
ACO Comprehensive Exam, Part I August 15, 2020

Problems

The examination will be graded blindly. Please do not write your name outside of this page;
use your assigned code instead. Please use the answer sheets provided. Start each problem on a
separate page and do not write outside the box. Anything outside the box may not be reproduced
during scanning and will not be taken into account. Please write legibly in black ink on one side
only. Your solution will be scanned and delivered electronically. Anything that interferes with
scanning, such as bent or damaged pages, may delay grading. Please make sure that each page is
marked with your student code, problem number and page number. Please number pages within
each problem and for each problem please list the total number of pages submitted:

Problem 1 2 3 4 5 6

No. Pages

Score

I have worked on this examination on my own. I have neither sought nor received help from
anyone else. I understand that making a false statement is a violation of the Georgia Tech Honor
Code.

Signature: Date:

ACO Comprehensive Exam, Part I August 15, 2020

1. Computability, Complexity and Algorithms

Problem (Making bags of candy). The owner of the store CandyLand receives supplies
every morning, and immediately sets the candy to be sold. This is done by creating identical
bags, each of size S. The store receives n different types of candy, and a finite amount of each type.

Your input is: integer S, representing the size of each bag, and an array of integers Type of
length n. Entry Type[i] is the number of candy of type i. Note:

• Each bag must have exactly S pieces of candy, and the same number of each type.

• The objective is to maximize the number of bags the salesman can make.

• The optimal solution does not need to use all the candy, nor all the types of candy.

• Example: for S = 2 and Type= [10, 12, 14] the answer is 12, as we can make these many
bags with one piece of types 2 and 3 each.

• Example: for S = 3 and Type= [10, 12, 14] the answer is 10, putting one piece of each type
in every bag.

(a) (6 points) Design a polynomial time algorithm to find the maximal number of bags the
salesman can make.

(b) (4 points) Suppose we also require that each bag must have at least k different types of
candy. Design a polynomial time algorithm to find the maximal number of bags the salesman
can make.

Explain why your algorithm works and analyze its running time in terms of the input size.
You may assume that standard mathematical operations take O(1).

Solution.
(a) Note that if you can make T bags of candy, then you can also do T − 1, by using the

same configuration and having more leftover. Thus, the optimal value T opt satisfies the following
property: we can make T identical bags if and only if T ≤ T opt. Clearly,

T opt < max{Type}+ 1

as more than that implies we will have empty bags. These observations lead to a binary search

algorithm: to check if T bags can be made, for a given T , we add the entries of
⌊
Type[i]
|T |

⌋
and

compare this number to S. If the sum is bigger than S, we move up (smaller values of T lead
to larger bags), otherwise we move down. By the first observation, the threshold value found by
the binary search is T opt.

ACO Comprehensive Exam, Part I August 15, 2020

For the running time, notice that the number of rounds is log(max{Type}), and in each
round we do O(n) operations, so the running time is O(n log(M)) (where M is the maximal of
the entries of Types), which is certainly polynomial in the input size.

(b) We can modify the previous idea by setting a counter for the types of candy we will have

in our bags. Before adding
⌊
Type[i]
|T |

⌋
, we check if it is positive and if so we increase the counter.

The binary branching rule is as before but also includes the condition that the counter must be
at least k to move up. As this introduces O(n) operations in each round, our running time is
still the same.

ACO Comprehensive Exam, Part I August 15, 2020

2. Theory of Linear Inequalities

Problem. Given polytopes P ⊆ Rn and Q ⊆ Rn+q such that P = projx(Q) be the projection of
Q, i.e.

P = {x ∈ Rn : ∃y ∈ Rq, (x, y) ∈ Q}.

Then show that

1. (5 points) Q has at least as many faces as P .

2. (3 points) The number of facets of Q is at least the logarithm (to base 2) of the number of
faces of P .

3. (2 points) Consider the permutahedron Πn ⊂ Rn, the convex hull of the set Sn of the n!
vectors that can be obtained by permuting the entries of the vector (1, 2, . . . , n− 1, n). It
is easy to check that each permutation of (1, 2, . . . , n) gives a vertex of Πn (You need not
prove this fact). If U is a polytope such that projx(U) = Πn show that U must have at
least Ω(n log n) facets.

Solution.

1. Let F be a face of P , i.e. F = {x ∈ P : cTx = δ} for some c ∈ Rn where δ = max{cTx :
x ∈ P}. Now consider the cost function c̃ = (c, 0) ∈ Rn+q. We have

max{c̃T (x, y) : (x, y) ∈ Q} = max{cTx : (x, y) ∈ Q}
= max{cTx : x ∈ P} = δ

Thus F ′ = {(x, y) ∈ Q : c̃T (x, y) = δ} is a face of Q.

We now show that projx(F ′) = F . Observe that if (x, y) ∈ F ′ ⊆ Q then x ∈ P . Moreover,
cTx = c̃T (x, y) = δ and thus x ∈ F giving projx(F ′) ⊆ F . For the other side, let x ∈ F ⊆ P .
Thus there exists y ∈ Rq such that (x, y) ∈ Q. Moreover, c̃T (x, y) = cTx = δ. Thus
(x, y) ∈ F ′. This implies that F ⊆ projx(F ′) giving us the equality. Thus we have a map
from faces of P to faces of Q that is injective completing the proof.

2. Let Q have m facets. Then Q has at most 2m faces since every face of Q is obtained by
intersection of some subset of facets of Q. But the number of faces of P is at most the
number of faces of Q. Thus the number of faces of P is at most 2m or equivalently, the
number of facets of Q is at least the logarithm of the number of faces of P .

3. Since Πn has n! vertices, it has at least n! faces and therefore any U s.t. projx(U) = Πn at
least log(n!) = Ω(n log n) facets.

ACO Comprehensive Exam, Part I August 15, 2020

3. Graph Theory

Problem. Let G be a 4-connected graph and s1, s2, s3, s4 be four distinct vertices of G, and
assume that G − {s1, s2, s3, s4} contains a subdivision of K6. Show that G contains two vertex
disjoint paths, one from s1 to s3 and the other from s2 to s4.

Solution. Let T denote a subdivision of K6 in G − {s1, s2, s3, s4} and let t1, . . . , t6 denote its
branch vertices. Moreover, let Qij denote the branch paths in T between ti and tj, for all distinct
1 ≤ i, j ≤ 6.

SinceG is 4-connected, G contains four pairwise disjoint paths from {s1, s2, s3, s4} to {t1, . . . , t6},
using exactly four vertices from {t1, . . . , t6}. (This follows from Menger’s theorem.) We choose
such four paths, say P1, P2, P3, P4, to minimize the number of edges that are in those paths and
outside T . Without loss of generality, assume Pi is between si to ti for i = 1, 2, 3, 4.

We claim that for each 1 ≤ i ≤ 4, Qi5 − ti is disjoint from P1 ∪ P2 ∪ P3 ∪ P4. For, otherwise,
let v ∈ V (Qi5 − ti) ∩ V (P1 ∪ P2 ∪ P3 ∪ P4) such that vQi5t5 is minimal. Note that v ∈ V (Pk) for
some 1 ≤ k ≤ 4, and let P ′

k = skPkv ∪ vQi5t5 which is a path from sk to t5 and disjoint from
(P1 ∪ P2 ∪ P3 ∪ P4) − Pk and {t1, t2, t3, t4, t6}. Let P ′

i = Pi for i 6= k. Clearly, the number of
edges in P ′

1, P
′
2, P

′
3, P

′
4 and outside T is smaller than the the number of edges in P1, P2, P3, P4 and

outside T , a contradiction.

Similarly, for each 1 ≤ i ≤ 4, Qi6 − ti is disjoint from P1 ∪ P2 ∪ P3 ∪ P4.

Now P1 ∪Q15 ∪Q35 ∪ P3 and P2 ∪Q26 ∪Q46 ∪ P4 are disjoint paths from s1 to s3 and from
s2 to s4, respectively.

ACO Comprehensive Exam, Part II August 16, 2020

Problems

The examination will be graded blindly. Please do not write your name outside of this page;
use your assigned code instead. Please use the answer sheets provided. Start each problem on a
separate page and do not write outside the box. Anything outside the box may not be reproduced
during scanning and will not be taken into account. Please write legibly in black ink on one side
only. Your solution will be scanned and delivered electronically. Anything that interferes with
scanning, such as bent or damaged pages, may delay grading. Please make sure that each page is
marked with your student code, problem number and page number. Please number pages within
each problem and for each problem please list the total number of pages submitted:

Problem 1 2 3 4 5 6

No. Pages

Score

I have worked on this examination on my own. I have neither sought nor received help from
anyone else. I understand that making a false statement is a violation of the Georgia Tech Honor
Code.

Signature: Date:

ACO Comprehensive Exam, Part II August 16, 2020

4. Analysis of (Advanced) Algorithms

Problem. Let A be an n×m integer matrix. Consider the matrix

P = A(A>A)+A> ,

where for any matrix B, B+ denotes the pseudo-inverse of B. (If B = UDV T is the SVD of B,
then B+ = V D−1UT .) Show that

1. P 2 = P .

2. The eigenvalues of P are all 0 or 1.

3. P is the orthogonal projection to the span of the columns of A (i.e., Px = x if x is in the
span of the columns of A and Px = 0 if it is orthogonal to the span.)

4. The leverage score of a row ai of A

σi = ai(A
>A)+a>i

satisfies 0 ≤ σi ≤ 1.

5. σi(A) =
∥∥A(A>A)+A>ei

∥∥2
2
.

6. Let
σ̃i =

∥∥RA(A>A)+A>ei
∥∥2
2

where R is a random k × n matrix with iid Gaussian entries from N(0, 1
k
). How well

does σ̃i approximate σi for every i? What should k be to guarantee a 1 + ε relative error
approximation whith high probability?

7. Given an oracle for solving linear systems, how would you compute σ̃i efficiently?

Solution.

1. Direct calculation, using B+BB = B where B = ATA.

2. If the eigenvalues of P are λi, then the eigenvalues of P 2 are λ2i . Since λ2i = λi, the
conclusion follows.

3. We have PA = A, so the columns of A are preserved. Moreover, for any x orthogonal to
all columns of A, A>x = 0, so Px = 0.

4. We can write

σi = e>i (A(A>A)+A>)ei = e>i Pei = e>i P
2ei = ‖Pei‖2 ≤ 1

since all eigenvalues of P are at most 1.

ACO Comprehensive Exam, Part II August 16, 2020

5. Note that ∥∥A(A>A)+A>ei
∥∥2
2

= ‖Pei‖2

and use the previous step.

6.
Eσ̃i = E(e>i PR

>RPei) = e>i PE(R>R)Pei = e>i P
2ei = σi

where we used E(R>R) = I. Consider the vectors vi = RPei. Then σ̃i = ‖RPei‖2.
Moreover, by the Johnson-Lindenstrauss Lemma, for any v,

Pr
(∣∣‖Rv‖2 − ‖v‖2∣∣ > ε ‖v‖2

)
< 2e−ε

2k/4

Therefore using k = O(log n/ε2), and applying the above to every vi, we get that with high
probability for all i,

(1− ε)σ̃i ≤ ‖vi‖2 ≤ (1 + ε)σ̃i.

7. To compute RA(A>A)+, we can view it as the solution of k linear systems riA = (A>A)x.
The run time would then be the time to solve k such systems plus the time to multiply a
k×n matrix with an n×m matrix (to compute RA) and to multiply a k×m matrix with
an m× n matrix (to finish).

5. Combinatorial Optimization

Problem.

(i) (4 points) Let E be a finite set and f : 2E → R+ a submodular function with f({e}) ≤ 2
for all e ∈ E. We have an oracle O1 to find the maximum cardinality set X ⊆ E with
f(X) = 2|X|, for any such given submodular function f (given by a value oracle). This
problem is called the Polymatroid Matching Problem.

Disjoint Pairs Problem: Let E1, . . . , Ek be pairwise disjoint unordered pairs and let
(E,F) be a matroid (given by an independence oracle), where E = E1∪E2∪ . . .∪Ek. The
Disjoint Pairs Problem is to find the maximum cardinality set I ⊆ {1, . . . , k} such
that

⋃
i∈I Ei ∈ F .

Give a polynomial time algorithm (in the size of the ground set E) using oracle O1 (i.e.,
each call to the oracle is counted as a single step) to solve the Disjoint Pairs Problem.
In other words, reduce the Disjoint Pairs Problem to the Polymatroid Matching
Problem polynomially.

ACO Comprehensive Exam, Part II August 16, 2020

(ii) (6 points) Now assume that you have an oracle O2 to solve the Disjoint Pairs Problem.

Consider a graph G = (V,E) with each edge belonging to one color class: red, blue and
green. We want to find the maximum cardinality acyclic subset of edges so that the number
of edges of any single color does not exceed dn/3e. Show that this is a matroid intersection
problem (2 points).

Reduce matroid intersection to the Disjoint Pairs Problem polynomially, i.e., give
a polynomial time algorithm to find maximum cardinality set in the intersection of two
matroids using the given oracle O2. (4 points). Assume oracle access to the rank functions
of the matroids as well.

Solution.

(i) Construct f(T) = r(
⋃
i∈T Ei), for T ⊆ {1, . . . , k} and r(·) be the rank function of the

matroid. Note that f(T) = 2|T | if and only if
⋃
i∈T Ei ∈ F since Ei are pairwise disjoint

pairs. Moreover, f({i}) = r(Ei) ≤ 2 for all i ∈ {1, . . . , k}. Therefore, a single oracle call
to the first problem solves the second problem.

(ii) This is a matroid intersection problem: graphic matroid and partition matroid, wherein
each color class has an upper bound of dn/3e (2 points). We will show that matroid
intersection reduces to the Disjoint Pairs Problem.

Let the two matroids be M1 = (E, I1) and M2 = (E, I2). Construct a new matroid
M ′ = (E ∪E ′,F) with the ground set E duplicated, such that a subset S = W ∪W ′ with
W ⊆ E, W ′ ⊆ E ′, is independent in the matroid M ′ if corresponding subset of elements
with the first copy, i.e., W , are independent in the first matroid M1 and the subset W ′ with
the second copies is independent in the second matroid. Check that this is a valid matroid
(subset property holds independently in each copy, and growth property holds as well since
either the corresponding subset in the first matroid is smaller or the second matroid is
smaller). Let Ei = (ei, e

′
i) for each edge ei ∈ E in the given graph. Then, the matroid

intersection problem is to find a subset T ⊆ {1, . . . , n} of maximum cardinality such that
r(
⋃
i∈T Ei) = 2|T |, i.e., the subset of first copies is equal to subset of second copies and the

subset is independent in both the matroids.

6. Probabilistic Methods

Problem. Suppose that there are k people in a lift at the ground floor, and that each wants to
get off at a random floor of one of the n upper floors (to clarify: all people make their choices
independently). Let X denote the number of lift stops, i.e., total number of distinct floors
chosen by the k people. For k = k(n) satisfying k →∞ and k/n→ 0 as n→∞, show that the
expectation and variance of X satisfy EX ∼ k and VarX = o((EX)2).

Hints:

• Working with the ‘complement’ Y := n−X might be easier.

ACO Comprehensive Exam, Part II August 16, 2020

• Recall that (1 − x)r = 1 − rx + O((rx)2) and (1 − x)r = 1 − rx +
(
r
2

)
x2 + O((rx)3) when

r ≥ 2 and x ∈ [0, 1].

Solution. For each 1 ≤ i ≤ n, let Ii denote the indicator variable for the event that none of the
k people gets off at floor i. Note that

Y = n−X =
∑

1≤i≤n

Ii.

For the expected value, note that by independence of the choices we have

P(Ii = 1) =
(
1− 1/n

)k
.

We thus obtain

EX = n− EY = n−
∑

1≤i≤n

P(Ii = 1) = n ·
(

1−
(
1− 1/n

)k)
.

Using the hint (1− x)r = 1− rx+O((rx)2) we see that

EX = n ·
(

1−
(
1− 1/n

)k)
= n

(
k/n+O

(
(k/n

)2
)
)

= k +O(k2/n) ∼ k.

For the variance, in view of X = n− Y and Y =
∑

1≤i≤n Ii it follows that

VarX = VarY =
∑

1≤i,j≤n

(
P(Ii = 1 and Ij = 1)− P(Ii = 1)P(Ij = 1)

)
.

When i = j, then we have
P(Ii = 1 and Ij = 1) = P(Ii = 1).

When i 6= j, then by independence of the choices we have

P(Ii = 1 and Ij = 1) =
(
1− 2/n

)k
.

Putting these case distinctions together, we see that

VarX ≤ EX + n(n− 1) ·
((

1− 2/n
)k − (1− 1/n

)2k)
.

Using the hint (1− x)r = 1− rx+
(
r
2

)
x2 +O((rx)3), the point is that

(
1− 2/n

)k − (1− 1/n
)2k

=

(
k

2

)(
2

n

)2

−
(

2k

2

)(
1

n

)2

+O
(
(k/n)3

)
≤ O

(
k/n2

)
+O

(
(k/n)3

)
= o(k2/n2).

Recalling that EX ∼ k →∞, it thus follows that

VarX ≤ EX + o(k2) = o
(
(EX)2

)
.

	compfall2020-Part1-Solns
	compfall2020-PartII-Solns

