) | —1—€¢ E;(V(x)V(z)" + BAI)

Now we apply Claim4 to exploit the gap betweek andA-regularizedA-optimal design:

Eqy (V(@)V(2)" +8M) 14X B (V(@)V(2)" + BA)
Eq(V(@)V(2)T+6X) ~— 1+6N  Ey(V(2)V(x)T + BAI)

Therefore, Algorithn.4 gives approximation ratio of

B 1+ :<1+ S )(1—6')1g(1+ﬁ_1>(1—e')1

1—¢ 146N 1+ BN Y
€ -1
(14— )1 -¢
(1) -9
7 -1
Ase/4 < 1/e, we have the inequality = (£)¥'™ < T Hence(l —¢)” ' < (1_4#1;?') :

Thus, the approximation factor is at most

-1
€ € €
14+ — 1—-— <1+ 2.75
( 4\/1+X> ( 4\/1+X) VI (27%)
where the inequality is by < 1. n

Note that we could have used fractional solutiofrom solving convex relaxation with reg-
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ularizer G\ instead ofX in Algorithm 2.4. This does not change the approximation ratio of the

x €T T
algorithm nor the proof, but in practice this gives a smaller valuggé*(v( W(@)T+AT)

a(V(2)V(2)T+BA) to more

tightly bound the objective of the algorithm usirj§2.

2.9.7 Efficientimplementatiorof A\-RegularizedProportional \6lume Sampling

In this section, we show that-regularized proportional volume sampling can be implemented
in polynomial time. The deterministic counterpart and its generalized version that naturally fol-
lows Section2.5.3 (\-regularized proportional-volume sampling — sampling with p/(S) o
2" E,(VsV4 + M) to solve the generalized ratio objective with regularizer) can also be imple-
mented in polynomial time by following a similar argument.

The following is the main statement for efficient implementatiomeagtgularized version of

proportional volume sampling. The standard counterpart was stated in Th2d&m

Theorem 2.9.7.Letz € R}, vy,...,v, € RLX > 0,1 < k < n, U € {Uy, Ui}, andV =
[v1,...,v,]. Then there is a randomized algorithahthat runs inpoly(n, d) time which outputs

S € U such that

29 det(VsVy + \)
Pr [S=5]= S — /(S
SNEA[ ] gy 2% det(VEVET + X)) H(S)
That is, the algorithm correctly implementsregularized proportional volume sampling with
hard-core measurg oni/ with parameterz. Moreover, the algorithm runs i® (n*dk? log(dk))

number of arithmetic operations.

Proof. The argument follows similarly with one in TheoreP6.2 with some modification of
calculation later in the proof. We sample by starting with an emptys'set(). Then, in each step

1=1,2,...,n, decide with the correct probability

PrieS|ICS,JNS =10
S~/
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whether to includé in S or not, given the previous outcome. LEt= [ U {i}. This probability

equals to

PrI'CS,JNS =10

S~/

PrICS,JNS=1{(]

S~/
_ D Seu,1'CS,InS=0 25 det(VsVy + M)

B ZSGM,IQS,JOS:(Z) 25 det(VsVy + A1)

_ D Seu, 1'C8,InS=0 2 ZZ:O At > Rl=h.ncs det
ZSeu,IgS,Jmszw 25 ZZ:O Ad=h Z\R|:h,RCS det

B Zi:o AT D Seu, 1'C8,InS=0 2 > \Rrj=h,rcs det(Vg

== -
dho AT ESeu,Igs,Jms:@ z° Z\Rl:h,RCS det(Vy V)

PrieSIICS,JNS=10]=
S~p!

where we apply Lemma.9.3and the Cauchy-Binet formula in the third equality. Both the numer-
ator and denominator are sums over terms in the 88, 4cs jns—p 2° > rj=n.rcs det(Vy Vr)

for some setd C U/ andh = 0,1,...,d. We have shown in the proof of Theore6.2 that

a term in such form can be computed in polynomial time. More specifically, for elach
{I', I}, we compute polynomiaF'(t,,t,,t3) in LemmaZ2.6.1only once to find the coefficients
of the all monomialst®¢do¢!! for ky = 0.1.....k anddy = 0,1,...,d, giving the value of

D 5|5k ACS.INS=0 2 D Ri—do.res et(VR Vr) for eachko, dy. Hence, the sampling can be
done both fo/ = U}, (when we just need, = k), and forld = U<, when we need values for
ko = 1,2,... k. Computing polynomiaF'(t, t,, t3) takesO (n3dk? log(dk)) number of arithmetic
operations by Lemma.6.1and is the bottleneck in each of thesampling steps, and hence the

total runtime isO (n'dk? log(dk)) number of arithmetioperations. N

Derandomization can be done identically to obtain the same result as in Thed@&mGen-
erlization to/-volume sampling can be done identically to Theor2m.11 The runtimes for
A-regularized counterpart are the same for both theorems. The modifications of proofs to obtain
the results are identical to the proof of Theor@r.7. That is, to expand any terms in the form

E4(VsVy + M) (or E,(VsVy + M) for otherh’s) into polynomial in) with coefficients in the
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form E,,(VsVy ), and use Lemma.6.1to calculate all terms of interests for dl =0, 1,.. ., d.
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CHAPTER 3
COMBINATORIAL ALGORITHMS FOR OPTIMAL DESIGN

3.1 Introduction

Optimal experimental desigriP[ik0q lies at the intersection of statistics and optimization where
the goal is to pick a subset of statistical trials to perform from a given set of available trials. Linear
models are one of the most widely used and well-studied models in the Fedad5 Puk0g
ADTO7]. The goal is to learn an unknown paramedérc R? from a set of linear experiments
{v1,...,v,} where eachy; € R If the i experiment is performed, we obsemye= (v;, 0*) + n;
wherer; is a small error introduced in the experiment. Given an intéger n, the optimization
problem involves picking: vectors out ofz to ensure the unknown paramet&rcan be deduced
as accurately as possible.

By assuming the error vectey is a gaussian noise, the maximum likelihood estimate/for
call it 4, is obtained via minimizing the least square error over theSset performed experi-
ments, i.e.0 = argmin g >, |07 0 — yil|3- The error in estimatiod — ¢* is distributed as
Gaussian with mean zero. If the variance for eacls 1 (which can be assumed by normaliza-
tion), then the covariance matrf},_g v;v;')~'. Optimal design consists of minimizing a function
O (Xiegvivd) ™) where®(M) = det(M)a for D-optimal design and (M) = tr(M) for A-

optimal design.

D-DESIGN: Given a set of vectors,, ..., v, € R for somed € N, and a parametér > d, our
goal is to find a set or a multisét C [n] of sizek such thatdet (3, ¢ vivT)l/d is maximized.

%

Here,det(M ) denote the determinant of the matfix.

1Sincedet(M~1) = 1/ det(M), for notational convenience, we consider an equivalent formulatidn-0ESIGN
where instead of minimizinget (3", viv;") ™)/ %, we maximizedet (3", g viv; )/ <.
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A-DESIGN: Given a set of vectors,, . .., v, € R? for somed € N, and a parametér > d, our
goal is to find a set or a multisét C [n] of sizek such thatr ((Zies vivj)_l) is minimized.
Here,tr(M) denote the trace of the matrix .

When selecting a multiset, we refer to the problem as optimal design with repetitions and when
selecting a set, we refer to the problem as optimal design without repetitions. Statistizally,
DESIGN objective aims to minimize the volume of the confidence ellipsoid andAttEESIGN
objective aims to minimize the expected length square of the error véetof*. Several other
objective functions such ak-design,G-design, and/-design have also been studied in litera-
ture [ADTO7].

One of the classical optimization methods that is used for optimal design problems is the local
search heuristic which is also called the Fedorov’s exchange mefedd ] (see alsoMMJ7Q]).

The method starts with any set bfexperiments from the given set afexperiments and aims

to exchange one of the design vectors if it improves the objective. The ease in implementing the
method as well as its efficacy in practice makes the method widely d8d82] and implemented

in statistics softwares such as SAS (sédT07], Chapter 13). Moreover, there has been consid-
erable study on heuristically improving the performance of the algorithm. Surprisingly, theoretical
analysis of this classical algorithm has not been performed despite its wide usage. In this thesis,
we bridge this gap and give theoretical guarantees on the performance of local search heuristic for
D and A-optimal design problems. In addition to local search, we analyze the greedy heuristic for

the D and A-optimal design problems.

3.1.1 OurResultsand Contributions

Our main contribution is to prove worst case bounds on the performance of simple local search
algorithm (also known as Fedorov Exchange method) and greedy algorithms. Our results also give
worst case performance guarantee on the variants of local search algorithm.

Ouir first result is for theD-optimal design problem where we show the following guarantee.
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We consider both settings when the design vectors are allowed to be repeated in the solution and

when they are not allowed to be repeated.

Theorem 3.1.1.For anye > 0, the local search algorithm returns@ + ¢)-approximate solution

for D-DESIGN with or without repetitions whenevér> d + %

Our analysis method crucially uses the convex relaxation foDHBESIGN problem. In recent
works, the convex relaxation has been studied extensively and various rounding algorithms have
been designed \(fYS16 ALSW17h SX18 NST19). Solving the convex relaxation is usually
the bottleneck in the running time of all these algorithms. Our results differ from this literature in
that we only use the convex relaxation for the analysis of the local search heuristic. The algorithm
does not need to solve the convex program (or even formulate it). We udadhéttingapproach
to prove the guarantee. We also remark the above guarantee improves on the best previous bound
which had an additional additive term 6éﬂog % in the requirement on the size bf

We also consider the natural greedy algorithm ABDESIGN problem. Indeed this algorithm
has also been implemented and tested in empirical studies (see for exAmpl@7], Chapter 12)
and is referred to as the forward procedure algorithm. The algorithm is initialized to a small set
of experiments and new experiments are added greedily. We show that the guarantee is slightly
specific to the initialized set. If the initialized set is a local optimum set of ¢jage obtain the

following result. Again we employ the dual-fitting approach to prove the bounds.

Theorem 3.1.2.For anye > 0, the greedy algorithm folD-DESIGN with repetitions returns a

(1 + €)-approximate solution whenevir> Q (¢ (log 1 + loglog d)).

A-DESIGN. While the simple combinatorial algorithms have tight asymptotic guarantel for
DESIGN, we show that a similar guaranteannotbe proven forA-DESIGN. Indeed, there are
examples where local optimum can be arbitrarily bad as compared to the optimum solution as

we show in Sectior3.3.3 We note that the bad local optima arise due to presence of long vectors
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among design vectors. In particular, we show that this istiigbottleneck to obtain an asymptotic
guarantee on the performance of the local search algorithm. Moreover, we show a combinatorial
iterative procedure to truncate the length of all the vectors while ensuring that the value of the
optimal solution does not change significantly. This allows us to obtain a modified local search

procedure with the following guarantee.

Theorem 3.1.3. The modified local search algorithm fot-DESIGN with repetitions returns a

(1 + €)-approximate solution whenevir= Q (%).

We note that the above asymptotic guarantee does not match the best approximation algo-
rithms [NST19 for A-DESIGN as was the case dP-DESIGN. Nonetheless, it specifically points
why local search algorithm performs well in practice as has been noted wileliyJ7].

We also consider the natural greedy algorithm forAhBESIGN problem, which again requires
truncating the length of all vectors. As iR-DESIGN problem, the guarantee depends on the
initialized set. If the initialized set is a local optimum set of siZdor an absolute constant we

obtain the following guarantee.

Theorem 3.1.4.The modified greedy algorithm fot-DESIGN with repetitions returns &1 + ¢)-

approximate solution whenevir> Q (4 log” 1).

Approximate Local Search: Theorem3.1.1and3.1.3show that the local search fér-DESIGN

and modified local search fot-DESIGNYyield (1 + €)-approximation algorithm. But, as are typical

of local search algorithms, they are usually not polynomial time algorithms. However, the standard
fix is to make local improvements only when the objectives improves by a factorof. With
appropriately chosed, this implies a polynomial running time at the cost of a slight degradation

in the approximation guarantee. We show that under the same assumption on patarapter
proximate local search fap-DESIGN and modified approximate local search #HDESIGNyield

(1 + 2¢)-approximation whe is small enough and take polynomially many iterations.
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Theorem 3.1.5.The(1 + J)-approximate local search algorithm fdp-DESIGN with repetitions
returns a(1 + 2¢)-approximate solution whenevér> d + ¢ andé < &%, and the algorithm runs

in polynomial time.

Theorem 3.1.6. The modified 1 + J)-approximate local search algorithm fod-DESIGN with
repetitions returns g1 + 2¢)-approximate solution whenevér = () (E%) andi < % and the

algorithm runs in polynomial time.

We note that approximate local optimum sets are sufficient for initialization of greedy algo-

rithms, implying that greedy algorithms run in polynomial time.

3.1.2 Related Work

As we remarked earlier, experimental design is a classical problem and has attracted significant at-
tention throughout the years. We refer the readePtkD4g for a broad survey on the experimental

design. Here, we mention the results known for the problems discussed in this thesis.

D-DESIGN: When experiments can be picked fractionally;DESIGN reduces to the natural
convex program which can be solved efficientl$i{13). In contrast, when experiments need
to be chosen integrally as in this thesi$;DESIGN is NP-hard (JVel82). Hence, there has been
a series of approximation algorithms known for the probleBG$1Q gave a3-approximation
algorithm based on rounding the solution of the natural convex progfafS[LE improved the
approximation ratio t@1 + ¢) whenk > % [ALSW17H gave a(1 + ¢)-approximation algorithm
whenk = Q (4). [SX1§ improved this result and gav@ + ¢)-approximation algorithm when
repetitions are not allowed arkd= Q (¢ + 5 log 1), and(1 + ¢)-approximation when repetitions
are allowed and > %d Our results improve on these bounds as they aclfieve)-approximation

whenk > d + <.

94



A-DESIGN: Asin case ofD-DESIGN, A-DESIGNreduces to solving the natural convex program
which can be done efficiently when experiments are picked fractionally. On the other hand, when
experiments are picked integrally as in this thedieEsIGNis NP-hard (NST19). Several of the
results mentioned above f@?-DESIGN work in more generality and in particular fer-DESIGN
as well. For instance, algorithm bAB13] gives =5+ jﬁ -approximation ratio forA-DESIGN as
well. Algorithm by [WYS1§ gives (1 + ¢)-approximation ratio whe: > d—j. Algorithm by
[ALSW17Y gives (1 + ¢)-approximation ratio whet = Q (). Recently, NST19 showed
d-approximation forA-DESIGN whenk = d, (1 + ¢)-approximation when repetitions are not
allowed andk = (§ + E% log %) and(1 + €)-approximation when repetitions are allowed and
k > %. On the hardness sideN$T19 showed thatd-DESIGN is APX-hard fork = d;
there is na:-approximation for some constant- 1.

Other variants of optimal design have been studied suéiragSIGN problem where our goal
is to select seb C [n] of sizek such that the minimum eigenvalue »i,_, v;v, is maximized.
E-DESIGN is also known to be an NP-hard problenCfli09]). Algorithm by [AB13] givesd -
= jﬁ approximation algorithm.WYS16| gave (1 + ¢)-approximation algorithm wheh > d

[ALSW17Y improved this result and gav@ + ¢)-approximation algorithm wheh =  (£).

3.1.3 Organization

In Section3.2, we analyze the local search algorithm fOrDESIGN and prove Theorerf3.1.1

In Section3.3, we analyze the modified local search algorithm foDESIGN and prove Theo-
rem 3.1.3 Sections3.4 and 3.5 include details and proofs deferred from the main body of the
paper. We present approximate local search algorithm®t@eESIGN and A-DESIGN and their
analysis in Section8.6 and 3.7, respectively, proving Theoren®1.5and3.1.6 Greedy algo-
rithms and their analysis foD-DESIGN and A-DESIGN are presented in Sectiods8 and 3.9,

respectively, which prove Theorerisl.2and3.1.4
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3.2 Local Search forD-DESIGN

We first give the local search algorithm fBr-DESIGN with repetitions.

3.2.1 Local Search Algorithm

Algorithm 3.1 Local search algorithm foD-DESIGN

Input: V = {vy,...,v,} wherev; € R d < k € N.
Let I be any (multi)-subset dfl, n] of sizek such thatX = >,_, v;v; is non-singular matrix.
While 3i € 1, j € [1,n] such thatlet (X — v;v, 4 vjv]) > det(X):
X — X — o +vjva
T\ {i}u{j}
Return(/, X)

3.2.2 Relaxations

To prove the performance of local search algorithm, presented earlier as THaaréme use the
convex programming relaxation for tle-DESIGN problem. We first describe these relaxations in
Figure3.1c(see Chapter 7 oHV04]). Let OPT denote the be the common optimum valuelof (
REL) and its dual D-REL-DUAL). Let I* denote the indices of the vector in the optimal solution
and letg® = det (3, ;. Uiv;)% be its objective. Observe thaf > log ¢°. Theorem3.1.1now

follows from the following result.

Theorem 3.2.1.Let X be the solution returned by Algorith&il Then,

d
det(X) > (—k Z+ 1) e®9%

and therefore,
k—d+1
k

e

det(X)d >

7.
Before we prove Theorer®.2.1, we begin with a few definitions. L&t/, X') be the returned
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@1

1 & -
?é%’f p log det (Zl T0;0; )
R o <
i=1

T; >0 i€ [l,n]
(b) [
: 1 k
min  —logdet(Y)+—-p—1
HER d d
b] YGRdXd

p—uv Yy >0 i€[l,n]
Y =0
(c) Convex Relaxation and its Dual for ttie-DESIGN problem

solution of the algorithm. Let; be thed x |I| matrix whose columns are for eachi € 1.
Observe thaf{ = V;V," and X is invertible sincelet(X) > 0 at the beginning of the algorithm
anddet(X) only increases in later iterations. We tet= v, X ~1v; for any1 < i < n. Observe
that if i € I, thenr; is the leverage score of row with respect to the matri¥;". We also let

Tij = U,LTX_lvj for anyl < ZJ] <n.

Notations: For convenience, we summarize the notations used in this section.

OPT is the common optimum value abD¢REL) and its dual O-REL-DUAL).

« [* C [1,n] is the set of indices of the vectors in the optimal solution.

1
¢P = det (3, viv) )7, the integral optimum value dP-DESIGN

I C[1,n],X =3, ;v isthe solution returned by the algorithm.

Forl <i:<mn,T; :viTX_lvi.
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e Forl <i,5 <mn, 7 :viTXflvj.

The following lemma states standard properties about leverage scores of vectors with respect

to the PSD matrixX = >~ _, v;v; (see for exampleMIMW12]). These results hold even when

i€l

X is not an output from a local search algorithm and the proof is included in the appendix.
Lemma 3.2.2.Letvy,...,v, € R?and] C [n]. For any matrixX = >",_; v;v,", we have:

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, 7; = 1 if and only if X — v;v, is

singular.

2. We have

iEITi = d

3. For anyl < ] <n,we haveziel TijTji = Tj-

4. Foranyl <i,j <n, we haver;; = 7;; andr;; < ,/7;T;.
We now prove an upper bound en for the local optimal solution. This lemma utilizes the
local optimality condition crucially.

_d
k—d+1°

Lemma 3.2.3.Foranyj € [1,n], 7; <
Before we prove the lemma, we complete the proof of The@ehiusing Lemma3.2.3
TheorenB.2.1 We construct a feasible solution to thB{ReL-DUAL) of the objective value at

most? log det(X) + log k;T’fl-H' This would imply that

o<t

;< C—ilogdet(X) + log

E—d+1

which proves the first part of the theorem. The second part follows sifice log ¢°.
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LetY = aX,p = maxi<j<, U]-TYflvj = émaxje[ljn] vj-TXflvj wherea > 0 will be fixed

later. Then(Y, 1) is a feasible solution of/p-REL-DUAL). Hence,

1 k1
(/5? < p log det(aX) + 7 o max vaX’lvj -1

« j€[1,n]
<1 +11 det(X) + u d 1 (Lemma3.2.3
=g AT ;o8 de da k—d+1 <
Settinga = —£-—, we get

1
+ —log det(X)

1 k
-1 1—-1=log ——
+ —log det(X) + ng—d—i—l .

k
D <log ————
or<log — ity
asrequired. n

We now prove Lemma&.2.3

Lemma3.2.3 SinceX is a symmetric matrixX ! is also a symmetric matrix and therefare =

7,; for eachi, j. We first show that the local optimality condition implies the following claim:
Claim 5. Forany: €  and1 < j < n, we haver; — 7,7; + 7,;7;; < 7.

Proof. Leti € 1,5 € [1,n]. By local optimality ofI,
det(X — viv;! +vjv]) < det(X).

Next we cite the following lemma for a determinant formula.

Lemma 3.2.4. (Matrix Determinant Lemma,Har97]) For any invertible matrix4A € R%*? and
a,b e RY,
det(A+ab") = det(A)(1+b" A7 a)
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Applying the Lemma twice talet(X — v;v, + vjva), the local optimality condition implies

that

det(X) > det(X — vw, + vjv;) = det(X + vjva)(l —v) (X + vjva)’lvi)

= det(X)(1 + U;X_lvj)(l — v (X + Uj/U]T)_l’UZ'>

Hence,(1 + v] X 'v;)(1 — v (X + v;v])"'v;) < 1. Applying Sherman-Morrison formula, we

get
X ol X1
Ty -1 T —1 JYj
(1+UjX Uj)(l—’l}i (X _m)/%)Sl
1 Jl1l—m YR <
( +T]>( T+1+Tj)_
(I=m)+7) + 757 <1
Tj — 7'7;7']‘ + TijTji S Ti-
This finishes the proof of Clairs. H

Now summing the inequality in Claifaover alli € I, we get

Z(Tj — TiTj +7—ij7_ji) § ZTi.

el i€l
Applying Lemma3.2.2 we obtain thak7; — d7; + 7; < d. Rearranging, we obtain that

7‘-<—d
T k—d+1

asdesired. O
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3.2.3 D-DESIGN without Repetitions

Due to space constraints, we defer the proof of local searcfoESIGN without repetitions to

the appendix.

3.3 Local Search forA-DESIGN

In this section, we prove the performance of modified local search, presented earlier as Theo-
rem3.1.3 As remarked earlier, we need to modify the instance to cap the length of the vectors
before applying the local search procedure. This is done in Se@t®h We show that the value

of any feasible solution only increases after capping. Moreover, the value of the natural convex
programming relaxation increases by at most a small factor. We then analyze that the local search
algorithm applied to vectors of short length returns a near optimal solution. Combining these facts
give a complete analysis of modified local search AeDESIGN in Section3.3.2which implies

Theorem3.1.3

3.3.1 Capping Vectors

Algorithm 3.2 Capping vectors length fot-DESIGN

Input: V = {vy,...,v,} C RY, parameten\.
While Ji € [1,n], [Jui]|? > A:
t = argmax;c(, ||vi|a-

. 1 vtva
Forj € [1,n],v; = (Id — §m) v;

Forj € [1,n],u; = v,.
ReturnU = {uy,...,u,} C R?

The algorithm to cap the length of input vectors is given in AlgoritBra In each iteration,
it considers the longest vectoy. If the length of this vector (and thus every vector) is at most
then it returns the current updated vectors. Else, it scales down all the vectors along the direction

of the longest vector. Heré,; denotes the-by-d identity matrix.
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@1

A-REL(V)

" -1
. T
0] ;relﬁ{r% tr (; Ti0;v; )
n
i=1

(b) [

A-REL-DUAL (V)
max  2tr (Yl/Q) — kA

b] AER™
Y eRdxd

A — v, Yy >0 i€|n]
Y =0
(c) Convex Relaxation and its Dual for te DESIGN problem

Before we give the guarantee about the algorithm, we introduce the convex program for the
A-DESIGN problem in Figure3.2c (see Chapter 7 of BV04]). For any input vectors/ =
{v1,...,v,}, the primal program isi-ReL(V') and the dual program id-ReL-DUAL (V). We
index these convex programs by input vectigras we will analyze their objectives when the input
vectors change by the capping algorithm. Wegél%(V) denote the (common) optimal objective
value of both convex programs with input vectdfs

We prove the following guarantee about Algoritl812 The proof along with some intuition

of Algorithm 3.2 appears in the appendix.

Lemma 3.3.1. For any input vectors/ = {v,...,v,} € R*andk > d, if kK > 15 then the

capping algorithm returns a set of vectdrs= {uy, ... u,} such that

1. ||us||3 < Aforall i € [n].
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2. For any (multi-)sets C [n], tr ((Zies vivf)_l) < tr ((Zies uiug—)_1> ,

3. ¢F(U) < (1+2929) (¢4 (V) + 1559).

Lemma3.3.1states that if an algorithm returns a good solution from capped vectors, then the
objective remains small after we map the solution back to the original (uncapped) input vectors.
Moreover, by choosing a sufficiently large capping lerfyttwe may bound the increase in optimal
value of the natural convex programming relaxation after capping by a small factor. Optimizing

for A is to be done later.

3.3.2 Local Search Algorithm

We now consider the local search algorithm with the capped vectors. The performance of the

algorithm is stated as follows.

Algorithm 3.3 Local search algorithm faA-DESIGN with capped vectors
Input: U = {uy,...,u,} CR% d<keN.
Let I be any (multi)-subset dfl, n] of sizek such thatX = >"._, w;u; is nonsingular.
While 3i € I,j € [1,n] such thatr ((X — wu, +uju))™') < tr(X1):
X =X —umu + ujujT

I'=T\{i} U{j}
Return(/, X)

Theorem 3.3.2.Let (1, X) be the solution returned by Algorithg3. If ||u,||3 < Aforall i € [n],

_ AP B
tr<X1><¢?<U>((1d—f) w> ‘

The proof of Theoren8.3.2is deferred to the appendix. We now analyze the modified local
search algorithm presented as Algoritlda with input vectorsV = {vy,...,v,} which may
contain vectors with long length using Theor88.2 Let I* be the set of indices of the vectors in
the optimal solution ofA-DESIGN with input vector set” and let¢” (V) = tr ((ZZEI* viv;)A)

be its objective. Observe thaf (V) < ¢*(V).
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Algorithm 3.4 Modified local search algorithm fof-DESIGN

Input: V= {vy,...,v,},d <k €N,

Let A = Wd(\/)'

LetU = {uy,...,u,} be the output of Vector Capping Algorith&2 with input (V, A).
Let/ C [1,n],X =), ;uu; be the output of Local Search Algorith8n3with input (U, k).

Return/.

Theorem 3.3.3.For input vectorsV = {vy, ..., v,} wherev; € R? and parametek;, let I be the

solution returned by Algorithr8.4. If £ > f—f ande < 0.001, then

tr ((Z vw?) ) < (L+e)p™(V).

The (1 + ¢)-approximation of Algorithm3.4 is achieved by setting an appropriate capping

lengthA and combining the guarantees from Lem&3.1and Theoren3.3.2

Proof. By Theorem3.3.2

-1 B A A -1
tr((Zuzu:) )<¢?(U) l—d_k2_ ¢]];(U))

-1
A
g (1244 W)

2 d 207 (V)

The last inequality follows since > i—ff andA = By Lemma3.3.],

_d
2¢A (V)"

PF(U) < (1+1500¢*) (¢4(V) + 1356207 (V) .

Since¢? (V) < ¢*(V), we getof(U) < (1 + 1500€*)(1 + 135€*)¢" (V). Substituting in the
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equation above, we get

el

—1
T A (1+ 1500¢*)(1 + 135¢2)
" (Z e ) =W 5 +€'/d—e/(1+1500¢")(1 + 135€2) /2

il

< (14 €9"(V)

where the last inequality follows from the fact that 0.001. By Lemma3.3.1, we also have that

tr ((Zie] vwiT)_1> < tr <(Zi€] uiuj)_l). Hence,
-1
fr (Z vivi ) < (1+e*(V).
i€l
This finishes the proof of Theore&3.3 ]

Algorithm 3.4requires the knowledge of the optimum solution vaiiél’). We can guess this

value efficiently by performing a binary search. The details appear in the appendix.

3.3.3 Instancesvith BadLocal Optima

In this section, we show that preprocessing input vectors toAHmESIGN problem is required

for the local search algorithm to have any approximation guarantee. This is because a locally
optimal solution can give an arbitrarily bad objective value compared to the optimum. Hence, this

requirement applies regardless of implementations of the local search algorithm. We summarize

the result as follows.

Theorem 3.3.4.For anyk > d > 2, there exists an instance of-DESIGN, either with or without

repetitions, such that a locally optimal solution has an arbitrarily bad approximation ratio.

We note that any instance #-DESIGN with repetitions can be used fot-DESIGN without

repetitions by making: copies of each input vector. Therefore, it is enough to show example
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of instances only ind-DESIGN with repetitions. For each let e; be the unit vector in the™"
dimension. In this sectiony is a real number tending to infinity, and tH¢ N') ~ B(/N) notation
indicates thatimy ., %\V,; = 1. All asymptotic notions such as big-Oh are with respedvte-
oo. We first show the bad instance whien> d = 2. Thoughd = 2 seems a small case to consider,

the calculation presented is central to prove the main theorem later.

Lemma 3.3.5. There exists an instance ef-DESIGN for £ > d = 2, with repetitions, such that a

locally optimal solution has an arbitrarily bad approximation ratio.

The construction in Lemma.3.5can be generalized @ > 2 dimensions by adding a vector
with an appropriate length to each additional dimension. The proof of TheBrédhappears in

the appendix. We now prove the Lemma.

Proof. Let v; = [1;55],v2 = [1;—x3z], w1 = [N*% %], w, = [N* —=], and let the input of
A-DESIGN be these four vectors. We first make straightforward calculations, summarized as the

following claim.

Claim 6. Letp, ¢ be positive integers. Then,

tr ((poro] +quaw]) ') = %quv‘* +0(1) (3.1)
tr ((pvlvlT +quav] + wle)A) — ﬁz\f‘L +O(N) (3.2)
tr ((poro] + quav] +wpw]) ™) = ]%qzv‘* + O(N) (3.3)
tr <(w1w1T + ’UJQ’LUQT)il) = N; +O(N~®) (3.4)
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-1

Proof. We will repeatedly use the formuta = a‘jltgc. We have

—1
p+yq (p—q) N2

(p—q¢)N7? (p+qN*

p+q+(p+qN-* P44
— = N*+0(1
(p+q2?N—t—(p—q)’)N—*  4pq (1)

tr ((pvlvlT + qvgvT)A) =tr

1
_ N84+ p+q N34+ (p—q)N~2
tr <(pvlv1T—|—qvgv2T—|—w1w1T) 1) = tr ( )
N*+(p—q¢) N> N?+(p+¢gN*
N®+0(1) 1
= = N*+ O(N
(p+q)N*+O(N) p+gq ()

The calculation fotr ((pvlvlT + quovy + wgw;)_l> is symmetric. Finally, we have

-1
_ 2N® 0 N? 1
tr(wlwfjtwgw;) =t =+
0 2N~? 22N

finishing theproof. n

We now continue the proof of Lemn®a3.5 Letp = |%],¢ = [£] and consider the solution
S which hasp andq copies ofv; andwv, respectively. By Clain®, the current objective of is

tr ((pvlvlT + C]UQUT)71> ~ 1..V* and the objective of \ {v;} U {w;} for any pairi, j € {1,2}

is A N* + O(N) ~ 25 N* As - N* > 5 N* > (4 N* for k > 2, S'is locally optimal,

However, consider another solutigft which picksp and ¢ copies ofw; and ws.

Since

tr (wiw] + wng)_l = O(N?), by monotonicity oftr((-)~') under Loewner ordering, we must

have that the objective given I is also at mosO(N?), which is a©(N?)-factor smaller than
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the objective value of. The result follows becausE tends to infinity ]

3.4 Proofs from Section3.2

We use the notatiofA, B) for an inner product of two matrice$, B of the same size. We begin
by stating the Sherman-Morrison formula that is important in our calculations. We instantiate it

for symmetric matrices.

Theorem 3.4.1.Let L be and x d invertible matrix andy € R%. Then

LYo L1

™! _ -1
(Ltwt) =1 l+ov"L 1

Lemma 3.4.2. (Matrix Determinant Lemma,Har97]) For any invertible matrix, € R*“ and
v € RY,

det(L +vv") = det(L)(1+v' L 'v)
We now detail the missing proofs.

Lemma3.2.2 LetW = X_; = X — v = D e v;v; . To showr; < 1, we make two cases

depending on whethé# is singular or not.
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Case 1: W is non-singular.

T = U:(W + viviT)_lvi
— ’U.T Wil — —W_lviUZ‘TW_l Vi
! 1+ W1y,
Tw—l ) Tw—l )
ity - ol W
1+ v, W1y,
o] W=t + (v Wu)?2 — (v W—t;)?
1+ o] W1y,
v Wty
1+ o] W1y,

< 1.

Last inequality follows from the fact that’ W ~1v; > 0 sincel¥/ ~! is non-singular.

Case 2: W is singular. We have that is non-singular andl’ = X — v;v, is a singular matrix.
Let Y denote the Moore-Penrose pseudo-inverse fifr any matrixY. Observe thakt = X

From Theorem 1Nley73, we have that

Wiy (I — WWT)T = WIW) Toof WT
11 = WW i3 I(1 = WIW) T3
(14 v W) (I — WIW) T (I — WWT)T
11 = WIW) Toi I3 (1 = W3

X1t=wl-

Now we use the fact thdt — W W 1) and(I — WTW) are projection matrices. Sineé Pv =

| Pv||3 for any projection matrix” and vectow, we obtain that
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Tyl Tt (v W) (o) (I =WWH)Tw) (o) (I = WIW)T;) v W,
Ui v, = Ui Vi — —
I(1 = WW i3 11 = WIW) T3
(1 + v, Wiv)o (I — WIW) T (I — WWT) T,
11 = WIW) T [31(1 = WW i3

= v Why — v Wiy —of Wi, + (1 + 0] Wiy)

=1

as claimed.

We now show tha} ., 7; = d. Indeed

Dom=d el X = 3wy = (XT3 wwl) = (X7 X) =d

i€l i€l i€l 1€l

Similarly, we have

_ Ty-1,  Ty-1  _ 1, Ty—-1 .. T\ _ /y—1,  Ty-1 T
Enjrﬁ—g v; X v, Xy = E (X v X0 vy ) = (X o0 X 75 v;v; )

iel i€l i€l el

= <X’1vjvaX’1,X> = va’lvj

For the last part, observe th&t ! is symmetric and thus; = 7;;. Moreover,

_ _1 _1 _1 _1
Ty =0 X oy = (X7 20;) (X 205) < || X 20io]| X 20| = /7y

where the inequality follows from Cauchy-Scaxz.
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b]

(c) Convex Relaxation and its Dual for tli&-DESIGN problem without repetitions

@1

max

1 n
E log det (ZZI CL’Z'UZ'UZ-T>

i=1
1>z >0 i€[1,n]
(b) [
min - lo det(Y)—f—E +lz”: -1

pAn—v Y oy >0 i€(l,n]
i 20 ze[l,n]
Y =0

3.4.1 Local SearcHor D-DESIGN without Repetitions

In this section, we focus on the variant Df DESIGN where repetitions of vectors are not allowed,
and show the approximation guarantee of the local search in this setting. In compari®en to
DESIGN with repetitions, the relaxation now has an upper boundcpand extra nonnegative
variablesy; on the dual.

The local search algorith1is modified by considering a swap where elements to be included

in the set must not be in the current set. We prove a similar approximation ratio of the local search

algorithm for the without repetition setting.

Theorem 3.4.3.Let X be the solution returned by the local search algorithm. Then fok akt

d+1,

d
det(X) > (%) 497
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and therefore,

k—d
> T 4P,
z— o

=

det(X)

We note that in the case = d, the design problem without repetition is identical to with

repetition since the optimal solution must be linearly independent, and thus the bound from with

repetitions of Theorer.2.1applies to obtair-approximation.

The proof of Theoren8.4.3is similar to D design requires a different bound epfrom the

setting with repetitions to set a feasible dual solution, since the local search condition no longer

applies to all vectorg € [n] but only for those not in output sét We first give a bound of; for
jél.
Lemma 3.4.4.Foranyj ¢ S and anyi € S such thatr; < 1,

T
TjS .
1_7_1'

Proof. We claim that the local search condition implies that for asyl and; ¢ I, we have
Tj _TiTj+TijTji STi- (35)

The proof of the claim is identical to that of Claitn Hence, we have

T, > Tj — TiT; + Tin > Tj — TiTj (3.6)
which finishes the proof of theemma. ]

We now prove the main Theorem.

TheorenB.4.3 Asinthe proof of Theoreri.2.1, we construct a feasible solution to the{REL-DUAL)

of the objective value of at mO%ﬂog det(X) + log ﬁ which is sufficient as a proof of the theo-
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rem. Denotery;, = minje; v Y 'v;. Let

=

J¢l

Tj —Tmin .] 6 I

k

Y =aX = 77 'min, i —

wherea > 0 will be fixed later. We first check the feasibility of the solution. Itis clear by definition

thats, n; > 0. Forj ¢ I, by Lemma3.4.4 we have

k
k—d

Tmin

1 1
Ty —1
v.Y = s < — . < —.
J J oY e"

SHR

min = M+ 7
1— Tmin n . 77_7

where the second inequality follows from;, < %Zia T, = %. Fori € I, we have

1
w4 > — - (Tmin + 71— 7—min) = ijilvi
(6%

Therefore, the solution is dual feasible. This solution obtains the objectiy@gflet(aX) — 1+

Ep+ 25" m; which is equal to

1 ko k 1
=2 logdet(aX) — 14+ ————Tuin + d Z(T@ — Tmin)

dalk —d) 2
b ggdet(ax) — 14— e L k)
— g e ad(k —d) ™ T g\t i
1

1
= —logdet X +logar — 1+ — <—Tmin+1)
d !

1
< —logdet X +1 14+ —
_dog e + log o +oz(k—d)

where the last inequality is by, < ¢. Finally, we setx = - to obtain the objective value of

dual

1
—1+1=-=1 X)+1
4 + 7 og det(X) + log

1
Elogdet(X)—Hog P
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asrequired.

3.5 Proofs from Section3.3

3.5.1 Proofof Performancef Modified Local SearchAlgorithm for A-DESIGN

Proof of Theoren3.3.2

We first outline the proof of Theorer®.3.2 Let (7, X) be the returned solution of the Algo-
rithm 3.3. Observe thafX is invertible sinceX is invertible at the beginning and(X ') only
decreases in the later iterations. ket = u X 'u;, hi; = u) X u;, 7, = 7, h; = hy, and
B = tr(X~1). Since,X is a symmetric matrix,X ! is also a symmetric matrix and therefore

7,; = 7;; for eachi, j € [n].

Notations For convenience, we restate the notations used in this section.

V' : Input to Modified Local Search Algorithrd.4.

I*: indices of the vectors in the optimal solution 4fDESIGN with input vector set’.

AV =t (e v) ).

U : Output of Vector Capping Algorithn3.2 and input to Local Search Algorithm with

capped vectors.3.

A : Forevery: € [1,n],||u]3 < A.
* (I, X) : Output of Local Search Algorithm with capped vect8r8on input(U, k).

« ¢%(U), and ¢ (V) denote the (common) optimal value of objective values of the convex

program with input vectors frol’ andU respectively.
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* Fori,j € [1,n],nj = U;-rXille,hz‘j = U;FX72UJ‘.
e Fori € [ ] Tuahz = hu

Following lemma shows some standard connections between, i;; andh;’s. Proof of the

lemma is presented in Secti@rb.1
Lemma 3.5.1. We have the following.

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, ; = 1 if and only if X — viviT is

singular.

2. We have_,_, 7, =d.

el
3. Foranyi, j € [n], hi(1 + 7;) — 27;;h; > 0.

4. Foranyj € [n], we have) | = h;.

i€l z]

5. We have _,_, h; = .

6. Foranyj € [n|, we have)_,_, 7;;h;; = h;.

7. Foranyj € [n], we haver; < \/hj||u;||>.

8. Foranyi € [n], let X_; = X —w;u/]. If X_; is invertible, then for any € [n], we have

_ TiTR =TT
° ujTX,iluj — #ﬁa and

1-7;

27'1] ij
1—-7; °

'uTX uj—h—i- )Q—i-

Next lemma shows a lower bound bnin terms of/3 andgzb’} (U) by constructing a dual feasible

solution.

2
Lemma 3.5.2.We havenax e, h; > %
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Next lemma shows an upper bound bnin terms of 3 and7; using the local optimality

condition.

Lemma 3.5.3.For anyj € [n], 111, <o

Before we prove these lemmas, we complete the proof of The8raia

TheorenB.3.2 By Lemma3.5.3 for any j € [n], 11—% < %M. By Lemma3.5.1 7; <
Vhillusll2 < v/h;A. Hence, for any € [n],
h; I}

< .
1+ /A = k—d+2

By Lemma3.5.2 there existg € [n]| such that; > —2__ Now we note the following claim.

kR (U)"

Clam7. f(z) = ﬁ is a monotonically increasing function far> 0 if ¢ > 0.

— c 24-c\/x : . - .
Proof. f'(z) = ﬁ + - (chi)? v ﬁ which is always positive for: > 0 if
c > 0. L]

Hence, we have
2
k04 (0) 5
32 “k—d+2
1+ k.¢/;(U)A
—d+2 Aeh (U
k—d+ Aﬁ <14 ¢f( ) Aﬁ
koo op(U) ko ¢}(U)
—92 A¢h (U
a2 AU Aﬂ <1
k k 9% (U)
: -1
_ d—2 Agi(U)
(X ) =B <efU) [ 1-———\/—%
This finishes the proof of Theore&3.2 n
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Next, we prove Lemma&.5.2and LemmeB.5.3

Lemma3.5.2 We prove the lemma by constructing a feasible solutioA4BREL-DUAL (U). Let

Y =4X2 A\ = maxu, Yu; = ymaxh;
! je 20T e

wherey > 0 will be fixed later. Then(Y, \) is a feasible solution tel-ReL-DUAL (U). Hence,

gb?(U) > 2tr <(7X_2)1/2) — kymaxh; = 2,/73 — kymaxh;.
J€

€ln] j€ln]

2
. . o 8 52 . . 132
SUbS“tUUng’y — (W) y we getgzﬁ?(U) Z W ThIS g|VeS USIlane[n] hj Z W
which is the desired inequality in Lemn3a5.2 ]

Lemma3.5.3 We start the proof by showing an inequality implied by the local optimality of the

solution.

Claim 8. Foranyi € I,j € [n],
hz(l + Tj) — hJ(l — Tz’) — QTijhij Z O (37)

Proof. Fori € I, let X_; = X — uu, . First consider the case when_; is singular. From
Lemma3.5.], =1 andhz(l + Tj) — 27—ijhij > 0. Hence,
hz(l + Tj) — hj(l — Ti) — QTijhi]’ Z 0

Now, consider the case whéf_; is non-singular. By local optimality condition, we have that
foranyi € I,j € [n],

6 < tr ((X_i + ujujT)_1>
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By Sherman-Morrison formula,

Tx—2 Ty -2 Ty —2
TV 1) -1 u; Xu; 1 u; X~y u; X ug
J -t K3 1 i —1

Hence, local optimality of implies that for any € I,j € [n],

Tyv—2 Tx—2
u; X 2y, u; X u
<tr(X 1)+ — L 3.8
Tj T-2-—’TZ"T' _ T,
By Lemma3.5.1, we haveu;.rX:}uj = % andujTX_fuJ hi + 1 )2 + 21”#'

Substituting these and(X ') = 8, u; X 2u; = h;, andu] X 'u; = 7; in equatlon 8.9), we get

27;

hi h + (1 7')2 + 1”7'”

< L
ﬁ_ﬁ—i_l—Ti 1+T]+T —TiTj

1-7;

h'i B h](]_ - Ti)2 + hiTin + 2(1 - Ti)Tijhij
—1l-7 (I=7)1 =7+ 7+ 75 — 7))
0< hi hiTi?i B hi(1 —7)%+2(1 — 73)7;hy;
“l-n (A-m)A-nt+7+7-n7) (1-1)(1—7+7+75—TTj)
o< hi(l =7+ 7+ 7 — 1Ty — 777) b1 =) 4 275k

T A-n)(-nt T4t —TTy) =4 T+ - Ty
0 < hz(]- + Tj) _ hj(l - Ti) + 2Tijhij

T l-mtntT -y 1 =nA T T - T

0 S hz(l -+ Tj) — hj(l — Ti) - QTijhi]’

Last inequality follows from the fact that— 7, + 7; — 7,7 + 7, = (1 —7)(147;) + 7.5 > 0 which
follows from the fact that; < 1 (Lemma3.5.1and X _; is invertible). This concludes the proof of

claim 8. ]

Next, we sum up equatior(7) from claim8for all : € Z and get

118



(L+7) > b=y =) m) =2)  mishi; =0

i€l el el
By Lemma3.5.1 Y .., hi = (,> ;7 = d,and}_, ., 7;hy; = h;. We also know that/| =
throughout the algorithm. Substituting these in the equation above we get; )5 — h;(k —d) —

2h; > 0 or equivalently,
hi o B
1 + Tj ~ k—d + 2

This finishes the proof of Lemn&5.3 O

The Capping Algorithm and the Proof of Lem@&.1

Some intuition of the capping algorithm. Section3.3.3shows an example where local search
outputs a solution with very large cost, thus showing that local search does not provide any ap-
proximation algorithm. The failure of local search algorithm is the presence of extremely long
vectors (|v||2 much larger than A-optimum) which leads to “skewed" eigenvectors and eigenval-
ues. Moreover, we were able to show that this is the only bottleneck. That is, if all vector norms
are small (compared to A-optimum), solution output by the local search algorithm has cost at most
(1 + ¢) times the fractional optimum.

The capping algorithm should then satisfy the following(s): Given an instance with arbitrary

length vectors, output a new instance such that

1. All vectors in the new instance have small length

2. Fractional optimum of the new instance does not increase by mord thanfactor of the

old fractional optimum

3. Any integral solution in the new instance can be translated into an integral solution in the old

instance with the same or lower cost.
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If we can get such a procedure, we run the local search on the new instance and get an integral
solution with cost at mostl + ¢) times the fractional optimum of the new solution. Combining

with the properties above, we can then get an integral solution in the old instance with cost at most
(1 + €)? of the old fractional optimum.

We note that a more natural capping algorithm where we pick the longest vector, scale this
vector down, and project all other vectors into the space orthogonal to the large vector satisfies
properties (1) and (2) but not (3). That is, given an integral solution in the new instance, we can
not always find an integral solution in the old instance with roughly the same cost.

We now proof of Lemma.3.1, which says that our capping algorithm satisfies three properties

we want.

Lemma3.3.1 For ease of notation, we consider the equivalent algorithm of AlgorgHin

Algorithm 3.5 Capping vectors length fod-DESIGN
Input: V = {vy,...,v,} C RY, parameten\.
Fori € [1,n],w) := v;, £ = 0.
While3i € [1,n], ||[w!]|3 > A:
ty = argmax;c(y , ||wi||2
% For all vectors, scale the component along withdirection.

£ £ N\T
. f+1 . lwtz(wtz) /¢
Forj € [1,n],w;" = ([ PR TATE )wj

{=/0+1.
Forj € [1,n],u; = w’.
ReturnU = {uy,...,u,} C R?

First observe that the length of the largest vector reduces by a constant factor and length of any
vector does not increase. Thus the algorithm ends in a finite number of iterations. Observe that the
first property is trivially true when the algorithm returns a solution. For the second property, we
show that the objective value of any seonly increases over the iterations. In particular, we show

the following claim.
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Claim 9. For any setS C [n] and any¢ > 0,

o[ (Sutnr) ) <o (Do)

€S €S

,wé wé T
Proof. Let Z = (Idxd — 1‘1(—”))

2 7w, 13

tr (Z wf“(wf“)T) _ =tr (Z Z wf(wf)TZT> _

€S €S

=tr | 27! (wa(wf)T)_ zZ!

€S

)

Observe thafZ has all eigenvalues except for one which ig. ThusZ~! andZ~? have all

eigenvalues at least one and in particlfa® = I. Hence,

tr (wa+1(wf+l)T> > tr (wa(wf)T>

€S €S
asrequired. O

To prove the last property, we aim to obtain a recursion on the objective value of the convex
program over the iterations. LBt* = {w?!, ..., w’} be the set of vectors at the end/fiteration
and letaj = ¢]‘}(W4) denote the objective value of the convex program with the vectors obtained
at the end of™" iteration. We divide the iterations in to epochs where in each epoch the length
of the maximum vector drops by a factor &f For ease of notation, we let = 0 be the last
epoch and = 1 to be the second last epoch and so on. For any integer0, we letr, :=

argmin max;ep, [|w!||3 < 27 - A be the last iteration of" epoch. Thus in the™ epoch the length
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of the largest vector is in the interviaf - A, 2°1- A). Let T denote the first epoch and thus = 0.
Next lemma bounds the increase in the relaxation value in each iteration. The bound depends on

which epoch does the iteration lies in.

Lemma 3.5.4.For every( € [r,,7,_1), we have

. 23p/4 ., 8
Oé5+1§<1+ 2 )<QZ+M>

Next lemma bounds the number of iterations in tfeepoch.

Lemma 3.5.5.For everyp > 1, we haver,_; —r, + 1 < 2d.

w|oo

We first see the proof of last claim of Lemm3a3.1using Lemm&3.5.4and Lemma3.5.5and
then prove these lemmas.

Using Lemmag.5.4and 3.5.5 we bound the increase in relaxation value in each epoch.

Claim 10. For everyp > 1, we have

. i i 64d
o ST W, F 300N )

Proof. From Lemmé&3.5.4 we have

) 2—3p/4 rp—1—Tp+1 . 8 Tp—1—7Tp+1 2—3p/4 i
arp—l S <1 + k ) arp + 2p/4A Z (1 + k )

=1
Tp—1—Tp+1 ]
(a —|—2p/4A(7"p 1 — rp—l—l))

L)
<1+23”“)“ (g - 1)
“(5)

8
2-3p/4 3 64d
( 3 2P/4A) (Lemma3.5.5

3p/4

asrequired. O
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Solving the recurrence in ClaidD, we get a bound on the total increase in the relaxation cost

throughout the algorithm.

84
2-3p/4\ 3 L. 64d
* T
Qg < (HPO (1 + L ) ) (arT +Z . IP/ANA
8
273p/4 5d 21/4 64d
T *
< (npzo (1+ ’ )) <a T . 13A>

9-p/2\ \ 3¢ 135d
T *
< <Hp:0 (1 + k; )> (%T + —> (3.9)

Claim 11. For anyk > 15,

Proof.

50 2~/ 3p/4 3p1 /46 —3pa /4
i (12 ) = o e 3 S

p1=0p2=0

+ E Z Z Z 9—3p1/4=3p2/4=3ps/4

p1=0p2=0p3=0

o0 o—3p/4 > 9-3p/4 2 © 9-3p/4 3
:1+L+<L e L

k k k

cqy 24T (247 2+ 2.47 3+
- k k k
B 1
C1-247/k

3
<1+ -
<1+ 2

Last inequality follows sincé > 15. ]

123



Substituting bound from clairhl in Equation 8.9), we get

. 1+§ 3d . +135d - Hesg o +135d
o= k Tk )T k Tk

Last inequality follows from the fact that + a/x)? <1+ e*7 if z >y > 0anda > 1.

By definition,r; = 0. Henceaj = oy = ¢4 (V). Also, by definitiona;, = ¢%(U). Hence,

¢} (U) < (1+68%> <¢;\(V) + %) < <1+3000%) (¢j}(v> +135%>.

This finishes the proof of Lemnt&3.1 ]

To complete the missing details in the proof of Lem&d.1 we now prove Lemma8.5.4

and3.5.5

Lemma3.5.4 For simplicity of exposition, we make some simplifying assumptions. Without loss
of generality, we assume that = 1, i.e., the longest vector is the first vector in this iteration.
Also, since trace is invariant under rotation of basis, we may assumesthat ,/7e; for some

-
non-negative numbey wheree; = (1 0 ... 0) is the first standard vector. Hence,

1
U)ngl — (Idxd — §€1€1r> U)f
Since,w! is the largest vector in this iteration aAd [r,,r,_1), we have

WA >~ > P IA (3.10)

Let x be the optimal solution forl-REL(w, ..., w’). We construct a feasible solutignfor

A-REL(wt™, ... w’") with objective at most as required in the lemma. &Let 0 be a constant
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that will be fixed later. Let

Yi =
k

k_Jréxi 1€ [2,72]

Claim 12. yis a feasible solution tel-ReL(w! ™, ..., wi).

n

Proof. Since x is a feasible solution ofl-REL(w?, ..., w!), we know thafy""" | z; < k. Thus

- k k
— < < k.
Zy’ k+6 k+5;$1—k+55+k+5k—k

Clearlyy > 0 and thus it ifeasible. O

Now we bound the objective value of the solutiypr_et

X — wa Ty = Zyz £+1 £+1

Claim 13. For anyé§ > 0, tr(Y 1) < &£ (tr(Xfl) + A) _

oy
Before we prove Claini3, we complete the proof of LemniD.

From Equation3.10, we havey > 2°~'A and substituting = 2~?/2 in Claim 13 we get,

tr(Y 1) < (1 + 2_:2) (tr(X‘l) + %) .

Since, x is an optimal solution to4d-REL(wf, ..., w;,), we havea; = ¢f(wy,...,w),) =

n

tr(X~1). Moreover, sincg is a feasible solution tel-ReL(w{™, ..., w’""), we have

* €+1 l+1 -1 271)/2 * 8
apyy = G (wi™h Lt < (Y < Lt —— )+ 588 )

Hence, it only remains to show the proof of Clair®
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=T

: pq
Claim13 LetX ="  zwi(w))" = wherep € R, g € RY, R € R¥"1*4=1 Then
q R
k+0 -
TY — 511)f+1 (w{Jrl)T + inwarl(warl)T

i=1

1 a 1 !
- (]dxd — §€1€1T) <5wf(wf)T + ;wf(wf)T> (Idxd — 561€I)

1 n — 1 n
|3 0' p+oy q' 3 0"
0 Ig—1yx(a-1) q R 0 I(g—1yx(d—1)
| alp+dy) 3d”
| a0

Since X is positive definite, we must haye > 0, R is also positive definite and more over
p—q' R™'q > 0 (see Proposition 2.8.8gr09).

Fact 3.5.6. (Block Inversion formula) Ford € R**?, D € R¥™4 B € R4 (' € R%* such that

A B | .
is invertible, we have

C D

-1

A B (A— BDC) —(A— BD™'C)"'BD!
—(D—CA™'B)"'CA™! (D — CA-'B)~!

Applying block inversion formula otX, we get

Xl | pra' B
(= a7)

Since, X is a positive semi-definite matrixy —! is also a positive semi-definite matrix. Hence,
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principle submatrices are positive semidefinite. In particular,
p—q R'g>0. (3.11)

and,

1
R — ];CY@T = 0(a—1)x(d—1) (3.12)

Next, let us computer(X ).

tr(X 1) = zﬁ + tr ((R — %qu)_ ) > tr ((R — %qu)_ ) . (3.13)

Applying block-inversion formula té?Y, we get

(k:+5 )‘1 (tp+67) -2 R'q)

TY — .
1 1--T
(R~ Geata”)
Hence,
4 1 -
-1 —_T
e RS A iy (T R (( p+oy ) )
Claim 14.
4 4
< —
oy +p—q'R1'q ™ oy
Proof. By Equation 8.11), p — g' R~'¢ > 0. Hence, the inequality trivially follas. ]
Claim 15.
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Proof. Since,s,a > 0, —— < 1. Hence,
p+6y P

Applying the above two claims, we get

k 10% 1 -t
Y1) < = 4+t —Zqq"
k+5tr( )_57—|—r<(R pqq) >

L1; (Y1 < 10" +tr(X 7 (eq (3.13)
k+9d ' — 0y aie.
k+4¢ 104
-1 < -1
tr(Y ) < 5 <tr(X ) + oy )

This finishes the proof of Clairh3.

Proof of Claim13also finishes the proof of Lemn#5.4

Proof. (Lemma3.5.9 By definition ofr, andr,_,, we know that for any < [r,,r,_1),

27 A < max ] < 2°A
i€n
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Let M, = lixa, Ry, = laxq @andforl € [r,,r,_1), let

1 wtg (wfg)—r

2

) My, Rer = M} Mgy,

For/ € [r,,m,-1), consider the potential functiam(R,). We show the following properties about

this potential function:

Claim 16. Let M, R, be as defined above fdrc [r,,7,_1). Then,tr(R,, ) = d and for{ ¢

[rps p—1),
* tr(Ry) > 0,and

® tl"(Rg.H) < tl"(Rg)

OOICAD

Using Claim16, it is easy to see thaf,_; — r,, + 1 < $d. Hence, to prove Lemm&5.5 it is

enough to prove Clairt6.

Proof. (Claim 16) Since,R,, = I, tr(R,,) = dis trivially true. Also, for any? € [r,,7,-1),

R, = M, M, which is positive semidefinite. Hence;(R,) > 0 for any( € [r,,r,_1). For

C€ [rp,mp-1),
T T 1 wte<wfg>T ! 1w, (wi,)"
Reyr = My Moy = My |\ Laxa — laxa — 55— 15— | Mo
2 [|wi, |3 2wy, |13
. wf (w,‘fZ )T . .
Matrix (Idxd — %W) IS symmetric. Hence,
tpll2

l N\T 14 LNT 0 N\T
Ré_l’_l — MET (Idxd _ wtz (wte) ]_th (wtg) wtz (wtg) ) Me

lwi 13 4 [lwil13 w3
wf wé T 1w 'UJZ T
— MZT (Idxd . tg( tgz - tg( tg) ) Me
[|we, I3 ||, |3
- TM 3 (Mthe)(wf[)TMe _ i §(Mthg)<Mthg>
- Y4 L 2 - 74
4 [|wr, 13 4 ||wr, I3
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By definitionw;, = M,w;”. Hence,

3 (M, Myw,))(M] Mgw;;)" 3 (Rewy,) ) (Rewy)) "
Ry = Ry — — =Ry — -

4 w13 L | (A

And the trace is

R Row?)T Row'™
tr(Rz.g_l) (Rg 4( Ewt2)< Zwt@) >=tr(Rg) 3” fwt ||2

1Al 4w, |13

By Cauchy-Shwarz inequalityju||3 > (v"'w)?/|[v]|3. Substitutingu = R,w;” andv = w,”, we

get
rp rp\ 2
3 ((wt )TR wtp) 3 ((wt )TMe Méwt )
tr(R < tr(R £ ¢ R - ¢ £
(Be) < 0Be) = mr Tt B~ ")~ 1 (w2 Tt I
— tl"(Rg) 3 ||M€wtp’|4 (Rg) § ||wtg‘|4
AL AL
3 [l |
:tl"(Rg) [
AT

Since,l € [ry, 7p-1), |[wf,||3 = max;ep, |[w!]3 > 2P A. Also, by definition ofr,, ||w;”|[3 <

max;epy ||w;?]3 < 2PA. Hence,

320 IA 3

tr(Rey1) < tr(Ry) — TN = tr(Ry) — 3
asdesired. O
Hence, the proof of Lemma.5.5is completed. n

Proof of Lemm&.5.1

Lemma3.5.1 Proof of first and second statement is same as that in Le&n2 So, we start by

proving thath; (1 + 7;) — 27;;h;; > 0.
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Claim 17. For any;j € [n], X 2uju X~1/* < 7;1,.
Proof. Since, X is a symmetric matrix,X ' and X ~'/? are also symmetric matrices. Hence, if

q = X%y, thenX —1/2yu] X ~1/2 = ¢q7. Such a matrix has one non-zero eigenvalue equal to

lql13 = u] X~ u; = 7;. Hence X~ 2u;u] X—1/2 < 151, O

Next, we use this to derive further inequalities.

X_l/zujujTX_l/2 < 7il4
2X_1/2ujujTX_1/2 =271y
2X71/2ujujTX*1/2 = (1+7)l (1, < 1,7 € [n])
XWX WPy ] XX T2 L XTV2(1 4 ) X320 (X2, X% are PSD

2X uju] X2 =2 (14 75)X 2

If A< B, thenv" Av < v'Bwforall v. Henceu, (2X 'uju] X2 < (14 7;) X ?)u; < 0. Orin
other WordShi(l + Ti) — 27—ijh7jj > 0.

Next, we show thap ., 77 = h;.

2 _ Ty-1, . Tyv-1, _ Ty-1, , Ty-1, .
ETU_E u; X uju; X uj—g u; X ujuy X ouy

iel icl iel

= Z(X_lujujTX_l, ugu, )

€U

= (X_lujujTX_l, Z ugu, )

€7
= (X luju, X7 X)
= (u] X XX 1))

Tyl T o Ty=1, 1.
= (u; X uy ) =u; X “uj = hy
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Next, we show tha} ., h; = .

hi: UTX_QU,Z‘
D =D u

el €2

- Z(X_27 u%u;r>

el

= (X)) uul) = (X2 X)

el
= (X1 X'X)

= (XL I) =tr(X)

Next, we show tha} . _, 7;;hi; = h;.

ZTijhij = ZuiTX_lujuiTX_%j = Zqu_lujujTX_%i

el el iel

= Z(X’lujujTX’Q, ugu, )

el

= (X luju X2 Zum?) = (X luju X7, X)

€2
= (u] X%, u/ X' X)

= <U;~|—X_2,Uj> = hj
Next, we show that; < \/h;||u;]|2-

Vhlluille = Ju] X2 |ug]]2

= X B g2 = [1X a2 |2

> ujTX’luj =T;.
Here, the last inequality follows from Cauchy-Schwarz inequality: for any € R¢, u'v <
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[lull2[v]]2-

Next, we show the last two equalities. Forc [n], X ; = X —uu. Letj € [n]. By

Sherman-Morrison formula,

X=X+~ =
- * 1—u] Xy, 1—7

Hence,

Ty -1, .7 y-1
uj Xy X huyg

Ty-1, — . Ty-1,
u; Xjuy =u; X uy+

1 — T;
ujTX_luiuiTX_luj
1 — T
2
_ o Tu Ty T + T T
J 1 — T; 1—7}

Squaring the terms in equatioB.14), we get

X lyu X1 o Xy XY

X ) X2uw] X700 Xt X720 X 2uuf X1

X 2=Xx"2
- + (1 — 7'2')2 + 1-— Ti

= X2+ hy

1—7'1‘

Xty X7 Xty X720 X 2w X1

(1—7'1‘)2 + 1—7'2‘ + ]-_7—i

(3.14)

Hence,
Ty—1, .7 y-1 Ty 1, .7 2 Ty 2.7 Y1
oo T o9 w; X wguy Xy ug X uuy X 7wy uy X uuy, X iuyg
TX 2y = ul X 2u; + hy
u; X uj = u; u; + (1_Ti)2 + - +
g T T Tigh R
I Z(l—Ti)Z 1_7—1' 1—7'1‘
2
gy T 2mihy
=1y

(]_ — TZ‘)Q 1-— T
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3.5.2 GuessinA-Optimum \alue¢” (V)

We remarked earlier that Algorithrd.4 requires the knowledge of the optimum solution value
#*(V). We can guess this value efficiently by performing a binary search. We explain the details
and the proof of the polynomial runtime of the search in this section.

Leta = tr <(Z;’:1 vl _1>. Since we may pick at mostcopies of each vector, we have that
AV > tr ((k S vivz.T)A) = +a. The fractional solution:; = £ is feasible forA-ReL(V).
Hence,¢? (V) < tr ((% S viv;—”)_1> = 2a. Using the result in ALSW17H, we get that

A (V) < (1 + €)¢h(V). Hence (V) € [%a,@a)] Hence, given an instance, we first
n(1+e)

computea and then perform a binary search fgt(1/) in the interval[%a, -

al.

Suppose the current range of the optimuni¥is]. We guess OPT to bég—“ (use this as A-
optimumg?® (1)) and run the modified local search algorithm. We claim that if it outputs a solution
with cost at most1+¢) 4 theng? (V) lies in the rangé?, (1+¢)“£%]. If it outputs a solution with
cost more thaiil +¢) <5, theng? (V') lies in the rangé®, u]. The first statement is trivially true.
The second statement is equivalent to the followingsifV) is less tharf£%, then the algorithm
outputs a solution of cost at mgdt+ e)“T“. Proof of this fact follows exactly the same way as the
proof of Theorem 13 by substituting* (V) with £* everywhere. The proof still follows, since
the only place we use the meaning of tfg V') value is in claiming that there exists a fractional

solution with valueg” (V). Becausep® (V) is less thant%, this statement is true with* (V')

replaced by,

log(n(1+¢)

€

We can guess the value of*(V') upto a factor ofl + € in log,, . (n(1 + ¢€)) <
iterations. This introduces an additional multiplicative factot af ¢ in the approximation factor
in Theorem3.3.3 Hence, we get an approximation factor (@f+ ¢)(1 + ¢) < (1 + 3¢) and

polynomial number of iterations.
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3.5.3 Exampleof Instanceso A-DESIGN

In this section, we give more details deferred from Secdi@i3 starting with the proof of Theorem

3.34

TheorenB.3.4 The casel = 2 is proven in Lemm&.3.5 so letd > 3. Let

1 1
v1=[1;m;0;-..;0},v2=[1;—m;0;..-;0],w1=[N4;N;0;..-;0]7
4, . N- . . 1 .
UJQ:[N,—N,O,...,O],U: uzzmez@:i’),d 5

and let{vy,vs, w1, wo} U U be the input vectors tel-DESIGN. Letp = [2=H2| g = [E=di2],
Consider a solutiort’ which picksp and ¢ copies ofv; andv,, and one copy of:; for each
i=3,...,d. We claim thatS is locally optimal.

Consider a swap of elements= S\ {s} U{s'} wheres’ # s. If s € U, thenS’ does not span
full dimension. Hences € {vy,v2}. If s = ¢; € U for somei, then the increase of eigenvalue
of S” in theith axis reduces the objective ) N?). However, by Clain, removing a vectos
will increase the objective b2(N*) . Finally, if s’ ¢ U, then the swap appears within the first
two dimension, so the calculation that a swap increases the objective is identical to tHe-case
proven in Lemm&.3.5 Therefore,S is locally optimal.

We now observe that the objective given Bys ©(N*), dominated by eigenvalues of eigen-
vectors spanning the first two dimension. However, consider a sol§tiomhich picksp andg
copies ofw; andw,, and one copy ofi; for eachi = 3,...,d. The objective ofS* contributed
by eigenvalues of eigenvectors lying in the first two dimensio@ ({8/?) (Claim 6), so the total

objective ofS* is ©(N?), which is arbitrarily smaller tha®(N*), the objective ofS. O

We also remark that the exmple of input vectorsit@ESIGN given in this section also shows
that A-DESIGN objective S — tr ((Zies vivz.T)A) is not supermodular, making the analysis

of algorithms in submodular optimization unapplicable. A set funcon2V — R is called
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submodular ifg(S U {u}) — g(S) > g(S" U {u}) — g(S") forall S € S’ C U andu € U, andg

is supermodular if-g is submodular. In other words,is supermodular if the marginal loss @f

by addingu is decreasing as the sgtis increasing by a partial ordering—". As a set increases,
the marginal loss of thel-DESIGN objective not only potentially increase, but also has no upper

bound.

Remark 3.5.7.For anyd > 2,T > 0, there exist sets of vectofsC S’ in R? and a vector € R?

such that

tr ((ZiES’ U“Tyl) i <(Zz’eSf ol + wa)A)
tr ((ZZES UUT)_1> - <<Zz‘es vl + wa)_l)

Proof. We first assumel = 2. Use the same definitions of vectors from Lem&a.5and set

>T

S =A{v1,v}, 8 = {v1, v, w1 } andw = w,. By Claim®6,

tr ((; mﬁ) 1) — tr ((; ! 4 wa> 1) = O(N)
() ) o) o ((5) )

— tr ((wlwlT + wgw;)_l)

= ®(N4)7

and

so the proof is done becausé tends to infinity. For the casé > 3, we may pad zeroes to all

vectors in the above example and add a unit vectdf, 1§ to each of othed — 2 dimensions. [
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3.6 Approximate Local Search for D-DESIGN

While Theorem3.2.1 proves a guarantee for every local optimum, it is not clear at all whether
the local optimum solution can be obtained efficiently. Here we give a approximate local search
algorithm that only makes improvements when they result in substantial reduction in the objective.
We show that this algorithm is polynomial time as well results in essentially the same guarantee as

Theorem3.2.1

Algorithm 3.6 Approximate Local search algorithm fér-DesSIGN

Input: V =wvy,...,v, € R d <k € n, parameted > 0.
Let I be any (multi)-subset dfi, n] of sizek such thatX = >~._, v;v; is non-singular matrix.
WhileJi € I, € [1,n] such thatlet (X — v;v] +v;v]) > (14 0) - det(X):
X =X —ovw, —i—vjva
I'=T\{i}u{j}
Return(7, X)

Recall thatqﬁj? denote the be the common optimum value bFREL) and its dual O-REL-

-

DuAL). I* denote the indices of the vector in the optimal solution ald= det (Ziep Uiv;)

be its objective. We hav@]‘? > log ¢P. We have the following result about Algorith&6.

Theorem 3.6.1.Let X be the solution returned by Algorith&6. Then,

_ 1\ ¢
det(X) > e *0 (%) %97

and therefore,

k—d+1
det(X)a > e—’“fTJ“-ng.

Moreover, the running time of the algorithm is polynomiahini, k, % and the size of the input.

Proof of the theorem is analogous to the proof of TheoBenl Let (7, X) be the returned
solution of the algorithm. We also lét; denote thel x |/| matrix whose columns are; for

eachi € I. Observe thaf\ = V;V," and X is invertible sincedet(X) > 0 at the beginning of
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the iteration and it only increases in later iterations. Werjet v, X ~1v; for any1 < i < n.
Observe that if € I, thenr; is the leverage score of row with respect to the matrik,". We also
7.; = v] X v, foranyl < i,j < n. As in TheorenB.2.1, we have some properties regarding

andh;.
Lemma 3.6.2. We have the following.

1. For anyi € I, we haver; < 1. Moreover, for anyi € I, 7; = 1 if and only if X — v;v; is

(2

singular.

2. We have>

iGITi = d

3. Foranyl < j <n,wehave) ., 7,7 = 7;.

4. Foranyl <i,j5 <n,we haver;; = 7;; andr;; < ,/7;7;.

Proof of the lemma is identical to that of LemrB&.2 Next, we show an upper bound en

for the approximate local optimal solution.

Lemma 3.6.3.For anyj € [1,n],
4 d+ ok
U= dr1

Before we prove the lemma, we complete the proof of The@dril

Proof. [Theorem3.6.1] We construct a feasible solution to th®{REL-DUAL) of the objective

value of at mos# log det(X) + log —— + . This would imply that

k ko

1
T < =logdet(X) + log ———
O} < < log e<)+0gk:—d+1+d

d

which proves the first part of the theorem. The second part follows si?lc_elog @P.
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Let

1
Y =alX, [0 = max vaY lvj = — max vaX lvj
1<j<n v je[l,n]

wherea > 0 will be fixed later. Then(Y, 1) is a feasible solution of/Q-REL-DUAL). Hence,

1 k1
D Tyv-1
¢fSalogdet(aXH—E-a]glﬁ};}va v; — 1
1 k d+ ko
<1 —logdet(X)4+ — - —-+———1 Lemma3.6.
< logat glogdet(X) + 50 =00 ( 3
Settinga = ——, we get
k 1 ko k 1 ko
D <log——— + Zlogdet(X 1+ ——1=log——— + —logdet(X —
O Slogp— o + glosdet(X) + 1+ 8T g1 g0t X)+
asrequired. n

Lemma3.6.3 SinceX is a symmetric matrixX ' is also a symmetric matrix and therefare =
7;; for eachi, j. We first show that the approximate local optimality condition implies the following

claim:

Claim 18. For anyi € I andj € [n], we have

Tj_TiTj+TijTji S(g—f-ﬂ (315)

Proof. Leti € I, j € [n]and X _; = X — v;v,. First, consider the case whéeh ; is singular.

From Lemmé3.2.2 we have that; = 1, 7,; = 7;; < ,/7;7; < 1. Hence,

Tj—TiTj—i‘TZ‘jTjiSTj—Tj—i‘l:TiS(s—i‘Ti
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Now consider the case whex_; is non-singular. By local optimality of, we get that
det (X_; +vv) ) < (1+0)det (X_; + viv;) (3.16)
Claim 19. For any invertible matrixA € R%¢ andv € R?,
det(A+vv") = det(A)(1 +v"A )
Hence, local optimality of implies that for any € 7,5 € [n],
det(X_;)(1+v] XZlvj) < (1+6)det(X_;)(1 + v X }vy)

Dividing both sides bylet (X_;) , we get for eachi € I and; € [n], we havel + v/ X~v; <

(1+6)(1+ v X~!v;) or equivalently,
UJ-TX:Z-lvj <5+ (1+ 8y Xt

From the Sherman-Morrison Formula we obtain that foraay/ and; € [n], we have

X_IUZ'UZTX_I

T( yv-1
T x 4 V%A
Vi < * 1— v X1y,

X—l ; TX—I
)vj§5+(1+5)vj (X‘H—L)w

1— v X1y,

Now using the definition of;, 7; andr;;, we obtain that for any € I and1 < j < n, we have

TiiTiqi T-2
T <0+ (1+9) <Ti+1_17').

Multiplying by 1 — 7;, which is positive from Lemm&.2.2 on both sides we obtain that for any
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1€ lTandl <j <n,
Tj_TiTj—"TijTji S(S(l—ﬂ)—f-(l—f—é)ﬂ:é—f—ﬂ

thus finishing the proof of thelaim. ]

Now summing over the inequality in Clai@8for all ; € I, we get

Z (Tj — TiTj +7—ij7-ji) S Z(S—{— ZTi.

el el el

Applying Lemma3.2.2 we obtain that
ij —de+Tj S (5k+d

Rearranging, we obtain that

' d+ ok
T Cd+1

Runtime Analysis. One may obtain the worst-case runtime for local search for D-design as fol-
lows. LetL be the maximum number of the length of binary string that encodes the number in each
component across all input vectars Suppose we start with any soluti6rwith nonzero determi-
nantdet(VsVd) = > RCS.|R|=d det(Vg5V2) (Cauchy-Binet), which can be done in polynomial time

by finding a set of linearly independent vectors. Sifg# is PSD,det(VsVY) is nonnegative

and hence must be strictly positive, and therefore at least onedteiiz ;) is strictly positive.

We now use the fact that for a square matfixthe binary encoding length afet(A) is at most

twice of the encoding length of matrix (the exact definition of encoding length and the proof are
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in Theorem 3.2 of $ch9§). Since the length ofl x d matrix VzV ! is at mostd? + Ld? < 2Ld?,
the length ofdet(Vz V) is at mosttLd?. Hence, the value of the determinant is at least® .
The optimum solutionS* of D-DESIGN attains objectived ;. g det(VaVy) (Cauchy-
Binet). Each termlet(V; V) again has length at mo$f.d?, and so is at most*’*, Therefore,
the optimum is at most’) - 244" < k214", Hence, any solutio' with nonzero determinant is
a k428L% _gpproximation. Each swap increases the objective by a multiplicative faetof, so
the algorithm takes at mokig,  ;(k923%) < 2dlogk - (8Ld?) = O(%) swapping steps for
d < 1/2. We may use matrix determinant lemma (for rank-one update) to compute the new deter-

minant objective rather than recomputing it in the next iteration. The matrix determinant lemma

computation take®(d?) times, so one swapping steps tak&gnd?) time by computing alkn

Lknd® log k )

potential pairs of swaps. Therefore, the local search in total akEE1eE knd?) = O (Lhnd

arithmetic operations.

3.7 Approximate Local Search for A-DESIGN

Algorithm 3.7 Approximate Local search algorithm far-DESIGN
Input: U = {uy,...,u,} CRY d<keN,
Let I be any (multi)-subset dfl, n] of sizek such thatX = >~._; v;v;" is non-singular.
WhileJi € I, € [1,n] such thatr (X — wu +uju))™t) < (1—6)tr(X):
X =X —uu —i—ujujT
I'=T\{i}u{j}
Return(7, X)

Recall that for any input vectorg = {vy,...,v,}, the primal program isi-ReL(V') and the
dual program isA-ReEL-DUAL (V). We index these convex program by input vectors as we aim
to analyze their objectives when the input changes by the capping aIgor&ip(“h’.) denote the
(common) optimal value of objective values of the convex program with input vectorsifrom
denote the indices of the vectors in the optimal solutiodl @ESIGN with input vector set” and

i

let (V) = tr ((Zie]* UiUT)A) be its objective. Recall that? (V) < ¢A (V).
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Similar to the local search result fer-DESIGN of Theorem3.3.2 we can prove the following

theorem:

Theorem 3.7.1.Let X be the matrix returned by Algorith@7. If ||u,||3 < A for all i € [n],

-1

— 2) 1 A¢R(U)

-1 A d
tr(X 1) < ¢R(U) <1— k )1+ (k—d)d k

To prove Theoren3.7.1, we can prove the following lemma instead of Lem&&.3

Lemma 3.7.2.For anyj € [n],

hy Bt (k= d)0)
1—|—Tj_ k—d+2

Instead of Theorer.3.3 Theorem3.7.1now leads to the following theorem:

Theorem 3.7.3.For input vectorsV = {vy,...,v,} and parametet, letU = {uy,...,u,} be
the set of vectors returned by the Capping AlgoritBiawith vector sel” and A = Wd(\/)' Let
(I, X) be the solution returned by Algorith13 with vector set/ and parametetk. If £ > z—f

ed
5§ﬁ!

and: < 0.001 then,

tr (Z Uﬂ)j) < (14 26)8™ (V).

il

Proof of the theorems and lemmas are identical to the corresponding theorems and lemmas

proved in Sectior3.3. Hence, we avoid the tedious calculations in reproving these theorems.

Runtime Analysis We claim that the running times of both capping and approximate local search
for A-DESIGN are polynomial inn, d, k:,% and the size of the input. The runtime analysis of
approximate local search algorithm fdrDESIGN is identical to the one foPD-DESIGN (with a

change of objective, but the objective can still be computed ion polynomial time).
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The significant change is the use of capping algorithm, which needs to be shown to ternimate
in polynomial time. Let. be the maximum number of the length of binary string that encodes the
number in each component across all input vectardhen||v;||? < v/d - 22 for all i’s. In each
iteration, the capping algorithm reduces the length of at least one vector by at least half, and hence
by nlog% = O(nLlog %) iteration of capping, all vectors have length at mast As in the
analysis of approximate local search forpEsIGN, the encoding length af* (V) is polynomial
inn,d, k, L, and so idog % (asA = W). Hence, the capping algorithm takes polynomial (in

n,d, k, L) number of steps.

3.8 Greedy Algorithm for D-DESIGN

Algorithm 3.8 Greedy algorithm folD-DESIGN
Input: V =v1,...,v, e RLd <k €N, S, C [n].
X() = ZjGSo Uj’UJT.

Fori=1tok — |So|:
ji = argmax;c(, det(X + v;v])
Si=951U{j}, Xi=Xi0 + 'Uji'U]—'l;
I - Sk—‘So|7X = Xk—|So‘
Return(7, X).

To prove Theoren3.1.2 we again use the convex programming relaxation forllRBESIGN
problem. Recall the relaxatiomd(-REL) and its dual O-REL-DUAL) shown in figure3.1h gb][?
denote the be the common optimum value DFREL) and its dual D-REL-DUAL). I* denote
the indices of the vector in the optimal solution anddét= det (Ziep vz-v;)é be its objective.
Observe thatﬁj'? > log °. Now, Theorem3.1.2follows from the following theorem with an

appropriate initialization of first vectors which will be specified later.

Theorem 3.8.1.For any set of vectors,, ..., v, € R?, supposes, C [1,n] is a set of sizel such

thatdet (3 vivf)% > 45 ¢P for somel >k > 0andk > ¢ (log X + loglog 1). Let(I, X)

i€Sy
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be the solution returned by Algorith&8. Then,
det(X) > (1 — 5¢)¢P

Before we prove Theorefd.8.1, we state and prove the following theorem, which better con-

veys main ideas of the proof.

1

Theorem 3.8.2.For any set of vectors,, ..., v, € R?andk > dh’%, supposes, C [1,n]is a set
1

of sized such thatdet (3, .¢ viv] )? > %k - ¢P for somel > x > 0. Lets = max{dloglog 1,0}

and(/, X) be the solution returned by pickirig— d + s vectors greedily. Then,
det(X) > (1 — 4e)p°

Theoren3.8.2gives a bi-criteria approximation where we pick small numbef extra vectors
than the budget while obtaining near-optimal solution. Thes&ectors are required to improve

the initial approximatiorf to a ratio4 independent of. or x.

TheorenB3.8.2 To prove this theorem, we show the following two lemmas. First lemma shows the

increase in the solution value in each greedy step.
Lemma 3.8.3.For ¢ € [0,k — |So| — 1], det(X,s1) > det(X,) (1 v dL)

¥ (det(X;))1/4

Next lemma shows that this recursion leads to the desired bound in the theorem.

kzt

1/d
Lemma3.8.4.Letl > 0. Letz, ...,z besuchthatfot € [0, k—(—1], 2,11 > 2 (1 + i) .

Then,

1. If zp < ¢, then for anys > dloglog %2, we have

z>i
T ek
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2. If z > 4, then we have

k—d—0¢ 2d k
zk7£ZT

el P
G

. Y .
Proof of TheorenB.8.2follows from these two lemmas by defining = W in the
bound in Lemma3.8.3 Lemma3.8.4implies that for any initialk approximation withd initial
vectors to theD design problem of vectors,s = dlog log% vectors is enough to guarantee
i-approximation. Then, the second bound of LemBn@.4 applies for the rest of the greedy

algorithm. We now prove these two lemmas.

Lemma3.8.3 By definition,det(X;,1) = max;e) det(X; + vjv) ). By Lemma3.4.2 det(X,; +
vjv]) = det(X;)(1 4 v/ X; 'v;). Hence,

det(Xyy1) = det(Xy) (1 + max UTXt_ll)j) (3.17)

jeln] ’

Next, we lower boundnax;c, vaXt‘lvj by constructing a feasible solution to th&-{REL-

DUAL). Let

1
Y = aX;y, = maxv! Y lv; = — maxv! X, v,
S = A

wherea will be fixed later. Then(Y, 1) is a feasible solution of/p-REL-DUAL). Hence,

k1 N
log det(aX;) + i a gré?n)]( vaXt ;=1

SN

o7 <

which implies
da

1
T (¢? +1—loga — pi log det(Xt)) < maxv, X; v

jem] 7
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D

%
72, We get

Setting,a = ﬁ

d 6¢? 6¢JE‘) e¢?

1 d
Tx >t [Pl log———— — —logdet(X,) | = S— S
maxv; Xovy 2 gy \ O Ll gy ~ g loedet ) | = pas

Substituting the bounds in equatidh17), we get

e??
det(Xt+1) Z det(Xt) (1 + %W) .

This finishes the proof of Lemnt&8.3 ]

-

Lemma3.8.4 We first prove the first bound. The recursion implies tﬁﬁt > (%) , which is

equivalent to

1 Sl -t
og z — 109 —
R

log z; (3.18)

Definea; := log% — log 2. If a, < 0foranyu < s, then we are done because> z, > % Else,

we can rearrange terms to obtain

1
agiq S <1 — 8) Q (319)

Hence, we have

where the last inequality follows from> loglog 2. ThereforeJog ¢ — log z, = a, < 1, giving

the desired bound.
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To prove the second bound, the recursion is equivalent to
1
log 241 > Jlog <1 + i) (3.20)

Itis clear that:; is an increasing sequencetimence% < % = e. We usdog(1+x) > £ for
0 < z < e (by concavity oflog z) to lower bound the right-hand-side &.20 above inequality

to obtain
Zt+1 > 1 d 1

log

Ze d ekz,  ekz

Thus, by using® > 1 + z, we have®. > &= > 1 + > Which implies

2t

21 2> 4+ —
t+1 — <t ek

Therefore, we obtain, > ﬁ forall ¢t > 0.

Next, we apply the bounibg(1 + ) > 2 — 2 = z (1 — £) wheneven < z on the right-hand-

side of 3.20 to obtain

where the last inequality comes from > —-. Thus, applyinge” > 1 + z, we have"‘tz—t1 >

1+ kLZt - (1 = 24), which implies
1 2d

> - - 3.21
Ziy1 = 2+ —7 ( )

Summing 8.21) fromt¢ =dtot =k — ¢ — 1 gives

o, Rkmd=t=1 2 /1 1 1
Tkt = 2 2 E\d Tdy1 T T k==

Jk—d—t_ 2k
=Tk R
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asdesired. O

Now we prove Theorer3.8.2 We first picks vectors greedily to guarantee that> % (If

zo > %, thens = 0.) Substitutingd = d andk > % in Lemma3.8.4gives

d k
> 1—— -
Zl—p = L (2+210gd>

2¢ 1 1
>1-— 7 | 1+log—+loglog— | > 1—4e
log = € €

where the second inequality follows froﬁn(l + log ) being decreasing function an> 1, and

the last inequality is by + = < e* with z = log L. O
We are now ready to prove the main theorem.

TheorenB.8.1 The proof is identical to the proof of TheoreBn8.2except that, after using =
log log % vectors to obtai@‘ik-approximation, we only takke — d — s greedy steps instead bf— d

greedy steps. Hence, we get d + s to the second bound of Lemn3a3.4to obtain

Pt 2 —

k-2d-s 2 k_ . d
i T T Tk

We havel — ¢ (2 + 2log £) > 1—4eidentical to the proof of Theore®18.2 By k > 4 loglog 1 =

2, we have; < ¢, completing theproof. n

We finally note on combinatorial algorithms for setting initial solution of sizeOne may
use volume sampling algorithms to achi€ix@pproximation to optimal objective in for picking
vectors AB13]. Alternatively, we can perform local search on initiavectors to obtairl/(1 + ¢)-
approximation in time polynomial i@, as shown in SectioB.6. Since we know that the relaxation
gaps ofA- and D- optimal design are at mogffw, we can bound the optimum values of design
problems between picking and k£ vectors to be at most multiplicative factor apartAB13,

NST19. The approximation ratios of two algorithms are hencanddk (1 + §), respectively. We
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formalize this argument and the result with locally optimal initial set as the following statement,

which proves Theorer.1.2

Corollary 3.8.5. Greedy algorithm initialized by a local optimal set of sizeeturns a(1 + 5¢)-

approximation whenever > 2(log + + loglogd + 1).

We first argue the ratio of optimu-DESIGN values when the size of the setdsand k.
Denote¢®(d), ¢° (k) = ¢P the optimumD-DESIGN objectivedet (3", 4 viv;)é on sized, k,

respectively. Denote?(d),¢? (k) = ¢7 the common optimum value of{-REL) and its dual

(D-REL-DuUAL) for size constraints af, k£ respectively.

Claim 20. We have
¢° (k) < koP(d)

Proof. Because D-REL) is a relaxation ofD-DESIGN (up tolog scale), we have

exp @ (k) > ¢°(k),  expgp(d) > ¢°(d)

We may scale any optimal solution oD¢REL) with size & to sized by applyingz; = %:cl-

coordinate-wise. Therefore, we have

d
9P (d) > 9 (k) + log

Finally, we know that the integrality gap of-REL) is %M This follows from the approxi-
mation result of local search algorithm which compares the objective value of returned set to the
objective to the convex relaxation. (This exact bound of the gap also follows from previous work

on proportional volume samplindNET19.) We apply this gap for size budgéto obtain

exp @7 (d) < do°(d)
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Therefore, we have

P (F) < exp g (k) < - exp?(d) < ko°(d) (3:22)

asdesired. O

Corollary 3.8.5 Theorenf3.1.limplies that a local search solution satistieapproximation when
budget size ig. Hence, by Clain20, a local solution islk-approximation compared t0-DESIGN
with a size budget of.

We now apply Theorer.8.1 it is sufficient to show that

d 1 1
k>— <log — + loglog —> (3.23)
€ € K

for k = %, so the result follws. ]

3.9 Greedy Algorithm for A-DESIGN

In this section, we prove Theoretl.4 As remarked in the case of local search algorithm, we
need to modify the instance to cap the length of the vectors in the case of greedy algorithm as well.
This is done by Algorithn8.2 As shown in Lemm&.3.1, the value of any feasible solution only
increases after capping and the value of the convex programming relaxation increases by a small
factor if £ is large.

We now show that the greedy algorithm run on these vectors returns a near optimal solution.
For any input vector¥” = {vy,...,v,}, the primal program isl-ReL (V") and the dual program is
A-REL-DUAL (V). ¢;\(V) denotes the (common) optimal value of objective values of the convex
program with input vectors frorir. I* denotes the indices of the vectors in the optimal solution of
A-DESIGN with input vector set/ and¢” (V) = tr ((Zieﬁ viv;yl) be its objective. We show

the following theorem about Algorithr®.9in terms of capping length.
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Algorithm 3.9 Greedy algorithm ford-DESIGN
Input: U = uy,...,u, € R4 d <k eN,S C [n].
Xo=2jes, uju] .

Fori=1tok — |[Syl:
Ji = argmin g, tr ((X + ujujT)_1>
Si=Si1U{ji}, Xs = Xioq 4+ uju),
I'= Sk_is, X = X 50|
Return(7, X).

Theorem 3.9.1.Let ||u;||2 < A, Sy C [n] of sizer > d such thattr ((Zieso uiu:)71> <

rk-¢*(U) for somex > 1, andA = w. Let(/, X) be the solution returned by Algorith&.9.
Then we have
-1
tr(X 1) < (1 — d—]:r — 2Alog %‘ZA/@I}) o™ (U)

Similar to the analysis of local search fdrDESIGN, capping vector length is necessary to

obtain theoretical guarantee. We will optimize over the lenytlater in Theoren8.9.4

TheorenB.9.1 To prove the theorem, we show the following two lemmas:

Lemma 3.9.2.For anyt € [0, k—|So|], letz = tr(X; ') /¢}(U). Then, forany € [0, k—|So|—1],

2t

A
k (1 + z A(z)JI;(U))

Zip1 Sz | 1=

Lemma 3.9.3.LetA > 0 and/ > 0. Suppose; 1 < z (1 -z

sty ) forall ¢ > 0, then

1. If zp > ¢, then for anys > 2Ak log(Az), we have

==
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2. If zp < 1, we have

d+ ¢ B\ !
< |1————=2Alog—
Zke_( 2 Ogd)

Lemma3.9.2 By definition,

tr(X,5}) = min tr ((Xt + uju;-r)fl) .

J€ln]

By Sherman-Morrison formula,

Tyv—2
u; X; “u;
tr Xil =1tr Xil _ma‘X#
( t+1) ( t ) ]G[n] 1+u;rXt_1U/]

Note thatu X; 'u; = (u;, X; 'u;). By Cauchy-Schwarz inequality,] X, 'u; is at most

[ 211 X5 uglle = Jugll2y/u) X;2u;. Since,[|ug|[3 < A, we getw] X u; < (/A - u] X, ?u;.

Hence,

Ty —2

u; X; “u;
(X)) < (X = max ———t
TRl A u] X Py

Next, we lower bounahax ;¢ u;.rX;QUj by finding a feasible solution td-ReEL-DUAL. Let,

(3.24)

a2 _ T _ Ty -2
Y =~X,7, )\—Ijléz[ﬁquuj—fy?é%(qut u;j

wherey > 0 will be fixed later. Then(Y’ \) is a feasible solution tel-ReL-DUAL (U). Hence,

925';‘([]) > 2tr ((7X[2)1/2> — kv maxujTXt_zuj

J€[n]

L1 _
maxujTXt u; > o 2y (X - (b?(U))

J€[n]
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)
tr(X, 1)

2
Substitutingy = < ) , We get

tr(X 1)2
max uTX Us > ————
J€E[n] L k¢f U )

As proved in Claim7 is a monotonically increasing function for> 0 if ¢ > 0. Hence,

11+\/7

tr(X; )’

TX u; kA (U)
max
R 4 A ] X u] 1+ ’Atﬁf\
tr(X; 1)
Substitutingz; = ¢A(U) , we get
_2 _
max ujTXt Uj > tr(X, 1) 2t

j€ll 1 4 \/m a k 1+ 2% M)i(U).

Substituting this inequality in Equatio.Q4), we get

2t
A
k (1 + Zt A¢J];(U)>

Substitutingz, = tr(X; ') /¢ (U) andzyy = tr(X,}}) /¢4 (U), we get

tr(X ) <tr(X;h) [ 1-

2

A

This finishes the proof of Lemn&9.2 n

2i1 Sz | 1=

Lemma3.9.3 We first prove the first bound. H;, < % for anyt < s, then we are done, so assume
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zA > 1. The recursion then implies

<zl1- -2 — (1oL
= k2ah) ) 2kA

Therefore,

1 S
< _
s =20 (1 2kA)
1

—logAzo _ —

A

_a
< ze 2% < zpe

as desired.
We now prove the second bound. Let= Zit Then the recursion; ;; < z (1 — m)

can be rewritten as

-1

A1 1
—>(1-— 3.25
a ( k(A + at)) (3:29)

-1
Applying (1 — m) > 1+ m and rearranging terms, we obtain
Q¢ 1 A

> S S 3.26
G e ) TR T R+ a) (3.26)

It is obvious from 8.25 thata; is an increasing sequence, and hemce a, > A forall ¢t > 0.

So 3.26) implies
A 1

1
at+12&t+g—mzat+ﬁ (327)

Therefore, we have, > ﬁ forallt > 0.

Using this bound:; > 5=, the recursion3.26) also implies

A 1 2A

FRD TR

= (3.28)
L kot

a1 2 ay +
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Summing3.28fromt =dtot =k — { — 1 gives

k—(—1
k—d—7? 1
ak_gzad—l———ZA ;

t=d

T

k—d—7? k
T_QAIOgE

proving the desiretbound. n

We now prove TheorerB.9.1 The first bound of Lemma.9.3shows that with initial approxi-
mationx, we requires = max{0, 2Ak log(Ax)} steps to ensurg approximation ratio. After that,
we can pickk — r — s vectors. Hence, we apply the second bound of LerBrA8with ¢/ = r + s

to get the approximation ratio of as

d4+r+s AN,
< L —
Zh—t <1 2 2A lOg d)

d k !
= (1 - —I:T —2A (log 7 + max {log Ax, 0}))

B 1_d+r kmax{Ar,1}\ "
B k d

— 2Alog

proving the desiretbound. n

Next, we tuneA in Theorem3.9.1and use Lemma3&.3.1to obtain the final bound, from which

Theorem3.1.4will follow.

Theorem 3.9.4.For input vectorsl” = {vy,...,v,} and parametek € N, letU = {uy,...,u,}
be the set of vectors returned by the Capping Algorighawith input vector seV andA = W.
Let Sy C [n] be an initial set of size > d wheretr ((Zieso uiuj)_1> < k- ¢*(U) for some

x> 1. Let(I, X)) be the solution returned by Algorith19 with vector seU and parametek. If
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(0} 2’-@ O, 21
k>t w ande < 0.0001, then

((Zvl )) (14 6000€)™ (V)

Proof. By Lemma3.3.], substitutingA, we have

AU) < (1+W) (A(V) + 150e62 (V)

< (1 4+ 5500€)™ (V) (3.29)

where the last inequality follows from* (V') > ¢} (V), k > 4. ande < 0.0001. Thus, we have

_Jaghw) | dgh(U) d(1 + 5500¢) d
AV —VWSVTSQ@

Next, Theoren8.9.1limplies that

Ak, 13\ 7!
tr(X1) < (1 - d"k“" — 2Alog %’l“}) S (U) (3.30)
Note that
Ak, 1
2Alog%‘lﬁ’} <2Alog = ke
<4\/ log —1—4\/ log/f

1 d log

Slnce\f log = is a decreasing function an> 8, applyingk >

1 1
\/ dlogkg ‘ 310g —|—10g10g +log2 ) < 4e
ek d log

< we have
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dlog? 1 dlog? %
3

where the last inequality follows from < 0.0001. Also, applyingk > k> —= > g

o g < a T
Vep 8= =9 ;=

€

andk > %, we have

Hence, 8.30 implies that
tr(X 1) < (1 —22¢)"" ¢A(U) (3.31)

Combining 8.31) with Lemma3.3.1and @.29 gives

tr (Z ij) 7 < tr(X ) < (1 —22¢) " (1 + 5500€) (V)

i€l

< (1 4+ 6000¢)p™ (V)

where the last inequality follows from< 0.0001. n

We note an efficient combinatorial algorithm of volume sampliAB]3, DW174 that gives
Z-approximation to thed-DESIGN problem of selectingl/ vectors (note that these randomized
algorithms can be derandomized, e.g. by rejection sampling). Alternatively, from our result on
approximate local search algorithm fdrDESIGN in Section3.7, we can also initialize witl - d
vectors for an absolute constanand perform local search algorithm to obtdin- 0.0001 + ¢
approximation in time polynomial i% for some smalb. Similar to Claim20, we can relate the
optimum of A-DESIGN of size budget! < r < k andk to be at most facto% apart AB13,
NST19. Hence, the volume sampling on initial set of sizand local search on initial set of size
cd give approximation ratio of andcd_—’“dﬂ(l +0.0001 + 0) < %, respectively; that isz can be

set ton or § in Theorem3.9.4and we adjust accordingly. Using the local search on initial

vectors to set the value efandr, we prove Theorer.1.4
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TheorenB.1.4 Supposek > C' - E%log2% for some absolute constaat > 0 to be specified

O, 2’{ O, 21
later ande < 0.0001. By Theorem3.9.4 it is sufficient to havek > © + w where

Kk = § andr = cd by initializing the greedy algorithm with an output from an approximate local

search algorithm of sized for an absolute constamt By checking the derivative of (k) :=

cd d(log2 %—Hog2 l) .. . k 3 . .
k— ¢ — ——4——=2, f(k)is increasing wheRdlog 5 < ke’, which is true for a large enough

C. Hence, we only need to shofi(k) > 0 for k = C - $log”> L. The conditionf(k) > 0 is
equivalent to

log® £

1 1
C'log® = > log? f € +log? — + cé? (3.32)
€ € €

Itis clear thatog® 2 + ce? < $log® L for C' > 3 + c. We also have

Clog? ! 1 1\?
log? 03g £ = <10g0+310g—+210g10g—)
€ € €

1\ 2
< (10g0+5log —)
€

2
< (\/€—5+510g1>
2 €
2
< /C’1 1
S 5 Oge

where we use < ¢” for z = log % log C' < +/C — 5 for a sufficiently large”, andlogé > 1for

the three inequalities above, respectively. Hence, we finished the praBa¥. ( n
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CHAPTER 4
MULTI-CRITERIA DIMENSIONALITY REDUCTION WITH APPLICATIONS TO
FAIRNESS

4.1 Introduction

Dimensionality reduction is the process of choosing a low-dimensional representation of a large,
high-dimensional data set. It is a core primitive for modern machine learning and is being used
in image processing, biomedical research, time series analysis, etc. Dimensionality reduction can
be used during the preprocessing of the data to reduce the computational burden as well as at the
final stages of data analysis to facilitate data summarization and data visualiR&689 1P91].

Among the most ubiquitous and effective of dimensionality reduction techniques in practice are
Principal Component Analysis (PCAPga01 Jol86 Hot33, multidimensional scalingqru64],

Isomap TDSLOQ, locally linear embeddingRS0Q, and t-SNE MHO08].

One of the major obstacles to dimensionality reduction tasks in practice is complex high-
dimensional data structures that lie on multiple different low-dimensional subspaces. For example,
Maaten and HintonNIHO8] address this issue for low-dimensional visualization of images of ob-
jects from diverse classes seen from various viewpoints, or Samadi &aahH1$ study PCA
on human data when different groups in the data (e.g., high-educated vs low-educated or men vs
women) have an inherently different structure. Although these two contexts might seem unrelated,
our work presents a general framework that addresses both issues. In both setting, a single criteria
for the dimensionality reduction might not be sufficient to capture different structures in the data.
This motivates our study of multi-criteria dimensionality reduction.

As an illustration, consider applying PCA on a high dimensional data to do a visualization

analysis in low dimensions. Standard PCA aims to minimize the single criteria of average recon-
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struction error over the whole data. But the reconstruction error on different parts of data can be
widely different. In particular,$am+18 show that on real world data sets, PCA has more recon-
struction error on images of women vs images of men. A similar phenomenon is also noticed on
other data sets when groups are formed based on education. Unbalanced average reconstruction er-
ror or equivalently unbalanced variance could have implications of representational Raiehg [

in early stages of data analysis.

Multi-criteria dimensionality reduction.  Multi-criteria dimensionality reduction could be used

as an umbrella term with specifications changing based on the applications and the metrics that the
machine learning researcher has in mind. Aiming for an output with a balanced error over differ-
ent subgroups seems to be a natural choice as reflected by minimizing the maximum of average
reconstruction errors studied bgdm+13 and maximizing geometric mean of the variances of the
groups, which is the well-studied Nash social welfare (NSW) objeckW¢/P, NJ50. Motivated

by these settings, the more general question that we would like to study is as following.

Question 1. How might one redefine dimensionality reduction to produce projections which opti-

mize different groups’ representation in a balanced way?

For simplicity of explanation, we first describe our framework for PCA, but the approach is
general and applies to a much wider class of dimensionality reduction techniques. Consider the
data points as rows of anxn matrix A. For PCA, the objective is to find anx d projection matrix
P that maximizes the Frobenius norfid P||% (this is equivalent to minimizing the reconstruction
error). Suppose that the rows df belong to differengroups based on demographics or some
other semantically meaningful clustering. The definition of these groups need not be a partition;
each group could be defined as a different weighting of the data set (rather than a subset, which
is a 0/1 weighting). Multi-criteria dimensionality reduction can then be viewed as simultaneously
considering objectives on the different weightingsAfi.e., A;. One way to balance multiple

objectives is to find a projectioff that maximizes the minimum objective value over each of the
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groups (weightings):

max min |[|A;P|% = (AT A;, PPT). (FAIR-PCA)
P:PTp=J, 1<i<k

(We note that our KIR-PCA is different from one in$am+18, but equivalent by additive and
multiplicative scalings.) More generally, |8%; denote the set of all x d projection matrices,
i.e., matrices withi/ orthonormal columns. For each grodp we associate a functiofy : P; — R
that denotes the group’s objective value for a particular projection. Foy aly} — R, we define
the(f, g)-multi-criteria dimensionality reduction problem as findind-dimensional projectio®

which optimizes

gl%)xg(fl(P),fg(P), o fr(P)). (MULTI-CRITERIA-DIMENSION-REDUCTION)
€Pa

In the above example of max-min Fair-PCAis simply themin function andf;(P) = || A; P||* is
the total squared norm of the projection of vectorsiin Other examples include: defining each
f; as the average squared norm of the projections rather than the total, or the marginal variance —
the difference in total squared norm when usihgather than the best possible projection for that
group. One could also choose the product functon, ..., y,) = []; v: for the accumulating
functiong. This is also a natural choice, famously introduced in Nash'’s solution to the bargaining
problem NJ5Q KN79]. This framework can also describe thin power mean of the projections,
e.9.(P) = | AP andg(ys.....u) = (S ') "

The appropriate weighting df objectives often depends on the context and application. The

central motivating questions of this paper are the following:
o What is the complexity dfAIR-PCA?

< More generally, what is the complexity MULTI-CRITERIA-DIMENSION-REDUCTION ?

Framed another way, we ask whether these multi-criteria optimization problems force us to in-
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cur substantial computational cost compared to optimizioger A alone. Samadi et alSam+18§
introduced the problem of#fR-PCA and showed how to use the natural semi-definite relaxation
to find a rank-{ + k£ — 1) approximation whose cost is at most that of the optimal rédalprox-
imation. Fork = 2 groups, this is an increase ofin the dimension (as opposed to the naive
bound of2d, by taking the span of the optimaldimensional subspaces for the two groups). The
computational complexity of finding the exact optimal solution tof=P CA was left as an open

guestion.

4.1.1 Resultsand Techniques

Let us first focus on KiR-PCA for ease of exposition. The problem can be reformulated as the
following mathematical program where we denét®? by X. A natural approach to solving this

problem is to consider the SDP relaxation obtained by relaxing the rank constraint to a bound on

the trace.
Exact FAIR-PCA SDP Relaxation of RIR-PCA
max 2 max 2
(ATAL X)) >z ie{l,... k} (ATA, X) >z ie{l,... Kk}
rank( X) < d tr(X) <d
0< X<T 0= X<=<1T

Our first main result is that the SDP relaxation is exact when thergvargroups. Thus finding
an extreme point of this SDP gives an exact algorithm fRFP CA for two groups. Previously,
only approximation algorithms were known for this problem. This result also resolves the open

problem posed by Samadi et ahgdm+18.
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Theorem 4.1.1.Any optimal extreme point solution to the SDP relaxationfeIR-P CA with two

groups has rank at mogt Therefore2-group FAIR-PCA can be solved in polynomial time.

Given m datapoints partitioned inté < n groups inn dimensions, the algorithm runs in
O(nm + n%%) time. O(mnk) is from computingA? A; andO(n%?) is from solving an SDP over
n x n PSD matricesBTNO1]. Our results also hold for the MLTI-CRITERIA-DIMENSION-
REDUCTION wheng is monotone nondecreasing in any one coordinate and concave, angl each

is an affine function of? P” (and thus a special case of a quadratic functioR)n

Theorem 4.1.2.There is a polynomial time algorithm f@argroupMULTI-CRITERIA-DIMENSION-
REDUCTION problem wherny is concave and monotone nondecreasing for at least one of its two

arguments, and each is linear in PP, i.e., f;(P) = (B;, PP") for some matrixB;(A).

As indicated in the theorem, the core idea is that extreme-point solutions of the SDP in fact
have rankd, not just trace equal t@.

For k > 2, the SDP need not recover a rasikolution. In fact, the SDP may be inexact even
for k = 3 (see Sectiod.7). Nonetheless, we show that we can bound the rank of a solution to the
SDP and obtain the following result. We state it fanR-PCA, though the same bound holds for
MuULTI-CRITERIA-DIMENSION-REDUCTION under the same assumptions as in Theodeinl

Note that this result generalizes Theorérh.1

Theorem 4.1.3.For any concavey that is monotone nondecreasing in at least one of its ar-
guments, there exists a polynomial time algorithm FarrR-PCA with k£ groups that returns a
d+ [/2k + 411 — gj-dimensional embedding whose objective value is at least that of the optimal

d-dimensional embedding. §fis only concave, then the solution lies in at mést 1 dimensions.

This strictly improves and generalizes the bound-pf:—1 for FAIR-PCA problem. Moreover,
if the dimensionality of the solution is a hard constraint, instead of toleratingO(v/k) extra

dimension in the solution, one may solvaiR-PCA for target dimensiod — s to guarantee a
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solution of rank at most. Thus, we obtain an approximation algorithm foxiR-PCA of factor

O(Vk)
1 2vh,
Theorem 4.1.4.Let Ay, ..., A, be data sets of groups and suppose:= |/2k + ;11 = %J <d
Then there exists a polynomial-time approximation algorithm of fagter 2 = 1 — 2K 1o

FAIR-PCA problem.

That is, the algorithm returns a projeete P, of exactrankd with objective at least — % of
the optimal objective. More details on the approximation result are in Se¢tBoihe runtime of
Theoremst.1.2and4.1.3depends on access to first order oracle tond standard application of
the ellipsoid algorithm would tak€(n?) oracle calls.

We now focus our attention to the marginal loss function. This measures the maximum over
the groups of the difference between the variance of a common solution férgreips and an
optimal solution for an individual group (“the marginal cost of sharing a common subspace"). For
this problem, the above scaling method could substantially harm the objective value, since the
target function is nonlinear. MLTI-CRITERIA-DIMENSION-REDUCTION captures the marginal
loss functions by setting the utility;(P) = ||A;P||% — maxgep, ||A;Q||% for each group and
g(f1, fo,. .., fx) :=min{ f1, fo, ..., fx}, giving an optimization problem

: A.0l% — || A Pl 4.1
s o (|41 — 14,715 (@)

and the marginal loss objective is indeed the objective of the problem.
In Section4.4, we develop a general rounding framework for SDPs with eigenvalue upper
bounds and other linear constraints. This algorithm gives a solution of desired rank that violates

each constraint by a bounded amount. The precise statement is Thé&dr&nit implies that for
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FAIR-PCA with marginal loss as the objective the additive error is

[V/2IS]+1]
A(A) := max Z oi(As)

sCml 4

whereds = 5 325 Ai-
Itis natural to ask whetherdtR-P CA is NP-hard to solve exactly. The following resultimplies

that it is, even for target dimensieh= 1.

Theorem 4.1.5.The max-mirFAIR-PCA problem for target dimensiod = 1 is NP-hard when

the number of groupk is part of the input.

This raises the question of the complexity for constant 3 groups. Fork groups, we would
havek constraints, one for each group, plus the eigenvalue constraint and the trace constraint; now
the tractability of the problem is far from clear. In fact, as we show in Sedtigrthe SDP has an
integrality gap even fok = 3, d = 1. We therefore consider an approach beyond SDPs, to one that
involves solving non-convex problems. Thanks to the powerful algorithmic theory of quadratic
maps, developed by Grigoriev and Pasechi@P(g, it is polynomial-time solvable to check
feasibility of a set of quadratic constraints for any fi¥edAs we discuss next, their algorithm can
check for zeros of a function of a set bfquadratic functions, and can be used to optimize the
function. Using this result, we show that fér= £ = O(1), there is a polynomial-time algorithm

for rather general functiongof the values of individual groups.

Theorem 4.1.6.Let the fairness objective hg: R*¥ — R whereg is a degree/ polynomial in
some computable subring&f and eachf; is quadratic forl < i < k. Then there is an algorithm

to solve the fair dimensionality reduction problem in titden )+,

By choosingg to be the product polynomial over the usual, +) ring or themin function
which is degreé in the (min, +) ring, this applies to the variants oAR-PCA discussed above

and various other problems.
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SDP extreme points. For k£ = 2, the underlying structural property we show is that extreme
point solutions of the SDP have rank exactlyFirst, fork = d = 1, this is the largest eigenvalue
problem, since the maximum obtained by a matrix of trace equiatenm also be obtained by one

of the extreme points in the convex decomposition of this matrix. This extends to trace equal to
anyd, i.e., the optimal solution must be given by the #opigenvectors ofi” A. Second, without

the eigenvalue bound, for any SDP witlconstraints, there is an upper bound on the rank of any
extreme point, oD (v/k), a seminal result of PatakPht9§ (see also BarvinokBar9g). However,

we cannot apply this directly as we have the eigenvalue upper bound constraint. The complication

here is that we have to take into account the constrairt 7 without increasing the rank.

Theorem4.1.7.LetC and A4, ..., A,, ben xnreal matricesd < n, andby,...b,, € R. Suppose

the semi-definite progra@DP(I):

min(C, X') subject to (4.2)
(A, X) < b V1<i<m (4.3)
tr(X) < d (4.4)
0<X =< 1, (4.5)

where<; € {<,>,=}, has a nonempty feasible set. Then, all extreme optimal solulon®
SDIP(I) have rank at most* := d+[/2m + 2 — 2|. Moreover, given a feasible optimal solution,

an extreme optimal solution can be found in polynomial time.

To prove the theorem, we extend PataRaf984's characterization of rank of SDP extreme
points with minimal loss in the rank. We show that the constrdints X < I can be interpreted
as a generalization of restricting variables to lie betw@and1 in the case of linear programming
relaxations. From a technical perspective, our results give new insights into structural properties of

extreme points of semi-definite programs and more general convex programs. Since the result of
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[Pat9g has been studied from perspective of fast algorithB)ég16, BM03, BM05] and applied
in community detection and phase synchronization Bandeira, Boumal, and Vororiski §],

we expect our extension of the result to have further applications in many of these areas.

SDP iterative rounding. Using Theoren#.1.7, we extend the iterative rounding framework for
linear programs (seeLRS1] and references therein) to semi-definite programs, wher@.the
constraints are generalized to eigenvalue bounds. The algorithm has a remarkably similar flavor.
In each iteration, we fix the subspaces spanned by eigenvectoré avithl eigenvalues, and argue
that one of the constraints can be dropped while bounding the total violation in the constraint over
the course of the algorithm. While this applies directly to therRFPCA problem, in fact is a
general statement for SDPs, which we give below.

Let A = {A,,...,A,} be a collection of» x n matrices. For any sét C {1,...,m}, let

o;(S) thei'™ largest singular of the average of matricﬁszies A;. We let

L\/2I5]+1]
A(A) = max > i)

i=1

Theorem 4.1.8.Let C be an x n matrix andA = {4,,..., A,,} be a collection of» x n real

matrices,d < n, andby, ...b,, € R. Suppose the semi-definite progr&mp:

min(C, X') subject to

V
&
<
—_
N
N
3

tr(X) < d

0=X = I,

has a nonempty feasible set and }ét denote an optimal solution. The AlgorithmeRATIVE-
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SDP(see Figuret.1) returns a matrixX such that

1. rank of X is at mostd,

2. (C,X) < (C,X*),and

3. (A4;, X) > b — A(A) foreachl < i < m.

The time complexity of Theorem&.1.7and4.1.8is analyzed in Section4.2 and4.4. Both
algorithms introduce the rounding procedures that do not contribute significant computational cost;

rather, solving the SDPis the bottleneck for running time both in theory and practice.

4.1.2 Related Work

As mentioned earlier, PatakiPft9g (see also BarvinokBar94) showed low rank solutions to
semi-definite programs with small number of affine constraints can be obtained efficiently. Re-
stricting a feasible region of certain SDPs relaxations with low-rank constraints has been shown to
avoid spurious local optimd@BV16] and reduce the runtime due to known heuristics and analysis
[BMO3, BMO05, BVB16]. We also remark that methods based on Johnson-Lindenstrauss lemma
can also be applied to obtain bi-criteria results farF=PCA problem. For example, So, Ye, and
Zhang BYZ0§ give algorithms that give low rank solutions for SDPs with affine constraints with-
out the upper bound on eigenvalues. Here we have focused on single criteria setting, with violation
either in the number of dimensions or the objective but not both. We also remark that extreme point
solutions to linear programming have played an important role in design of approximation algo-
rithms [LRS1] and our result add to the comparatively small, but growing, number of applications
for utilizing extreme points of semi-definite programs.

A closely related area, especially toudri-CRITERIA-DIMENSION-REDUCTION problem,
is multi-objective optimization which has a vast literature. We refer the reader to Dl
and references therein. We also remark that properties of extreme point solutions of linear pro-

grams RG96 GRSZ14 have also been utilized to obtain approximation algorithms to multi-
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objective problems. For semi-definite programming based methods, the closest works are on si-
multaneous max-cuBKS15 Bha+1§ that utilize sum of squares hierarchy to obtain improved
approximation algorithms.

The applications of multi-criteria dimensionality reduction in fairness are closely related to
studies on representational bias in machine learn@rg17 Nob18 Bol+16] and fair resource
allocation in game theory\}yVZX10, FB0O4]. There have been various mathematical formula-
tions studied for representational bias in MCKLV17, Cel+18 Sam+18 KAM19, KSAM19]
among which our model covers unbalanced reconstruction error in PCA suggested by Samadi et
al. [Sam+18 From the game theory literature, our model covers Nash social welfare objective

[KN79, NJ50J and othersKS+75 Kal77].

4.2 Low-Rank Solutions of MULTI -CRITERIA -DIMENSION -REDUCTION

In this section, we show that all extreme solutions of SDP relaxationuafit CRITERIA-DIMENSION-
REDUCTION have low rank, proving Theorer1.1-4.1.3 Before we state the results, we make
following assumptions. In this section, we ket R* — R be a concave function which is mono-
tonic in at least one coordinate, and mildly assume ghan be accessed with a polynomial-time
subgradient oracle and is polynomially bounded by its input. We are explicitly given functions
f1, f2, - .., fr which are affine inPP7T, i.e. we are given reat x n matricesBy, ..., B, and
constantsy, as, ..., a; € Randf;(P) = (B;, PPT) + a.

We assume to beG-Lipschitz. For functionsfy, ..., fi, g that areL,, ..., L, G-Lipschitz,
we define are-optimal solution to( f, g)-MULTI-CRITERIA-DIMENSION-REDUCTION problem
as a projection matrixX € R**" 0 < X =< I, of rank d whose objective value is at most
Ge (Ele L?)l/2 from the optimum. In the context where an optimization problem has affine
constraintst;(X) < b; whereF; is L; Lipschitz, we also define-solution as a projection matrix
X e R™" 0 < X =< I, of rankd that violatesith affine constraints by at most ;. Note that the

feasible region of the problem is implicitly bounded by the constraink 7,,.
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In this section, the algorithm may involve solving an optimization under a matrix linear in-
equality, which may not give an answer representable in finite bits of computation. However, we
give algorithms that return anclose solution whose running time depends polynomiallj/otgr%
for anye > 0. This is standard for computational tractability in convex optimization (see, for ex-
ample, in BTNO1]). Therefore, for ease of exposition, we omit the computational error dependent
on thise to obtain ane-feasible and-optimal solution, and define polynomial running time as
polynomial inn, k andlog <.

We first prove Theorem.1.7below. To prove Theorem.1.1-4.1.3 we first show that extreme
point solutions in semi-definite cone under affine constraintsXnt¢l I have low rank. The state-
ment builds on a result oFat98. We then apply our result to MLTI-CRITERIA-DIMENSION-
REDUCTION problem, which contains theallR-P CA problem. Finally, we show that existence of

low-rank solution leads to an approximation algorithm tof=P CA problem.

Proof of Theorem4.1.7 Let X* be an extreme point optimal solution $®P(II). Suppose rank
of X*, sayr, is more than*. Then we show a contradiction to the fact tiat is extreme. Let

0 < [ < r of the eigenvalues ok™* be equal to one. If > d, then we havé = r = d since
tr(X) < d and we are done. Thus we assume that d — 1. In that case, there exist matrices

Q, € R Q, € R and a symmetric matriA € R—9*"=0 such that

A O T
X" = <Q1 QQ) I (Ql Q2> - QlAQlT + Q2Qg
0 I

where0 < A < I, ;, QTQ, = I,_;, QT Q- = I, and that the columns @§, and@, are orthogonal,

e. Q = (Q1 Qz) has orthonormal columns. Now, we have

(A, X7) = (A, QIAQ{ + Q2Q5 ) = (Q AiQ1, A) + (A;, Q2Q;)

andtr(X*) = (Q] Q1, A) + tr(Q2Q4 ) so that(A;, X*) andtr(X*) are linear inA.
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Observe the set of x s symmetric matrices forms a vector space of dimen§§§H—) with the
above inner product where we consider the matrices as long vectons+If < %2’”1) then
there exists dr — 1) x (r — [)-symmetric matrixA # 0 such that{Q{ A;Q,, A) = 0 for each
1 <i<mand(QQi,A) =0.

But then we claim tha®, (A + §A)Q| + Q.Q7 is feasible for smalb > 0, which implies a
contradiction taX ™ being extreme. Indeed, it satisfies all the linear constraints by construction of

A. Thus it remains to check the eigenvalues of the newly constructed matrix. Observe that

- . A+6A 0O -
Q1A+ 0A)Q, +Q:Qy =Q Q
0 I
_ o _ _ A£6A O
with orthonormalk?. Thus it is enough to consider the eigenvalueg of
0 I

Observe that eigenvalues of the above matrix are exaahes and eigenvalues af+ JA.
Since eigenvalues of are bounded away frofhand1, one can find smalf such that the eigen-
value of A + §A are bounded away frothand1 as well, so we are done. Therefore, we must have
m+ 1> 00D which impliesr — 1 < —L 4 /2m + 9. Byl < d — 1, we haver < r*.

For the algorithmic version, given feasiblg, we iteratively reduce — [ by at least one until
m+12> w Whilem + 1 < w we obtainA by using Gaussian elimination.
Now we want to find the correct value afd so thatA’ = A + §A takes one of the eigenvalues to
zero or one. First, determine the sign(éf, A) to find the correct sign to mové that keeps the
objective non-increasing, say it is in the positive direction. Since the set of feaSiHeconvex
and bounded, the raf(t) = Qi(A + tA)Q] + Q-Q, ,t > 0 intersects the boundary of feasible
region at a uniqué’ > 0. Perform binary search for the correct valuet'oédnd set) = ¢’ up to

the desired accuracy. Siné®; A,Q,,A) = 0 for eachl < i < m and{(Q{Q,A) = 0, the

additional tight constraint from moving’ < A + §A to the boundary of feasible region must be
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an eigenvalue constraift< X < I, i.e., at least one additional eigenvalue is now at 0 or 1, as
desired. We apply eigenvalue decompositiontand updat&), accordingly, and repeat.

The algorithm involves at most rounds of reducing — [, each of which involves Gaussian
elimination and several iterations (from binary search) of X < I, which can be done by
eigenvalue value decomposition. Gaussian elimination and eigenvalue decomposition can be done

in O(n?) time, and therefore the total runtime of SDP roundin@is*) which is polynomial. I

In practice, one may initially reduce the rank of given feasillaising an LP rounding (in
O(n3%) time) introduced in $am+18 so that the number of rounds of reducing- [ is further
bounded byt — 1. The runtime complexity is the@ (%) + O(kn?).

The next corollary is obtained from the bound- | < —% +4/2m + ?l in the proof of Theo-
rem4.1.7.

Corollary 4.2.1. The number of fractional eigenvalues in any extreme point solutiea SDP(I)

is bounded by /2m + 2 — 1 < |V2m +1].

We are now ready to state the main result of this section that we can find a low-rank solution
for MULTI-CRITERIA-DIMENSION-REDUCTION . Recall thatP, is the set of alln x d pro-
jection matricesP, i.e., matrices withi orthonormal columns and thg, g)-MULTI-CRITERIA-

DIMENSION-REDUCTION problem is to solve

max g(£1(P), fo(P), .. ., fu(P)) (4.6)

PePy

Theorem 4.2.2.There exists a polynomial-time algorithm to solyeg)-MULTI-CRITERIA-DIMENSION-
REDUCTION that returns a solutionX of rank at most* := d + | /2k + 1 — 2| whose objective

value is at least that of the optimadidimensional embedding.
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If the assumption that is monotonic in at least one coordinate is dropped, Theagr@2will

hold with »* by indexing constraint4(11) in SDIP(II) for all groups instead of — 1 groups.

Proof of Theorem4.2.2 First, we write a relaxation o#(6):

nax g((B1, X) + aq, ..., (B, X) + ay) subject to 4.7)
cRnXn

tr(X) <d (4.8)
0xX =1, (4.9)

Sinceg(z) is concave int € R* and (B;, X) + «; is affine inX € R™", we have thay as

a function of X is also concave inX. By assumptions o, and the fact that the feasible set

is convex and bounded, we can solve the convex program in polynomial time, e.g. by ellipsoid
method, to obtain a (possibly high-rank) optimal solutiére R™*". (In the case thaf; is linear,

the relaxation is also an SDP and may be solved faster in theory and practice). By assumptions on
g, without loss of generality, we letbe nondecreasing in the first coordinate. To reduce the rank

of X, we consider aSDP(II):

max (B1, X) subjectto (4.10)
XeRnxn

(B, X) = (B;,X) V2<i<k (4.11)
tr(X) < d (4.12)
0=X =2 I (4.13)

SDIP(II) has a feasible solutioR of objective(B;, X') and note that there afe— 1 constraints in
(4.11). Hence, we can apply the algorithm in Theorérh.7with m = k& — 1 to find an extreme
solution X* of SDP(II) of rank at most*. Sinceg is nondecreasing ifB;, X ), optimal solutions
to SDIP(II) gives objective valug at least the optimum of the relaxation and hence at least the

optimum of the original MILTI-CRITERIA-DIMENSION-REDUCTION problem. O
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Another way to state Theoredh2.2is that the number of groups must rea@ﬁw before
additionals dimensions in the solution matrik is required to achieve the optimal objective value.
Fork = 2, no additional dimension in the solution is necessary to attain the optimum. We state this

fact as follows. In particular, it applies toARR-PCA with two groups, proving Theorehl.1

Corollary 4.2.3. The(f, g)-MULTI-CRITERIA-DIMENSION-REDUCTION problem on two groups

can be solved in polynomial time.

4.3 Approximation Algorithm for F AIR-PCA

Recall that we require := [/2k + 1 — 2] additional dimensions for the projection to achieve
the optimal objective. One way to ensure that the algorithm outpdtsmensional projection is to
solve the problem in lower target dimensidn- s, then apply the rounding described in Section
4.2 The relationship of objectives between problems with target dimemwision andd is at most
dff factor apart for RIR-PCA problem because the objective scales linearly Withgiving an
approximation guarantee of— 5. Recall that givem,, . .., A;, FAIR-PCA problem is to solve

max min HAZPHfp = <AiTAi,PPT>
P:PT p—, 1<i<k

We state the approximation guarantee and the algorithm formally as follows.

Corollary 4.3.1. Let A, ..., A;, be data sets of groups and suppose:= [/2k + ; — 2] < d.

Then there exists a polynomial-time approximation algorithm of fatter 5 = 1 — %ﬁ) to

FAIR-PCA problem.

Proof. We find an extreme solutioX * of the FAIR-PCA problem of finding a projection from
to d — s target dimensions. By Theoref?2.2 the rank ofX* is at mostd.
Denote OPT, X; the optimal value and an optimal solution taiR-PCA with target dimen-

siond. Note that™=* X is a feasible solution toAfR-PCA relaxation on target dimensian- s
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which is at Ieasl‘%OPTd because the objective scales linearly wkh Therefore, the optimal
FAIR-PCA relaxation of target dimensieh- s attains optimum at Ieagg—SOPTd, giving (1 — )~

approximatiorratio. O

4.4 lterative Rounding Framework with Applications to FAIR-PCA

In this section, we first prove Theorefl.8

We give an iterative rounding algorithm. The algorithm maintains three subspaces that are
mutually orthogonal. Lety, Fy, F denote matrices whose columns form an orthonormal basis
of these subspaces. We will also abuse notation and denote these matrices by sets of vectors in
their columns. We let the rank df,, F; and F' bery, r; andr, respectively. We will ensure that
ro + 11 +1r = n,i.e., vectors inky, F; andF spanR”.

We initialize F, = F, = 0 andF = I,,. Over iterations, we increase the subspaces spanned
by columns ofF;, and F; and decreasé’ while maintaining pairwise orthogonality. The vectors
in columns of F; will be eigenvectors of our final solution with eigenvalue In each iteration,
we project the constraint matrices orthogonal toF; and F,. We will then formulate a residual
SDP using columns af’ as a basis and thus the new constructed matrices will have size To
readers familiar with the iterative rounding framework in linear programming, this generalizes the
method of fixing certain variables tbor 1 and then formulating the residual problem. We also
maintain a subset of constraints indexeddbwheres is initialized to{1, ..., m}.

The algorithm is specified in Figuéel In each iteration, we formulate the followisiP(r)

with variablesX (r) which will be ar x r» symmetric matrix. Recatt is the number of columns in
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max (FTCF, X(r))
(FTAF, X(r)) > b — FIAF, ieS
tr(X) < d—rank(F})

0= X(r) =21,

1. Initialize Fy, F; to be empty matrices and = [,,, S — {1,...,m}.
2. If theSDP is infeasible, declare infeasibility. Else,

3. While F' is not the empty matrix.

4. ReturnX = F\FT.

(a) SolveSDP(r) to obtain extreme poink*(r) = >, Ajvjv] where); are the
eigenvalues and; € R" are the corresponding eigenvectors.

(b) For any eigenvectar of X*(r) with eigenvalué, let Fy < Fy U {Fv}.

(c) For any eigenvectar of X*(r) with eigenvaluel, let F; «— F} U {Fv}.

(d) Let X; = Zj:o<xj<1 Ajujul. If there exists a constraint € S such that
(FTAF, X)) < A(A), thenS — S\ {i}.

(e) For every eigenvectorof X*(r) with eigenvalue not equal toor 1, consider the
vectorsF'v and form a matrix with these columns and use it as the Rew

Figure 4.1: Iterative Rounding AlgorithnTERATIVE-SDP.

It is easy to see that the semi-definite program remains feasible over all iteratRin® is

declared feasible in the first iteration. Indeed the solufigrdefined at the end of any iteration is

a feasible solution to the next iteration. We also need the following standard claim.

Claim 21. LetY be a positive semi-definite matrix such that< 7 with tr(Y') < [. Let B be real
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matrix of the same size &5and let)\;(B) denote the&'" largest singular value of3. Then

l
=1
The following result follows from Corollar¢.2.1and Claim21. Recall that

1\/2I5]+1]
A(A) := max Z ai(S).

scim) 4

whereo;(.S) is thei'th largest singular value (%' Y ies Ai-
We letA denoteA(.A) for the rest of the section.

Lemma 4.4.1. Consider any extreme point solutioxi(r) of SDP(r) such thatrank( X (r)) >
tr(X(r)). LetX(r) = 357_; Aju;u; be its eigenvalue decomposition aig = 35, _; Ajv;v; -

Then there exists a constrainsuch thatl F* A, F, X ;) < A.

Proof. Let! = |S|. From Corollary4.2.], it follows that number of fractional eigenvaluesXfr)
is at most—1 + /21 + 9 < v/2] + 1. Observe that > 0 since rankX(r)) > tr(X(r)). Thus
rank( X ;) < v/21 + 1. Moreover,0 < X; < I, thus from Clain21, we obtain that

[v2i+1] [V2i+1]

jes i=1 jes i=1 jes

where the first inequality follows from Clair®l and second inequality follows since the sum of
top [ singular values reduces after projection. But then we obtain, by averaging, that there exists
j € S such that

(FTA;F, X;) < % A=A

asclaimed. O
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Now we complete the proof of Theorefril.8& Observe that the algorithm always maintains that
end of each iteration, trace &f; plus the rank oft; is at most. Thus at the end of the algorithm,
the returned solution has rank at mdstNext, consider the solutioX = Fy F' + FX;F* over
the course of the algorithm. Again, it is easy to see that the objective value is non-increasing over
the iterations. This follows sinc&; defined at the end of an iteration is a feasible solution to the
next iteration.

Now we argue the violation in any constrainfWhile the constraint remains in the SDP, the

solutionX = FyF + FXF7 satisfies

(Ai, X) = (A, L F]) + (4, FX,FT)

=(Ai, L FT) + (FTAF, Xp) < (A, L FT) + b — (A, FLFT) = by

where the inequality again follows singé; is feasible with the updated constraints.

When constraintis removed it might be violated by a later solution. At this iteratidr’. A, F, X ) <
A. Thus,(A;, FLFL) > b; — A. In the final solution this bound can only go up Asmight only
become larger. This completes the proof of theorem.

We now analyze the runtime of the algorithm which contains at mdstations. Each iteration
requires solving an SDP and eigenvector decompositionsravermatrices, and recomputing.
The SDP has runtimé(r%?) which exceeds eigenvector decomposition and compuXingr’
takesO(n?). However, the result in Sectigh2 shows that- < v/2k, and hence the total runtime

of iterative rounding i€ (k*% + kn?).

Application to FAIR-PCA . For the FAIR-PCA problem, iterative rounding recovers a rahk-
solution whose variance goes down from the SDP solution by at (hoSHT Ay, ..., AT Ai}).
While this is no better than what we get by scaling (Corol&B.]) for the max variance objective

function, when we consider the marginal loss, i.e., the difference between the variance of the
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commond-dimensional solution and the bestlimensional solution for each group, then iterative
rounding can be much better. The scaling solution guarantee relies on the max-variance being a
concave function and for the marginal loss, the loss for each group could go up proportional to the
largestmax variance (largest sum of tégsingular values over the groups). With iterative rounding
applied to the SDP solution, the lodsis the sum of onlyO(v/k) singular values of the average of

some subset of data matrices, so it can be better by as much as a fagiar of

4.5 Polynomial Time Algorithm for Fixed Number of Groups

Functions of quadratic maps. We briefly summarize the approach &P03. Let f1,..., fi :
R" — R be real-valued quadratic functionsinvariables. Letp : R* — R be a polynomial of
degreef over some subring dR* (e.g., the usualx, +) or (+, min)) The problem is to find all

roots of the polynomiab(fi(z), fa(z), ..., fe(z)), i.e., the set

Z={a : p(fi(a), fo(@). ... fulx)) = O}.

First note that the set of solutions above is in general not finite and is some manifold and highly
non-conveXx. The key idea of Grigoriev and Paleshnik (see also Barvsa®§ for a similar idea
applied to a special case) is to show that this set of solutions can be partitioned into a relatively
small number of connected components such that there is an into map from these components
to roots of a univariate polynomial of degré@:)°®; this therefore bounds the total number of
components. The proof of this mapping is based on an explicit decomposition of space with the
property that if a piece of the decomposition has a solution, it must be the solution of a linear
system. The number of possible such linear systems is boundét“asand these systems can be
enumerated efficiently.

The core idea of the decomposition starts with the following simple observation that relies

crucially on the maps being quadratic (and not of higher degree).
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Proposition 4.5.1. The partial derivatives of any degrégolynomialp of quadratic formsf;(z),

wheref; : R" — R, is linear inx for any fixed value of f1(x), ..., fr(z)}.

To see this, supposg = f;(z) and write

k k

@ B op(Y1,...,Yy) 0Y; op(Y1,...,Yy) 0f;(x)

j=1

Now the derivatives of; are linear inz; asf; is quadratic, and so for any fixed values6f. . ., Yy,
the expression is linear in
The next step is a nontrivial fact about connected components of analytic manifolds that holds
in much greater generality. Instead of all points that correspond to zerpsveé look at all
“critical” points of p defined as the set of poinisfor which the partial derivatives in all but the
first coordinate, i.e.,
Op

Ze={w: 5 -=0, V2<i<n}

The theorem says that. will intersect every connected componentb{fGVJa§g.

Now the above two ideas can be combined as follows. We will cover all connected components
of Z.. To do this we consider, for each fixed valuergf. . . , Y;, the possible solutions to the linear
system obtained, alongside minimizing. The rank of this system is in general at least &
after a small perturbation (whil€&gP09 uses a deterministic perturbation that takes some care, we
could also use a small random perturbation). So the number of possible solutions grows only as
exponential inD(k) (and notr), and can be effectively enumerated in tigig)°*), This last step
is highly nontrivial, and needs the argument that over the reals, zeros from distinct components
need only to be computed up to finite polynomial precision (as rationals) to keep them distinct.
Thus, the perturbed version still covers all components of the original version. In this enumeration,
we check for true solutions. The method actually works for any level sgt 6f : p(z) = ¢}

and not just its zeros. With this, we can optimize opeas well. We conclude this section by
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paraphrasing the main theorem fro@H03.

Theorem 4.5.2.[GP03 Given k quadratic maps, . . ., ¢; : R¥ — R and a polynomiap : R¥ —

R over some computable subringl®bf degree at mogt, there is an algorithm to compute a set of
points satisfying(q:(x), ..., g:(x)) = 0 that meets each connected component of the set of zeros
of p using at most/n)°*) operations with all intermediate representations bounded/ay°*

times the bit sizes of the coefficientg0ods, . . ., g,. The minimizer, maximizer or infimum of any
polynomialr(q;(x), ..., qx(x)) of degree at mogtover the zeros gf can also be computed in the

same complexity.

45.1 Proofof Theorem4.1.6

We apply Theoren#.5.2and the corresponding algorithm as follows. Our variables will be the
entries of am x d matrix P. The quadratic maps will bé (P) plus additional maps fay;; (P) =

| 2;||> — 1 andg;;(P) = PT P; for columnsP;, P; of P. The final polynomial is

p(fi,- o feoquny -5 Qaa) = Z%’(P)?'
i<j
We will find the maximum of the polynomial( f, ... fx) = g(f1,- .., fx) over the set of zeros of
p using the algorithm of Theoreh 5.2 Since the total number of variablesds and the number
of quadratic maps i + d(d + 1)/2, we get the claimed complexity 6¥(¢dn)°*+%) operations

and this times the input bit sizes as the bit complexity of the algorithm.

182



4.6 Hardness

Theorem 4.6.1. TheFAIR-PCA problem:

max 2z subject to (4.14)
2ER,PcRnxd
(B;,PP") >z Vi€ [k] (4.15)
PP =1, (4.16)

for arbitrary n x n symmetric real PSD matrices,, . . ., By is NP-hard ford = 1 andk = O(n).

Proof of Theorem 4.6.1 We reduce another NP-hard problem of MAX-CUT to the stated fair

PCA problem. In MAX-CUT, given a simple gragh = (V, E), we optimize

gg}/{e(S,V\S) (4.17)

over all subsef of vertices. Hereg(S, V' \ §) = |{e;; € E:i e S,j € V\ S}|is the size of the

cutSin G. As common NP-hard problems, the decision version of MAX-CUT:
PSS CVie(S,V\S)>0b (4.18)
for an arbitraryb > 0 is also NP-hard. We may write MAX-CUT as an integer program as follows:

37w e {-1,1}" % > (1 —wvwy) b (4.19)

ijEE

Herev; represents whether a verteis in the setS or not:

1 1eS8
v; = (4.20)

1 ¢S

183



and it can be easily verified that the objective represents the desired cut function.

We now show that this MAX-CUT integer feasibility problem can be formulated as an instance
of the fair PCA problem4.14-(4.16). In fact, it will be formulated as a feasibility version of the
fair PCA by checking if the optimat of an instance is at least We choosel = 1 andn = |V/|
for this instance, and we writ€ = [uy;...;u,] € R". The rest of the proof is to show that
it is possible to construct constraints in the fair PCA fodril-(4.16 to 1) enforce a discrete
condition onu; to take only two values, behaving similarly s and 2) check an objective value
of MAX-CUT.

The reason; as written cannot behave exactly.ass that constraint4.16) requiresy " | u;> =
1 but>>" v, = n. Hence, we scale the variables in MAX-CUT problem by writing= \/nu;

and rearrange terms id.(L9 to obtain an equivalent formulation of MAX-CUT:

1 1"
37 —_——,—= —u;u; > 20— |E 4.21
“E{ \/ﬁ’\/ﬁ} np Ty = 2= 2

ijEE

We are now ready to give an explicit (:onstruction{(ﬁ‘i}f”:1 to solve MAX-CUT formulation

(4.2)). Letk =2n+ 1. Foreachy = 1,...,n, define

bn
n—1

BQj—l =bn - diag(ej), ng = . dlag(l — ej)

wheree; and 1 denote vectors of length with all zeroes except one at thiéh coordinate, and
with all ones, respectively. It is clear th&, ,, By; are PSD. Then for each= 1...,n, the

constraintg By;_1, PPT) > band(B,;, PPT) > b are equivalent to

n—1

1
2 2
ujzﬁ,andE uj >

Y n
i#]

respectively. Combining these two inequalities wWitlj" , u7 = 1 forces both inequalities to be
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equalities, implying that; € {—\/Lﬁ, \/Lﬁ} for all j € [n], as we aim.

Next, we set
bn

2[5 + 2 (M Ae)

B2n+1 =

whereAq = (Iij € E)); jepn is the adjacency matrix of the gragh Since the matrix/,, — Aq
is diagonally dominant and real symmetri;,,.; is PSD. We have thatBs,.1, PPT) > b is

equivalent to
b niuz_zu.u. .
- |E[+n* &= A B

which, by>"" | u? = 1, is further equivalent to

=1 "
n Z —u;u; > 20 — |E|
ijeE

To summarize, we constructds, ..., By,,1 SO that checking whether an objective of fair
PCA is at leasb is equivalent to checking whether a gra@has a cut of size at leastwhich is

NP-hard. O

4.7 Integrality Gap

We showed that &iR-PCA for k = 2 groups can be solved up to optimality in polynomial time
using an SDP. Fok > 2, we used a different, non-convex approach to get a polytime algorithm
for any fixedk, d. Here we show that the SDP relaxation @fiR-PCA has a gap even far= 3
andd = 1.
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Lemma 4.7.1. TheFAIR-PCA SDP relaxation:

max 2

(Bi,X)>z ie{l,... .k}

for k = 3, d = 1, and arbitrary PSD{B’Z-}Z.“:1 contains a gap, i.e. the optimum value of the SDP

relaxation is different from one of exaenIrR-P CA problem.

21 11 2 -1
Proof of Lemma 4.7.1 Let B, = , By = ,Bs = . It can be
11 1 2 -1 2
checked that3; are PSD. The optimum of the relaxation7g4 (given by the optimal solution
1/2 1/8 . . 16/17 4/17
X = ). However, an optimal exactAR-PCA solution isX =
1/8 1/2 417 1/17

which gives an optimur26/17 (one way to solve for optimum rank-1 solutidhis by parameter-

izing X = v(#)v(0)7 for v(#) = [cos B;sin b, 6 € [0,2n)). O

4.8 Experiments

First, we note that experiments foalR-PCA with marginal loss objective for two groups were
done in Samadi et alSam+18. Their algorithm outputs optimal solutions with exact rank, de-
spite their weaker guarantee that the rank may be violated by at most 1. Hence, our result of
Theoremd.1.1is the missing mathematical explanation of their empirical finding. We extend their
experiments by solving MLTI-CRITERIA-DIMENSION-REDUCTION for more number of groups

and objectives as follows.

We perform experiments using the algorithm as outlined in Sedtidion the Default Credit
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data set YLO9] for different target dimensiong. The data is partitioned inth = 4,6 groups

by education and gender, and preprocessed to have mean zero and same variance over features.
Our algorithms are specified by two objectives fouM1-CRITERIA-DIMENSION-REDUCTION

problem introduced earlier: the marginal loss function and Nash social welfare. The code is pub-
licly available athttps://github.com/SDPforAll/multiCriteriaDimReduction. Figure4.2

shows the marginal loss by our algorithms compared to a standard PCA on the entire dataset. Our
algorithms significantly reduce "unfairness” in marginal loss of PCA that the standard PCA subtly

introduces.

normalPCA normal PCA
14 —#— SDPRoundNsSwW 35 —#— SDPRoundNSW
SDPRoundMar-Loss SDPRoundMar-Loss

Mar-Loss Objective
(=]
oo
Mar-Loss Objective
o

15
0.4 1
A
02 : 05 g 1
[ 4] Ty
DA A RA AR A= A5 -2

1234567 8 910111213141516171819202122 1234567 8 910111213141516171819202122

Target dimension Target dimension

Figure 4.2: Marginal loss function of standard PCA compared to our SDP-based algorithms on
Default Credit data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP-based
algorithms maximizing NSW and minimizing marginal loss. Léft= 4 groups. Right%x = 6.

In the experiments, extreme point solutions from SDPs enjoy lower rank violation than our
worst-case guarantee. Indeed, while the guarantee is that the numbers of additional rank are at
mosts = 1,2 for k = 4,6, almost all SDP solutions hawxactrank, and in rare cases when the
solutions are not exact, the rank violation is only one. While our rank violation guarantee provably
cannot be improved in general (due to the integrality gap in Sedtidn this opens a question
whether the guarantee is better for instances that arise in practice.

We also assess the performance of PCA with NSW objective, summarized in Bi§uv#ith
respect to NSW, standard PCA performs marginally worse (about 10%) compared to our algo-

rithms. It is worth noting from Figure$.2and4.3that our algorithms which try to optimize either
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Figure 4.3: NSW objective of standard PCA compared to our SDP-based algorithms on Default
Credit data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP algorithms max-
imizing NSW objective and minimizing maximum marginal loss. Left:= 4 groups. Right:

k = 6.

marginal loss function or NSW also perform well on the other fairness objective, making these
PCAs promising candidates for fairness application.

Same experiments were done on the Adult Income da@&][ Some categorial features are
preprocessed into integers vectors and some features and rows with missing values are discarded.
The final preprocessed data contains= 32560 datapoints inn = 59 dimensions and is par-
titioned intok = 5 groups based on race. Figutet shows the performance of our SDP-based
algorithms compared to standard PCA on marginal loss and NSW objectives. Similar to the Credit
Data, optimizing for either marginal loss or NSW gives a PCA solution that also performs well in

another criterion and performs better than the standard PCA in both objectives. Almost all SDP

solutions are exact without any rank violation.

4.9 Scalability of the Algorithms

We found that the running time of solving SDP, which depends,as the bottleneck in all exper-
iments. Each run (for one value @f of the experiments is fast(0.5 seconds) on Default Credit
data ( = 23), whereas a run on Adult Income data< 59) takes between 10 and 15 seconds on

a single CPU. However, the runtime is not noticeably impacted by the numbers of data points and
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Figure 4.4: Marginal loss and NSW objective of standard PCA compared to our SDP-based algo-
rithms on Adult Income data. SDPRoundNSW and SDPRoundMar-Loss are two runs of the SDP
algorithms maximizing NSW objective and minimizing maximum marginal loss.

groups: largern only increases the data preprocessing time to obtainn matrices and larger

k increases the number of constraints. SDP solver and rounding algorithms can handle moder-
ate number of affine constraints efficiently. This observation is as expected from the theoretical
analysis.

In this section, we show two heuristics for solving the SDP relaxation that runs significantly
faster in practice for large datasets: multiplicative weight update (MW) and Frank-Wolfe (FW).
We also discuss several findings and considerations for implementing our algorithms in this thesis
in practice. Both heuristics are publicly available at the following sitetps://github.com/
SDPforAll/multiCriteriaDimReduction.

For the rest of this section, we assume that the utility of each group is simply variaake,=
(B;, X) whereB; = AT A;, and thatg(z1, . .., z; is a concave function of;, ..., z;. Whenu; is
other linear function, we can model such different utility function by modifyjmgthout changing

the concavitiy ofg. The SDP relaxation of MLTI-CRITERIA-DIMENSION-REDUCTION can be
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framed as SDP4(22-(4.25.

XIEnR%L)ing(zl, Z9,...,21) Subject to (4.22)

= (B;, X) Vi=1,2,...,k (4.23)
tr(X) <d (4.24)
0= X =<1, (4.25)

4.9.1 Multiplicative Weight Update

One alternative method to solving.22-(4.25 is multiplicative weight (MW) updateAHK12],
suggested bygam+18 for solving FAIR-PCA problem for two groups in order to improve run-
time. Though this prior worksAHK12, Sam+18 have theoretical guarantee, in practice the learn-
ing rate is tuned mre aggressively and the algorithm becomes a heuristic without any certificate
of optimality. We show the primal-dual derivation of Multiplicative Weight, which provides the
primal-dual gap to certify optimality.

We take the Lagragian dual oA.23 to obtain that the optimum of the SDP equals to

max inf g(z —1—5 w; ((By, X) — 2)
XeRMX" weRk

ZER™

tr(X)=d

0=X=I

By strong duality, we may swajpax andinf. After rearranging, the optimum of the SDP equals

inf (B;, X) — 4.2
weRk XeRnxn sz v ?elﬂ@nn (w'z —g(=) (4.26)
tr(X)=d,0= X <1 =1
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The optimization

k
Jnax Z w; (B;, X) (4.27)
tr(X)=d,0=X <71 =1

in (4.26 can easily be computed by standard PCA on weightequ w; - B; projecting from
n to d dimensions. The tern¥(27) is also convex inw, as it is a maximum of linear functions.
The termmin.er» (w”z — g(z)) is also known as concave conjugategofvhich we will denote
by g.(w). Itis also known thaf, (w) is a concave function (as it is a minimum of linear functions).
Hence, 4.26) is a convex optimization problem.

Solving the dual problen¥(26) depends of the form af.(w). For each fairness criteria out-

lined in this paper, we summarize the formgfw) below.

Max-Min Variance (FAIR-PCA or MM-Var) : fairness objectivg(z) = min;cp z; gives

0  fw>0,2F w=1
ge(w) =
—oo otherwise

Min-Max Loss (MM-Loss) : fairness objective (recal(1)) g(z) = min;e z; — 5;, whereg; =

maxgep, || A:Q|% is the best possible variance the graugan have, gives

S wiB ifw>0,30 wi=1
g«(w) =
—00 otherwise

More generally, the above form @f (w) holds for any constants;’s. For example, this
calculation also captures Min-Max reconstruction ergdiX ) = min;ep —||A; — A;P||% =

min;ep) 2 — tr(B;) (recall thatX = PP, B; = AT A;, andz; = (B;, X)).
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Nash Social Welfare (NSW): fairness objectivg(z) = Zle log(z;) gives

Zle(l +logw;) ifw>0
gi(w) =
—00 otherwise

For fairness criteria in the "max-min" type, including MM-Var and MM-Loss, the dual reduces
to solving an optimization over a simplex with standard PCA as the function evaluation oracle.
Solving an optimization over a simplex can be done using mirror desb&f@d] with entropy
potential functionR(w) = Zle w; log w;. Such optimization is algorithmically identical to mul-
tiplicative weight update byAHK12]; however, with primal-dual formulation, the dual solution
w; obtained in each step of mirror descent can be used to calculate the dual objecti2&)irahd
the optimumX in (4.27) is used to calculate the primal objective. The algorithm runs iteratively

until the duality gap satisfies a set threshold of choice.

4.9.2 Frank-Wolfe

It is worth noting that while the original optimizatiod.2-(4.25, which is in the form

max  g(z(X))
XeRan
tr(X)=d,0= X <1

where the utilityz is a function of projection matriXX' is a nontrivial convex optimization, its

linear counterpart

max (C, X)
tr(X)=d,0< X <1

is solvable by standard PCA for any given matéix This motivates Frank-Wolfe (FW) algo-

rithm [FW56] which requires a linear oracle (solving the problem with a linear objective) in each
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step. The instantiation of FW to WL.TI-CRITERIA-DIMENSION-REDUCTION is summarized in

Algorithm 4.1 We note the simpler linear oracle step in FW.

Algorithm 4.1 Frank-Wolfe Algorithm for Multi-Criteria Dimensionality Reduction

1: Input: By,..., B, € R"™*", d < n, concavey : R¥ — R, learning rate),, duality gap target
2: Output: A matrix X € R™*" that maximizesy((Bi, X), ..., (B, X)) subject totr(X) =
d,0=X =<1

3: Initialize a feasibleX, (we useX, = 21,),t =0

4: while duality gap exceeds the targii

5: G, — Vxg(Xy)

6: S, « VVT whereV is n-by-d matrix of topd eigenvectors of/; > Linear oracle of FW
7 Xip1 — (1 =)z +neSe

8: g — (S; — Xy) - Gy > Duality gap
9: t—t+1

10: OutputX,

One additional concern for implementing FW is obtaining grad¥éry(X;). For some ob-
jectives such as NSW, this gradient can be calculated directly (some small error may need to be
added to stabalize the algorithm from exploding gradient when the variance is close to zero). Other
objectives, such as MM-Var and MM-Loss, on the other hand, is not differentiable. Though one
may try to still use FW, there is no theoretical guarantee in the literature for the convergence of
maximizing concave non-differentiable function, even when the feasible set is compact as in our

SDP relaxation.

4.9.3 Parameter Tuning

Multiplicative Weight Update. In practice for MM-Var and MM-Loss objectives, we tune the
learning rate of mirror descent much higher than in theory. For NSW, the dual is still a convex
optimization, so standard technique such as gradient descent can be used. We found that in practice,
however, the unboundedness of the feasible set and the exploding gradienbyghare close to

zero pose a challenge to tune the algorithm to converge quickly.
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MW for Two Groups. For for MM-Var and MM-Loss objectives in two groups, the simplex is

a segmen|o, 1]. The dual problem4.26) reduces to

inf max  (wB; + (1 —w)Bs, X) (4.28)
we[0,1] XcRnXn
tr(X)=d,0<X <1

The function

h(w) = max (wBy + (1 — w)By, X)
XGR"X"
tr(X)=d,0= X =TI

is @ maximum of piecewise linear functio(sB; + (1 — w) By, X) in w, and hence is convex on
w. Instead of mirror descent, one can apply ternary search, a technique applicable to maximizing
convex function in one dimension in general, to soW28. However, we claim that binary search
is also a valid choice.

First, becausé(w) is convex, we may assume thiaachieves minimum at = w* and that all
subgradient®h(w) C (—oo, 0] for all w < w* andoh(w) C [0, co0) for all w > w*. In the binary

search algorithm with current iterate= w;, let

Xy € argmax (wBj + (1 —w;)Bs, X)
tr(X)=d,0<X =<1

be any solution of the optimization (which can be implemented easily by the standard PCA). Be-
cause alinear functiowB; + (1 — w)Bay, X;) = (Bs, X;) +w (B; — Bs, X;) is alower bound of

h(w) andh is convex, we haveB; — Bs, X;) € 0h(w,). Therefore, the binary search algorithm
can check the sign dfB; — Bs, X;) for a correct recursion. fB; — By, X;) < 0, thenw* > wy;

if (B; — By, X;) > 0, thenw* < w,; and the algorithm recurses in the left half or right half of the

current segment accordingly. (B, — B, X;) = 0, thenw, is an optimum dual solution.

Frank-Wolfe. In practice, we experiment with more aggressive learning rate schedule and line

search algorithm. We found that FW converges quickly for NSW objective. However, FW does not
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converge for MM-Var and MM-Loss for any learning rate schedule, including the standatd

1

75> and line search. There is modification of FW which has convergence guarantee for maximizing

concave non-differentiable functions. It is still an open question on this thesis whether some of
those, if any, can speed up the SDP relaxation aftM-CRITERIA-DIMENSION-REDUCTION

problem.

4.9.4 PracticalConsiderationand Findings

Extreme Property of SDP Relaxation Solution. We note that a solution for SDP relaxation
(4.22-(4.29 obtained by any of the algorithm (MW, FW, or SDP solver) are already extreme in
practice. This is because with probability 1 over random datasets, SDP is not degenerate, and
hence have a unique optimal solution. Since any linear optimization over a compact, convex set
must have an extreme optimal solution, this optimal solution is necessarily extreme. Therefore, in

practice, it is not necessary to apply the SDP rounding algorithm to the solution of SDP relaxation.

Rank Violation of Extreme SDP Relaxation Solution. While the rank violation bound of

|1/ 2k + %1 — %J stated in Theorem.1.3is tight (tight examples inHat9g can be applied in our
settings), the rank violation in our experiments up to 16 groups are mostly zero, i.e. we obtain an
exact solution. In rare cases where the solution is not exact, the rank violation is one. As a result,
in all experiments we begin by solving the SDP relaxation targeting dimewsitirthe solution

is exact, then we are done. Else, we target dimengienl and check if the solution is of rank at
mostd. If not, we continue to target dimensidn-2,d — 3, . . . until the solution of SDP relaxation

has rank at most.

4.9.5 Runtime Results

We next perform MW and FW heuristics on a larger 1940 Colorado Census daadetThe

census data is preprocessed by one-hot encoding all discrete columns, ignoring columns with N/A,
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Original Dimensions| MM-Var (byMW) | MM-Loss (by MW) | NSW (by FW)
n = 1000 77 65 15
n = 2000 585 589 69

Table 4.1: Runtime of MW and FW for solving M.T1-CRITERIA-DIMENSION-REDUCTION ONn
different fairness objectives and numbers of dimensions in original data. Times reported are in
second(s).

and normalizing the data to mean zero and variance one. The preprocessed dataset contains 661k
datapoints and 7284 columns. Data are partitioned into 16 groups based on 2 genders and 8 edu-
cation levels. We solve the SDP relaxation obM1-CRITERIA-DIMENSION-REDUCTION with

MM-Var, MM-Loss, and NSW objectives until obtain a certificate of duality gap of no more than
0.1% (in the case of NSW, the product of variances, rather than the sum of logarithmic of variances,
are used to calculate this gap). The runtime results, in seconds, are in shown id.Tabéen

n increases, the bottleneck of the experiment became the standard PCA itself. Since speeding up
the standard PCA is out of the scope of this work, we capped the original dimension of data by
selecting the first dimensions out of 7284, so that the standard PCA can still be performed in a

reasonable amount of time.

Empirical Performance of MW. We found that MM-Var and MM-Loss objectives are solved

by efficiently by MW, whereas MW with gradient descent on the dual of NSW does not converge
quickly. For the Census Dataset, after parameter tuning, MW runs 100-200 iterations on both ob-
jectives. MW for both Credit and Income dataseis< 23, 59) on 4-6 groups with both objectives

runs 10-20 iterations, giving a total runtime of is less than few seconds. Therefore, the price of
fairness in PCA for MW-Var and MM-Loss objectives is 100-200x runtime for large datasets, and

10-20x runtime for medium datasets, as compared to the standard PCA without fairness constraint.

Empirical Performance of FW. FW converges quickly for NSW objective, and does not con-
verge on MM-Var or MM-Loss objectives. FW terminates in 10-20 iterations for Census Data,

where the standard PCA oracle is the bottleneck in each iteration. Therefore, the price of fair-
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ness in PCA for NSW objective is 10-20x runtime compared to the standard PCA without fairness
constraint.

It is still an open question in this work to explore other heuristics to speed up solvingiM
CRITERIA-DIMENSION-REDUCTION in practice. It is still open if some (if any) modification of
FW may work well for non-differentiable objectives, or if a modification of MW will improve the

runtime further for any of the three objectives.
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CHAPTER 5
CONCLUSION

This thesis first shows the approximability of teoptimal design problem can be reduced to
approximateindependence properties of the measuréNe appeal to hard-core distributions as
candidate distributiong that allow us to obtain improved approximation algorithms for the
optimal design. The results includedesapproximation wherk = d, an (1 + ¢)-approximation
whenk = Q (% + }z log %) andﬁm-approximation when repetitions of vectors are allowed in the
solution. We also consider generalization of the problenkfer d and obtain &-approximation.
We also show that thd-optimal design problem iNP-hard to approximate within a fixed constant
whenk = d.

In this thesis, we bridge the gap of theory and practice of combinatorial heuristics in optimal
design by proving approximation guarantees for the local search algorithms for D-optimal design
and A-optimal design problems. We show that the local search algorithms are asymptotically
optimal when§ is large. In addition to this, we also prove similar approximation guarantees for
the greedy algorithms for D-optimal design and A-optimal design problems \glliﬁetarge.

Our main result for the fair dimensionality reduction problem is an exact polynomial-time algo-
rithm for the two-criterion dimensionality reduction problem when the two criteria are increasing
concave functions. As an application of this result, we obtain a polynomial time algorithm for
Fair-PCA fork = 2 groups, resolving an open problem of Samadi etdn+18, and a polyno-
mial time algorithm for NSW objective fok = 2 groups. We also give approximation algorithms
for £ > 2. Our technical contribution in the above results is to prove new low-rank properties of
extreme point solutions to semi-definite programs. Finally, we perform experiments indicating the
effectiveness of algorithms based on extreme point solutions of semi-definite programs on several

real-world datasets.
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