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SUMMARY

Linear programming (LP) and semidefinite programming are among the most important

tools in Operations Research and Computer Science. In this work we study the limitations of

LPs and SDPs by providing lower bounds on the size of (approximate) linear and semidefi-

nite programming formulations of combinatorial optimization problems. The hardness of

(approximate) linear optimization implied by these lower bounds motivates the lazification

technique for conditional gradient type algorithms. This technique allows us to replace (ap-

proximate) linear optimization in favor of a much weaker subroutine, achieving significant

performance improvement in practice.

We can summarize the main contributions as follows:

(i) Reduction framework for LPs and SDPs. We present a new view on extended formu-

lations that does not require an initial encoding of a combinatorial problem as a linear

or semidefinite program. This new view allows us to define a purely combinatorial

reduction framework transferring lower bounds on the size of exact and approximate

LP and SDP formulations between different problems. Using our framework we show

new LP and SDP lower bounds for a large variety of problems including Vertex Cover,

various (binary and non-binary) constraint satisfaction problems as well as multiple

optimization versions of Graph-Isomorphism.

(ii) Exponential lower bound on the size of symmetric SDPs capturing Matching.

Yannakakis (1988) showed in his seminal work that every symmetric linear formulation

of the matching problem has exponential size. Symmetry in this context means that

for every permutation of the vertices of the underlying graph there is a permutation of

the variables of the program leaving the program invariant. Using the sum of squares

proof technique we show the semidefinite analog of Yannakakis’s result that every

symmetric semidefinite program for the matching problem has exponential size.

x



(iii) Lazification technique for Conditional Gradient algorithms. In Convex Program-

ming conditional gradient type algorithms (also known as Frank-Wolfe type methods)

are very important in theory as well as in practice due to their simplicity and fast

convergence. We show how we can eliminate the linear optimization step performed

in every iteration of Frank-Wolfe type methods and instead use a weak separation

oracle. This oracle is significantly faster in practice and enables caching for additional

improvements in speed and the sparsity of the obtained solutions.
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Chapter 1

INTRODUCTION

Linear programming (LP) and semidefinite programming (SDP) are among the most impor-

tant tools in Operations Research and Computer Science. Many exact and approximation

algorithms for combinatorial optimization problems are using linear or semidefinite program-

ming. For both paradigms there are algorithms known to find optimal solutions fast in theory,

e.g., the Ellipsoid method or interior point methods, while for linear programming there are

also practically much more efficient algorithms like the simplex method that are not provable

efficient in theory. The main factor determining the running time of all these algorithms

is the complexity of the feasible region measured in the number of defining inequalities

in the LP case and the dimension of the semidefinite cone in the SDP case. In this thesis

we are going to study lower bounds on the minimal size needed to describe combinatorial

optimization problems exactly as well as approximately showing limitations on the solvability

of (approximate) linear and semidefinite programs. We are further going to show how one

can eschew (approximate) linear optimization in one of the most important algorithms in

convex optimization, the Frank-Wolfe method, in favor of a much easier subroutine to avoid

the mentioned limitations and get significant performance improvements in practice.

1.1 Extended Formulations

Extended formulations is the field studying the sizes of linear and semidefinite formulations.

So far almost all lower bounds in extended formulations were shown on a case by case basis.

That means one uses specific properties of the problem or polytope in question to show
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that a high number of inequalities is needed for its exact or approximate description. We

present a new view on extended formulations that does not require an initial encoding of

the problem, i.e., instead of considering polytopes that capture a problem, we directly work

with the problem itself. This new view is enabling the definition of a reduction framework

that allows transferring lower bounds on the size of approximate linear and semidefinite

formulations in a purely combinatorial way. The appeals of our reduction mechanism are as

follows:

(i) The reduction mechanism is in spirit very similar to reductions in computational

complexity. In fact we can reuse many reductions that were used to show computational

hardness results. Additionally in order to apply a reduction one does not need to know

any details on how the original hardness result was established.

(ii) Once relations between different problems are established through reductions, an

improvement to the hardness of the base problem instantly improves all hardness

results the base problem was reduced to without any further work. In fact since this

reduction framework was presented the first time in Braun, Pokutta, and Zink (2015)

the lower bounds from Chan et al. (2013) and Lee, Raghavendra, and Steurer (2014)

have been improved by Braun, Pokutta, and Roy (2016) and Kothari, Meka, and

Raghavendra (2016) allowing us to present stronger lower bounds in this work while

using the same reductions.

(iii) Having a reduction mechanism in place directly imposes an order on combinatorial

problems. In this context in particular the question for complete problems is of interest,

since we expect the set of hard problems to be quite different due to the fact that

Max-Matching is one of the hardest problems in linear programming (see Rothvoß

2014; Braun and Pokutta 2015a) despite its polynomial time solvability. This question

however is not the focus of this work.

(iv) A reduction mechanism also propagates upper bounds, i.e., having a combinatorial
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problem with a small (approximate) linear or semidefinite formulation allows us to

get small formulations for all problems that we can reduce to the original problem.

As we will see in this chapter the polyhedral part of the formulation will actually be

unchanged by the reduction, i.e., having problem A with a small formulation described

by a polyhedron P and a reduction from problem B to problem A, then P can be used

as the polyhedral part of the formulation for problem B. The reduction provides a way

to rewrite or reinterpret the solutions and instances in order to make the formulation P

suitable for both problems.

Our abstract view on extended formulations is based on Chan et al. (2013). Both ap-

proaches, the original as well as our abstract one, do not use a particular initial encoding of

the combinatorial problem, instead both work with the instances and solutions of the problem

itself. We generalize the work of Chan et al. (2013) to capture arbitrary problems as opposed

to being restricted to constraint satisfaction problems (CSPs), which have the full 0/1 cube

as a feasible region. Further since our framework is also able to capture approximations

of optimization problems, it is also a generalization of the results in Braun et al. (2012)

and Braun et al. (2014a) working with polyhedral pairs to capture approximations. The

motivating question for this work is:

Given a combinatorial optimization problem,

what is the smallest size of any of its LPs or SDPs?

Again we want to stress, we start with a combinatorial optimization problem and not with

a specific polytope capturing the problem at hand. While this difference to the traditional

extended formulation model is more of a philosophical nature and the results are equivalent

to those obtained via the traditional extended formulations setup, on a technical level this

perspective significantly simplifies the treatment of approximate LP/SDP formulations and

it enables the formulation of the reduction mechanism.

We are able to establish lower bounds on a large variety of different problems using

reductions. Among them are NP-hard problems like VertexCover and IndependentSet, there
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are CSPs, likeMax-k-SAT, which is a binary CSP and Max-MULTI-k-CUT, which is non-binary,

and different optimization versions of the Graph-Isomorphism problem, whose decision

version is not yet know to be in P or NP-complete. Recently in a breakthrough result Babai

(2015) showed that there is a quasi polynomial algorithm deciding Graph-Isomorphism.

In the rest of this section we establish our new view on extended formulations, we define

when a LP or an SDP is capturing a combinatorial problem and what symmetry means in

this context. We finally relate our approach to polyhedral pairs which were used in extended

formulations before to capture approximations.

1.1.1 Optimization problems

We intend to study the required size of a linear program or semidefinite program capturing a

combinatorial optimization problem with specified approximation guarantees. In this section

we present our encoding independent view on extended formulation. An optimization

problem in this context is defined as follows.

Definition 1.1.1 (Optimization problems). An optimization problem P = (S ,F , val)

consists of a set S of feasible solutions and a set F of instances, together with a real-valued

objective function val : S ×F → R.

A wide class of examples consist of constraint satisfaction problems (CSPs):

Definition 1.1.2 (Maximum Constraint Satisfaction Problem (CSP)). A constraint family

C = {C1, . . . , Cm} on the boolean variables x1, . . . , xn is a family of boolean functions Ci

in x1, . . . , xn. The Ci are constraints or clauses. The problem P(C) corresponding to a

constraint family C has

(i) feasible solutions all 0/1 assignments s to x1, . . . , xn;

(ii) instances all nonnegative weightings w1, . . . , wm of the constraints C1, . . . , Cm

(iii) objective function theweighted sum of satisfied constraints: satw1,...,wm(s) = ∑i wiCi(s).
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The goal is to maximize the weights of satisfied constraints, in particular CSPs are maxi-

mization problems. A maximum Constraint Satisfaction Problem is an optimization problem

P(C) for some constraint family C. A k-CSP is a CSP where every constraint depends on at

most k variables.

For brevity, we shall simply use CSP for a maximum CSP, when there is no danger

of confusion with a minimum CSP. In the following, we shall restrict to instances with

0/1 weights, i.e., an instance is a subset L ⊆ C of constraints, and the objective function

computes the number satL(s) = ∑C∈L C(s) of constraints in L satisfied by assignment s.

Restriction to specific instances clearly does not increase formulation complexity.

As a special case, the Max-k-XOR problem restricts to constraints, which are XORs

of at most k literals. Here we shall write the constraints in the equivalent equation form

xi1 ⊕ · · · ⊕ xik = b, where ⊕ denotes the addition modulo 2.

Definition 1.1.3 (Max-k-XOR). For fixed k and n, the problem Max-k-XOR is the CSP for

variables x1, . . . , xn and the family C of all constraints of the form xi1 ⊕ · · · ⊕ xil = b with

1 ≤ i1 < · · · < il ≤ n, b ∈ {0, 1} and l ≤ k.

An even stronger important restriction is MaxCUT, a subproblem of Max-2-XOR as we

will see soon. The aim is to determine the maximum size of cuts for all graphs G with

V(G) = [n].

Definition 1.1.4 (MaxCUT). The problem MaxCUT has instances all simple graphs G with

vertex set V(G) = [n], and feasible solutions all cuts on [n], i.e., functions s : [n]→ {0, 1}.

The objective function val computes the number of edges {i, j} of G cut by the cut, i.e.,

with s(i) 6= s(j).

The problem MaxCUT∆ is the subproblem of MaxCUT considering only graphs G with

maximum degree at most ∆.

In order to realizeMaxCUT as a subproblem of Max-2-XOR we set valG(s) = satL(G)(s),

for the set of constraints L(G) =
{

xi ⊕ xj = 1
∣∣ {i, j} ∈ E(G)

}
, while using the same
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feasible solutions. Since Max-k-XOR contains all constraints with at most k literals Max-l-

XOR is subproblem of Max-k-XOR for l ≤ k.

1.1.2 Linear and semidefinite formulations

We are interested in approximately solving an optimization problem P by means of a linear

program or a semidefinite program. Recall that a typical PCP inapproximability result states

that it is hard to decide between max vali ≤ S(i) and max vali ≥ C(i) for a class of

instances i and some easy-to compute functions S and C usually refereed to as soundness and

completeness. Here and below max vali denotes the maximum value of the function vali

over the respective set of feasible solutions. We adopt the terminology to linear programs

and semidefinite programs. We start with the linear case.

Definition 1.1.5 (LP formulation of an optimization problem). Let P = (S ,F , val) be an

optimization problem with real-valued functions C, S on F , called completeness guarantee

and soundness guarantee, respectively (or approximation guarantees together). If P is

a maximization problem, then let FS :=
{

f ∈ F
∣∣max val f ≤ S( f )

}
denote the set of

instances, for which the maximum is upper bounded by soundness guarantee S. If P is

a minimization problem, then let FS :=
{

f ∈ F
∣∣min val f ≥ S( f )

}
denote the set of

instances, for which the minimum is lower bounded by soundness guarantee S.

A (C, S)-approximate LP formulation of P is a linear program Ax ≤ b with x ∈ Rd

together with the following realizations:

(i) Feasible solutions as vectors xs ∈ Rd for every s ∈ S so that

Axs ≤ b for all s ∈ S , (1.1)

i.e., the system Ax ≤ b is a relaxation (superset) of conv (xs | s ∈ S).
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(ii) Instances as affine functions w f : Rd → R for every f ∈ FS such that

w f (xs) = val f (s) for all s ∈ S , (1.2)

i.e., we require that the linearization w f of val f is exact on all xs with s ∈ S .

(iii) Achieving guarantee C via requiring

max
{

w f (x)
∣∣∣ Ax ≤ b

}
≤ C( f ) for all f ∈ FS, (1.3)

for maximization problems (resp. min
{

w f (x)
∣∣ Ax ≤ b

}
≥ C( f ) for minimization

problems).

The size of the formulation is the number of inequalities in Ax ≤ b. Finally, the LP

formulation complexity fc+(P , C, S) of the problem P is the minimal size of all its LP

formulations.

For all instances f ∈ F soundness and completeness should satisfy C( f ) ≥ S( f ) in the

case of maximization problems and C( f ) ≤ S( f ) in the case of minimization problems in

order to capture the notion of relaxations and we assume this condition in the remainder of

the paper.

Remark 1.1.6 (Inequalities vs. Equations). Traditionally in extended formulations, one would

separate the description into equations and inequalities and one would only count inequalities.

In our framework, equations can be eliminated by restricting to the affine space defined

by them, and parameterizing it as a vector space. However, note that restricting to linear

functions, one might need an equation to represent affine functions by linear functions.

For determining the exact maximum of a maximization problem, one chooses C( f ) =

S( f ) := max val f . In this case we also omit C and S and write fc+(P) for fc+(P , C, S). To

show inapproximability within an approximation factor 0 < ρ ≤ 1, one chooses guarantees

satisfying ρC( f ) ≥ S( f ). This choice is motivated to be comparable with factors of
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approximation algorithms finding a feasible solution s with val f (s) ≥ ρ max val f . For

minimization problem, C( f ) = S( f ) := min val f in the exact case, and ρC( f ) ≤ S( f )

for an approximation factor ρ ≥ 1 provided val f is nonnegative. Again in the exact case

we also write fc+(P) for fc+(P , C, S). This model of outer approximation streamlines the

models in Chan et al. (2013), Braun, Fiorini, and Pokutta (2016), and Lee et al. (2014), and

also captures, simplifies, and generalizes approximate extended formulations from Braun

et al. (2012) and Braun et al. (2014a); see Section 1.1.4 for a discussion.

We will now adjust Definition 1.1.5 to the semidefinite case. For symmetric matrices, as

customary, we use the Frobenius product as scalar product, i.e., 〈A, B〉 = Tr[AB]. Recall

that the psd-cone is self-dual under this scalar product.

Definition 1.1.7 (SDP formulation of an optimization problem). Let P = (S ,F , val) be

a maximization problem with real-valued functions C, S on F . As in Definition 1.1.5, let

FS :=
{

f ∈ F
∣∣max val f ≤ S( f )

}
.

A (C, S)-approximate SDP formulation of P consists of a linear map A : Sd → Rk and

a vector b ∈ Rk (defining a semidefinite program
{

X ∈ Sd
+

∣∣A(X) = b
}
). Moreover, we

require the following realizations of the components of P :

(i) Feasible solutions as vectors Xs ∈ Sd
+ for every s ∈ S so that

A(Xs) = b (1.4)

i.e., the system A(X) = b, X ∈ Sd
+ is a relaxation of conv (Xs | s ∈ S).

(ii) Instances as affine functions w f : Sd → R for every f ∈ FS with

w f (Xs) = val f (s) for all s ∈ S , (1.5)

i.e., we require that the linearization w f of val f is exact on all Xs with s ∈ S .
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(iii) Achieving guarantee C via requiring

max
{

w f (X)
∣∣∣A(Xs) = b, Xs ∈ Sd

+

}
≤ C( f ) for all f ∈ F , (1.6)

for maximization problems, and the analogous inequality for minimization problems.

The size of the formulation is the parameter d. The SDP formulation complexity

fc⊕(P , C, S) of the problem P is the minimal size of all its SDP formulations.

We also write fc⊕(P) for fc⊕(P , C, S) if we are interested in SDP formulations that

capture the exact problem, i.e., if C( f ) = S( f ) = optP val f .

1.1.3 Symmetric semidefinite formulations

In this section we define symmetric semidefinite programming formulations, since we are

only going to use symmetry in the semidefinite case. However one can define symmetric

linear formulations as well.

Recall that a group action of a group G on a set X is defined by a function ϕ : G× X →

X : (g, x) 7→ ϕ(g, x) such that ϕ(e, x) = x for all x ∈ X and e being the neutral element

of G and ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all g, h ∈ G and x ∈ X. For a left action of G on X

we also write g · x for ϕ(g, x). The orbit of x ∈ X is {g · x | g ∈ G} while the stabilizer of

x is {g ∈ G | g · x = x}. Let An denote the alternating group on n letters (the set of even

permutations of [n]).

Definition 1.1.8 (G-symmetricmaximization problem). Let G be group andP = (S ,F , val)

be a maximization problem, then P is called G-symmetric if valg· f (g · s) = val f (s) for all

f ∈ F , s ∈ S and g ∈ G.

For a G-symmetric problem we require G-symmetric soundness and completeness

guarantees: C(g · f ) = C( f ) and S(g · f ) = S( f ) for all f ∈ F and g ∈ G.

We now define the notion of a G-symmetric semidefinite programming formulation of a

maximization problem.
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Definition 1.1.9 (G-symmetric SDP formulation for P). Let G be a group acting on Sd
+ and

P = (S ,F ) be a G-symmetric maximization problem with G-symmetric approximation

guarantees C and S. Then the (C, S)-approximate SDP formulation of P consisting of

A : Sd
+ → Rk and b ∈ Rk together with the realizations {Xs | s ∈ S} and

{
w f
∣∣ f ∈ F

}
of

size d (see Definition 1.1.7) is called G-symmetric if the following compatibility conditions

are satisfied for all g ∈ G:

(i) Action on solutions: Xg·s = g · Xs for all s ∈ S .

(ii) Action on functions: wg· f (g · X) = w f (X) for all f ∈ F with maxs∈S f (s) ≤ S( f ).

(iii) Invariant affine space: A(g · X) = A(X).

A G-symmetric SDP formulation is G-coordinate-symmetric if the action of G on Sd
+ is by

permutation of coordinates: that is, there is an action of G on [d]with (g ·X)ij = Xg−1·i,g−1·j

for all X ∈ Sd
+, i, j ∈ [d] and g ∈ G.

1.1.4 Relation to approximate extended formulations

Traditionally in extended formulations, one would start from an initial polyhedral representa-

tion or polyhedral encoding of the problem and bound the size of its smallest possible lift in

higher-dimensional space. In the linear case for example, the minimal number of required

inequalities would constitute the extension complexity of that polyhedral representation

or encoding. Our notion of formulation complexity can be understood as the minimum

extension complexity over all possible polyhedral encodings of the optimization problem.

This independence of encoding addresses previous concerns that the obtained lower bounds

are polytope-specific or encoding-specific and alternative linear encodings (i.e., different

initial polyhedron) of the same problem might admit smaller formulations: we show that

this is not the case. More precisely, in view of the results from above the standard notion of

extension complexity and formulation complexity are essentially equivalent, however the
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more abstract perspective simplifies the handling of approximations and reductions as we

will see in Section 2.2.

The notion of LP formulation, its size, and LP formulation complexity are closely

related to polyhedral pairs and linear encodings (see Braun et al. 2012; Braun et al. 2014a,

and also Pashkovich 2012). In particular, given a (C, S)-approximate LP formulation of

a maximization problem P with linear program Ax ≤ b, representations {xs | s ∈ S} of

feasible solutions and
{

w f
∣∣ f ∈ FS} of instances, one can define a polyhedral pair encoding

of the problem P as

P := conv (xs | s ∈ S) ,

Q :=
{

x ∈ Rd
∣∣∣ 〈w f , x〉 6 C( f ), ∀ f ∈ FS}

}
.

(1.7)

Then for K := {x | Ax ≤ b}, we have P ⊆ K ⊆ Q. Note that there is no need for the

approximating polyhedron K to reside in extended space, as P and Q are already defined in

extended space.

Put differently, the LP formulation complexity of P is the minimum size of an extended

formulation over all possible linear encodings of P . The semidefinite case is similar, with

the only difference being that K is now a spectrahedron, being represented by a semidefinite

program instead of a linear program.

1.2 Conditional Gradient method

Convex optimization is important from a theoretical as well as from an applications point of

view covering applications like video colocalization and matrix completion. The general

convex optimization problem is defined as

min
x∈P

f (x), (1.8)
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where f is a smooth and convex function and P is a polytope. Access to the function f is

given by a first order oracle that returns f (x) and ∇ f (x) for a point x ∈ P. The access to

the polytope P depends on the algorithm that we use to solve Problem (1.8) as we will see in

the following. If we apply regular gradient descent methods to this problem, we have to solve

a projection step in each iteration, since after a step in the direction of the gradient, there

is no guarantee that the new iterate will be in the polytope P again. Since projections can

be computationally very expensive, projection-free methods like the Frank-Wolfe method

(see Frank and Wolfe 1956) (also known as Conditional Gradient Descent, see Levitin and

Polyak 1966) gained a lot of attention. For this type of method the access to P is by a

linear optimization oracle, which is called in each iteration to get the direction for the next

step. Feasibility is maintained by using a step length in [0, 1]. The most basic version of the

Frank-Wolfe method is given in Algorithm 1. Although convergence rates can be suboptimal,

Algorithm 1 Frank-Wolfe Algorithm (Frank and Wolfe 1956)
Require: smooth convex f function with curvature C, x1 ∈ P start vertex, LPP linear

minimization oracle
Ensure: xt points in P
1: for t = 1 to T − 1 do
2: vt ← LPP(∇ f (xt))
3: xt+1 ← (1− γt)xt + γtvt with γt := 2

t+2
4: end for

solving only a single linear optimization problem over P per iteration still leads to significant

speed up in wall clock time compared to using a projection in every step (see e.g., Hazan and

Kale 2012). Another advantage of Conditional Gradients methods is that the constructed

solution is naturally sparse as a convex combination of extreme points (or atoms), since per

iteration at most one new term is added.

Remark that in this context linear optimization and linear optimization oracle refers to

solving the problem

min{cx | x ∈ K},

where c ∈ Rn and K is a convex set. In particular linearity here refers to the linear objective
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function and not to the feasible region. So the feasible region can be a semidefinite program

or even a general convex set.

Unfortunately optimizing linear functions can still be costly, especially if the corre-

sponding problem is NP-hard, e.g., when considering MIPs, or the feasible region has high

dimension which is not uncommon in many machine learning applications. Additionally

in practice we mostly want to use generic solvers like CPLEX or Gurobi to implement

the linear optimization, however in this case the lower bounds shown with the reduction

mechanism give an indication that linear optimization is often a hard and time consuming

task. Therefore our approach is to use a weak separation oracle which is much weaker than

linear optimization (see Oracle 1). The first two parameters of Oracle 1, c ∈ Rn, and x ∈ P,

Oracle 1 Weak Separation Oracle LPsepP(c, x, Φ, K)

Require: c ∈ Rn linear objective, x ∈ P point, K ≥ 1 accuracy, Φ > 0 objective value;
Ensure: Either (1) y ∈ P vertex with c(x− y) > Φ/K, or (2) false: c(x− z) ≤ Φ for all

z ∈ P.

are the same as for the linear optimization routine and will be used with the gradient and the

current iterate respectively in the Conditional Gradient algorithms. The third parameter Φ

is used to guide the progress per iteration: if the oracle returns with the first case (positive

case) then we get a new point y that is at least Φ/K better than the current point. In the

second (negative) case the oracle gives a guarantee that we are already close enough to the

optimal point for the desired convergence rate. Since for the positive case larger values of Φ

are favorable and for the negative case smaller ones, we will see in Chapter 4 how to set Φ

as a function in t in order to balance these two cases and achieve the convergence rates that

we need. Finally the last parameter K is an accuracy parameter. Observe that in the case

K > 1 the conditions for the two outcomes of the weak separation oracle overlap, which

makes it easier (and therefore faster) for a routine to decide between the two cases.

The two main advantages of the weak separation oracle are early termination and the

possibility of using a cache. Early termination means that the oracle returns, when there is

a good enough point instead of an optimal one, i.e., an optimization routine implementing
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the oracle can terminate early. We also call this lazy optimization and therefore methods

using the weak separation oracle lazy or lazified methods. Further since the condition for

the positive case does not involve a guarantee with respect to the optimal solution, we can

hold previously used points in a cache and return one that satisfies c(x− y) > Φ/K. This

condition can usually be checked much faster than computing a new point. Reusing previous

points has the additional advantage that the final solution might be much sparser. For a

more detailed discussion of the properties and advantages of weak separation over linear

optimization see Remark 4.1.2.

We want to emphasize that our approach is different from the Conditional Gradient

method using approximate optimization (see Jaggi 2013), since finding an approximate

optimal solution still requires a comparison to the value of the optimal solution and therefore

the computation of lower bounds on the optimal objective value. In our approach we only

compare the objective value of the current point with the objective value of the new point,

which gives us significant computational advantages as we will see in Section 4.5 where we

compare our lazified algorithms to the non-lazy counterparts with approximate optimization.

After we introduced some notation in the next section, we show in Section 1.2.2 a convergence

proof for the Conditional Gradient method with approximate optimization.

1.2.1 Preliminaries

A function f : Rn → R is called convex if its linearization lies below the function itself:

f (y) ≥ f (x) +∇ f (x)(y− x).

Let ‖·‖ be an arbitrary norm on Rn, and let ‖·‖∗ denote the dual norm of ‖·‖. We will specify

the applicable norm in the later sections. A function f is L-Lipschitz if | f (y)− f (x)| ≤

L‖y− x‖ for all x, y ∈ dom f . A convex function f is called smooth with curvature at
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most C if

f (γy + (1− γ)x) ≤ f (x) + γ∇ f (x)(y− x) + Cγ2/2

for all x, y ∈ dom f and 0 ≤ γ ≤ 1. A function f is S-strongly convex if

f (y)− f (x) ≥ ∇ f (x)(y− x) +
S
2
‖y− x‖2

for all x, y ∈ dom f . Unless stated otherwise Lipschitz continuity and strong convexity

will be measured in the norm ‖·‖. Moreover, let Br (x) := {y | ‖x − y‖ ≤ r} be the

ball around x with radius r with respect to ‖.‖. In the following, P will denote the feasible

region, a polytope and the vertices of P will be denoted by v1, . . . , vN. We will use x∗ as

the optimal point of Problem 1.8.

One important quantity when working with Conditional Gradient methods is the duality

gap or Wolfe gap.

Definition 1.2.1 (Duality gap). Given Problem 1.8 and a feasible point x ∈ P, then the

duality gap or Wolfe gap of this point is defined by:

g(x) := max
y∈P
∇ f (x)(x− y).

The importance arises from the fact that for a convex function f we can bound the primal

error of a feasible point using the duality gap:

f (x)− f (x∗) ≤ ∇ f (x)(x− x∗) ≤ max
y∈P
∇ f (x)(x− y) = g(x).

In Frank-Wolfe type algorithms the quantity g(x) is computed in each step as a byproduct of

finding the direction for the next step, so although the actual value f (x∗) is unknown one

can upper bound the accuracy of the current iterate in every step and for example terminate

the algorithm if a certain target accuracy is reached.
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1.2.2 Approximate Conditional Gradients

In order to highlight the differences between the analysis of the Conditional Gradient method

using approximate optimization of Jaggi (2013) and our lazified methods, we show its

convergence in this section. The algorithm is the same as Algorithm 1 only that we use in

Line 2 instead of the exact optimization oracle LPP(∇ f (xt)) = arg minx∈P∇ f (xt)x an

approximate one, setting vt such that ∇ f (xt)vt ≤ arg minx∈P∇ f (xt)x + 1
2 δγC, where

C is the curvature of f and δ is a fixed accuracy parameter.

Theorem 1.2.2 (Theorem 1, Jaggi 2013). For each k ≥ 1, the iterates xt of the Conditional

Gradients method using approximate optimization satisfy

f (xt)− f (x∗) ≤ 2C
t + 2

(1 + δ),

where x∗ ∈ P is the optimal solution of Problem (1.8).

The proof of this theorem is based on a lower bound on the improvement in each iteration

which is given in Lemma 1.2.3.

Lemma 1.2.3 (Lemma 5, Jaggi 2013). Let f be a strongly convex function. If vt is an

approximate linear minimizer, i.e., ∇ f (xt)vt ≤ miny∈P∇ f (xt)y + 1
2 δγC, and xt+1 :=

(1− γ)xt + γvt for an arbitrary γ ∈ [0, 1], then

f (xt+1) ≤ f (xt)− γg(xt) +
γ2

2
C(1 + δ) (1.9)

holds.

Proof. Using strong convexity of f provides

f (xt+1) = f ((1− γ)xt + γvt)

≤ f (xt) + γ∇ f (xt)(vt − xt) +
γ2

2
C.
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In order to bound the middle term we use that vt is the solution of the approximate optimiza-

tion in this step:

∇ f (xt)(vt − xt) ≤ min
y∈P
∇ f (xt)y−∇ f (xt)xt +

1
2

δγC = −g(xt) +
1
2

δγC, (1.10)

and together we get the desired bound

f (xt+1) ≤ f (xt) + γ∇ f (xt)(vt − xt) +
γ2

2
C

≤ f (xt)− γg(xt) +
1
2

δγ2C +
γ2

2
C

= f (xt)− γg(xt) +
γ2

2
C(1 + δ).

The inequality that we have to replace when showing the convergence of a lazified method

is Equation 1.10. As we will see in Chapter 4 we can replace this inequality with two different

cases tailored to the outcomes of the weak separation oracle, where in the positive case no

comparison to ∇ f (xt)x∗ is used leading to the improved performance.

The proof of the convergence rate is as follows:

Proof of Theorem 1.2.2. We first show a recursive inequality for the primal gap

f (xt+1)− f (x∗) ≤ f (xt)− f (x∗)− γtg(xt) +
γ2

t
2

C(1 + δ)

≤ f (xt)− γt( f (xt)− f (x∗)) +
γ2

t
2

C(1 + δ)

= (1− γt)( f (xt)− f (x∗)) +
γ2

t
2

C(1 + δ),

where we used Lemma 1.2.3 in the first inequality and the fact that the duality gap is a bound

on the primal error in the second inequality.

We now show by induction over t the statement of the theorem. The base case t = 0

follows with γt =
2

0+2 = 1 and the recursive inequality above.
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For t ≥ 1 using the recursive inequality again and the induction hypothesis we get

f (xt+1)− f (x∗) ≤ (1− γt)( f (xt)− f (x∗)) +
γ2

t
2

C(1 + δ)

=

(
1− 2

t + 2

)
( f (xt)− f (x∗)) +

4
2(t + 2)2 C(1 + δ)

≤
(

1− 2
t + 2

)
2C

t + 2
(1 + δ) +

4
2(t + 2)2 C(1 + δ)

=

(
1− 2

t + 2
+

1
t + 2

)
2

t + 2
C(1 + δ)

=
t + 1
t + 2

· 2
t + 2

C(1 + δ)

≤ t + 2
t + 3

· 2
t + 2

C(1 + δ)

=
2

t + 3
C(1 + δ),

which shows the desired inequality.
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Chapter 2

A REDUCTION FRAMEWORK FOR EXTENDED FORMULATIONS

The contribution in this chapter has three parts, were the most important one is the reduction

framework. Despite the similarity to reductions in computational complexity we stress that

all hardness results we show in this chapter are independent of P vs. NP.

(i) Factorization Theorem for Combinatorial Problems. Yannakakis’s factorization

theorem is one of the most important tools in extended formulations (see Yannakakis

1991; Yannakakis 1988). It relates the size of an extended formulation of a polytope

with an algebraic property of the slack matrix of that polytope. To date many variations

and extensions of the original theorem have been stated and used, see e.g., Gouveia,

Parrilo, and Thomas (2013), Braun et al. (2012), Braun et al. (2014a), and Chan et al.

(2013). We show a unified version of this statement suited for our abstract, encoding

independent view.

(ii) Reduction mechanism. The main contribution in this chapter is our purely combi-

natorial and conceptually simple reduction mechanism that allows us to propagate

inapproximability results as well as small linear and semidefinite formulations between

problems.

(iii) LP and SDP inapproximability of specific problems. We use our reduction frame-

work to establish linear and semidefinite inapproximability results for many combi-

natorial problems. For the linear formulations we use as the base hardness a very

recent result by Kothari, Meka, and Raghavendra (2016) showing an inapproxima-

19



bility of MaxCUT. In the semidefinite case we also use MaxCUT as a base problem

with hardness results established by Lee, Raghavendra, and Steurer (2014) in the

exact case and by Braun, Pokutta, and Roy (2016) in the approximate case, while the

latter was shown by a reduction ultimately going back to a hardness result by Lee,

Raghavendra, and Steurer (2014) as well. The problems we establish hardness results

for are among others VertexCover, one of the most important problems in extended

formulations, Max-k-SAT, a binary CSP, Max-MULTI-k-CUT, a non-binary CSP and

several optimization versions of Graph-Homomorphism and Graph-Isomorphism.

Related work

Our encoding independent view and the reduction framework can be seen as an extension

and generalization of different lines of work: First Avis and Tiwary (2015) and Pokutta

and Van Vyve (2013) showed lower bounds on the exact extension complexity of various

polytopes using a reduction framework, however they cannot capture approximations of

polytopes or problems. Second the approach in Chan et al. (2013) (and its improvements

in Kothari, Meka, and Raghavendra (2016)) is, like ours, encoding independent and able

to capture approximations, however only applicable to CSPs, which have the 0/1 cube as

a feasible region. Finally we generalize the work of Braun et al. (2014a) and Braun et al.

(2012) achieving inapproximability results for linear formulations by using polyhedral pairs

however lacking the encoding independent view provided in this work.

For lower bounds on linear extended formulations there have been many results for

different polytopes, see e.g., Yannakakis (1991), Yannakakis (1988), Fiorini et al. (2012),

and Rothvoß (2014). Recently there has been progress both in the linear as well as in the

semidefinite case through the connection to hierarchies (Chan et al. 2013; Lee et al. 2014;

Lee, Raghavendra, and Steurer 2014), however most of this work is concerned with CSPs.

The reduction framework that we present here also led to several improvements already:

Bazzi et al. (2015) show a tight linear inapproximability result for VertexCover improving
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on the result we will present in Section 2.3 and Braun, Pokutta, and Roy (2016) established

the first SDP inapproximability for MaxCUT by extending reductions to work with fractional

objective functions. We in turn use the latter result again as the base hardness for many of

our reductions to establish SDP hardness for different problems.

2.1 Factorization theorem and slack matrix

We provide an algebraic characterization of formulation complexity via the slack matrix of

an optimization problem, similar in spirit to factorization theorems for extended formulations

(see e.g., Yannakakis 1991; Yannakakis 1988; Gouveia, Parrilo, and Thomas 2013; Braun

et al. 2012; Braun et al. 2014a), with a fundamental difference pioneered in Chan et al. (2013)

that there is no linear system to start from. The linear or semidefinite program is constructed

from scratch using a matrix factorization. This also extends Braun, Fiorini, and Pokutta

(2016), by allowing affine functions, and using a modification of nonnegative rank, to show

that formulation complexity depends only on the slack matrix.

Definition 2.1.1 (Slack matrix of P). Let P = (S ,F , val) be an optimization problem

with guarantees C, S. The (C, S)-approximate slack matrix of P is the nonnegative FS ×S

matrix M, with entries

M( f , s) :=


C( f )− val f (s) if P is a maximization problem,

val f (s)− C( f ) if P is a minimization problem.

We introduce the LP factorization of a nonnegative matrix, which for slack matrices

captures the LP formulation complexity of the underlying problem.

Definition 2.1.2 (LP factorization of a matrix). A size-r LP factorization of M ∈ Rm×n
+

is a factorization M = TU + µ1 where T ∈ Rm×r
+ , U ∈ Rr×n

+ and µ ∈ Rm×1
+ . Here 1 is

the 1× n matrix with all entries being 1. The LP rank of M denoted by rankLP M is the

minimum r such that there exists a size-r LP factorization of M.
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A size-r LP factorization is equivalent to a decomposition M = ∑i∈[r] uiv
ᵀ
i + µ1 for

some (column) vectors ui ∈ Rm
+, vi ∈ Rn

+ with i ∈ [r] and a column vector µ ∈ Rm
+. It is a

slight modification of a nonnegative matrix factorization, disregarding simultaneous shift of

all columns by the same vector, i.e., allowing an additional term µ · 1 not contributing to the

size, so clearly, rankLP ≤ rank+ M ≤ rankLP M + 1.

One similarly defines SDP factorizations of nonnegative matrices.

Definition 2.1.3. A size-r SDP factorization of M ∈ Rm×n
+ is a factorization is a collection

of matrices T1, . . . , Tm ∈ Sr
+ and U1, . . . , Un ∈ Sr

+ together with µ ∈ Rm×1
+ so that

Mij = Tr[TiUj] + µ(i). The SDP rank of M denoted by rankSDP M is the minimum r such

that there exists a size-r SDP factorization of M.

For the next theorem, we need the folklore formulation of linear duality using affine

functions, see e.g., Schrijver (1986, Corollary 7.1h).

Lemma 2.1.4 (Affine form of Farkas’s Lemma). Let P :=
{

x
∣∣ Ajx ≤ bj, j ∈ [r]

}
be a

non-empty polyhedron. An affine function Φ is nonnegative on P if and only if there are

nonnegative multipliers λj, λ0 with

Φ(x) ≡ λ0 + ∑
j∈[r]

λj(bj − Ajx).

We are ready for the factorization theorem for optimization problems.

Theorem 2.1.5 (Factorization theorem for formulation complexity). Consider an optimiza-

tion problem P = (S ,F , val) with (C, S)-approximate slack matrix M. Then we have

fc+(P , C, S) = rankLP M and fc⊕(P , C, S) = rankSDP M.

for linear formulations and semidefinite formulations, respectively.

Remark 2.1.6. The factorization theorem for polyhedral pairs (see Braun et al. 2012; Pashkovich

2012; Braun et al. 2014a) states that the nonnegative rank and extension complexity might
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differ by 1, which was slightly elusive. Theorem 2.1.5 clarifies, that this is the difference

between the LP rank and nonnegative rank, i.e., formulation complexity is a property of the

slack matrix. Note also that for the slack matrix of a polytope, every row contains a 0 entry,

and hence the µ1 term in any LP factorization must be 0. Therefore the nonnegative rank

and LP rank coincide for polytopes. Similar remarks apply to SDP factorizations.

Proof of Theorem 2.1.5—the linear case. We will confine ourselves to the case of P being

a maximization problem. For minimization problems, the proof is analogous.

To prove rankLP M ≤ fc+(P , C, S), let Ax ≤ b be an arbitrary (C, S)-approximate,

size-r LP formulation of P , with realizations
{

w f
∣∣ f ∈ FS} of instances and {xs | s ∈ S}

of feasible solutions. We shall construct a size-r nonnegative factorization of M. As

maxx:Ax≤b w f (x) ≤ C( f ) by Condition (1.3), via the affine form of Farkas’s lemma,

Lemma 2.1.4 we have

C( f )− w f (x) =
r

∑
j=1

T( f , j)
(
bj − 〈Aj, x〉

)
+ µ( f )

for some nonnegative multipliers T( f , j), µ( f ) ∈ R+ with 1 ≤ j ≤ r. By taking x = xs,

we obtain

M( f , s) =
r

∑
j=1

T( f , j)U(j, s) + µ( f ), with U(j, s) := bj − 〈Aj, xs〉 for j > 0.

(2.1)

i.e., M = TU + µ1. By construction, T and µ are nonnegative. By Condition (1.1) we also

obtain that U is nonnegative. Therefore M = TU + µ1 is a size-r LP factorization of M.

For the converse, i.e., rankLP ≥ fc+(P , C, S), let M = TU + µ1 be a size-r LP

factorization. We shall construct an LP formulation of size r. Let Tf denote the f -row of T

for f ∈ FS, and Us denote the s-column of U for s ∈ S . We claim that the linear system
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x ≥ 0 with representations

w f (x) := C( f )− µ( f )− Tf x ∀ f ∈ FS and xs := Us ∀s ∈ S

satisfies the requirements of Definition 1.1.5. Condition (1.2) is implied by the factorization

M = TU + µ1:

w f (xs) = C( f )− µ( f )− Tf Us = C( f )−M( f , s) = val f (s).

Moreover, xs ≥ 0, because U is nonnegative, so that Condition (1.1) is fulfilled. Finally,

Condition (1.3) also follows readily:

max
{

w f (x)
∣∣∣ x ≥ 0

}
= max

{
C( f )− µ( f )− Tf x

∣∣ x ≥ 0
}
= C( f )− µ( f ) ≤ C( f ),

as the nonnegativity of T implies Tf x ≥ 0; equality holds e.g., for x = 0. Recall also that

µ( f ) ≥ 0. Thus we have constructed an LP formulation with r inequalities, as claimed.

Remark 2.1.7. It is counter-intuitive that 0 is always a maximizer, and actually it is an

artifact of the construction. At a conceptual level, the polyhedron Ax ≤ b containing

conv (xs | s ∈ S) is represented as the intersection of the nonnegative cone with an affine

subspace in the slack space. The affine functions w f are extended to attain their optimum

value on this intersection in the nonnegative cone, and thus also at 0, the apex of the cone.

In particular, intersecting with the affine subspace is no longer needed. See Figure 2.1 for an

illustration.

Remark 2.1.8 (Solution structure). Observe that the obtained LP formulation via the LP-

factorization of the slack matrix also separates solutions s ∈ S into two disjoint classes

S = So ·∪ Sn, where So contains those solutions that potentially can be optimal for some

function, i.e., it is the set of coordinate-wise minimal points in S. The set Sn is the set of

solution that are never optimal for any f ∈ F as they are coordinate-wise dominated by at
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xs

conv (xs | s ∈ S)

Sn

w f

Figure 2.1: Linear program obtained from an LP factorization. The LP is the positive orthant
x ≥ 0. The point 0 is a maximizer for all linearizations w f = C( f ) − µ( f ) − Tf x of
objective functions val f for all instances f . The normals of all objective functions point in
nonpositive direction as Tf ≥ 0.

least one point in So, i.e., for any sn ∈ Sn there exists so ∈ So with so ≤ sn coordinate-wise.

This might have applications in the context of inverse optimization (see e.g., Ahuja and

Orlin 2001), where we would like to decide whether for a given solution s ∈ S , there exists

an f ∈ F , that is maximized at s. This can now be read off the factorization.

Proof of Theorem 2.1.5—the semidefinite case. As before we confine ourselves to the case

of P being a maximization problem. The proof is analogous to the linear case, but for the

sake of completeness, we provide a full proof.

To prove rankSDP M ≤ fc⊕(P , C, S), letA(X) = b, X ∈ Sr
+ be an arbitrary size-r SDP

formulation ofP , with realizations
{

w f
∣∣ f ∈ FS} of instances and {Xs | s ∈ S} of feasible

solutions. To apply strong duality, wemay assume that the convex set {X ∈ Sr
+ | A(X) = b}

has an interior point because otherwise it would be contained in a proper face of Sr
+, which
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is an SDP cone of smaller size. We shall construct a size-r SDP factorization of M. As

maxX∈Sr
+ : A(X)=b w f (X) ≤ C( f ) by Condition (1.6), via the affine form of strong duality,

we have

C( f )− w f (X) = 〈Tf , X〉+ 〈y f , b−A(X)〉+ λ f

for all f ∈ F with some Tf ∈ Sr
+, y f ∈ Rk and λ f ∈ R+. By substituting Xs into X, we

obtain

M( f , s) = C( f )− w f (Xs) = 〈Tf , Xs〉+ 〈y f , b−A(Xs)〉+ λ f = 〈Tf , Xs〉+ λ f ,

(2.2)

which is an SDP factorization of size r.

For the converse, i.e., fc⊕(P , C, S) ≤ rankSDP M, let M( f , s) = 〈Tf , Us〉+ µ( f ) be

a size-r SDP factorization. We shall construct an SDP formulation of size r. We claim that

the SDP formulation:

X ∈ Sr
+ (2.3)

with representations

w f (X) := C( f )− µ( f )− 〈Tf , X〉 ∀ f ∈ FS and Xs := Us ∀s ∈ S

satisfies the requirements of Definition 1.1.7. Condition (1.5) follows by:

w f (Xs) = C( f )− µ( f )− 〈Tf , Us〉 = C( f )−M( f , s) = val f (s).

Moreover, the Xs = Us are psd, hence clearly satisfy the system (2.3), so that Condition (1.4)

is fulfilled. Finally, Condition (1.6) also follows readily.

max
{

w f (X)
∣∣∣X ∈ Sr

+

}
= max

{
C( f )− µ( f )− 〈Tf , X〉

∣∣X ∈ Sr
+

}
= C( f )−µ( f ) ≤ C( f ),
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as Tf and X being psd implies 〈Tf , X〉 ≥ 0; equality holds e.g., for X = 0. Thus we have

constructed an SDP formulation of size r as claimed.

2.1.1 Examples

In the context of optimization problems we typically differentiate two types of formulations.

The uniform model asks for a formulation for a whole family of instances. Our Examples

in this section are all uniform models. The non-uniform model asks for a formulation for

the weighted version of a specific problem, where the instances differ only in the weighting.

Lower bounds or inapproximability factors for non-uniform models are usually stronger

statements, as in the non-uniform case the formulation potentially could adapt to the instance

resulting in potentially smaller formulations; see Bazzi et al. (2015) for such an example in

the context of stable sets. We refer the reader to Chan et al. (2013) and Braun, Fiorini, and

Pokutta (2016) for an in-depth discussion.

The difference between uniform and non-uniform sometimes depends on the point of

view. For graph problems, often the non-uniform model for a graph G induces a uniform

model for the family of all of its (induced) subgraphs by choosing 0/1 weights (see e.g.,

Definition 2.3.1). In other words, the non-uniform model is actually a uniform model for

the class of all subinstances of G. Definition 2.1.9 and Example 2.2.12 with 0/1 weights

demonstrate this: they are uniform models for all subgraphs G ⊆ Kn, but can also be viewed

as non-uniform models for Kn.

Note that these models can also be used for studying average case complexity. For

example, one might consider the complexity of the problem for a randomly selected large

class of instances using the uniform model, or one might consider the non-uniform model for

a randomly selected instance. For the maximum stable set problem, both random versions

were examined in Braun, Fiorini, and Pokutta (2016).
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The matching problem revisited

The lower bounds in Fiorini et al. (2012) and Rothvoß (2014) are concerned with specific

polytopes, namely the TSP polytope as well as the matching polytope. We obtain, as a slight

generalization, the same lower bounds for the Hamiltonian cycle problem (which is captured

by the TSP problem with appropriate weights) as well as the matching problem, independent

of choice of the specific polytope that represents the encoding. Here we present only the

lower bounds on the linear formulation complexity of the matching problem. The lower

bound for the Hamiltonian cycle problem will be obtained in Section 2.2.3 via a reduction.

In Chapter 3 we show how to lower bound the size of symmetric semidefinite formulations.

The maximum matching problem PM(n) asks for the maximum size of matchings

in a given graph. While it can be solved in polynomial time, the matching polytope has

exponential extension complexity as shown in Rothvoß (2014). Using the framework from

above, we immediately obtain that the matching problem has high LP formulation complexity,

reusing the lower bound on the nonnegative rank of the slack matrix of the matching polytope.

We first give the natural formulation of the problem in our framework.

Definition 2.1.9 (PM(n)). Let n be fixed and even, then the set S of feasible solutions of the

perfect matching problem PM(n) consists of all perfect matchings M of Kn, the complete

graph on n vertices, and the instances are all (simple) graphs G on [n]. The value valG(M)

for a graph G and a perfect matching M is defined to be

valG(M) := |M ∩ E(G)|

the number of edges shared by M and G, i.e., the size of the matching M ∩ E(G) of G.

Clearly, all maximum matchings of a graph G on n vertices can be obtained by some

perfect matching on Kn (via extension to any perfect matching on [n]). Thus max valG is

the matching number ν(G) of G, the size of the maximum matchings of G.
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Inspired by the description of the facets of the matching polytope in Edmonds (1965), we

only consider complete subgraphs on odd-sized subsets U. For such a complete graph KU

on the odd-sized set U, we have max valKU = |U|−1
2 . Let δ(U) denote the set of all edges

between U and its complement [2n] \U. We have the identity |U| = 2 |M ∩ E(KU)|+

|M ∩ δ(U)| and thus obtain the slack matrix for the exact problem (i.e., C(G) = max valG)

S(KU, M) := C(KU)− valKU =
|U| − 1

2
− |M ∩ E(KU)| =

|M ∩ δ(U)| − 1
2

.

This submatrix has nonnegative rank 2Ω(n) by Rothvoß (2014) and hence the LP formulation

complexity of the maximum matching problem is 2Ω(n), i.e., fc+(PM(n)) = 2Ω(n).

The result can be extended to the approximate case with an approximation factor (1 +

ε/n)−1, by invoking the lower bound for the resulting slack matrix from Braun and Pokutta

(2015a), showing that the maximum matching problem does not admit any fully-polynomial

size relaxation scheme. The approximation guarantees in Braun and Pokutta (2015a) are

chosen as C( f ) = max f + ε/2 and S(G) = max f .

Theorem 2.1.10 (Theorem 3.1, Braun and Pokutta 2015a). Let ε ∈ (0, 1) be a fixed num-

ber and n ∈ N even. Then fc+(PM(n), max f + ε/2, max f ) = 2Ω(n), resulting in an

inapproximability factor of (1 + ε/n)−1 ≤ 1− ε/n.

The inapproximability factor follows from max f ≤ n/2:

S( f )
C( f )

=
max f

max f + ε/2
=

1
1 + ε/2

max f

≤ 1
1 + ε/2

n/2

= (1 + ε/n)−1.

Note that this result is not unexpected as for the maximum matching problem an approxi-

mation factor of about 1− ε
n corresponds to an error of less than one edge in the unweighted

case for small ε, so that the decision problem could be decided via the approximation. This

is a behavior similar to FPTAS and strong NP-hardness for combinatorial optimization

problems that are mutually exclusive (under standard assumptions).
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Independent set problem

We provide an example for maximum independent sets in a uniform model; see Braun,

Fiorini, and Pokutta (2016) for more details as well as an average case analysis. Here there

is no bound on the maximum degree of graphs, unlike in Theorem 2.3.3.

Example 2.1.11 (Maximum independent set problem (uniform model)). Let us consider the

maximum independent set problem P over some family G of graphs G where V(G) ⊆ [n]

with aim to estimate the maximum size α(G) of independent sets in each G ∈ G.

A natural choice is to let the feasible solutions be all subsets S of [n], and the instances

be all G ∈ G. The objective function is

valG(S) := |V(G) ∩ S| − |E(G(S))| .

Here valG(S) can be easily seen to lower bound the size of an independent set, obtained

from S by removing vertices not in G, and also removing one end point of every edge with

both end points in S. Clearly, valG(S) = |S| for independent sets S of G, i.e., in this case

our choice is exact. Thus α(G) = maxS⊆[n] valG(S).

Let us consider the special case when G is the set of all simple graphs with V(G) ⊆ [n].

We shall use guarantees S(G) := max valG = α(G) and C(G) := ρ−1 max valG for an

approximation factor 0 < ρ ≤ 1. Restricting to complete graphs KU with U ⊆ [n], the

obtained slack matrix is a (ρ−1 − 1)-shift of the (partial) unique disjointness matrix, hence

for approximations within a factor of ρ, we obtain the lower bound on the linear formulation

complexity fc+(P , ρ−1 max valG, max valG) ≥ 2
nρ
8 with Braverman and Moitra (2013)

and Braun and Pokutta (2016).

See Braun, Fiorini, and Pokutta (2016) for other choices of G, such as e.g., randomly

choosing the graphs.
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k-juntas via LPs

It is well-known that the level-k Sherali–Adams hierarchy captures all nonnegative k-juntas,

i.e., functions f : {0, 1}n → R+ that depend only on k coordinates of the input (see e.g.,

Chan et al. 2013) and it can be written as a linear program using O(nk) inequalities. We

will now show that this is essentially optimal for k small.

Example 2.1.12 (k-juntas). We consider the problem of maximizing nonnegative k-juntas

over the n-dimensional hypercube. Let the set of instancesF be the family of all nonnegative

k-juntas and let the set of feasible solutions be S = {0, 1}n, with val f (s) := val f (s). We

set C( f ) = S( f ) = maxs∈S val f (s).

As we are interested in a lower bound we will confine ourselves to a specific subfamily

of functions F ′ := { fa | a ∈ {0, 1}n, |a| = k} ⊆ F with

fa(b) := aᵀb− 2
(

aᵀb
2

)
,

and hence C( fa) = 1. Clearly |F ′| = (n
k), so that the nonnegative rank of the slack matrix

Sa,b := C( fa)− fa(b) = 1− aᵀb + 2
(

aᵀb
2

)
= (1− aᵀb)2,

with a, b ∈ {0, 1}n and |a| = k is at most (n
k).

Now for each fa ∈ F ′ we have that

C( fa)− fa(b) = (1− aᵀb)2 = 1 if a ∩ b = ∅

and there are 2n−k such choices for b for a given a. Thus the matrix S has (n
k)2

n−k entries 1

arising from disjoint pairs a, b. However in Kaibel and Weltge (2015) it was shown that any

nonnegative rank-1 matrix can cover at most 2n of such pairs. Thus the nonnegative rank of
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S is at least
(n

k)2
n−k

2n =
(n

k)

2k .

The latter is Ω(nk) for k constant and at least Ω(nk−α) for k = α log n with α ∈N constant

and k > α. Thus the LP formulation for k-juntas derived from the level-k Sherali-Adams

hierarchy is essentially optimal for small k.

2.2 Affine Reductions for LPs and SDPs

We will now introduce natural reductions between problems, with control on approximation

guarantees that translate to the underlying LP and SDP level.

Definition 2.2.1 (Reductions between problems). Let P1 = (S1,F1, val) and P2 =

(S2,F2, val) be maximization problems. Let C1, S1 and C2, S2 be guarantees for P1 and

P2 respectively. A reduction from P1 to P2 respecting these guarantees consist of two

maps:

(i) β : FS1
1 → cone

(
FS2

2

)
+R rewriting instances as formal nonnegative combinations:

β( f1) := ∑ f∈FS2
2

b f1, f · f + µ( f1) with b f1, f ≥ 0 for all f ∈ FS2
2 ; the term µ( f1) is

called the affine shift

(ii) γ : S1 → conv (S2) rewriting solutions as formal convex combination ofS2: γ(s1) :=

∑s∈S2
as1,s · s with as1,s ≥ 0 for all s ∈ S2 and ∑s∈S2

as1,s = 1;

subject to

val f1(s1) = ∑
f∈FS2

2
s∈S2

b f1, f as1,s · val f (s) + µ( f1), s1 ∈ S1, f1 ∈ FS1
1 , (2.4)
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expressing representation of the objective function of P1 by that of P2, and additionally

C1( f1) ≥ ∑
f∈FS2

2

b f1, f · C2( f ) + µ( f1), f1 ∈ FS1
1 , (2.5)

ensuring feasibility of the completeness guarantee.

Observe that the role of soundness guarantees of P1 and P2 in the definition is to restrict

the instances considered: the map β involves only the instances whose optimum value is

bounded by these guarantees. One can analogously define reductions involving minimization

problems. E.g., for a reduction from a maximization problem P1 to a minimization problem

P2, the formulas are

β( f1) := µ( f1)− ∑
f∈FS2

2

b f1, f · f

val f1(s1) = µ( f1)− ∑
f∈FS2

2
s∈S2

b f1, f as1,s · val f (s)

C1( f1) ≥ µ( f1)− ∑
val f∈F

S2
2

b f1, f · C( f ).

Note that elements in S2 are obtained as convex combinations, while elements in F2

are obtained as nonnegative combinations and a shift. The additional freedom for instances

allows scaling and shifting the function values.

In a first step we will verify that a reduction between optimization problems P1 to P2

naturally extends to potential LP and SDP formulations.

Proposition 2.2.2 (Reductions of formulations). Consider a reduction from an optimization

problem P1 to another one P2 respecting completion and soundness guarantees C1, S1 and

C2, S2. Then fc+(P1, C1, S1) ≤ fc+(P2, C2, S2) and fc⊕(P1, C1, S1) ≤ fc⊕(P2, C2, S2).

Proof. We will use the notation from Definition 2.2.1 for the reduction. We only prove the

claim for LP formulations and for two maximization problems, as the proof is analogous
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for SDP formulations and when either or both problems are minimization problems. Let us

choose an LP formulation Ax ≤ b of P2 with xs realizing s ∈ S2 and w f realizing f ∈ FS2
2 .

For P1 we shall use the same linear program Ax ≤ b with the following realizations ys1 of

feasible solutions s1 ∈ S1, and u f1 of instances f1 ∈ FS1
1 , where

ys1 := ∑
s∈S2

as1,s · xs, u f1(x) := ∑
f∈FS2

2

b f1, f · w f (x) + µ( f1).

As ys1 is a convex combination of the xs, obviously Ays1 ≤ b. The u f1 are clearly affine

functions with

u f1(ys1) = ∑
f∈FS2

2

b f1, f · w f

(
∑

s∈S2

as1,s · xs

)
+ µ( f1)

= ∑
f∈FS2

2

b f1, f ∑
s∈S2

as1,s · w f (xs) + µ( f1)

= val f1(s1)

by Eq. (2.4). Moreover, by Eq. (2.5).

max
Ax≤b

u f1(x) ≤ ∑
f∈FS2

2

b f1, f ·max
Ax≤b

w f (x)+µ( f1) ≤ ∑
f∈FS2

2

b f1, f ·C2( f )+µ( f1) ≤ C1( f1).

Remark 2.2.3. At the level of matrices, Proposition 2.2.2 can be equivalently formulated as

follows. Whenever M1 = R ·M2 ·C + t1 with M1, M2, R, C nonnegative matrices, and t a

nonnegative vector, such that 1C = 1, then rankLP M1 ≤ rankLP M2 and rankSDP M1 ≤

rankSDP M2. Note that given a reduction ofP1 toP2 with the notation as in Definition 2.2.1,

one chooses M1 and M2 to be the slack matrices of P1 and P2, respectively, together with
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matrices R, C and a vector t with the following entries:

R( f1, f ) = b f1, f , (2.6)

C(s, s1) = as1,s, (2.7)

t( f ) = C2( f1) + µ( f1)− ∑
f∈F2

b f1, f · C( f ), (2.8)

all nonnegative, satisfying M1 = R ·M2 · C + t1. Now we briefly indicate a proof for this

alternative formulation of Proposition 2.2.2.

First, we prove the LP case. Given a size-r LP factorization M2 = ∑i∈[r] uivi + µ1 of

M2, one gets the size-r LP factorization M1 = ∑i∈[r] Rui · viC + (Rµ + t)1 of M1.

For the SDP case, let M2(i, j) = Tr[TiUj] + µ(i) be an SDP factorization of size r.

Then one can construct the following SDP factorization of M1 of size r:

M1( f , s) = ∑
i,j

R( f , i)M2(i, j)C(j, s) + t( f ) = ∑
i,j

R( f , i)(Tr[TiUj] + µ(i))C(j, s) + t( f )

= Tr


(

∑
i

R( f , i)Ti

)
︸ ︷︷ ︸

T̂f

·
(

∑
j

UjC(j, s)

)
︸ ︷︷ ︸

Ûs

+

(
∑

i
R( f , i)µ(i) + t( f )

)
︸ ︷︷ ︸

µ̂( f )

,

using ∑j C(j, s) = 1, i.e., 1C = 1. Using the nonnegativity of R, C, µ, and t, the T̂f and

Ûs are psd, and the µ̂( f ) are nonnegative.

2.2.1 Simpler Reductions

In many cases reductions as in Definition 2.2.1 are too general. In this chapter we present

special cases of reductions which are powerful enough in most cases however much simpler

to apply. The first modification we are going to make concerns the ability to consider linear

combinations in reductions. Throughout the whole chapter we consider reductions of the

form β : F1 → F2 and γ : S1 → S2, leading to a simpler version of condition (2.4) given by
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valβ( f1)
[γ(s1)] = α val f1(s1) + µ( f1), where we rearranged the equation for convenience.

If additionally to the requirement (2.4) optimal values are mapped to optimal values we call

a reduction exact, which is captured in Definition 2.2.4.

Definition 2.2.4. A reduction consisting of the maps β : F1 → F2 and γ : S1 → S2 is

called exact, if we have

optP2
valβ( f1)

= α optP1
val f1 +µ( f1),

where the operator optP1
is max when P1 is a maximization problem, and the operator

optP1
is min when P1 is a minimization problem. The operator optP2

is defined similarly

for P2.

The first special case we explicitly state is concernedwith problems having exact complete-

ness and soundness guarantees. That means if we are only interested in exact formulations

as opposed to approximation factors we can use Corollary 2.2.5.

Corollary 2.2.5 (Exact reduction between exact problems). Let P1 and P2 be two op-

timization problems with exact completeness and soundness guarantees, i.e., C1( f1) =

S1( f1) = optP1
val f1 and C2( f2) = S2( f2) = optP2

val f2 . Further let γ : S1 → S2 and

β : FS1
1 → F2 be maps with

valβ( f1)
[γ(s1)] = α val f1(s1) + µ( f1)

and

optP2
valβ( f1)

= α optP1
val f1 +µ( f1).

Thenγ and β form an exact reduction and in particular fc+(P2) ≥ fc+(P1) and fc⊕(P2) ≥

fc⊕(P1) holds, i.e., there is no exact linear or SDP formulation of P2 of size less than

fc+(P1) or fc⊕(P1) respectively.
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Proof. We have to verify Equations (2.4) and (2.5). Equation (2.4) follows directly from

valβ( f1)
[γ(s1)] = α val f1(s1) + µ( f1) satisfied by γ and β. Equation (2.5) is a direct conse-

quence from optP2
valβ( f1)

= α optP1
val f1 +µ( f1) and the exactness of the completeness

and soundness guarantees of P1 and P2.

If we are interested in approximate formulations, we observe that for most problems,

there is a natural size | f | of an instance f , which is a nonnegative number, and guarantees

are often proportional to it.

Corollary 2.2.6 (Inapproximability reduction with relative guarantees). Let P1 and P2 be

two optimization problems. Let P1 the completeness guarantee of P1 have the form

C1( f ) = τ1 | f | , f ∈ F1

proportional to the size | f | of each instance f with | f | ≥ 0. Furthermore, let γ : S1 → S2

and β : FS1
1 → F2 be maps satisfying for some constants α, µ and η

valβ( f1)
[γ(s1)] = α val f1(s1) + µ | f1|

|β( f1)| = η · | f1| ,

where α > 0 if P2 is a maximization problem, and α < 0 if P2 is a minimization problem.

Let the completeness guarantee C2 of P2 be given as

C2( f ) :=
ατ1 + µ

η
| f | f ∈ F2.

Furthermore let σ2 be a nonnegative number satisfying for all f1 ∈ FS1
1

max valβ( f1)
≤ σ2 |β( f1)| if P2 is a maximization problem

min valβ( f1)
≥ σ2 |β( f1)| if P2 is a minimization problem
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and we set

S2( f ) = σ2 | f | f ∈ F2

Then β and γ form a reduction from P1 with guarantees C1, S1 to P2 with guarantees

C2, S2. In particular, P2 is inapproximable within a factor of σ2η/(ατ1 + µ) by LP and

SDP formulations of size less than fc+(P1, C1, S1) and fc⊕(P1, C1, S1), respectively.

Proof. Equation (2.4) follows directly from valβ( f1)
[γ(s1)] = α val f1(s1) + µ | f1| . Using

the parameters as given by the same relation to rewrite Equation (2.5), we get

C1( f1) ≥
1
α

C2(β( f1))−
µ | f1|

α
.

Plugging in the definition of C2 and the relation between the sizes of the two problems,

|β( f1)| = η · | f1|, we get

C1( f1) ≥
ατ1 + µ

αη
|β( f1)| −

µ | f1|
α

=
ατ1 + µ

αη
η | f1| −

µ | f1|
α

= τ1 | f1| ,

showing that Equation (2.5) holds.

In many cases also the soundness guarantee of P1 is proportional to the size of f , i.e.,

S1( f ) = σ1 | f | , f ∈ F1.

Then a common choice is σ2 = (ασ1 + µ)/η, provided that the reduction is exact. We shall

write fc+(P , τ, σ) for fc+(P , C, S) with C( f ) = τ | f | and S( f ) = σ | f | and analogously

for fc⊕. In this case the approximation factor is calculated as

S2

C2
=

ασ1 + µ

ατ1 + µ
.
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Finally we show the special case of a reduction, when the affine shift is 0. In this case

the approximation guarantee is preserved without change.

Corollary 2.2.7 (Reductions without affine shift). Let P1 and P2 be two optimization

problems, where P1 has completeness guarantee C1 and soundness guarantee S1. Let

γ : S1 → S2 and β : F1 → F2 be maps satisfying for some constant α

valβ( f1)
[γ(s1)] = α val f1(s1) (2.9)

and

optP2
valβ( f1)

[γ(s1)] = α optP1
val f1(s1). (2.10)

By setting C2(β( f1)) := αC1( f1) and S2(β( f1)) := αS1( f1), γ and β|FS1 form an exact

reduction. In particular P1 and P2 have the same inapproximability guarantee.

Proof. Equation (2.4) follows directly from valβ( f1)
[γ(s1)] = α val f1(s1). We have to

verify Equation (2.5):

C1( f1) ≥
1
α

C2(β( f1)) =
1
α

αC1( f1) = C1( f1).

From optP2
valβ( f1)

[γ(s1)] = α optP1
val f1(s1) it follows that β|FS1 is a map from FS1

to FS2 . Thus γ and β form an exact reduction.

2.2.2 Base hardness results for MaxCUT and Max-k-XOR

The base problems P1 from which we reduce will be MaxCUT, MaxCUT∆ or Max-k-XOR,

which are all CSPs, as well asMax-Matching. For CSPs, the size of an instance, i.e., weighting

(w1, . . . , wm) is the total weight ∑i∈[m] wi of all clauses, For 0/1 weightings representing a
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subset L of clauses, the size is just the number of elements of L.

For better readability we summarize the hardness results for MaxCUT and Max-k-XOR in

Table 2.1 and for MaxCUT∆ in Table 2.2. The hardness result for Max-Matching was shown

in Theorem 2.1.10. Observe that the problems in this section play the same role as e.g.,

Max-3-XOR in Håstad’s PCP theorem (see Håstad 2001).

Table 2.1: of the hardness results for MaxCUT and Max-k-XOR for k ≥ 2. Indeed the
hardness results for MaxCUT and Max-k-XOR are the same, since MaxCUT is a subproblem
of Max-k-XOR for all k ≥ 2 and this is how we establish the hardness of Max-k-XOR.

completeness soundness inapprox factor size source

fc+ 1− ε 1/2 + ε 1/2 + Θ(ε) 2nc(ε) Thm. 2.2.8

fc⊕ exact case 1 2Ω(n2/13) Thm. 2.2.9

4/5− ε 3/4 + ε 15/16 + Θ(ε) nΩ(log n/ log log n) Thm. 2.2.10

1− ε cGW + ε cGW + Θ(ε) superpolynomial Conj 2.2.11

Table 2.2: Summary of the hardness results for the bounded degree case MaxCUT∆.

completeness soundness inapprox factor size source

fc+ 1− ε 1/2 + ε 1/2 + Θ(ε) 2nc(ε) Thm. 2.2.8

fc⊕ 1− ε cGW + ε cGW + Θ(ε) superpolynomial Conj 2.2.11

Theorem 2.2.8 (Kothari, Meka, and Raghavendra 2016, Corollary 1.3). For every ε > 0

there exists a constant c(ε) such that for every k ≥ 2, we have fc+(Max-k-XOR, 1− ε, 1/2+

ε) and fc+(MaxCUT, 1− ε, 1/2 + ε) are both at least 2nc(ε) for infinitely many n, resulting

in an inapproximability factor of 1/2 + Θ(ε). Moreover, for the bounded degree case we

have fc+(MaxCUT∆, 1− ε, 1/2+ ε) = 2nc(ε) for infinitely many n, where ∆ is large enough

depending on ε and therefore the same inapproximability factor.

Proof. We first show the hardness result for MaxCUT. Although not explicitly stated in

Corollary 1.3 of Kothari, Meka, and Raghavendra (2016) the statement shown is that there

exists a constant c(ε) so that there is no LP relaxation of size less than 2nc(ε) that achieves a
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completeness guarantee of 1− ε and a soundness guarantee of 1/2+ ε, which is a reformula-

tion of our statement. Since the argument ultimately goes back to the proof of Theorem 5.3(I)

in Charikar, Makarychev, and Makarychev (2009) and that construction only uses bounded

degree graphs, where the bound ∆ depends on ε but not on n, it follows that we get the same

statement for MaxCUT∆.

The result for Max-k-XOR follows, since MaxCUT is a subproblem of Max-2-XOR and

therefore of Max-k-XOR for k ≥ 2.

In the SDP case we have the following results.

Theorem 2.2.9. For the exact semidefinite formulation complexity we have fc⊕(MaxCUT) =

2Ω(n2/13) for infinitely many n and for k ≥ 2 that fc⊕(Max-k-XOR) = 2Ω(n2/13).

Proof. We use a result by Lee, Raghavendra, and Steurer (2014) stating that the slack matrix

of the cut polytope has PSD rank at least 2Ω(n2/13). Together with the factorization theorem

(Theorem 2.1.5) we get the result for MaxCUT.

The result for Max-k-XOR follows since MaxCUT is a subproblem of Max-k-XOR for

each k ≥ 2.

In the approximate case we can use a result by Braun, Pokutta, and Roy (2016).

Theorem 2.2.10 (Braun, Pokutta, and Roy 2016, Theorem 7.1). For every ε > 0 and k ≥ 2

there are infinitely many n such that fc⊕(MaxCUT, 4/5− ε, 3/4 + ε) = nΩ(log n/ log log n)

and fc⊕(Max-k-XOR, 4/5− ε, 3/4+ ε) = nΩ(log n/ log log n), resulting in inapproximability

factors of 15/16 + Θ(ε).

Recall from Khot et al. (2007) that under the Unique Games Conjecture, MaxCUT

cannot be approximated better than cGW by a polynomial-time algorithm. This motivates

the following conjecture, which provides the SDP-hard base problem with the strongest

approximation guarantee.
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Conjecture 2.2.11 (SDP inapproximability of MaxCUT). For every ε > 0, and for every

constant ∆ large enough depending on ε, the formulation complexity fc⊕(MaxCUT∆, 1−

ε, cGW + ε) of MaxCUT is superpolynomial and thus inapproximable within a factor of

cGW + Θ(ε).

Note however that for fixed ∆, there are algorithms achieving an approximation factor of

cGW + ε by Feige, Karpinski, and Langberg (2002), hence in the conjecture ∆ should go to

infinity as ε tends to 0.

Finally, we remark that by Karloff (1999, Lemma 2.9) there are graphs G where the

Goemans–Williamson SDP is off by a factor of cGW + ε. For simplicity of calculations we

assume for the conjecture that there are also such graphs with SDP optimum (1− ε) |E(G)|.

2.2.3 Facial reductions and formulation complexity

As the notion of formulation complexity does not directly deal with polytopes, there is

no direct translation of monotonicity of extension complexity under faces and projections

(see Fiorini et al. 2012). Thus many reductions that have been used in the context of

extension complexity and polytopes do not apply, such as e.g., the one from TSP to matching

in Yannakakis (1988) and Yannakakis (1991). Often however, a reduction between the

problems as defined in Definition 2.2.1 underlies the facial reduction. To exemplify this we

provide the underlying reduction from matching to TSP.

Example 2.2.12 (Maximum weight Hamiltonian cycles (uniform model)). We want to find a

Hamiltonian cycle with maximumweight in a weighted graph. We consider only nonnegative

weights as customary.

Therefore for a fixed n, we choose the feasible solutions to be all Hamiltonian cycles C

of the complete graph Kn on [n], and the instances are weighted subgraphs G of Kn with
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nonnegative weights. The objective function has the form

valG(C) := ∑
e∈C∩E(G)

we.

We shall consider the exact problem, i.e., with guarantees C(G) = S(G) = max valG.

In order to have a finite family of instances, one could restrict the weights to e.g., 1,

essentially asking for the maximum number of edges a Hamiltonian cycle can have in

common with a given subgraph. For the following reduction, we will use weights {1, 2} and

we adapt Yannakakis’s construction to reduce the maximum matching problem on K2n to

the maximum weight Hamiltonian cycle problem on K4n. To simplify notation, we identify

[4n] with {0, 1} × [2n], i.e., the vertices are labeled by pairs (i, j) with i being 0 or 1 and

j ∈ [2n]. Given a graph G on [2n], we think of it as being supported on {0} × [2n].

We consider the weighted graph G̃ with edges and weights:

Edge Weight

{(0, j), (1, j)} 2 j ∈ [2n]

{(1, j), (1, k)} 1 j, k ∈ [2n]

{(0, j), (0, k)} 1 {j, k} ∈ E(G)

For every perfect matching M on [2n], choose a Hamiltonian cycle CM containing the edges

(i) {(0, j), (1, j)} for j ∈ [2n],

(ii) {(0, j), (0, k)} for {j, k} ∈ E(G),

(iii) n additional edges of the form {(1, j), (1, k)} to obtain a Hamiltonian cycle.

Note that

valG̃(CM) = 5n + |M ∩ E(G)| . (2.11)

We now determine the maximum of valG̃ on all Hamiltonian cycles. Therefore let C be

an arbitrary Hamiltonian cycle. Let us consider C restricted to {0} × [2n]; its components
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are (possible empty) paths. Let k be the number of components, which are non-empty paths,

and contained in G. Obviously, k ≤ ν(G), where ν(G) is the matching number, as selecting

one edge from every such component provides a k-matching of G.

Let l be the number of components containing at least one edge not in G. Note that

k + l ≤ n, because choosing one edge of all these k + l components, we obtain a (k + l)-

matching on [2n], similarly as in the previous paragraph.

Finally, let m be the number of single vertex components. Therefore C contains exactly

2n− (k + l + m) edges on {0} × [2n], of which at least l are not contained in G. Hence

the contribution of these edges to the weight valG̃(C) is at most

valG̃(C ∩ E({0} × [2n])) ≤ 2n− (k + l + m)− l = 2n− k− 2l −m. (2.12)

Moreover, the cycle C contains exactly 2n − (k + l + m) edges on {1} × [2n] whose

contribution to the weight is

valG̃(C ∩ E({1} × [2n])) = 2n− (k + l + m). (2.13)

Finally, C contains 2(k + l + m) edges between the partitions {0} × [2n] and {1} × [2n],

all of which have weight at most 2. In fact, at each of the m single vertex components in

{0} × [2n], only one of the edges can be of the form {(0, j), (1, j)}, the other edge must

have weight 0. Therefore the contribution of the edges between the partitions is at most

valG̃(C ∩ E({0} × [2n], {1} × [2n]) ≤ 2[2(k + l + m)−m] = 4k + 4l + 2m. (2.14)

Summing up Eqs. (2.12), (2.13) and (2.14), we obtain the following upper bound on the

weight of C:

valG̃(C) ≤ 4n + 2k + l ≤ 5n + k ≤ 5n + ν(G).

Together with Eq. (2.11), this proves maxC valG̃(C) = 5n + ν(G). Thus the valG̃ and CM
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reduce the maximum matching problem to the maximum Hamiltonian cycle problem with

β(G) = G̃, γ(M) = CM and µ(G) = 5n. Hence the LP formulation complexity of the

maximum Hamiltonian cycle problem is 2Ω(n) by Proposition 2.2.2.

2.3 Inapproximability of VertexCover and IndependentSet

We will now establish inapproximability results for VertexCover and IndependentSet via

reduction from MaxCUT, even for bounded degree subgraphs. These two problems are of

particular interest, answering a question of Singh (2010) and Chan et al. (2013) as well as a

weak version of sparse graph conjecture from Braun, Fiorini, and Pokutta (2014). Moreover,

VertexCover is not of the CSP type, therefore the methods from Chan et al. (2013) do not

apply. Using our reduction framework, recently these results have been further improved in

Bazzi et al. (2015) to obtain (2− ε)-inapproximability for VertexCover (which is optimal)

and inapproximability of IndependentSet within any constant factor.

Formulation complexity depend heavily on how a problem is formulated. For example,

the model of IndependentSet used here is motivated by its combinatorial counterpart, and

captures standard LPs, like the ones coming from Sherali–Adams hierarchies. In this

model, IndependentSet for a given graph G is approximable within a factor of 2
√

n with

a polynomial sized LP, see Bazzi et al. (2015). However, the formulation complexity of

another model of the maximum independent set problem with an approximation factor n1−ε

is subexponential, rephrasing Fiorini et al. (2012) (see also Braun et al. 2012; Braverman

and Moitra 2013; Braun et al. 2014a), see Section 2.1.1. In this model the instances come

from the polytope world, and are actually formal linear combinations of several graphs, and

this makes the difference.

The current best PCP bound for bounded degree IndependentSet can be found in Chan

(2013). See also Austrin, Khot, and Safra (2009) for inapproximability results assuming the

Unique Games Conjecture.
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The minimization problem VertexCover(G) of a graph G asks for a minimum weighted

vertex cover of G. We consider the non-uniform model with instances being the induced

subgraphs of G.

Definition 2.3.1 (VertexCover). Given a graph G, the problem VertexCover(G) has all vertex

covers S of G as feasible solutions, and instances all induced subgraphs H of G. The

problem VertexCover(G) is the minimization problem with its objective function having

values valH(S) := |S ∩V(H)|. The problemVertexCover(G)∆ is the restriction of instances

to induced subgraphs H, with maximum degree at most ∆.

Note that for every vertex cover S of G, any induced subgraph H has S ∩ V(H) as a

vertex cover, and all vertex covers of H are of this form. In particular, min valH is the

minimum size of a vertex cover of H.

The problem IndependentSet asks for maximum sized independent sets in graphs. As in-

dependent sets are exactly the complements of vertex covers, it is natural to use a formulation

similar to VertexCover.

Definition 2.3.2 (IndependentSet). Given a graph G, IndependentSet(G) is the maximiza-

tion problem that has all independent sets S of G as feasible solutions, and instances are all

induced subgraphs H of G. The objective function is valH(S) := |S ∩V(H)|. The sub-

problem IndependentSet(G)∆ is the restriction to all induced subgraphs H with maximum

degree at most ∆.

For both VertexCover and IndependentSet, we shall use the following conflict graph G

for a fixed n, similar to Feige et al. (1991); we might think of G as a universal graph encoding

all possible instances. Let the vertices of G be all partial assignments σ of two variables xi

and xj satisfying the 2-XOR clause xi ⊕ xj = 1. Two vertices σ1 and σ2 are connected if and

only if the assignments σ1 and σ2 are incompatible (i.e., assign different truth values to some

common variable), see Figure 2.2 for an illustration. As we are considering problems for
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(1, 0)

(0, 1)

x1 ⊕ x2 = 1

(1, 0)

(0, 1)

x1 ⊕ x3 = 1

Figure 2.2: Conflict graph of 2-XOR clauses. We include edges between all conflicted partial
assignment to variables.

optimizing size of vertex sets, it is natural to define the size of an instance, i.e., a subgraph

K, as the size of its vertex set |V(K)|.

We give a summary of the results for VertexCover and IndependentSet in Tables 2.3-2.6.

Table 2.3: Summary of the hardness results for VertexCover achieved by a reduction from
MaxCUT which is described in Theorem 2.3.3. The last line in this table holds assuming
Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1/2 + ε 3/4− ε 3/2−Θ(ε) 2mc(ε)

fc⊕ exact case 1 2Ω(m2/13)

6/10 + ε 5/8− ε 25/24−Θ(ε) mΩ(log m/ log log m)

1/2 + ε 1− cGW/2− ε 2− cGW −Θ(ε) superpolynomial

Table 2.4: Summary of the hardness results for the bounded degree case VertexCover∆
achieved by a reduction from MaxCUT∆ described in Theorem 2.3.3. The last line in this
table holds assuming Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1/2 + ε 3/4− ε 3/2−Θ(ε) 2mc(ε)

fc⊕ 1/2 + ε 1− cGW/2− ε 2− cGW −Θ(ε) superpolynomial

Theorem 2.3.3. For every ε > 0 there is a ∆ and a constant c(ε) that for infinitely

many m, there is a graph G with |V(G)| = m such that fc+(VertexCover(G)∆, 1/2 +
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Table 2.5: Summary of the hardness results for IndependentSet achieved by a reduction
from MaxCUT which is described in Theorem 2.3.3. The last line in this table holds assuming
Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1/2− ε 1/4 + ε 1/2 + Θ(ε) 2mc(ε)

fc⊕ exact case 1 2Ω(m2/13)

4/10− ε 3/8 + ε 15/16 + Θ(ε) mΩ(log m/ log log m)

1/2− ε cGW/2 + ε cGW + Θ(ε) superpolynomial

Table 2.6: Summary of the hardness results for the bounded degree case IndependentSet∆
achieved by a reduction from MaxCUT∆ described in Theorem 2.3.3. The last line in this
table holds assuming Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1/2− ε 1/4 + ε 1/2 + Θ(ε) 2mc(ε)

fc⊕ 1/2− ε cGW/2 + ε cGW + Θ(ε) superpolynomial

ε, 3/4 − ε) ≥ 2mc(ε) showing inapproximability within a factor of 3
2 − Θ(ε), and also

fc+(IndependentSet(G)∆, 1/2− ε, 1/4 + ε) ≥ 2mc(ε) establishing an inapproximability

factor 1
2 + Θ(ε). Assuming Conjecture 2.2.11, we also have fc⊕(VertexCover(G)∆, 1/2 +

ε, 1− cGW/2− ε) and fc⊕(IndependentSet(G)∆, 1/2− ε, cGW/2 + ε) are superpolyno-

mial, achieving inapproximability factors 2− cGW −Θ(ε) and cGW + Θ(ε), respectively.

Additionally for the unbounded degree problems we have fc⊕(VertexCover(G), 6/10 +

ε, 5/8 − ε) = mΩ(log m/ log log m) and fc⊕(IndependentSet(G), 4/10 − ε, 3/8 + ε) =

mΩ(log m/ log log m) in the approximate case and fc⊕(VertexCover(G)) = 2Ω(m2/13) and

fc⊕(IndependentSet(G)) = 2Ω(m2/13) for the exact problems.

Proof. We shall use the graph G constructed above, which has m = 2(n
2) vertices. We

reduce MaxCUT∆ to VertexCover(G)2∆−1 using Corollary 2.2.6 with α = −1, µ = 2 and

η = 2 together with the values of τ1 and σ1 as they are given in Table 2.1 and Table 2.2.

For demonstration purposes, we shall write out the explicit guarantees below for the linear

case. Recall that for a graph K on [n] with maximum degree at most ∆, the guarantees for
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MaxCUT are CMaxCUT(K) = (1− ε) |E(K)| and SMaxCUT(K) = (1/2 + ε) |E(K)|. For

VertexCover(G)2∆−1, we have the following explicit guarantees:

CVertexCover(G)(H) = (1/2 + ε/2) |V(H)| ,

SVertexCover(G)(H) = (3/4− ε/2) |V(H)| .

Let H(K) be the induced subgraph of G on the set of all partial assignments σ which

assign values to variables xi, xj corresponding to an edge {i, j} of K, i.e., the vertex set

is V(H(K)) :=
{

σ
∣∣ {i, j} ∈ E(K), dom σ = {xi, xj}

}
. In particular, |V(H(K))| =

2 |E(K)|, as there are two partial assignments per each edge {i, j}.

Note that for every partial assignment σ to xi and xj, there are 2∆− 1 partial assignments

incompatible with it in V(H(K)): exactly one assignment for every edge of K incident to i

or j. Thus the maximum degree of H(K) is at most 2∆− 1.

We now define the two maps providing the reduction. Let β(K) := H(K). For a total

assignment s, let γ(s) :=
{

σ
∣∣ σ * s

}
be the set of partial assignments incompatible with s;

this is clearly a vertex cover.

It remains to show that this is a reduction. For every edge {i, j} ∈ K, there are two

partial assignments σ to xi and xj satisfying xi ⊕ xj = 1. If s satisfies xi ⊕ xj = 1, i.e.,

{i, j} is in the cut induced by s, then exactly one of the σ is compatible with s, otherwise

both of the assignments are incompatible. This provides

valVertexCover
H(K) [γ(s)] =

∣∣{σ
∣∣ σ * s

}∣∣ = 2 |E(K)| − valMaxCUT
K (s).

To compare optimum values, note that for any vertex cover S of G, the partial assignments

{σ | σ /∈ S} occurring in the complement of S are compatible (as the complement forms a

stable set), hence there is a global assignment s of x1, . . . , xn compatible with all of them.
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In particular, γ(s) ⊆ S, hence valVertexCover
H(K) (S) ≥ valMaxCUT

K [γ(s)], so that we obtain

min valVertexCover
H(K) = min

s
valVertexCover

H(K) [γ(s)] = 2 |E(K)| −max valMaxCUT
K

≥ 2 |E(K)| − (1/2 + ε) |E(K)| = (3/4− ε/2) |V(H(K))|

= SVertexCover(H(K)).

Finally, it is easy to verify that CVertexCover(H(K)) = 2|E(K)| −CMaxCUT(K). This finishes

the proof that β and γ define a reduction to VertexCover(G)∆. Hence by Corollary 2.2.6 (or

Proposition 2.2.2), using m = 2(n
2), we have fc+(VertexCover(G)2∆−1, 3/2− 2ε, 1+ 2ε) =

nΩ(
log n

log log n ) = mΩ(
log m

log log m ) for infinitely many n. The exact case follows with Corollary 2.2.5.

For IndependentSet, we apply a similar reduction from MaxCUT, in particular we reduce

MaxCUT∆ to IndependentSet(G)2∆−1. We define β(K) := H(K) as above and we set

γ(s) := {σ | σ ⊆ s} to be the set of partial assignments compatible with the total assignment

s, this is clearly an independent set, containing exactly one vertex per satisfied clause. In

particular, valH(K)[γ(s)] = valK(s). The rest of the argument is analogous to the case of

VertexCover(G)∆, and hence omitted. Now the parameters for Corollary 2.2.6 are α = 1,

µ = 0 and η = 2, again together with the values for τ1 and σ1 as given in Tables 2.1 and

2.2, e.g., τ1 = 1− ε, and σ1 = 1/2 + ε in the linear case.

2.4 Inapproximability of CSPs

In this section we present example reductions for minimum and maximum constraint sat-

isfaction problems. Some of the results for binary Max-CSPs, (for CSPs as defined in

Definition 1.1.2) could also be obtained in the LP case from Kothari, Meka, and Raghaven-

dra (2016) by combination with the respective Sherali–Adams/Lasserre gap instances . For

simplicity of exposition, we reduce from Max-2-XOR, or sometimes MaxCUT, however by

reducing from the subproblem MaxCUT∆, we immediately obtain the results for bounded
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occurrence of literals, with ∆ depending on the approximation factor.

2.4.1 Max-MULTI-k-CUT: a non-binary CSP

The Max-MULTI-k-CUT problem is interesting on its own being a CSP over a non-binary

alphabet, thus the framework in Chan et al. (2013) does not readily apply. Note that Max-

MULTI-k-CUT is APX-hard, as it contains MaxCUT. The current best PCP inapproximability

bound 1− 1/(34k) + ε is given by Kann et al. (1997).

Here we omit the definition of non-binary CSPs, where the feasible solutions are no

longer two-valued assignments, and restrict to Max-MULTI-k-CUT.

Definition 2.4.1 (Max-MULTI-k-CUT). For fixed positive integers n and k, the problem

Max-MULTI-k-CUT has

(i) feasible solutions: all partitions of [n] into k sets;

(ii) instances: all graphs G with V(G) ⊆ [n].

(iii) objective function: for a graph G and a partition p of [n], let valG(p) be the number

of edges of G whose end points lie in different cells of p.

This differs from a binary CSP only by having a different kind of feasible solutions.

Hence it is still natural to define the size of an instance, i.e., graph G, as the number of

clauses, i.e, number of edges |E(G)|.

We summarize the results in Table 2.7 and prove the statements in Corollary 2.4.2.

Corollary 2.4.2. Let k ≥ 3 be a fixed integer. Then for every ε > 0 there is a constant c̄(ε)

such that for infinitely many n,

fc+

(
Max-MULTI-k-CUT,

c(k) + 1
c(k)

− ε,
c(k) + 1/2

c(k)
+ ε

)
≥ 2nc̄(ε)
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Table 2.7: Summary of the hardness results for Max-MULTI-k-CUT achieved by a reduction
fromMaxCUT which is described in Corollary 2.4.2. The last line in this table holds assuming
Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+
c(k)+1

c(k) − ε
2c(k)+1

2c(k) + ε
2c(k)+1
2c(k)+2 + Θ(ε) 2nc̄(ε)

fc⊕ exact case 1 2Ω(n2/13)

5c(k)+4
5c(k) − ε

4c(k)+3
4c(k) + ε

20c(k)+15
20c(k)+16 + Θ(ε) nΩ(log n/ log log n)

c(k)+1
c(k) − ε

c(k)+cGW
c(k) + ε

c(k)+cGW
c(k)+1 + Θ(ε) superpolynomial

achieving inapproximability factor 2c(k)+1
2c(k)+2 + Θ(ε), where

c(k) :=
(

k− 2
2

)((
k + 2

2

)
− 3
)
+ 2(k− 2)

((
k + 2

2

)
− 3
)

.

In the SDP case we have

fc⊕

(
Max-MULTI-k-CUT,

5c(k) + 4
5c(k)

− ε,
4c(k) + 3

4c(k)
+ ε

)
≥ nΩ(log n/ log log n)

achieving a factor of 20c(k)+15
20c(k)+16 + Θ(ε) and in the exact case fc⊕(Max-MULTI-k-CUT) ≥

nΩ(log n/ log log n).

Further assuming Conjecture 2.2.11, we also have that fc⊕(Max-MULTI-k-CUT, c(k) +

1− ε, c(k) + cGW + ε) is superpolynomial, showing inapproximability factor c(k)+cGW
c(k)+1 +

Θ(ε).

Proof. We reduce MaxCUT to Max-MULTI-k-CUT. The reduction is essentially identical to

Papadimitriou and Yannakakis (1991), however we have to verify its compatibility with our

reduction mechanism. To this end it will suffice to define the reduction maps β and γ.

Given a graph G, we construct a new graph β(G) as illustrated in Figure 2.3. Consider

the vertices of G together with k− 2 new vertices −k, . . . ,−3. For every pair of vertices i, j

we add nij copies of an almost complete graph on k + 2 vertices, two of which are (i), (j),

as follows.
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1

2

G

-3

(1, 2; 1; (1))

(1, 2; 1; (2))

(1, 2; 1; 1)

(1, 3; 1; (1))
(1, 3; 1; 1)

(1, 3; 1; (−3))

(2, 3; 1; 1)
(2, 3; 1; (2))

(2, 3; 1; (−3))

Figure 2.3: Reduction between MaxCUT and Max-MULTI-k-CUT. Here k = 3 and G = K2.
The dashed edge denotes the edge of G, which is not contained in the reduction. The squares
are the copies of almost complete graphs added. The partition is represented by coloring the
vertices: blue and green are the original cells on [2], and red is an additional color.
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First, let us determine the number nij of copies added. For i, j ∈ [n], we add one copy if i

and j are connected in G, and no copies otherwise. For i, j ∈ {−k, . . . ,−3} we add |E(G)|

many copies. Finally, for i ∈ [n] and j ∈ {−k, . . . ,−3} we add degG(i) many copies.

Now let us describe the copies themselves. Let us fix i, j and let x ∈ [nij] be an index of

the copy. We add k new vertices (i, j; x; (i)), (i, j; x; (j)), and (i, j; x; t) for t = 1, . . . , k− 2.

We connect every pair of the k + 2 vertices i, j, (i, j; x; (i)), (i, j; x; (j)), (i, j; x; t) with an

edge except the pairs {i, (i, j; x, (i))}, {i, j}, and {(i, j; x, j), (j)}. This is done for all i, j, x,

and we let β(G) be the graph so obtained.

By construction, β(G) has

|E(β(G))| =
[(

k + 2
2

)
− 3
]
·∑

ij
nij

=

[(
k + 2

2

)
− 3
] (

1 + 2(k− 2) +
(

k− 2
2

))
|E(G)|

many edges, and its vertex set V(β(G)) is contained in the set

[n] ·∪ {−k, . . . ,−3} ·∪
{
(i, j; x; t)

∣∣−k ≤ i < j ≤ 3, x ∈ [nij], t ∈ [k]
}

having size polynomial in n:

m := n + (k− 2) + k
[(

k− 2
2

)
+ 2(k− 2) + 1

] (
n
2

)
.

We define γ to map every 2-partition p of [n] into a k-partition of β(G) by extending it

as follows. Let p1 and p2 denote the cells of p. Elements of p1 and p2 go to the first and

second cell of the γ(p), respectively. The new vertices −i added for i = −k, . . . ,−3 go to

the i-th cell. Vertices (i, j; x; (i)) and (i, j; x; (j)) go to the cell of i and j, respectively. For

fixed i, j, x the vertices (i, j; x; t) for t = 1, . . . , k− 2 are put into k− 2 different cells, which

do not contain (i, j; x; (i)) or (i, j; x; (j)). This is possible as there are k different cells.
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By Papadimitriou and Yannakakis (1991),

valMax-MULTI-k-CUT
β(G) [γ(p)] = valMaxCUT

G (p) + µ(G),

max valMax-MULTI-k-CUT
β(G) = max valMaxCUT

G +µ(G),

where

µ(G) = |E(β(G))| − |E(G)| =
[(

k− 2
2

)
+ 2(k− 2)

] [(
k + 2

2

)
− 3
]

︸ ︷︷ ︸
c(k)

|E(G)| .

Therefore we obtain a reduction from MaxCUT on n vertices to Max-MULTI-k-CUT on m

vertices, with m polynomially bounded in n. Combining Corollary 2.2.6 with parameters

α = 1, µ = c(k) and η = c(k) with the hardness results in Table 2.1, we get for exam-

ple in the LP case with τ1 = 1− ε and σ1 = 1/2 + ε, that there is a constant c̄(ε) such

that fc+
(

Max-MULTI-k-CUT, c(k)+1−ε
c(k) , c(k)+1/2+ε

c(k)

)
= 2mc(ε)

= 2nc̄(ε)
. The SDP cases fol-

low analogously while we assume Conjecture 2.2.11 for the inapproximability factor of
c(k)+cGW

c(k)+1 + Θ(ε).

2.4.2 Inapproximability of general 2-CSPs

First we consider general CSPs with no restrictions on constraints, for which the exact

approximation factor can be easily established. We present the hardness of LP approximation

here. The LP with matching factor can be found in Trevisan (1998).

Definition 2.4.3 (Max-2-CSP and Max-2-CONJSAT). The problem Max-2-CSP is the CSP

on variables x1, . . . , xn with constraint family C2CSP consisting of all possible constraints

depending on at most two variables. The problemMax-2-CONJSAT is the CSPwith constraint

family consisting of all possible conjunctions of two literals.
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Table 2.8: Summary of the hardness results for Max-2-CSP given in Corollary 2.4.4. The
last line holds under the assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1− ε 1/2 + ε 1/2 + Θ(ε) 2nc(ε)

fc⊕ exact case 1 2Ω(n2/13)

4/5− ε 3/4 + ε 15/16 + Θ(ε) nΩ(log n/ log log n)

1− ε cGW + ε cGW + Θ(ε) superpolynomial

Table 2.9: Summary of the hardness results for Max-2-CONJSAT given in Corollary 2.4.4.
The last line holds under the assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1/2− ε 1/4 + ε 1/2 + Θ(ε) 2nc(ε)

fc⊕ exact case 1 2Ω(n2/13)

4/10− ε 3/8 + ε 15/16 + Θ(ε) nΩ(log n/ log log n)

1/2− ε cGW/2 + ε cGW + Θ(ε) superpolynomial

Corollary 2.4.4. For every ε > 0 there is a constant c(ε) such that for infinitely many n, we

have fc+(Max-2-CSP, 1− ε, 1/2+ ε) ≥ 2nc(ε) achieving inapproximability factor 1
2 +Θ(ε),

where n is the number of variables of Max-2-CSP. Similarly, fc+(Max-2-CONJSAT, 1/2−

ε, 1/4 + ε) ≥ 2nc(ε) establishing inapproximability factor 1
2 + Θ(ε) for infinitely many n.

Moreover, in the SDP case for the exact problems we have fc⊕(Max-2-CSP) ≥ 2Ω(n2/13) and

fc⊕(Max-2-CONJSAT) ≥ 2Ω(n2/13). For approximation versions we have fc⊕(Max-2-CSP,

4/5− ε, 3/4 + ε) = nΩ(log n/ log log n) and fc⊕(Max-2-CONJSAT, 4/10− ε, 3/8 + ε) =

nΩ(log n/ log log n) and, finally assuming Conjecture 2.2.11, fc⊕(Max-2-CSP, 1− ε, cGW + ε)

and fc⊕(Max-2-CONJSAT, 1/2− ε, cGW/2 + ε) are superpolynomial showing inapprox-

imability factor cGW + Θ(ε).

Proof. We identify Max-2-XOR as a subproblem of Max-2-CSP: Every 2-XOR clause is

evidently a boolean function of 2 variables. So restricting the instances of Max-2-CSP to

2-XOR clauses with 0/1 weights gives Max-2-XOR. Now with Theorem 2.2.8, 2.2.9 and

56



2.2.10, the results for Max-2-CSP follow.

The claim about Max-2-CONJSAT follows via the reduction from Max-2-CSP to Max-2-

CONJSAT in Trevisan (1998). We prefer to reduce from Max-2-XOR instead for easier control

over the approximation guarantees. The idea is to write each clause C in disjunctive normal

form, and replace C with the set S(C) of conjunctions in its normal form, one conjunction

for every assignment satisfying C. In particular, for 2-XOR clauses S(xi ⊕ xj = 1) =

{xi ∧ ¬xj,¬xi ∧ xj} and S(xi ⊕ xj = 0) = {xi ∧ xj,¬xi ∧ ¬xj}. Therefore formally, a

set of clauses L is mapped to β(L) =
⋃

C∈L S(C). Every assignment of variables is mapped

to themselves, i.e., γ is the identity. We have valβ(L)(s) = valL(s) and |β(L)| = 2 |L|.

Now the claim follows with α = 1 in Corollary 2.2.5 or with α = 1, µ = 0 and η = 2 in

Corollary 2.2.6.

2.4.3 Max-k-SAT inapproximability

We now establish an LP-inapproximability factor of 3
4 + ε and an SDP-inapproximability

factor of 35/36+ ε for Max-2-SAT via a direct reduction from MaxCUT. Note that Goemans

and Williamson (1994) show the existence of an LP that achieves a factor of 3
4 , so that our

estimation is tight in the LP case. Moreover, in Feige and Goemans (1995) it is shown that

Max-2-SAT can be approximated with a small SDP within a factor of 0.931 leaving a gap of

about 0.04.

Obviously, the same factor applies for Max-k-SAT with k ≥ 2, too. We allow clauses with

less than k literals in Max-k-SAT, which is in line with the definition in Schoenebeck (2008)

to maintain compatibility. Note that Lee, Raghavendra, and Steurer (2014, Theorem 1.5)

establishes 7/8 + ε inapproximability for Max-3-SAT even in the SDP case.

Definition 2.4.5 (Max-k-SAT). For fixed n, k ∈ N, the problem Max-k-SAT is the CSP on

the set of variables {x1, . . . , xn}, where the constraint family C is the set of all sat clauses

which consist of at most k literals.
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Table 2.10: Summary of the hardness results for Max-k-SAT with k ≥ 2 given in Corol-
lary 2.4.6. The last line holds under the assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1− ε 3/4 + ε 1/2 + Θ(ε) 2nc(ε)

fc⊕ exact case 1 2Ω(n2/13)

9/10− ε 7/8 + ε 35/36 + Θ(ε) nΩ(log n/ log log n)

1− ε (1 + cGW)/2 + ε (1 + cGW)/2 + Θ(ε) superpolynomial

Corollary 2.4.6. Let k ≥ 2 and ε > 0. Then there is a constant c(ε) such that for in-

finitely many n, fc+(Max-k-SAT, 1− ε, 3/4 + ε) ≥ 2nc(ε) achieving an inapproximability

factor 3
4 + Θ(ε), where n is the number of variables. In the case of SDPs we have that

fc⊕(Max-k-SAT) ≥ 2Ω(n2/13) for the exact case, fc⊕(Max-k-SAT, 9/10− ε, 7/8 + ε) ≥

nΩ(log n/ log log n) achieving an inapproximability factor of 35/36 + Θ(ε) and, assuming

Conjecture 2.2.11, that fc⊕(Max-k-SAT, 1− ε, (1 + cGW)/2 + ε) is superpolynomial estab-

lishing an inapproximability factor 1+cGW
2 + Θ(ε).

Proof. We reduce MaxCUT to Max-2-SAT. For a 2-XOR clause l = (xi ⊕ xj = 1) with

i, j ∈ [n], we define two auxiliary constraints C1(l) = (xi ∨ xj) and C2(l) = (x̄i ∨ x̄j). Let

β(L) := {C1(l), C2(l) | l ∈ L} for a set of 2-XOR clauses L. We choose γ to be the identity

map. Observe that whenever l is satisfied by a partial assignment s then both C1(l) and

C2(l) are also satisfied by s, otherwise exactly one of C1(l) and C2(l) is satisfied. Hence

we obtain a reduction from MaxCUT to Max-2-SAT. Using the hardness results of MaxCUT

given in Theorem 2.2.8, Theorem 2.2.9 and Theorem 2.2.10 together with the reductions of

Corollary 2.2.5 and Corollary 2.2.6 with parameters α = 1, µ = 1 and η = 2 the results

follow. The statement for general Max-k-SAT follows, as Max-2-SAT is a subproblem of

Max-k-SAT for k ≥ 2.
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2.4.4 Max-DICUT inapproximability

The problem Max-DICUT asks for amaximum sized cut in a directed graph G, i.e., partitioning

the vertex set V(G) into two parts V0 and V1, such that the number of directed edges

(i, j) ∈ E(G) going from V0 to V1, i.e., i ∈ V0 and j ∈ V1 are maximal. We use a

formulation similar to MaxCUT.

Definition 2.4.7 (Directed Cut). For a fixed n ∈ N, the problem Max-DICUT is the CSP

with constraint family CDICUT = {¬xi ∧ xj | i, j ∈ [n], i 6= j}.

We obtain (1/2 + Θ(ε))-inapproximability via the standard reduction from undirected

graphs, by replacing every edge with two, namely, one edge in either direction (see Corol-

lary 2.4.8). The inapproximability factor is tight as the LP in Trevisan (1998, Page 84,

Eq. (DI)), is 1
2-approximate for maximum weighted directed cut. In the SDP case we ob-

tain 15/16 + Θ(ε)-inapproximability and in Feige and Goemans (1995) it is shown that

Max-DICUT can be approximated with a small SDP within a factor of 0.859 leaving a gap of

about 0.08.

Table 2.11: Summary of the hardness results for Max-DICUT given in Corollary 2.4.8. The
last line holds under the assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ 1/2− ε 1/4 + ε 1/2 + Θ(ε) 2nc(ε)

fc⊕ exact case 1 2Ω(n2/13)

4/10− ε 3/8 + ε 15/16 + Θ(ε) nΩ(log n/ log log n)

1/2− ε cGW/2 + ε cGW + Θ(ε) superpolynomial

Corollary 2.4.8. For every ε > 0 there is a constant c(ε) such that for infinitely many n,

we have fc+(Max-DICUT, 1/2− ε, 1/4 + ε) ≥ 2nc(ε) achieving inapproximability factor

1/2 + Θ(ε). In the exact SDP case we have fc⊕(Max-DICUT) ≥ 2Ω(n2/13), while in the

approximate SDP case fc⊕(Max-DICUT, 4/10 − ε, 3/8 + ε) ≥ nΩ(log n/ log log n) holds
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achieving an inapproximability factor of 15/16 + Θ(ε) and assuming Conjecture 2.2.11

fc⊕(Max-DICUT, 1/2− ε, cGW/2 + ε) is superpolynomial establishing inapproximability

factor cGW + Θ(ε).

Proof. The proof is analogous to that of Corollaries 2.4.4 and 2.4.6, hence we point out

only the differences. We reduce MaxCUT to Max-DICUT, but now replace every clause

l = (xi ⊕ xj = 1) with C1(l) = ¬xi ∧ xj and C2(l) = xi ∧ ¬xj. Observe that whenever

xi ⊕ xj = 1 is satisfied by a partial assignment s then exactly one of ¬xi ∧ xj and xi ∧ ¬xj

is also satisfied by s. If on the other hand xi ⊕ xj is not fulfilled by s, then neither ¬xi ∧ xj

nor xi ∧ ¬xj are fulfilled. The remainder of the proof is the same as in Corollary 2.4.6.

2.4.5 Minimum constraint satisfaction

In this section we examine minimum constraint satisfaction problems, a variant of con-

straint satisfaction problems, where the objective is not to maximize the number of satisfied

constraints, but to minimize the number of unsatisfied constraints. This is equivalent to

maximizing the number of satisfied constraints, however, the changed objective function

yields different approximation factors due to the change in the magnitude of the optimum

value; this is in analogy to the algorithmic world. We consider only Min-2-CNFDeletion and

MinUnCUT from Agarwal et al. (2005), which are complete in their class in the algorithmic

hierarchy; our technique applies to many more problems in Papadimitriou and Yannakakis

(1991). The problem Min-2-CNFDeletion is of particular interest here, as it is considered to

be the hardest minimum CSP with nontrivial approximation guarantees (see Agarwal et al.

2005). We start with the general definition of minimum CSPs.

Definition 2.4.9 (Minimum CSPs). The minimum Constraint Satisfaction Problem on vari-

ables x1, . . . , xn with constraint family C = {C1, . . . , Cm} is the minimization problem

with

(i) feasible solutions all 0/1 assignments to x1, . . . , xn;
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(ii) instances all nonnegative weightings w1, . . . , wm of the constraints C1, . . . , Cm;

(iii) objective functionsweighted sum of negated constraints, i.e. valw1,...,wm(x1, . . . , xn) =

∑i wi[1− Ci(x1, . . . , xn)].

The goal is to minimize the objective function, i.e., the weight of unsatisfied constraints.

As mentioned above, we consider two examples.

Definition 2.4.10 (Min-2-CNFDeletion and MinUnCUT). The problem Min-2-CNFDeletion

is the minimum CSP with constraint family consisting of all disjunction of two literals, as in

Max-2-SAT. The problem MinUnCUT is the minimum CSP with constraint family consisting

of all equations xi ⊕ xj = b with b ∈ {0, 1}, as in Max-2-XOR or MaxCUT.

We are ready to prove inapproximability bounds for these problems. Instead of the reduc-

tions in Chlebík and Chlebíková (2004), we use direct, simpler reductions from MaxCUT and

here we provide reductions for general weights. Note that the current best known algorithmic

inapproximability for Min-2-CNFDeletion is 8
√

5− 15− ε ≈ 2.88854− ε by Chlebík and

Chlebíková (2004). Assuming the Unique Games Conjecture, Chawla et al. (2006) estab-

lishes that Min-2-CNFDeletion cannot be approximated within any constant factor and our

LP inapproximability factor coincides with this one. The problem MinUnCUT is known to

be SNP-hard (see Papadimitriou and Yannakakis 1991). We refer the reader to Khanna et al.

(2001) for a classification of all minimum CSPs.

Table 2.12: Summary of the hardness results for Min-2-CNFDeletion achieved by a reduction
from MaxCUT which is described in Theorem 2.4.11. The last line in this table holds
assuming Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ ε 1/4− ε ρ ≥ 1 2nc(ε)

fc⊕ exact case 1 2Ω(n2/13)

1/10 + ε 1/8− ε 5/4−Θ(ε) nΩ(log n/ log log n)

ε (1− cGW)/2− ε ρ ≥ 1 superpolynomial
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Table 2.13: Summary of the hardness results for MinUnCUT achieved by a reduction from
MaxCUT which is described in Theorem 2.4.11. The last line in this table holds assuming
Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ ε 1/2− ε ρ ≥ 1 2nc(ε)

fc⊕ exact case 1 2Ω(n2/13)

1/5 + ε 1/4− ε 5/4−Θ(ε) nΩ(log n/ log log n)

ε 1− cGW − ε ρ ≥ 1 superpolynomial

Corollary 2.4.11. For every ε > 0 there exists a constant c(ε) such that for infinitely many n,

we have fc+(Min-2-CNFDeletion, ε, 1/4− ε) = 2nc(ε) and fc+(MinUnCUT, ε, 1/2− ε) =

2nc(ε) establishing inapproximability within any constant factor, where n is the number

of variables. In the exact SDP case we have fc⊕(Min-2-CNFDeletion) = 2Ω(n2/13) and

fc⊕(MinUnCUT) = 2Ω(n2/13). In the approximate SDP case we have fc⊕(Min-2-CNFDeletion,

1/10 + ε, 1/8− ε) = fc⊕(MinUnCUT, 1/5 + ε, 1/4− ε) = nΩ(log n/ log log n) showing

inapproximability within 5/4−Θ(ε) and further assuming Conjecture 2.2.11, we even have

that fc⊕(Min-2-CNFDeletion, ε, (1− cGW)/2− ε) and fc⊕(MinUnCUT, ε, 1− cGW − ε) are

superpolynomial showing inapproximability within any constant factor.

Proof. We reduce from MaxCUT to Min-2-CNFDeletion similar to the previous reductions:

assignments are mapped to themselves, i.e., γ is the identity. Under β every clause C` is

replaced with two disjunctive clauses C`(1) and C`(2), both inheriting the weight w` of C`,

i.e., valMin-2-CNFDeletion
β(w1,...,wm)

(x1, . . . , xn) = ∑` w`[(1− C`(1)) + (1− C`(2))].

For C` = (xi ⊕ xj = 1), we set C`(1) := xi ∨ ¬xj and C`(2) := ¬xi ∨ xj. Note that if

C` is unsatisfied, then both of C`(1) and C`(2) are satisfied, and if C` is satisfied, then exactly

one of C`(1) and C`(2) is satisfied. Therefore valMin-2-CNFDeletion
β(w1,...,wm)

= ∑` w`− valMaxCUT
w1,...,wm w`.

Corollaries 2.2.5 and 2.2.6 with parameters α = −1, µ = 1 and η = 2 provide the desired

lower bounds.

For MinUnCUT the reduction is similar but simpler, as we replace every clause C with
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itself. In this case the parameters for Corollaries 2.2.5 and 2.2.6 are α = −1, µ = 1 and

η = 1.

2.5 Inapproximability of Graph-Isomorphism

Graph-Isomorphism is of particularly interesting since it is besides Integer-Factorization the

only problem from Garey and Johnson (1979), for which it is still unknown whether it is in

P of NP-complete. Recently it has been shown that Graph-Isomorphism is solvable in quasi-

polynomial time by Babai (2015). It is also known that Graph-Isomorphism is in the low

hierarchy of the class NP (see Schöning 1988) and that it is equally hard to the isomorphism

problem between many other objects, including finite automata, context-free grammars,

Markov decision processes, and vertex-facet incidence relations of convex polytopes.

We discuss several different optimization versions of Graph Homomorphism and Graph

Isomorphism problems in this section. All of them are special cases of the following Graph-

Morphism problem.

Definition 2.5.1 (Graph-Morphism). For two fixed positive integers n1, n2, the Graph-

Morphism problem has

(i) feasible solutions: all maps π from [n1] to [n2];

(ii) instances: for every pair of graphs (G1, G2) with V(G1) = [n1] and V(G2) = [n2]

consider the family {Cuv | (u, v) ∈ C} of constraints Cuv indexed by some set C ⊆

{{u, v} | u, v ∈ [n1], u 6= v} where Cuv is the following constraint on π:

{u, v} ∈ E(G1) if and only if {π(u), π(v)} ∈ E(G2);

(iii) objective function: In the maximization version the objective function f(G1,G2) repre-

sents the number of satisfied constraints. In the minimization version the objective

function f(G1,G2) represents the number of unsatisfied constraints.
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The size of the problem is measured in m = max{n1, n2}.

Depending on the properties of π and the set of constraints C there are the following

versions of the Graph-Morphism problem:

Table 2.14: Different versions of Graph Homomorphism and Graph Isomorphism problems
depending on the constraint set and if π is a permutation or not. We write |V(G1)| = n1
and |V(G2)| = n2.

C = E(G1) C = {{u, v} | u, v ∈
[n1], u 6= v}

π permutation
(n1 = n2)

Edge-Graph-
Isomorphism

(EGI)

Pair-Graph-Isomorphism
(PGI)

π arbitrary Graph-Homomorphism
(GH)

In the case where n1 = n2 and π is a permutation, we additionally define the Graph

Isomorphism problems with color class constraints.

Definition 2.5.2 (Graph-Isomorphism with color class constraints). Given m, k ∈ N and

a partition ·⋃Vi = [m] with |Vi| ≤ k the Graph-Isomorphism problem with color class

constraints has

(i) feasible solutions: all permutations π of [m] respecting the partition {Vi}i, i.e.,

π(Vi) = Vi;

(ii) instances: the same as given in Definition 2.5.1;

(iii) objective function: the same as given in Definition 2.5.1.

We denote these problems by EGIk and PGIk.

Approximating both the colored and uncolored variants of EGI, PGI, and GH is shown

to be NP-hard in Arvind et al. (2012).

While evidently e.g., fc+(Max-EGIl, C, S) ≤ fc+(Max-EGIk, C, S) for l ≤ k, for the sake

of exposition we shall provide direct arguments for Max-PGIk and other colored problems

for a general k instead of just k = 2.
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2.5.1 Colored graph problems

We establish hardness results for the colored graph problems in this sections, first for the

maximization then for the minimization problems.

Maximizing colored graph problems

We will now prove a lower bound on the formulation complexity of Max-PGIk with approxi-

mation guarantee 1
2 + ε. The proof is by reduction from MaxCUT, which was first used in

Arvind et al. (2012, Lemma 11).

Table 2.15: Summary of the hardness results for Max-PGIl with l ≥ 2 given in Corol-
lary 2.5.3. The completeness and soundness guarantees are given as an absolute number as
opposed to as a fraction of the size of the instance. G2 is here the target graph in an Max-PGIl
instance f(G1,G2). The last line holds under the assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ (2− ε) |E(G2)| (1 + ε) |E(G2)| 1/2 + Θ(ε) 2mc(ε)

fc⊕ exact case 1 2Ω(m2/13)

(8/5− ε) |E(G2)| (6/4 + ε) |E(G2)| 15/16 + Θ(ε) mΩ(log m/ log log m)

(2− ε) |E(G2)| (2cGW + ε) |E(G2)| cGW + Θ(ε) superpolynomial

Corollary 2.5.3. Let l ≥ 2 and ε > 0. Then there is a constant c(ε) such that for infinitely

many m, in the linear case fc+ (Max-PGIl, (2− ε) |E(G2)| , (1 + ε) |E(G2)|) = 2mc(ε) .

In the SDP case we have fc⊕ (Max-PGIl) = 2Ω(m2/13), fc⊕(Max-PGIl, (8/5− ε) |E(G2)|,

(6/4+ ε) |E(G2)|) = mΩ(log m/ log log m) and that fc⊕(Max-PGIl, (2− ε) |E(G2)|, (2cGW +

ε) |E(G2)|) is superpolynomial under Conjecture 2.2.11.

Proof. We shall apply Corollary 2.2.7 and thus define reduction maps from MaxCUT on n

variables to Max-PGI2k on [2nk] with n color classes Vi each of size 2k. For the reduction

we fix a partition Vi = V0
i ·∪V1

i of every color class Vi into two sets V0
i , V1

i each of size k.
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Given an instance satL of MaxCUT for some set of constraints L = {xi ⊕ xj = 1}, we

construct colored graphs G1 and G2 as follows, which together define the instance f(G1,G2)

of Max-PGI2k:

Both graphs have vertex set [2nk] with color classes Vi. The edges of G1 are

• all edges (u, v) inside a color class Vi, i.e., u, v ∈ Vi

• all edges (u, v) between two color classes Vi and Vj (i.e., u ∈ Vi and v ∈ Vj) with

(xi ⊕ xj = 1) /∈ L and i 6= j

• all edges (u, v) with either u ∈ V0
i and v ∈ V0

j or u ∈ V1
i and v ∈ V1

j with

(xi ⊕ xj = 1) ∈ L and i 6= j

The edges of G2 are all edges (u, v) with either u ∈ V0
i and v ∈ V1

j or u ∈ V1
i and v ∈ V0

j

with (xi ⊕ xj = 1) ∈ L and i 6= j.

Now we define the reduction map γ between feasible solutions. Given a feasible solution

of MaxCUT i.e. an assignment to the n variables. The isomorphism π is constructed as

follows: If 0 is assigned to xi, then π maps V0
i to V0

i and V1
i to V1

i . (The exact way of

mapping is irrelevant.) If 1 is assigned to xi, then π maps V0
i of G1 to V1

i of G2 and V1
i of

G1 to V0
i of G2.

We shall verify Eq. (2.10). We observe that for any vertices u ∈ Vi and v ∈ Vj, the

constraint Cuv is satisfied if and only if i 6= j, (xi⊕ xj = 1) ∈ L and xi⊕ xj = 1 is satisfied.

Thus satL(x) = 1
(2k)2 f(G1,G2)(π). To see exactness of this reduction, let π be a colored

vertex map, and let mi = mi(π) denote the number of vertices of V0
i which are mapped

to V1
i . Observe that if mi ∈ {0, k}, then π = γ(x) for the assignment given by xi := 0 if

mi = 0 and xi := 1 if mi = k. In the general case, we subsequently modify π to make all

the mi either 0 or k without decreasing fG1,G2(π), which will clearly prove exactness.

Therefore let i be an index with 0 < mi < k. We define two permutations π0 and π1 of

[2nk], as candidates for modifications of π: They coincide with π outside of V0
i ∪V1

i . The

map π0 maps V0
i to V0

i and V1
i to V1

i , while π1 maps V0
i to V1

i and V1
i to V0

i . Obviously,
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mj(π0) = mj(π1) = mj(π) for i 6= j, but mi(π0) = 0 and mi(π1) = k, where for clarity,

the right permutation is added after mi. We will show that

f(G1,G2)(π) =
mi

k
f(G1,G2)(π0) +

k−mi

k
f(G1,G2)(π1), (2.15)

which by convexity gives max{ f(G1,G2)(π0), f(G1,G2)(π1)} ≥ f(G1,G2)(π). So by choosing

the maximum we obtain a permutation with one more mj being 0 or k, as claimed.

To show Equation (2.15). We count the correctly mapped pairs having one vertex in

V0
i ∪V1

i and one vertex in V0
j ∪V1

j , that

f(G1,G2)(π) = ∑
j<l

(xj⊕xl=1)∈L

4
[
mj(k−ml) + (k−mj)ml

]
.

Since this is linear in mi, Equation (2.15) follows.

Therefore we can apply Corollary 2.2.7 with α = 4k2 and together with the hardness of

MaxCUT summarized in Table 2.1 the results follow.

Now we prove an analogous result for colored edge graph isomorphisms.

Table 2.16: Summary of the hardness results for Max-EGIl with l ≥ 2 given in Corol-
lary 2.5.4. The completeness and soundness guarantees are given as absolute numbers,
where G2 is the target graph in an Max-EGIl instance f(G1,G2). The last line holds under the
assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ (1− ε) |E(G2)| (1/2 + ε) |E(G2)| 1/2 + Θ(ε) 2mc(ε)

fc⊕ exact case 1 2Ω(m2/13)

(4/5− ε) |E(G2)| (3/4 + ε) |E(G2)| 15/16 + Θ(ε) mΩ(log m/ log log m)

(1− ε) |E(G2)| (cGW + ε) |E(G2)| cGW + Θ(ε) superpolynomial

Corollary 2.5.4. Let l ≥ 2 and ε > 0. Then there exists a constant c(ε) such that for

infinitely many m, we have fc+(Max-EGIl , (1− ε) |E(G2)|, (1/2+ ε) |E(G2)|) = 2mc(ε) in
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the linear case and fc⊕(Max-EGIl) = 2Ω(m2/13), fc⊕(Max-EGIl , (4/5− ε) |E(G2)|, (3/4+

ε) |E(G2)|) = mΩ(log m/ log log m) and that assuming Conjecture 2.2.11 fc⊕(Max-EGIl,

(1− ε) |E(G2)|, (cGW + ε) |E(G2)|) is superpolynomial in the SDP case.

Proof. We reduce MaxCUT to Max-EGI2k as in Arvind et al. (2012, Lemma 12). The maps

β and γ are the same as defined in the proof of Corollary 2.5.3. The analysis is also identical

except for the fact that we only count edges instead of all pairs. Equation (2.10) is in this

case

satL(x) =
1

2k2 f(G1,G2)(π).

Applying Corollary 2.2.7 with α = 2k2 together with the hardness of MaxCUT summarized

in Table 2.1 and the results follow.

Minimizing colored graph problems

Here we prove the corresponding results of Corollaries 2.5.3 and 2.5.4 for minimization

problems, i.e., Min-PGI2k and Min-EGI2k. While the reductions are analogous, they are not

exactly the same: the constructions in Corollaries 2.5.3 and 2.5.4 resulted in many additional

constraints which were never satisfied. In the minimization case we have to adjust them, so

that they are always satisfied, i.e., they do not contribute to the objective function counting

the unsatisfied constraints. Therefore some edges are inverted.

Table 2.17: Summary of the hardness results forMin-PGIl with l ≥ 2 given in Corollary 2.5.5.
The completeness and soundness guarantees are given as absolute numbers, where G2 is the
target graph in an Min-PGIl instance f(G1,G2). The last line holds under the assumption of
Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ ε |E(G2)| (1− ε) |E(G2)| ρ ≥ 1 2mc(ε)

fc⊕ exact case 1 2Ω(m2/13)

(2/5 + ε) |E(G2)| (2/4− ε) |E(G2)| 5/4−Θ(ε) mΩ(log m/ log log m)

ε |E(G2)| (2− 2cGW − ε) |E(G2)| ρ ≥ 1 superpolynomial
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Corollary 2.5.5. Let ε ≥ 0 and l ∈ N with l ≥ 2. Then there exists a constant c(ε) such

that for infinitely many m, we have fc+(Min-PGIl, ε |E(G2)| , (1− ε) |E(G2)|) = 2mc(ε) .

The exact SDP hardness is given by fc⊕(Min-PGIl) = 2Ω(m2/13) while in the approximate

case we have fc⊕(Min-PGIl, (2/5 + ε) |E(G2)| , (2/4− ε) |E(G2)|) = mΩ(log m/ log log m)

and that under Conjecture 2.2.11 fc⊕(Min-PGIl, ε |E(G2)| , (2 − 2cGW − ε) |E(G2)|) is

superpolynomial.

Proof. We shall reduce MinUnCUT to Min-PGIl employing Corollary 2.2.7. The reduction is

along the lines of the proof of Corollary 2.5.3, and comes from Arvind et al. (2012, Lemma

15). Given an objective function satL(G)we construct f(G1,G2) as follows: For every variable

xi we have one color class V0
i (G1) ∪V1

i (G1) in G1 and one color class V0
i (G2) ∪V1

i (G2)

in G2, each of size 2k, i.e., |V0
i (G1)| = |V1

i (G1)| = |V0
i (G2)| = |V1

i (G2)| = k, and

these are all vertices of G1 and G2. Within each color class there are neither edges in G1

nor in G2. Whenever (xi ⊕ xj = 0) /∈ L(G) there are no edges between the color classes

corresponding to xi and xj. If (xi ⊕ xj = 0) ∈ L(G), then all edges between V0
i (G1)

and V0
j (G1) and between V1

i (G1) and V1
j (G1) are present in G1. In G2 all edges between

V0
i (G2) and V1

j (G2) and between V1
i (G2) and V0

j (G2) are there.

An assignment s to the variables x1, . . . , xn is mapped to πs by γ in the following

way: If si = 0 then π(V0
i (G1)) = V0

i (G2) and π(V1
i (G1)) = V1

i (G2). If si = 1 then

π(V0
i (G1)) = V1

i (G2) and π(V1
i (G1)) = V0

i (G2).

To see that these maps satisfy the requirements of Corollary 2.2.7, we observe that

whenever a constraint (xi ⊕ xj = 0) ∈ L(G) is satisfied by an assignment s, then all (2k)2

pairs between the color classes corresponding to i and j are not mapped correctly. Is (xi ⊕

xj = 0) ∈ L(G) on the other hand not satisfied, then all pairs between V0
i (G1) ∪V1

i (G1)

and V0
j (G1) ∪V1

j (G1) are mapped correctly. Recall that f(G1,G2) as an objective function

of Min-PGI2k counts the number of not correctly mapped pairs. Formally we get:

satL(G)(s) =
1

(2k)2 f(G1,G2)(πs).
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Equation 2.10 follows from a convexity argument analogous to the proof of Corollary 2.5.3,

hence omitted. The only difference is that now we have fG1,G2(π) = ∑j 6=i 4mimj + 4(k−

mi)(k−mj).

Corollary 2.2.7 with α = 4k2 and the hardness of MinUnCUT in Corollary 2.4.11 imply

the desired results.

The results for edge graph isomorphism are similar.

Table 2.18: Summary of the hardness results forMin-EGIl with l ≥ 2 given in Corollary 2.5.6.
Observe that the completeness and soundness guarantees are given as absolute numbers,
where G2 is the target graph in an Min-PGIl instance f(G1,G2). The last line holds under the
assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ ε |E(G2)| (1/2− ε) |E(G2)| ρ ≥ 1 2mc(ε)

fc⊕ exact case 1 2Ω(m2/13)

(1/5 + ε) |E(G2)| (1/4− ε) |E(G2)| 5/4−Θ(ε) mΩ(log m/ log log m)

ε |E(G2)| (1− cGW − ε) |E(G2)| ρ ≥ 1 superpolynomial

Corollary 2.5.6. Let ε ≥ 0 and l ∈ N with l ≥ 2. Then there exists a constant c(ε)

such that for infinitely many m, we have in the linear case fc+(Min-EGIl, ε |E(G2)| , (1/2−

ε) |E(G2)|) = 2mc(ε)
. In the SDP case the hardness is given by fc⊕(Min-EGIl) = 2Ω(m2/13),

fc⊕(Min-EGIl, (1/5 + ε) |E(G2)| , (1/4− ε) |E(G2)|) = mΩ(log m/ log log m) and, under

Conjecture 2.2.11, by fc⊕(Min-EGIl, ε |E(G2)| , (1− cGW − ε) |E(G2)|) being superpoly-

nomial.

Proof. The proof is analogous to the proof of Theorem 2.5.5 with the main difference that

one writes 2k2 instead of (2k)2, and hence omitted. The reduction is again from Arvind et al.

(2012, Lemma 15).
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2.5.2 Uncolored graph problems

We summarize the hardness results of this section in Figure 2.19 for Max-EGI and in Fig-

ure 2.20 for Min-EGI. The results for the linear formulation complexity of Max-EGI look

very similar, however there is no strict relation between the two: the result achieved through

the reduction from MaxCUT has a better approximation factor, however the size is smaller

than the one coming from Max-Matching.

Table 2.19: Summary of the hardness results for Max-EGI. The second line is shown in
Corollary 2.5.7 by a reduction from Max-Matching while the other lines are shown Corol-
lary 2.5.9 by a reduction from MaxCUT over Max-GH. Observe that the completeness and
soundness guarantees are given as absolute numbers, where G1 is the source graph in an
Max-EGIinstance f(G1,G2). The last line holds under the assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ (1− ε) |E(G1)| (1/2 + ε) |E(G1)| 1/2 + Θ(ε) 2mc(ε)

(m + ε)/2 m/2 1− ε/m 2Θ(m)

fc⊕ exact case 1 2Ω(m2/13)

(4/5− ε) |E(G1)| (3/4 + ε) |E(G1)| 15/16 + Θ(ε) mΩ(log m/ log log m)

(1− ε) |E(G1)| (cGW + ε) |E(G1)| cGW + Θ(ε) superpolynomial

Table 2.20: Summary of the hardness results for Min-EGI and Min-GH. The results for the
latter problem are shown in Corollary 2.5.8 by a reduction from MinUnCUT. The results for
Min-EGI follow by a reduction from Min-GH shown in Corollary 2.5.9. The completeness
and soundness guarantees are given as absolute numbers, where G1 is the source graph in an
Max-EGIinstance f(G1,G2). The last line holds under the assumption of Conjecture 2.2.11.

completeness soundness inapprox factor size

fc+ ε |E(G1)| (1/2− ε) |E(G1)| ρ ≥ 1 2mc(ε)

fc⊕ exact case 1 2Ω(m2/13)

(1/5 + ε) |E(G1)| (1/4− ε) |E(G1)| 5/4−Θ(ε) mΩ(log m/ log log m)

ε |E(G1)| (1− cGW − ε) |E(G1)| ρ ≥ 1 superpolynomial
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Matching and edge graph isomorphism

The Max-Matching problem has the remarkable property of having a polynomial time algo-

rithm, and yet having large LP formulation complexity.

Corollary 2.5.7. Let 0 < ε < 1 be a fixed number andm ∈N be even. Then fc+(Max-EGI, (m+

ε)/2, m/2) = 2Θ(m).

Proof. We reduce from Max-Matching and employ Corollary 2.2.7 together with the hardness

results established in Section 2.1.1. Let H be a graph on n vertices with edge set a perfect

matching. The reduction on objective functions is given by β(satG) := f(G,H), i.e., the

matching problem for a graph G is reduced to the homomorphism problem for G and H.

The reduction of feasible solutions is as follows. Given a perfect matching M of Kn, we

consider the subgraph HM of Kn with edge set M on all the vertices. We choose π = γ(M)

to be an arbitrary graph isomorphism between HM and H and consider this as a vertex map

between G and H using V(G) = V(HM) (see Figure 2.4).

1 2

3 4

G
1 2

3 4

Hπ−→

Figure 2.4: Reduction of the matching problem of a graph G to the homomorphism problem
of G into H. The thick lines indicate a perfect matching, where the dashed line is not in G.
The map π is the identity.

Clearly, f(G,H)(π) = |M ∩ E(G)| is the number of edges preserved by π, showing that

β, γ is a reduction. For exactness (Equation 2.10), observe that for any permutation σ of [n],

the perfect matching M := σ−1(E(H)) of Kn clearly satisfies |M ∩ E(G)| = f(G,H)(σ).

The two maps β and γ are compatible with Corollary 2.2.7 with α = 1 and the results

follow with the hardness results from Theorem 2.1.10.
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MaxCUT and Edge graph isomorphism

Now we prove hardness of Edge-Graph-Isomorphism using the hardness of MaxCUT and

MinUnCUT for the maximization and minimization versions respectively. As a preparation,

we first lower bound the formulation complexity of Graph-Homomorphism, serving as an

intermediate problem in the reduction.

Corollary 2.5.8. Let ε > 0. Then there exists a constant c(ε) such that for infinitely many m,

we have the lower bounds fc+(Max-GH, (1− ε) |E(G1)| , (1/2 + ε) |E(G1)|) = 2mc(ε) and

fc+(Min-GH, ε |E(G1)| , (1/2− ε) |E(G1)|) = 2mc(ε) for the linear case, fc⊕(Max-GH) =

2Ω(m2/13) and fc⊕(Min-GH) = 2Ω(m2/13) in the exact SDP case, and fc⊕(Max-GH, (4/5−

ε) |E(G1)|, (3/4+ ε) |E(G1)|) = mΩ(log m/ log log m) and fc⊕(Min-GH, (1/5+ ε) |E(G1)|,

(1/4− ε) |E(G1)|) = mΩ(log m/ log log m) in the approximate SDP case. Further assuming

Conjecture 2.2.11 holds, fc⊕(Max-GH, (1− ε) |E(G1)|, (cGW + ε) |E(G1)|) and fc⊕(Min-GH,

ε |E(G1)|, (1− cGW − ε) |E(G1)|) are superpolynomial.

Proof. We reduce MaxCUT and MinUnCUT to Max-GH and Min-GH respectively, using the

same reduction. Let H = K2 be the graph with two vertices v1 and v2 and an edge between

them. Then β maps the function satL(G) to f(G,H). γ maps an assignment x ∈ {0, 1}n to

the map that sends all vertices v with xv = 0 to v1 and those with xv = 1 to v2.

This is easily seen to satisfy the conditions of Corollary 2.2.7, as a constraint Ce is

fulfilled for MaxCUT or MinUnCUT if and only if Ce is fulfilled for Max-GH or Min-GH,

respectively. The exactness relation (Equation 2.10) holds, since γ is a bijection. The results

follow with Corollary 2.2.7 with α = 1 and the hardness results for MaxCUT (Table 2.1) and

MinUnCUT (Table 2.13) together with Conjecture 2.2.11.

Now we establish hardness of Edge-Graph-Isomorphism via a reduction from Graph-

Homomorphism.

Corollary 2.5.9. Let ε > 0. Then there exists a constant c(ε) such that for infinitely

many m, the hardness of Max-EGI and Min-EGI is given by fc+(Max-EGI, (1− ε) |E(G1)|,
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(1/2+ ε) |E(G1)|) = 2mc(ε) and fc+(Min-EGI, ε |E(G1)|, (1/2− ε) |E(G1)|) = 2mc(ε) for

the linear case, fc⊕(Max-EGI = 2Ω(m2/13) and fc⊕(Min-EGI = 2Ω(m2/13) in the exact SDP

case, and fc⊕(Max-EGI, (4/5 − ε) |E(G1)|, (3/4 + ε) |E(G1)|) = mΩ(log m/ log log m)

and fc⊕(Min-EGI, (1/5 + ε) |E(G1)| , (1/4− ε) |E(G1)|) = mΩ(log m/ log log m) in the ap-

proximate SDP case. Further under Conjecture 2.2.11, fc⊕(Max-EGI, (1 − ε) |E(G1)|,

(cGW + ε) |E(G1)|) and fc⊕(Min-EGI, ε |E(G1)|, (1− cGW − ε) |E(G1)|) are superpoly-

nomial.

Proof. We use the same reduction for the minimization and maximization problem, adapted

from the proof of Arvind et al. (2012, Lemma 10). We define the map β to map a given ob-

jective function f(G1,G2) of Max-GH (Min-GH) to the objective function f(H1,H2) of Max-EGI

(Min-EGI), where we define H1 and H2 as follows. The vertex sets are V(H1) = V(H2) :=

V(G1)×V(G2). Let w2 ∈ V(G2) be any for the whole reduction fixed vertex of G2. The

edges of H1 are in one-to-one correspondence with the edges of G1: for an edge between

vertices u1 and v1 of G1, the graph H1 has an edge between (u1, w2) and (v1, w2). The

graph H2 has an edge between two vertices (v1, u2) and (v′1, v2) if and only if G2 has an

edge between u2 and v2.

We now define γ: Given φ : V1 → V2 we construct the permutation π : V1 × V2 →

V1 ×V2 as follows.

π((u1, w2)) := (u1, φ(u1)) ∀u1 ∈ V1

π((u1, u2)) := arbitrary ∀u1 ∈ V1, w2 6= u2 ∈ V2

We prove that this is a reduction: If an edge {u1, v1} ∈ E1 is preserved by φ, the corre-

sponding edge {(u1, w2), (v1, w2)} ∈ E(H1) is mapped to the edge {(u1, φ(u1)), (v1, φ(v1))} ∈

E(H2) by π and therefore also preserved. Thus φ and π preserve the same number of edges.

Since H1 has the same number of edges as G1, also the number of not preserved edges of φ

and π coincide, i.e., f(G1,G2)(φ) = f(H1,H2)(π), in both the maximization version and the
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minimization version.

To show exactness, let π be any permutation between V(H1) and V(H2). We define

φ : V(G1)→ V(G2) by letting φ(u1) to be the second component of π((u1, w2)) for every

u1 ∈ V(G1). Clearly, fG1,G2(φ) = f(H1,H2)(π). Hence max f(G1,G2) = max f(H1,H2) and

min f(G1,G2) = min f(H1,H2), (even though we need only one of them).

Applying Corollary 2.2.7 with α = 1, Corollary 2.5.8 and Conjecture 2.2.11 finishes the

proof.

2.6 Frommatrix approximation to problemapproximations

We will now explain how a nonnegative matrix with small nonnegative rank (or semidefinite

rank) that is close to a slack matrix of a problem P of interest can be rounded to an actual

slack matrix with a moderate increase in nonnegative rank (or semidefinite rank) and error.

This argument is implicitly contained in Rothvoß (2013) and Briët, Dadush, and Pokutta

(2015) for the linear and semidefinite case respectively. In some sense we might want to think

of this approach as an interpolation between a slack matrix (which corresponds to P) and

a close-by matrix of low nonnegative rank (or semidefinite rank) that does not correspond

to any optimization problem. The result is a low nonnegative rank (or semidefinite rank)

approximation of P with small error.

We will need the following simple lemma. Recall that the exterior algebra of a vector

space V is the R-algebra generated by V subject to the relations v2 = 0 for all v ∈ V. As

is customary, the product in this algebra is denoted by ∧. The subspace of homogeneous

degree-k elements (i.e., linear combination of elements of the form v1 ∧ · · · ∧ vk with

v1, . . . , vk ∈ V) is denoted by
∧k V. Recall that for k = dim V, the space

∧k V is one

dimensional and is generated by v1 ∧ · · · ∧ vk for any basis v1, . . . , vk of V.

Lemma 2.6.1. Let M ∈ Rm×n be a real matrix of rank r. Then there are column vec-

tors a1, . . . , ar ∈ Rm and row vectors b1, . . . , br ∈ Rn with M = ∑i∈[r] aibi. Moreover,
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‖ai‖∞ ≤ 1 and ‖bi‖∞ ≤ ‖M‖∞ for all 1 ≤ i ≤ r.

Proof. Consider the r dimensional vector space V spanned by all the rows M1, . . . , Mm

of M and identify the one dimensional exterior product
∧r V with R. Now choose r rows

Mi1 , . . . , Mir for which Mi1 ∧ · · · ∧Mir is the largest in absolute value in R. As the Mi

together span V it follows that the largest value is non-zero. Hence Mi1 , . . . , Mir form a

basis of V. Therefore any row Mk can be uniquely written as a linear combination of the

basis elements:

Mk = ∑
j∈[r]

ak,jMij . (2.16)

Fixing j ∈ [r] and taking exterior products with the Mil where l 6= j and both side we obtain

Mi1 ∧ . . . ∧Mij−1 ∧Mk ∧Mij+1 ∧ . . . ∧Mir = ak,j ·Mi1 ∧ . . . ∧Mir ,

using the vanishing property of the exterior product. By maximality of Mi1 ∧ . . . ∧Mir , it

follows that |ak,j| ≤ 1. We choose ak :=
[ ak,1...

ak,r

]
, and thus we have ‖ak‖∞ ≤ 1. Moreover

choose bj := Mij , so that ‖bj‖∞ ≤ ‖M‖∞ holds. Finally, Eq. (2.16) can be rewritten to

M = ∑j∈[r] ajbj, finishing the proof.

For a vector a we can decompose it into its positive and negative part so that a = a+− a−

with a+a− = 0. Let |a| denote the vector obtained from a by replacing every entry with

its absolute value. Note that a+, a−, and |a| are nonnegative vectors and |a| = a+ + a−.

Furthermore their `∞-norm is at most ‖a‖∞.

Theorem 2.6.2. Let P be an optimization problem with (C, S)-approximate slack matrix

76



M and let M̃ be a nonnegative matrix. Then for the adjusted guarantee C′ for P defined as

C′( f ) := C( f ) + (rank M + rank M̃)‖M̃−M‖∞ if P is a maximization problem, and

(2.17)

C′( f ) := C( f )− (rank M + rank M̃)‖M̃−M‖∞ if P is a minimization problem,

(2.18)

we have

fc+(P , C′, S) ≤ rankLP M̃ + 2(rank M + rank M̃) and (2.19)

fc⊕(P , C′, S) ≤ rankSDP M̃ + 2(rank M + rank M̃). (2.20)

Proof. We prove the statement for maximization problems; the minimization case follows

similarly. The proof is based on the vector identity

∑
i∈[k]
|ai|b− ∑

i∈[k]
aibi = ∑

i∈[k]
a+i (b− bi) + ∑

i∈[k]
a−i (b + bi). (2.21)

In our setting, the ai, bi with i ∈ [k] will arise from the (not necessarily nonnegative)

factorization of M̃−M, obtained by applying Lemma 2.6.1, i.e., we have

M̃−M = ∑
i∈[k]

aibi, (2.22)

where ‖ai‖∞ ≤ 1 and ‖bi‖∞ ≤ ‖M‖∞ for i ∈ [k] with k ≤ rank(M̃−M) ≤ rank M +

rank M̃. Furthermore, define b := ‖M̃−M‖∞1 to be the row vector with all entries equal

to ‖M̃−M‖∞1.

Substituting these values into (2.21), using Eq. (2.22) we obtain after rearranging

N := ∑
i∈[k]
|ai|b + M = M̃ + ∑

i∈[k]
a+i (b− bi) + ∑

i∈[k]
a−i (b + bi), (2.23)
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so that we can conclude

rankLP N ≤ rankLP M̃ + 2k ≤ rankLP M̃ + 2(rank M + rank M̃), (2.24)

and similarly

rankSDP N ≤ rankSDP M̃ + 2k ≤ rankSDP M̃ + 2(rank M + rank M̃). (2.25)

It remains to relate N to the (C′, S)-approximate slack matrix of P . By definition, the entries

of N are

N( f , s) = ∑
i∈[k]
|ai( f )| · ‖M̃−M‖∞ + C( f )︸ ︷︷ ︸

:= f ∗≤C′( f )

− val f (s),

where ai( f ) is the f -entry of ai. Furthermore, as ‖ai‖∞ ≤ 1 and k ≤ rank M + rank M̃,

we have f ∗ ≤ C′( f ). Thus the (C′, S)-approximate slack matrix M′ of P looks like

M′( f , s) = N( f , s) + (C′( f )− f ∗),

and as f ∗ ≤ C′( f ), we have rankLP M′ ≤ rankLP N and rankSDP M′ ≤ rankSDP N,

establishing the claimed complexity bounds due to (2.24) in the LP case and (2.25) in the

SDP case.

A possible application of Theorem 2.6.2 is to ‘thin-out’ a given factorization of a slack

matrix to obtain an approximation with low nonnegative rank. The idea is that if a nonnegative

matrix factorization contains a large number of factors that contribute only very little to each

of the entries, thenwe can simply drop those factors, significantly reduce the nonnegative rank,

and obtain a very good approximation of the original optimization problem. Theorem 2.6.2

is then used to turn the approximation of the matrix into an approximation of the original

problem of interest.
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Also, it is possible to obtain low rank approximations of combinatorial problems sampling

rank-1 factors proportional to their `1-weight as done in the context of information-theoretic

approximations in Braun et al. (2014b). However, the obtained approximations tend to be

too weak to be of interest.
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Chapter 3

THE MATCHING PROBLEM HAS NO SMALL SYMMETRIC SDP

Continuing the work from the previous chapter the main result in this part is that any

symmetric semidefinite program for the matching problem has exponential size. Recall that

size in this context is the dimension of the semidefinite cone of the program. The result we

show is the semidefinite version of a result by Yannakakis from his seminal work Yannakakis

(1988) and Yannakakis (1991) that every symmetric linear program for the matching problem

has exponential size. Rothvoß recently showed that the symmetry requirement in the linear

case is not necessary, i.e., any linear program for the matching problem has exponential size

(see Rothvoß 2014).

The matching problem is of particular interest, since unlike all other problems considered

in the previous chapter, there is a polynomial time algorithm solving the maximum matching

matching problem. This is also the reason that we do not expect to find an easy reduction

from one of the other problems, for which SDP hardness results are known so far, since that

reduction would have to be constructed in a way that cannot be adopted to a computational

complexity setting. Instead we use the sum of squares proof technique, in particular we show

that if there is a small symmetric SDP formulation, then there is a low-degree sum of squares

refutation of the existence of a perfect matching in an odd clique, contradicting a result in

Grigoriev (2001).
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Related work

Yannakakis’s statement that all symmetric linear programs for the matching problem have

exponential size raised the question how important the symmetry requirement is. Restricting

the number of edges to log n in Kn leads to a separation between polynomial and superpoly-

nomial size linear formulations between the symmetric and the general version as shown

by Kaibel, Pashkovich, and Theis (2010). For the permutahedron Goemans (2015) and

Pashkovich (2014) established a similar result that dropping the symmetry restriction can

mean the difference between subquadratic and quadratic size linear formulations. For TSP on

the other hand Fiorini et al. (2012) and Fiorini et al. (2015) showed a lower bound of 2Ω(
√

n)

for any linear formulation and similarly Rothvoß (2014) showed that any linear formulation

of the matching problem has size at least 2Ω(n), so in these two cases both the symmetric

and the general formulations have exponential size.

A successful strategy for proving lower bounds on the size of relaxations besides the

reduction mechanism from Chapter 2 is to use hierarchies, which are systematic ways of

constructing relaxations of a given program in an iterative fashion. The size and approxi-

mation guarantee of a general relaxation is connected to a certain level of a hierarchy and

then lower bounds on the size of the hierarchy are used to show the general lower bounds.

In the case of CSPs Chan et al. (2013) used this strategy, which was improved by Kothari,

Meka, and Raghavendra (2016), to show that the d-round Sherali-Adams linear relaxation

hierarchy (see Sherali and Adams 1990) yields an approximation that is at least as good as

any linear relaxation of size nd/2. We used some lower bounds resulting in this way as base

hardness results in Chapter 2. In the semidefinite case for CSPs Lee et al. (2014) showed

that the d-round Lasserre SDP relaxation hierarchy yields at least as good an approximation

as any symmetric SDP relaxation of size nd/2, leading in particular to an SDP relaxation

lower bound for Max-3-SAT.
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Contribution

The main contribution of this chapter is the lower bound on the size of symmetric semidefinite

formulations for the matching problem. We summarize the contribution as follows:

(i) The matching problem admits no small approximate SDP formulation. The first

result we show in this chapter is as follows: There exists an absolute constant α > 0

such that for every 0 ≤ ε < 1, every symmetric SDP formulation approximating the

perfect matching problem within a factor 1− ε
n−1 has size at least 2αn (see Theo-

rem 3.2.10).

(ii) The Lasserre relaxation is optimal among symmetric SDP relaxations for the

asymmetric metric traveling salesperson problem. The asymmetric metric TSP is

the restriction of TSP where the costs of an edge u to v can be different from the

costs of the edge v to u and additionally the edge costs obey triangle inequality. The

second result proven in this chapter is a connection between a general symmetric SDP

relaxation and the Lasserre hierarchy for the asymmetric metric TSP. In particular,

we show that for every ρ > 0, if there exists a symmetric SDP relaxation of size

r <
√
(2n

k )− 1 that achieves a ρ-approximation for asymmetric metric TSP instances

on 2n vertices, then the (2k− 1)-round Lasserre relaxation achieves a ρ-approximation

for asymmetric metric TSP instances on n vertices.

3.1 Symmetric formulations as sum of squares

Wefirst introduce some notation that wewill use specifically in this chapter. Let [n] denote the

set {1, . . . , n}. Let R[x] denote the set of polynomials in n real variables x = (x1, . . . , xn)

with real coefficients. For a set H ⊆ R[x] let 〈H〉 denote the vector space spanned by H

and let 〈H〉I denote the ideal R[x] generated by H. Recall that a polynomial ideal in a

polynomial ring R is a set that is closed under addition of polynomials in the ideal and closed
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under multiplication by polynomials in the ring.

We now turn a G-coordinate-symmetric SDP formulation into a symmetric sum of

squares representation over a small set of basis functions.

Lemma 3.1.1 (Sum of squares for a symmetric SDP formulation). If a G-symmetric maxi-

mization problem P = (S ,F ) admits a G-coordinate-symmetric (C, S)-approximate SDP

formulation of size d, then there is a setH of at most (d+1
2 ) functions h : S → R such that

for any f ∈ F with max f ≤ S( f ) we have C( f )− f = ∑j h2
j + µ f for some hj ∈ 〈H〉

and constant µ f ≥ 0. Furthermore the set H is invariant under the action of G given by

(g · h)(s) = h(g−1 · s) for g ∈ G, h ∈ H and s ∈ S.

Proof. For any psd matrix M let
√

M denote the unique psd matrix with
√

M
2
= M. Note

that
√

M
√

M
ᵀ
= M also, since

√
M is symmetric.

LetA, b, {Xs | s ∈ S},
{

w f
∣∣ f ∈ F

}
comprise a G-coordinate-symmetric SDP formu-

lation of size d. We define the setH :=
{

hij
∣∣ i, j ∈ [d]

}
via hij(s) :=

√
Xs

ij. By the action

of G and the uniqueness of the square root, we have g · hij = hg·i,g·j, soH is G-symmetric.

As hij = hji, the setH has at most (d+1
2 ) elements.

By standard strong duality arguments as for example used in the proof of Theorem 2.1.5,

for every f ∈ F with max f ≤ S( f ), there is a U f ∈ Sd
+ and µ f ≥ 0 such that for all

s ∈ S ,

C( f )− f (s) = Tr[U f Xs] + µ f .

Again by standard arguments the trace can be rewritten as a sum of squares:

Tr[U f Xs] = Tr
[(√

U f
√

Xs
)ᵀ (√

U f
√

Xs
)]

= ∑
i,j∈[d]

 ∑
k∈[d]

√
U f

ik ·
√

Xs
kj

2

.

Therefore C( f )− f = ∑i,j∈[d]

(
∑k∈[d]

√
U f

ik · hkj

)2
+ µ f , as claimed.
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3.2 The perfect matching problem

We recall the definition of the perfect matching problem PM(n) from Definition 2.1.9

where we established a lower bound on the linear formulation complexity and show that any

symmetric SDP formulation has exponential size.

Let n be an even positive integer, and let Kn denote the complete graph on n vertices.

The feasible solutions of PM(n) are all the perfect matchings M on Kn. The instances are

indexed by the edge sets F of Kn and the objective function computes valF(M) = |M ∩ F|

the number of edges contained in both the edge set F and the perfect matching M. For

approximation guarantees we use S( f ) := max f and C( f ) := max f + ε/2 for some fixed

0 ≤ ε < 1 as before and in Braun and Pokutta (2015a); see also Braun and Pokutta (2015b)

for a more in-depth discussion.

3.2.1 Symmetric functions on matchings are juntas

In this section we show that functions on perfect matchings with high symmetry are actually

juntas: they depend only on the edges of a small vertex set. The key is the following lemma

stating that perfect matchings coinciding on a vertex set belong to the same orbit of the

pointwise stabilizer of the vertex set. Let An denote the alternating group on n letters, and

for any subset X ⊆ [n] let A(X) denote the alternating group that operates on the elements

of X and fixes the remaining elements of [n]. For any set W ⊆ [n] let E[W] denote the

edges of Kn with both endpoints in W.

Lemma 3.2.1. Let S ⊆ [n] with |S| < n/2 and let M1 and M2 be perfect matchings in Kn.

If M1 ∩ E[S] = M2 ∩ E[S] then there exists σ ∈ A([n] \ S) such that σ ·M1 = M2.

Proof. Let δ(S) denote the edges with exactly one endpoint in S. There are three kinds of

edges: those in E[S], those in δ(S), and those disjoint from S. We construct σ to handle

each type of edge, then fix σ to be even.
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To handle the edges in E[S] we set σ to the identity on S, since M1 ∩ E[S] = M2 ∩ E[S].

To handle the edges in δ(S) we note that for each edge (s, v) ∈ M1 with s ∈ S and

v /∈ S there is a unique edge (s, w) ∈ M2 with w /∈ S. We extend σ to map v to w for each

such s.

To handle the edges disjoint from S, we again use the fact that M1 and M2 are perfect

matchings, so the number of edges in each that are disjoint from S is the same. We extend σ

to be an arbitrary bijection on those edges.

We now show that we can choose σ to be even. Since |S| < n/2 there is an edge (u, v) ∈

M2 disjoint from S. Let τu,v denote the transposition of u and v and let σ′ := τu,v ◦ σ. We

have σ′ ·M1 = σ ·M1 = M2, and either σ or σ′ is even.

We also need the following lemma, which has been used extensively for symmetric

linear extended formulations. See references Yannakakis (1988), Yannakakis (1991), Kaibel,

Pashkovich, and Theis (2010), Braun and Pokutta (2011), and Lee et al. (2014) for examples.

Lemma 3.2.2 (Dixon and Mortimer 1996, Theorems 5.2A and 5.2B). Let n ≥ 10 and let

G ≤ An be a group. If |An : G| < (n
k) for some k < n/2, then there is a subset W ⊆ [n]

such that |W| < k, W is G-invariant, and A([n] \W) is a subgroup of G.

We now formally state and prove the claim about juntas:

Proposition 3.2.3. Let n ≥ 10, let k < n/2 and letH be an An-symmetric set of functions

on the set of perfect matchings of Kn of size less than (n
k). Then for every h ∈ H there is a

vertex set W ⊆ [n] of size less than k such that h depends only on the (at most (k−1
2 )) edges

in W.

Proof. Let h ∈ H, let Stab(h) denote the stabilizer of h, and let Orb(h) denote the orbit of

h. Since H is An-symmetric we have |Orb(h)| < (n
k). By the orbit-stabilizer theorem it

follows that |An : Stab(h)| < (n
k). Applying Lemma 3.2.2 to the stabilizer of h, we obtain
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a subset W ⊆ [n] of size less than k such that h is stabilized by A([n] \W), i.e.,

h(M) = (g · h)(M) = h(g−1 ·M)

for all g ∈ A([n] \W).

Therefore for every perfect matching M the function h is constant on the A([n] \W)-

orbit of M. As the orbit is determined by M ∩ E[W] by Lemma 3.2.1, so is the function

value h(M). Therefore h depends only on the edges in E[W].

3.2.2 The matching polynomials

A key step in proving our lower bound is obtaining low-degree derivations of approximation

guarantees for objective functions of PM(n). Therefore we start with a standard represen-

tation of functions as polynomials. We define the matching constraint polynomials Pn as:

Pn := {xuvxuw | u, v, w ∈ [n] distinct}

∪

 ∑
u∈[n],u 6=v

xuv − 1

∣∣∣∣∣∣ v ∈ [n]


∪
{

x2
uv − xuv | u, v ∈ [n] distinct

}
.

(3.1)

We observe that the ring of real valued functions on perfect matchings is isomorphic to

R[{xuv}{u,v}∈([n]2 )
]/〈Pn〉I with xuv representing the indicator function of the edge uv being

contained in a perfect matching. Intuitively, under this representation the vanishing of the

first set of polynomials ensures that no vertex is matched more than once, the vanishing of

the second set ensures that each vertex is matched, and the vanishing of the third set ensures

that each edge coordinate is 0-1 valued.

Now we formulate low-degree derivations. Let P denote a set of polynomials in R[x].

For polynomials F and G, we write F '(P ,d) G, or F is congruent to G from P in degree d,
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if and only if there exist polynomials {q(p) : p ∈ P} such that

F + ∑
p∈P

q(p) · p = G

and maxp deg(q(p) · p) ≤ d. We often drop the dependence on P when it is clear from

context. We shall write F ≡ G for two polynomials F and G defining the same function

on perfect matchings, i.e., F − G ∈ 〈Pn〉I . (Note that as Pn contains x2
uv − xuv for all

variables xuv, the ideal generated by Pn is automatically radical.)

3.2.3 Deriving that symmetrized polynomials are constant

Averaging any polynomial on matchings over the symmetric group gives a constant. In this

section we show that this fact has a low-degree derivation.

For a partial matching M, let xM := ∏e∈M xe denote the product of edge variables for

the edges in M. The first step is to reduce every polynomial to a linear combination of the

xM.

Lemma 3.2.4. For every polynomial F there is a polynomial F′ with deg F′ ≤ deg F and

F '(Pn,deg F) F′, where all monomials of F′ have the form xM for some partial matching M.

Proof. It suffices to prove the lemma when F is a monomial. Let F = ∏e∈A xke
e for a set A

of edges with multiplicities ke ≥ 1. From x2
e '2 xe it follows that xk

e 'k xe for all k ≥ 1,

hence F 'deg F ∏e∈A xe. If A is a partial matching we are done, otherwise there are distinct

e, f ∈ A with a common vertex, hence xex f '2 0 and F 'deg F 0.

Lemma 3.2.5. For any partial matching M on 2d vertices and a vertex a not covered by M,

we have

xM '(Pn,d+1) ∑
M1=M∪{a,u}

u∈Kn\(M∪{a})

xM1 . (3.2)

Proof. We use the generators ∑u xau − 1 to add variables corresponding to edges at a, and
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then use xauxuv to remove monomials not corresponding to a partial matching:

xM '(Pn,d+1) xM ∑
u∈Kn

xau '(Pn,d+1) ∑
M1=M∪{a,u}

u∈Kn\(M∪{a})

xM1 .

This leads to a similar congruence using all containing matchings of a larger size:

Lemma 3.2.6. For any partial matching M of 2d vertices and d ≤ k ≤ n/2, we have

xM '(Pn,k)
1

(n/2−d
k−d )

∑
M′⊃M
|M′|=k

xM′ (3.3)

Proof. We use induction on k− d. The start of the induction is with k = d, when the sides

of (3.3) are actually equal. If k > d, let a be a fixed vertex not covered by M. Applying

Lemma 3.2.5 to M and a followed by the inductive hypothesis gives:

xM '(Pn,d+1) ∑
M1=M∪{a,u}

u∈Kn\(M∪{a})

xM1 '(Pn,k)
1

(n/2−d−1
k−d−1 )

∑
M′⊃M1
|M′|=k

M1=M∪{a,u}
u∈Kn\(M∪{a})

xM′ .

Averaging over all vertices a not covered by M, we obtain:

xM '(Pn,k)
1

n− 2d
1

(n/2−d−1
k−d−1 )

∑
M′⊃M1
|M′|=k

M1=M∪{a,u}
a,u∈Kn\M

xM′

=
1

n− 2d
1

(n/2−d−1
k−d−1 )

2(k− d) ∑
M′⊃M
|M′|=k

xM′

=
1

(n/2−d
k−d )

∑
M′⊃M
|M′|=k

xM′ .
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where in the second step the factor 2(k− d) accounts for the number of ways to choose a

and u.

We are now ready to state and prove the claim about symmetrized polynomials:

Lemma 3.2.7. For any polynomial F, there is a constant cF with ∑σ∈Sn σF '(Pn,deg F) cF.

Proof. Given Lemma 3.2.4, it suffices to prove the claim for F = xM for some partial

matching M. Note that if |M| = k then (using the orbit-stabilizer theorem) the size of the

stabilizer of M is 2kk!(n− 2k)!. Now apply Lemma 3.2.6 with d = 0:

∑
σ∈Sn

σxM = 2kk!(n− 2k)! ∑
M′ : |M′|=k

xM′ 'k 2kk!(n− 2k)!
(

n/2
k

)
.

3.2.4 Low-degree certificates for matching ideal membership

In this section we present a crucial part of our argument, namely that every degree-d polyno-

mial that is identically zero over perfect matchings has a derivation of this fact whose degree

is O(d).

The following lemma will allow us to apply induction:

Lemma 3.2.8. If L is a polynomial with L '(Pn−2,d) 0 for some d, and a, b are the two

additional vertices in Kn, then Lxab '(Pn,d+1) 0.

Proof. It is enough to prove the claim for L ∈ Pn−2. For L = x2
e − xe and L = xuvxuw the

claim is trivial since L ∈ Pn also. The remaining case is L = ∑u∈Kn−2
xuv − 1 for some

v ∈ Kn−2. Then

Lxab =

(
∑

u∈Kn−2

xuv − 1

)
xab =

(
∑

u∈Kn

xuv − 1

)
xab − xavxab − xbvxab 'd+1 0.

89



The degree of the derivation is at most d + 1 since we can simply multiply the degree-d

derivation for L ' 0 by xab.

We now show that any F ∈ 〈Pn〉I can be generated by low-degree coefficients from Pn:

Theorem 3.2.9. For every F ∈ R[{xuv}{u,v}∈(n
2)
], if F ∈ 〈Pn〉I then F '(Pn,2 deg F−1) 0.

Proof. We use induction on the degree d of F. If d = 0 then F = 0 and the statement

holds trivially. (Note that '−1 is just equality.) The case d = 1 rephrased means that the

affine space spanned by the characteristic vectors of all perfect matchings is defined by

the ∑v xuv − 1 for all vertices u. This follows from Edmonds’s description of the perfect

matching polytope by linear inequalities in Edmonds (1965).

For the case d ≥ 2 we first prove the following claim:

Claim. If F ∈ 〈Pn〉I is a degree-d polynomial and σ ∈ Sn is a permutation of vertices, then

F '(Pn,2d−1) σF.

We use induction on the degree. If d = 0 or d = 1 the claim follows from the corre-

sponding cases d = 0 and d = 1 of the theorem. For d ≥ 2 it is enough to prove the claim

when σ is a transposition of two vertices a and u. Note that in F− σF all monomials which

are independent of both a and u cancel:

F− σF = ∑
e : a∈e or u∈e

Lexe (3.4)

where each Le has degree at most d− 1. We now show that every summand is congruent to

a sum of monomials containing edges incident to both a and u. For example, for e = {a, b}

in (3.4) we apply the generator ∑v xuv − 1 to find:

Labxab 'd+1 Labxab ∑
v

xuv 'd+1 ∑
v

Labxabxuv.

90



Therefore

F− σF 'd+1 ∑
bv

L′bvxabxuv

for some polynomials L′bv of degree at most d − 1. We may assume that L′bv does not

contain variables xe with e incident to a, b, u, v, as these can be removed using generators

like xabxac or x2
ab− xab. Moreover, it can be checked that L′bv is zero on all perfect matchings

containing {a, b} and {u, v}. By induction, L′bv '(Pn−4,2d−3) 0 (identifying Kn−4 with

the graph Kn \ {a, b, u, v}), from which L′bv '(Pn,2d−1) 0 follows by two applications

of Lemma 3.2.8. (The special case a = v, b = u is also handled by induction and one

application of Lemma 3.2.8.) This concludes the proof of the claim.

We now apply the claim followed by Lemma 3.2.7:

F '2d−1
1
n! ∑

σ∈Sn

σF 'd
cF

n!

for a constant cF. As F ∈ 〈Pn〉I , it must be that cF = 0, and therefore F '2d−1 0.

3.2.5 The lower bound on the size of symmetric SDP extensions

We now have all the ingredients to prove the main theorem of this chapter. Note that the

alternating group An acts naturally on PM(n) via permutation of vertices. Recall that we

set S( f ) := max f and C( f ) := max f + ε/2, where the functions f are indexed by edge

sets and ε is a parameter. It follows that the guarantees C and S are An-symmetric in the

sense defined in Section 1.1.3. Our main theorem is an exponential lower bound on the size

of any An-coordinate-symmetric SDP extension of PM(n).

Theorem 3.2.10. There exists an absolute constant α > 0 such that for all even n and every

0 ≤ ε < 1, every An-coordinate-symmetric SDP extended formulation approximating the

perfect matching problem PM(n) within a factor of 1− ε/(n− 1) has size at least 2αn.

Proof. Fix an integer n ≥ 10 and let k = dβne for some small enough constant 0 < β <
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1/2 chosen later. Suppose for a contradiction that PM(n) admits a symmetric SDP extended

formulation of size d <
√
(n

k)− 1.

Let m equal n/2 or n/2 − 1, whichever is odd. Let S = [m] and let T = {m +

1, . . . , 2m}. If m = n/2 then let U = {2m + 1, 2m + 2}, otherwise let U = ∅. Note

that S ∪ T ∪ U = [n] and |S| = |T| = m = Θ(n). Consider the objective function

for the set of edges E[S], namely fE[S](M) := |M ∩ E[S]|. Since |S| is odd we have

max fE[S] = (|S| − 1)/2, from which we obtain:

f (x) := C( fE[S])− fE[S](x) =
|S| − 1

2
+

ε

2
− ∑

u,v∈S
xuv ≡

1
2 ∑

u∈S,v∈T∪U
xuv −

1− ε

2
.

(3.5)

By Lemma 3.1.1, as (d+1
2 ) < (n

k), there is a constant µ f ≥ 0 and an An-symmetric setH of

functions of size at most (n
k) on the set of perfect matchings with

f ≡∑
g

g2 + µ f with each g ∈ 〈H〉.

By Proposition 3.2.3, every h ∈ H depends only on the edges within a vertex set of size less

than k, and hence can be represented by a polynomial of degree less than k/2 over perfect

matchings. As the g are linear combinations of the h ∈ H, they can also be represented by

polynomials of degree less than k/2, which we assume for the rest of the proof.

Applying Theorem 3.2.9 with (3.5), we conclude

1
2 ∑

u∈S,v∈T∪U
xuv −

1− ε

2
'(Pn,2k−1) ∑

g
g2 + µ f .

We now apply the following substitution: set x2m+1,2m+2 := 1 if U is not empty, set

xu+m,v+m := xuv for each uv ∈ E[S], and set xuv := 0 otherwise. Intuitively, the substitu-

tion ensures that U is matched, ensures the matching on T is identical to the matching on S,

and ensures every edge is entirely within S, T, or U. The main point is that the substitution

maps every polynomial in Pn either to 0 or into Pm.
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Applying this substitutionwe obtain a new polynomial identity on the variables {xuv}{u,v}∈(S
2)
:

−1− ε

2
'(Pm,2k−1) ∑

g
g2 + µ f . (3.6)

This equation is a sum of squares proof that an odd clique of size m cannot have a perfect

matching. To complete our argument we appeal to a theorem from Grigoriev (2001) which

shows that any such proof must have high degree. Since the degree of the proof in (3.6) is

2k− 1, our conclusion will be that k must be large.

The theorem from Grigoriev (2001) uses different terminology from what we have

developed here. It is phrased in terms of Positivstellensatz Calculus (PC>) proof systems

and the MOD2 principle. We first present the theorem as originally stated and then relate it

to our setting.

Theorem 3.2.11 (Grigoriev 2001, Corollary 2). The degree of any PC> refutation of MODk
2

is greater than Ω(k).

The MODk
p principle states that it is not possible to partition a set of size k into groups of

size p if k is congruent to 1 modulo p. In our case, with p = 2 and k odd, this is equivalent

to the statement that no perfect matching exists in an odd clique.

Likewise, via Grigoriev (2001, Definition 2) one checks that (3.6) constitutes a PC>

proof; we refer the reader to Buss et al. (1999) for further discussion.

Applying Theorem 3.2.11 to (3.6), we find that 2k− 1 = Ω(m) = Ω(n), a contradiction

when β is chosen small enough, establishing inapproximability with guarantees C( fE[S]) =

max fE[S] + ε/2 and S( fE[S]) = max fE[S]. The inapproximability factor follows as we

have seen in Theorem 2.1.10 from

max fE[S] =
m− 1

2
≤ min

{
n−1

2 − 1
2

,
n
2 − 1

2

}
=

n− 3
4
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and thus

S( fE[S])

C( fE[S])
=

max fE[S]

max fE[S] + ε/2
=

1
1 + ε/2

max fE[S]

≤ 1
1 + ε/2

(n−3)/4

=
1

1 + 2ε
n−3
≤ 1− ε

n− 1
,

which finishes the proof.

3.3 The Metric Traveling Salesperson Problem (TSP) re-

visited

In this section, we prove that a particular Lasserre SDP is optimal among all symmetric

SDP relaxations for the asymmetric metric traveling salesperson problem on Kn. The

feasible solutions of the problem are all permutations σ ∈ Sn. A permutation σ corresponds

to the tour in Kn in which vertex i is the σ(i)-th vertex visited. An instance I of TSP

is a set of non-negative distances dI(i, j) for each edge (i, j) ∈ Kn, obeying the triangle

inequality. The value of a tour σ is just the sum of the distances of edges traversed valI(σ) =

∑i dI(σ−1(i), σ−1(i + 1)). The objective functions are all the valI . For approximation

guarantees we will use S( f ) = min f and C( f ) = min f /ρ for some factor ρ ≥ 1. As

a reminder instead of referring to a “(C, S)-approximate formulation” we will refer to a

“formulation within a factor ρ.”

The natural action of An on TSP is by permutation of vertices, which means here that An

acts on Sn by composition from the left: (σ1 · σ2)(i) = σ1(σ2(i)). Obviously, the problem

TSP is An-symmetric.

The ring of real-valued functions on the set Sn of feasible solutions is isomorphic to

R[{xij}{i,j}∈[n]]/〈Qn〉I , with xij being the indicator of σ(i) = j, and Qn is the set of TSP
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constraints:

Qn =

 ∑
i∈[n]

xij − 1

∣∣∣∣∣∣ j ∈ [n]

 ∪
 ∑

j∈[n]
xij − 1

∣∣∣∣∣∣ i ∈ [n]


∪
{

xijxik
∣∣ i, j, k ∈ [n]

}
∪
{

xijxkj
∣∣ i, j, k ∈ [n]

}
∪
{

x2
ij − xij

∣∣∣ i, j ∈ [n]
}

.

We emphasize that our description of the TSP constraints is different from the TSP

polytope treated in Yannakakis (1991), Yannakakis (1988), Fiorini et al. (2012), and Fiorini

et al. (2015): the variables xij do not directly encode the edges of a Hamiltonian cycle but

instead specify a permutation of n vertices, encoded as a perfect bipartite matching on Kn,n.

Following the framework presented in Lee et al. (2014), we define the Lasserre hierarchy

for TSP as follows. The (dual of) the k-th level Lasserre SDP relaxation for a TSP instance

I is given by

Maximize c

subject to valI −c '(Qn,k) ∑
p

p2 for some polynomials p.

We now state our main theorem regarding optimal SDP relaxations for TSP.

Theorem 3.3.1. Suppose that there is some coordinate A2n-symmetric SDP relaxation of

size r <
√
(n

k)− 1 approximating TSP within some factor ρ ≥ 1 for instances on 2n vertices.

Then the (2k − 1)-level Lasserre relaxation approximates TSP within the factor of ρ on

instances on n vertices.

To prove Theorem 3.3.1 there is an equivalent of Proposition 3.2.3 we need for TSP tours,

so that a small set of invariant functions depends only on the positions of a small number of

indices. We start with the following proposition.

Proposition 3.3.2. LetH be an An-symmetric set of functions of size (n
k) on the set of TSP
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tours σ ∈ Sn. Then for every h ∈ H there is a set W ⊆ [n] of size less than k, such that

h(σ) depends only on the positions of the vertices in W in the tour σ, and the sign of σ as a

permutation.

Proof. For every h ∈ H we can apply Lemma 3.2.2 to the stabilizer of h to obtain a subset

W ⊆ [n] of size at most k such that h is stabilized by A([n] \W). Thus for every tour σ, h

is constant on the A([n] \W)-orbit of σ. This orbit is clearly determined by the positions of

the vertices in W and, since A([n] \W) preserves signs, the sign of the permutation σ.

Next we give a reduction which allows us to eliminate the dependence of the functions

h ∈ H on the sign of the permutation σ. In particular we encode every TSP tour σ on an

n-vertex graph as some new tour Φ(σ) in a 2n-vertex graph, such that Φ(σ) is always an

even permutation in S2n.

Lemma 3.3.3. Let I be an instance of TSP on Kn. Then there exists an instance I ′ of TSP

on K2n and an injective map Φ : Sn → S2n such that

(i) valI(σ) = valI ′(Φ(σ)) for all σ ∈ Sn.

(ii) For every tour τ ∈ S2n there exists σ ∈ Sn such that valI ′(Φ(σ)) ≤ valI ′(τ)

(iii) For all σ ∈ Sn the permutation Φ(σ) is even.

Proof. Given a TSP instance I on Kn we construct a new instance I ′ on K2n as follows:

• For every vertex i ∈ I add a pair of vertices i and i′ to I ′.

• For every distance d(i, j) in I add 4 edges all with the same distance d(i, j) =

d(i′, j) = d(i, j′) = d(i′, j′) to I ′.

• For every pair of vertices i, i′ ∈ I ′ add an edge of distance zero, i.e. set d(i, i′) = 0.

We will call a tour τ ∈ S2n canonical if it visits i′ immediately after i, i.e. σ(i′) = σ(i) + 1.

We will write T for the set of canonical tours in S2n. It is easy to check using the triangle
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inequality that for every tour τ there is a canonical tour with no larger value. For every tour σ

in I define Φ(σ) to be the corresponding canonical tour in I ′. That is Φ(σ)(i) = 2σ(i)− 1

and Φ(σ)(i′) = 2σ(i). Note that Φ : Sn → S2n is an injective map whose image is all of

T. By construction we have:

valI(σ) ≡ valI ′(Φ(σ))

which proves property (1). Property (2) follows from the fact that every tour τ ∈ S2n has a

canonical tour with no larger value, and that T is the image of Φ.

For property (3), note that every canonical tour is an even permutation. To see why,

suppose σ ∈ Sn is given by σ = (i1, j1)(i2, j2), . . . , (im, jm) where (i, j) denotes the permu-

tation that swaps i and j. Then Φ(σ) = (i1, j1)(i′1, j′1), . . . , (im, jm)(i′m, j′m) is comprised of

2m swap permutations, and is therefore even.

The last ingredient we need is a version of Theorem 3.2.9 for the TSP.

Theorem 3.3.4. If F is a multilinear polynomial whose monomials are partial matchings

on Kn,n and F ∈ 〈Qn〉I , then F '(Qn,2 deg F−1) 0.

BecauseQn is so similar to Pn, it should come as no surprise that the proof of the above

theorem is extremely similar to the proof of Theorem 3.2.9. We include the full proof for

completeness, but defer it to Section 3.3.1. We now have all the tools necessary to prove

Theorem 3.3.1.

Proof of Theorem 3.3.1. First let I be an instance of TSP on Kn. Use Lemma 3.3.3 to

construct a TSP instance I ′ on K2n and the corresponding map Φ. Now assume we have

an arbitrary A2n-symmetric SDP relaxation of size d <
√
(2n

k )− 1 for TSP on K2n. By

Lemma 3.1.1 there is a corresponding A2n-symmetric family of functionsH′ of size (d+1
2 )
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such that whenever minτ valI ′(τ) ≥ S(valI ′) we have:

valI ′(τ)− C(valI ′) ≡∑
j

hj(τ)
2 + µI ′ where hj ∈ 〈H′〉 and µI ′ ≥ 0 .

Let h′ ∈ H′. By Proposition 3.3.2 h′(τ) depends only on some subset W ′ of size at most k,

and possibly on the sign of τ.

Now we restrict the above relaxation to the image of Φ. By Lemma 3.3.3 this does not

change the optimum. Using the fact that valI(σ) ≡ valI ′(Φ(σ)) and setting µI = µI ′

then gives rise to a new relaxation where whenever minσ valI(σ) ≥ S(valI) we have:

valI(σ)− C(valI) ≡∑
j

hj(Φ(σ))2 + µI where hj ∈ 〈H′〉 and µI ≥ 0

as S(valI) = S(valI ′) and C(valI) = C(valI ′) by Lemma 3.3.3. Next for each h′ ∈ H′

define h : Sn → R by h(σ) = h′(Φ(σ)). Since Φ(σ) is even, we then have that each h

depends only on the position of some subset W ⊆ [n] of size at most k. Such a function

can be written as a degree-k polynomial p in the variables xij so that p(xσ) ≡ f (σ) on

the vertices of PTSP(n). Now by Theorem 3.3.4 we have that p '(Qn,2k−1) h. Since

µI ≥ 0 it is clearly the square of a (constant) polynomial, and we conclude that whenever

minσ valI(σ) ≤ S(valI) we have:

fI(x)−min fI/ρ '(Qn,2k−1) ∑
p

p(x)2

which is precisely the statement that the (2k− 1)-level Lasserre relaxation for PTSP(n) is a

ρ-approximation.

3.3.1 Low-degree certificates for tour ideal membership

In this section we prove Theorem 3.3.4 showing that every degree-d polynomial identically

zero over TSP tours is congruent to 0 within degree O(d).
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Note that any partial tour τ can be thought of as a partial matching M in Kn,n, namely if

τ(i) = j, then M includes the edge (i, j). Because of this, it is not surprising that the proof

proceeds in a very similar manner to Section 3.2.4, and hereafter we shall always refer to

partial matchings on Kn,n rather than on Kn.

For a partial matching M, let xM := ∏e∈M xe denote the product of edge variables for

the edges in M. The first step is to reduce every polynomial to a linear combination of the

xM.

Lemma 3.3.5. For every polynomial F there is a polynomial F′ with deg F′ ≤ deg F and

F '(Qn,deg F) F′, where all monomials of F have the form xM for some partial matching M.

Proof. It is enough to prove the lemma when F is a monomial: F = ∏e∈A xke
e for a set

A ⊆ E[Kn,n] of edges with multiplicities ke ≥ 1. From x2
e '2 xe it follows that xk

e 'k xe

for all k ≥ 1, hence F 'deg F ∏e∈A xe, proving the claim if A is a partial matching. If

A is not a partial matching, then there are distinct e, f ∈ A with a common vertex, hence

xex f '2 0 and F 'deg F 0.

The rest of the proof proceeds identically to Theorem 3.2.9, but we let the symmetric

group act on polynomials slightly differently. If Kn,n = Un ∪Vn is the bipartite decomposi-

tion of Kn,n, then we only let the permutation group act on the labels of vertices of Un, i.e.

σx(a,b) = x(σ(a),b). We show that under this action, symmetrized polynomials are congruent

to a constant, which can again be seen in the same sequence of lemmas:

Lemma 3.3.6. For any partial matching M on 2d vertices and a vertex a ∈ Un not covered

by M, we have

xM '(Qn,d+1) ∑
M1=M∪{a,u}
v∈Vn\(M∩Vn)

xM1 . (3.7)

Proof. We use the generators ∑v xav − 1 to add variables corresponding to edges at a, and
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then use xavxbv to remove monomials not corresponding to a partial matching:

xM '(Qn,d+1) xM ∑
v∈Vn

xav '(Qn,d+1) ∑
M1=M∪{a,v}
v∈Vn\(M∩Vn)

xM1 .

This leads to a similar congruence using all containing matchings of a larger size:

Lemma 3.3.7. For any partial matching M of 2d vertices and d ≤ k ≤ n, we have

xM '(Qn,k)
1

(n−d
k−d)

∑
M′⊃M
|M′|=k

xM′ (3.8)

Proof. We use induction on k− d. The start of the induction is when k = d, when the sides

of Equation (3.8) are equal.

If k > d, let a ∈ Un be a fixed vertex not covered by M. Applying Lemma 3.3.6 to M

and a followed by the inductive hypothesis gives:

xM '(Qn,d+1) ∑
M1=M∪{a,u}
u∈Vn\(M∩Vn)

xM1 '(Qn,k)
1

(n−d−1
k−d−1)

∑
M′⊃M1
|M′|=k

M1=M∪{a,u}
u∈Vn\(M∩Vn)

xM′ .
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Averaging over all vertices a ∈ Un not covered by M, we obtain

xM '(Qn,k)
1

n− d
1

(n−d−1
k−d−1)

∑
M′⊃M1
|M′|=k

M1=M∪{a,u}
a∈Un\(M∩Un)
u∈Vn\(M∩Vn)

xM′

=
1

n− d
1

(n−d−1
k−d−1)

(k− d) ∑
M′⊃M
|M′|=k

xM′

=
1

(n−d
k−d)

∑
M′⊃M
|M′|=k

xM′ .

Corollary 3.3.8. For any polynomial F, there is a constant cF with ∑σ∈Sn σF '(Qn,deg F) cF.

Proof. In view of Lemma 3.3.5, it is enough to prove the claim for F = xM for some partial

matching M on 2k vertices, which is an easy application of Lemma 3.3.7 with d = 0:

∑
σ∈Sn

σxM = (n− k)! ∑
M′ : |M′|=k

xM′ 'k (n− k)!
(

n
k

)
.

The next lemma will allow us to apply induction:

Lemma 3.3.9. If L is a polynomial with L '(Qn−2,d) 0 and a, b are the additional vertices

in Qn then Lxabxba '(Qn,d+2) 0.

Proof. It is enough to prove the claim when L is from Qn−2. For L = x2
e − xe, L =

xuvxuw, and L = xuvxwv the claim is trivial, as then L ∈ Qn. The remaining cases are

(1) L = ∑u∈Un−2
xuv − 1 for some v ∈ Vn−2, or (2) L = ∑v∈Vn−2

xuv − 1 for some

u ∈ Un−2.. We only deal with the first case, as the second one is analogous. Then

Lxabxba =

(
∑

u∈Un

xuv − 1

)
xabxba − xavxabxba − xbvxabxba '(Qn,d+1) 0.
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We are now ready to prove Theorem 3.3.4.

Proof of Theorem 3.3.4. We use induction on the degree d of F. The case d = 0 is obvious,

as then clearly F = 0. (Note that '−1 is just equality.) The case d = 1 rephrased means

that the affine space spanned by the characteristic vectors of all perfect matchings is defined

by the ∑v xuv − 1 for all vertices u. This follows again from Edmonds’s description of the

perfect matching polytope by linear inequalities in Edmonds (1965) (valid for any graph in

addition to K2n and Kn,n).

For the case d ≥ 2 we first prove the following claim:

Claim. If F ∈ 〈Qn〉I is a degree-d polynomial and σ ∈ Sn is a permutation of vertices, then

F '(Qn,2d−1) σF.

We use induction on the degree. If d = 0 or d = 1 the claim follows from the corre-

sponding cases d = 0 and d = 1 of the theorem. For d ≥ 2 it is enough to prove the claim

when σ is a transposition of two vertices a and u. Note that in F− σF all monomials which

do not contain an xe with e incident to a or u on the left cancel:

F− σF = ∑
e : e=(a,r) or e=(u,r)

Lexe (3.9)

where each Le has degree at most d− 1. We now show that every summand is congruent to

a sum of monomials containing edges incident to both a and u on the left. For example, for

e = {a, b} in (3.9), we apply the generator ∑v xuv − 1 to find:

Labxab 'd+1 Labxab ∑
v

xuv 'd+1 ∑
v

Labxabxuv.
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Therefore

F− σF 'd+1 ∑
bv

L′bvxabxuv

for some polynomials L′bv of degree at most d− 1. We may assume that L′bv does not contain

variables xe with e incident to a, u on the left or b, v on the right, as these can be removed

using generators like xabxac or x2
ab− xab. Moreover, since F is zero on all perfect matchings,

it can be checked that L′bv is zero on all perfect matchings containing {a, b} and {u, v}.

By induction, L′bv '(Qn−4,2d−3) 0 (identifying Kn−4 with the graph Kn \ {a, b, u, v}), from

which L′bv '(Qn,2d−1) 0 follows by two applications of Lemma 3.3.9. (The special case

a = v, b = u is also handled by induction and one application of Lemma 3.3.9.) This

concludes the proof of the claim.

We now apply the claim followed by Corollary 3.3.8:

F '2d−1
1
n! ∑

σ∈Sn

σF 'd
cF

n!

for a constant cF. As F ∈ 〈Qn〉I , it must be that cF = 0, and therefore F '2d−1 0.
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Chapter 4

LAZIFYING CONDITIONAL GRADIENT ALGORITHMS

In light of the lower bounds shown so far, we present in this chapter a modification of condi-

tional gradient algorithms that eschew (approximate) linear optimization. We can summarize

the contribution as follows, where the general lazification technique for conditional gradient

type algorithms is the main contribution.

(i) Lazification technique. Our lazification mechanism allows conditional gradient

algorithms to employ the weak separation oracle instead of the linear optimization

oracle, returning only a good enough solution or a certificate that such a solution

does not exists. This leads to an improved performance in wall clock time, while the

asymptotic convergence rates of the non-lazy counterparts are maintained up to small

constant factors.

(ii) Lazified conditional gradient algorithms. We show our lazification technique on

several examples: in Section 4.1.1 we show the most basic example by lazifying

Algorithm 1, in Section 4.1.2 we apply the method to the Pairwise Conditional Gradient

algorithm (PCG) from Garber and Meshi (2016), in Section 4.1.3 to the Local Linear

Optimization Oracle based method from Garber and Hazan (2013) and finally in

Section 4.2 to the Online Conditional Gradient method (OCG) from Hazan and Kale

(2012).

(iii) Weak separation through augmentation. In Section 4.4 we show that in the case

when P is a 0/1 polytope we can implement the weak separation oracle (Oracle 1) by

104



using at most k calls to an even weaker augmentation oracle, where k is the `1 diameter

(or sparsity) of P. An augmentation oracle returns on the same input as the linear

optimization oracle either an improving point x̄, i.e., cx̄ < cx or certifies that such a

point does not exist.

(iv) Experimental results. We show the computational advantages of different lazified

conditional gradient methods over their non-lazy counterparts. We consider several

problems of real world relevance such as video colocalization (see Joulin, Tang, and

Fei-Fei (2014)), matrix completion and structured regression (see Section 4.5).

Related work

The Frank-Wolfe method was introduced by Frank and Wolfe (1956) and is also known as

Conditional Gradient Descent (see Levitin and Polyak 1966). Many different variations

have been considered since then and we will only discuss the ones most relevant to this

chapter here. Jaggi (2013) shows convergence of the Frank-Wolfe method using approximate

optimization, which we presented in Section 1.2.2. After showing a lazified version of the

vanilla Frank-Wolfe method we further show how lazification works for more advanced

variants, the first such method being the Local Linear Optimization Oracle based method by

Garber and Hazan (2013) that achieves linear order of convergence by finding an optimal

point for the gradient in a neighborhood of the current iterate. Unfortunately, the large

constants in the convergence rate of this method make it impractical to use. Another variant

we show a lazified version of is the Pairwise Conditional Gradient method of Garber and

Meshi (2016), which uses two linear optimization calls per iteration, one to find a good point

to add to the convex combination of the current point and one to remove points or at least

decrease their contribution. Our method also applies to the Block-Coordinate Frank-Wolfe

algorithm, the Fully-Corrective Frank-Wolfe algorithm, as well as the Block-Coordinate

Frank-Wolfe method, however we do not provide the proofs for these methods in this work.

For a more detailed overview in general we refer the reader to Jaggi (2013) and for an
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overview specifically for versions with global linear convergence to Lacoste-Julien and Jaggi

(2015).

The Frank-Wolfe method was also successfully applied in the online learning setting

(see Hazan and Kale 2012). We also show a lazified version of this algorithm maintaining

the same regret bounds as the original version. Combinatorial convex online optimization

has been investigated in a long line of work (see e.g., Kalai and Vempala 2005; Audibert,

Bubeck, and Lugosi 2013; Neu and Bartók 2013) and we want to point out that our regret

bounds hold in the structured learning setting, i.e., they depend on the `1-diameter of the

feasible region instead of the dimension (see e.g., Cohen and Hazan 2015; Gupta, Goemans,

and Jaillet 2016). A good overview of online convex optimization can be found in Hazan

(2016).

We want to stress again that our lazified algorithms inherit all requirements, assumptions,

and properties of the non-lazy counterparts, including restrictions on the feasible region P

as well as smoothness and convexity requirements for the considered objective functions.

We will state these requirements in each section for the particular algorithm.

4.1 Lazy Conditional Gradients

We start with the most basic Frank-Wolfe algorithm as a simple example how a conditional

gradient algorithm can be lazified by means of a weak separation oracle. We will also use

the basic variant to discuss various properties and implications. We then show how the more

complex Frank-Wolfe algorithms in Garber and Hazan (2013) and Garber and Meshi (2016)

can be lazified. Throughout this section ‖·‖ denotes the `2-norm.

4.1.1 Lazy Conditional Gradients: a basic example

We start with lazifying the original Frank-Wolfe algorithm (arguably the simplest conditional

gradient algorithm), adapting the baseline argument from Jaggi (2013, Theorem 1). While
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the vanilla version has suboptimal convergence rate O(1/T), its simplicity makes it an

illustrative example of the main idea of lazification. The lazy algorithm (Algorithm 2)

maintains an upper bound Φt on the convergence rate, guiding its eagerness for progress

when searching for an improving vertex vt. If the oracle provides an improving vertex vt we

refer to this as a positive call and we call it a negative call otherwise.

Algorithm 2 Lazy Conditional Gradients (LCG)
Require: smooth convex f function with curvature C, x1 ∈ P start vertex, LPsepP weak

linear separation oracle, accuracy K > 1, initial upper bound Φ0
Ensure: xt points in P
1: for t = 1 to T − 1 do

2: Φt ←
Φt−1+

Cγ2
t

2
1+ γt

K
3: vt ← LPsepP(∇ f (xt), xt, Φt, K)
4: if vt = false then
5: xt+1 ← xt
6: else
7: xt+1 ← (1− γt)xt + γtvt
8: end if
9: end for

The step size γt is chosen to (approximately) minimize Φt in Line 2; roughly Φt−1/KC.

Theorem 4.1.1. Assume f is convex and smooth with curvature C. Then Algorithm 2 with

γt =
2(K2+1)

K(t+K2+2) has convergence rate

f (xt)− f (x∗) ≤ 2 max{C, Φ0}(K2 + 1)
t + K2 + 2

, (4.1)

where x∗ is a minimum point of f over P.

Proof. We prove by induction that

f (xt)− f (x∗) ≤ Φt−1.

The claim is clear for t = 1 by the choice of Φ0. Assuming the claim is true for t, we prove

it for t + 1. We distinguish two cases depending on the return value of the weak separation
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oracle in Line 3.

When the oracle returns an improving solution vt, which we call the positive case, then

∇ f (xt)(xt− vt) ≥ Φt/K, which is used in the second inequality below. The first inequality

follows by smoothness of f , and the third inequality by the induction hypothesis:

f (xt+1)− f (x∗) ≤ f (xt)− f (x∗) + γt∇ f (xt)(vt − xt) +
Cγ2

t
2

≤ f (xt)− f (x∗)− γt
Φt

K
+

Cγ2
t

2

≤ Φt−1 − γt
Φt

K
+

Cγ2
t

2

= Φt,

When the oracle returns no improving solution, then in particular∇ f (xt)(xt− x∗) ≤ Φt,

hence by Line 5

f (xt+1)− f (x∗) = f (xt)− f (x∗) ≤ ∇ f (xt)(xt − x∗) = Φt. (4.2)

Finally, using the specific values of γt we prove the upper bound

Φt−1 ≤
2 max{C, Φ0}(K2 + 1)

t + K2 + 2
(4.3)

by induction on t. The claim is obvious for t = 1. The induction step is an easy computation

relying on the definition of Φt on Line 2:

Φt =
Φt−1 +

Cγ2
t

2
1 + γt

K
≤

2 max{C,Φ0}(K2+1)
t+K2+2 +

max{C,Φ0}γ2
t

2

1 + γt
K

= 2 max{C, Φ0}(K2 + 1)
1 + γt

2K(
1 + γt

K
)
(t + K2 + 2)

≤ 2 max{C, Φ0}(K2 + 1)
t + K2 + 3

.

(4.4)

Here the second equation follows via plugging-in the choice for γt for one of the γt in the

quadratic term and last inequality follows from t ≥ 1 and the concrete choice of γt.
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Remark 4.1.2 (Discussion of the weak separation oracle). A few remarks are in order:

(i) Interpretation of weak separation oracle. The weak separation oracle provides new

extreme points (or vertices) vt that ensure necessary progress to converge at the

proposed rate Φt or it certifies that we are already Φt-close to the optimal solution.

It is important to note that the two cases in Oracle 1 are not mutually exclusive: the

oracle might return y ∈ P with c(x− y) > Φ/K (positive call: returning a vertex

y with improvement Φ/K), while still c(x − z) ≤ Φ for all z ∈ P (negative call:

certifying that there is no vertex z that can improve by Φ). This a desirable property

as it makes the separation problem much easier and the algorithm works with either

answer in the ambiguous case.

(ii) Choice of K. The K parameter can be used to bias the oracle towards positive calls,

i.e., returning improving directions. We would also like to point out that the algorithm

above as well as those below will also work for K = 1, however we later show that

we can use an even weaker oracle to realize a weak separation oracle if K > 1 in

Section 4.4 and for consistency, we require K > 1 throughout. In the case K = 1 the

two cases in the oracle are mutually exclusive.

(iii) Effect of caching and early termination. When realizing the weak separation oracle,

the actual linear optimization oracle has to be only called if none of the previously seen

vertices (or atoms) satisfies the separation condition. Moreover, the weak separation

oracle has to only produce a satisfactory solution and not an approximately optimal

one. These two properties are responsible for the observed speedup (see Figure 4.26).

Moreover, the convex combinations of vertices of P that represent the solutions xt are

extremely sparse as we reuse (cached) vertices whenever possible.

(iv) Dual certificates. By not computing an approximately optimal solution, we give up dual

optimality certificates. For a given point x ∈ P, let g(x) := maxv∈P∇ f (x)(x− v)

denote theWolfe gap. We have f (x)− f (x∗) ≤ g(x) where x∗ = argminx∈P f (x)

109



by convexity. In those rounds t where we obtain an improving vertex we have no

information about g(xt). However, if the oracle returns false in round t, then we obtain

the dual certificate f (xt)− f (x∗) ≤ g(xt) ≤ Φt.

(v) Rate of convergence. A close inspection of the algorithm utilizing the weak separation

oracle suggests that the algorithm converges only at the worst-case convergence rate

that we propose with the Φt sequence. This however is only an artifact of the simplified

presentation for the proof of the worst-case rate. We can easily adjust the algorithm

to implicitly perform a search over the rate Φt combined with line search for γ. This

leads to a parameter-free variant of Algorithm 2 and comes at the expense of a (small!)

constant factor deterioration of the worst-case rate guarantee; see Remark 4.1.3.(iii) as

well as Section 4.3.

Remark 4.1.3 (Implementation improvements). Note that there are various obvious improve-

ments to Algorithm 2 for actual implementations. These improvements do not affect the

theoretical (worst-case) performance and for the sake of clarity of the exposition we did not

include them in Algorithm 2; see Section 4.3 for the parameter-free version including (most

of) these improvements.

(i) First of all, we can improve the update of Φt, updating it with the actual gap closed,

rather than the pessimistic update via the lower bound on gap closed, i.e., we can

update Φt ← Φt − ( f (xt)− f (xt+1)), whenever we calculated a new point xt+1.

(ii) Moreover, we can better utilize information from negative oracle calls (i.e., when the

oracle returns false): if the oracle utilizes linear optimization at its core, then a negative

oracle call will certify ∇ f (xt)(xt − v) ≤ Φt via maximizing ∇ f (xt)v with v ∈ P,

i.e., the linear optimization oracle computes g(xt) and we can reset Φt ← g(xt).

If v∗ realizes the Wolfe gap, which is obtained as a byproduct of the above linear

maximization, we can further use v∗ to make a step: rather than executing line 5, we
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can execute line 7 with vt = v∗. By doing so we maximize the use of information

obtained from a negative oracle call.

(iii) Finally, we can optimize the management of Φt. To obtain a better upper bound Φ0,

we can solve v∗ := argmaxv∈P∇ f (x1)v at the expense of one extra LP call and

set Φ0 := ∇ f (x1)(x1 − v∗) = g(x1). Alternatively, we can perform binary search

over Φ0 until the weak separation oracle produces an actual step. If Φ̄ is the value of

the search for which we observe the first step, we can reset Φ0 := 2Φ̄ and we have

f (x1)− f (x∗) ≤ g(x1) ≤ 2Φ̄.

Furthermore, we can change the strategy for managing Φt as follows: we keep the value

of Φt fixed in line 2 and perform line search for γ. Whenever, we observe a negative

oracle call, we set the current Φt to 1
2 g(xt) obtained from the negative call. As such,

we ensure Φt < g(xt) ≤ 2Φt, which biases the algorithm towards (much cheaper)

positive calls. Convergence is ensured by observing that an LPsepP(·, ·, Φ/2, K)

oracle is an LPsepP(·, ·, Φ, K/2) oracle for which the theorem directly applies. With

this strategy wemaintain the same theoretical (worst-case) convergence up to a constant

factor, however in case a faster convergence is possible, we adapt to that rate.

4.1.2 Lazy Pairwise Conditional Gradients

In this section we provide a lazy variant (Algorithm 3) of the Pairwise Conditional Gradient

algorithm from Garber and Meshi (2016), using separation instead of linear optimization.

We make identical assumptions: the feasible region is a 0/1 polytope given in the form

P = {x ∈ Rn | 0 ≤ x ≤ 1, Ax = b}, where 1 denotes the all-one vector of compatible

dimension; in particular all vertices of P have only 0/1 entries.

Observe that Algorithm 3 calls the linear separation oracle LPsep on the Cartesian prod-

uct of P with itself. Choosing the objective function as in Line 5 allows us to simultaneously

find an improving direction and an away-step direction.
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Algorithm 3 Lazy Pairwise Conditional Gradients (LPCG)
Require: polytope P, smooth and S-strongly convex function f with curvature C, accuracy

K > 1, ηt non-increasing step-sizes
Ensure: xt points
1: x1 ∈ P arbitrary and Φ0 ≥ f (x1)− f (x∗)
2: for t = 1, . . . , T do
3: define ∇̃ f (xt) ∈ Rm as follows:

∇̃ f (xt)i :=

{
∇ f (xt)i if (xt)i > 0
−∞ if (xt)i = 0

4: Φt ← 2Φt−1+η2
t C

2+ ηt
K∆t

5: ct ←
(
∇ f (xt),−∇̃ f (xt)

)
6: (v+t , v−t )← LPsepP×P

(
ct, (xt, xt), Φt

∆t
, K
)

7: if (v+t , v−t ) = false then
8: xt+1 ← xt
9: else
10: η̃t ← max{2−δ | δ ∈ Z≥0, 2−δ ≤ ηt}
11: xt+1 ← xt + η̃t(v+t − v−t )
12: end if
13: end for
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Theorem 4.1.4. Let x∗ be a minimum point of f in P, and Φ0 an upper bound of f (x1)−

f (x∗). Furthermore, let M1 :=
√

S
8 card(x∗) , M2 := KC/2, κ := min{ M1

2M2
, 1/
√

Φ0},

ηt := κ
√

Φt−1 and ∆t :=
√

2 card(x∗)Φt−1
S , then Algorithm 3 has convergence rate

f (xt+1)− f (x∗) ≤ Φt ≤ Φ0

(
1 + B

1 + 2B

)t
,

where B := κ · M1
2K .

We recall a technical lemma for the proof.

Lemma 4.1.5 (Garber and Meshi 2016, Lemma 2). Let x, y ∈ P. There exists vertices vi

of P such that x = ∑k
i=1 λivi and y = ∑k

i=1 (λi − γi) vi +
(

∑k
i=1 γi

)
z with γi ∈ [0, λi],

z ∈ P and ∑k
i=1 γi ≤

√
card(y)‖x− y‖.

Proof of Theorem 4.1.4. The feasibility of the iterates xt is ensured by Line 10 and the

monotonicity of the sequence {ηt}t≥1 with the same argument as in Garber and Meshi

(2016, Lemma 1 and Observation 2).

We first show by induction that

f (xt+1)− f (x∗) ≤ Φt.

For t = 0 we have Φ0 ≥ f (x1)− f (x∗). Now assume the statement for some t ≥ 0. In the

negative case (Line 8), we use the guarantee of Oracle 1 to get

ct((xt, xt)− (z1, z2)) ≤
Φt

∆t

for all z1, z2 ∈ P, which is equivalent to (as ct(xt, xt) = 0)

∇̃ f (xt)z2 −∇ f (xt)z1 ≤
Φt

∆t
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and therefore

∇ f (xt)(z̃2 − z1) ≤
Φt

∆t
, (4.5)

for all z̃2, z1 ∈ P with supp(z̃2) ⊆ supp(xt). We further use Lemma 4.1.5 to write

xt = ∑k
i=1 λivi and x∗ = ∑k

i=1(λi − γi)vi + ∑k
i=1 γiz with γi ∈ [0, λi], z ∈ P and

∑k
i=1 γi ≤

√
card(x∗)‖xt − x∗‖ ≤

√
2 card(x∗)Φt−1

S = ∆t, using the induction hypothesis

and the strong convexity in the second inequality. Then

f (xt+1)− f (x∗) = f (xt)− f (x∗) ≤ ∇ f (xt)(xt− x∗) =
k

∑
i=1

γi(vi− z) · ∇ f (xt) ≤ Φt,

where we used Equation 4.5 for the last inequality.

For the positive case (Lines 10 and 11) we get, using first smoothness of f , then ηt/2 <

η̃t ≤ ηt and ∇ f (xt)(v+t − v−t ) ≤ −Φt/(∆tK), and finally the definition of Φt:

f (xt+1)− f (x∗) = f (xt)− f (x∗) + f (xt + η̃t(v+t − v−t ))− f (xt)

≤ Φt−1 + η̃t∇ f (xt)(v+t − v−t ) +
η̃2

t C
2

≤ Φt−1 −
ηt

2
· Φt

∆tK
+

η2
t C
2

= Φt.

Plugging in the values of ηt and ∆t to the definition of Φt gives the desired bound.

Φt =
2Φt−1 + η2

t C
2 + ηt

K∆t

= Φt−1
1 + κ2M2/K
1 + κM1/K

≤ Φt−1
1 + B
1 + 2B

≤ Φ0

(
1 + B

1 + 2B

)t
.

4.1.3 Lazy Local Conditional Gradients

In this section we provide a lazy version (Algorithm 4) of the conditional gradient algorithm

from Garber and Hazan (2013). Let P ⊆ Rn be any polytope, D denote an upper bound

on the `2-diameter of P, and µ ≥ 1 be the affine invariant of P from Garber and Hazan

(2013). As the algorithm is not affine invariant by nature, we need a non-invariant version of
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smoothness: Recall that a convex function f is β-smooth if

f (y)− f (x) ≤ ∇ f (x)(y− x) + β‖y− x‖2/2.

Algorithm 4 Lazy Local Conditional Gradients (LLCG)
Require: feasible polytope P, β-smooth and S-strongly convex function f , parameters K,

S, β, µ; diameter D
Ensure: xt points
1: x1 ∈ P arbitrary and Φ0 ≥ f (x1)− f (x∗)
2: α← S

2Kβnµ2

3: for t = 1, . . . , T do
4: Φt ←

Φt−1+
β
2 α2 min{nµ2r2

t ,D2}
1+α/K

5: rt ←
√

2Φt−1
S

6: pt ← LLPsepP (∇ f (xt), xt, rt, Φt, K)
7: if pt = false then
8: xt+1 ← xt
9: else
10: xt+1 ← xt + α(pt − xt)
11: end if
12: end for

As an intermediary step, we first implement a local weak separation oracle in Algorithm 5,

a local version of Oracle 1, analogously to the local linear optimization oracle in Garber and

Hazan (2013). To this end, we recall a technical lemma from Garber and Hazan (2013).

Lemma 4.1.6 (Garber and Hazan 2013, Lemma 7). Let P ⊆ Rn be a polytope and

v1, . . . , vN be its vertices. Let x, y ∈ P and x = ∑N
i=1 λivi a convex combination of

the vertices of P. Then there are numbers 0 ≤ γi ≤ λi and z ∈ P satisfying

y− x = − ∑
i∈[N]

γivi +

 ∑
i∈[N]

γi

 z (4.6)

∑
i∈[N]

γi ≤
√

nµ

D
‖x− y‖. (4.7)

Now we prove the correctness of the weak local separation algorithm.
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Algorithm 5Weak Local Separation LLPsepP(c, x, r, Φ, K)

Require: c ∈ Rn linear objective, x ∈ P point, r > 0 radius, Φ > 0 objective value
Ensure: Either (1) y ∈ P with ‖x − y‖ ≤

√
nµr and c(x − y) > Φ/K, or (2) false:

c(x− z) ≤ Φ for all z ∈ P ∩Br (x).
1: ∆← min

{√
nµ
D r, 1

}
2: Decompose x: x = ∑M

j=1 λjvj, λj > 0, ∑j λj = 1.
3: Sort vertices: i1, . . . , iM cvi1 ≥ · · · ≥ cviM .
4: k← min{k : ∑k

j=1 λij ≥ ∆}
5: p− ← ∑k−1

j=1 λij vij +
(

∆−∑k−1
j=1 λij

)
vik

6: v∗ ← LPsepP
(
c, p−

∆ , Φ
∆

)
7: if v∗ = false then
8: return false
9: else
10: return y← x− p− + ∆v∗

11: end if

Lemma 4.1.7. Algorithm 5 is correct. In particular LLPsepP(c, x, r, Φ, K)

(i) returns either an y ∈ P with ‖x− y‖ ≤
√

nµr and c(x− y) > Φ/K,

(ii) or establishes c(x− z) ≤ Φ for all z ∈ P ∩Br (x).

Proof. We first consider the case when the algorithm exits in Line 10. Observe that y ∈ P

since y is a convex combination of vertices of P. Moreover by construction of y we can

write y = ∑M
j=1(λij − γj)vij + ∆v∗ with ∆ = ∑M

j=1 γj ≤
√

nµ
D r. Therefore

‖x− y‖ =
∥∥∥∥∥ M

∑
j=1

γjvij − ∆v∗
∥∥∥∥∥ ≤ M

∑
j=1

γj‖vij − v∗‖

≤
√

nµr.

Finally using the guarantee of LPsepP we get

c(x− y) = ∆c
( p−

∆
− v∗

)
≥ Φ

K
.

If the algorithm exits in Line 8, we use Lemma 4.1.6 to decompose any y ∈ P ∩Br (x)
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in the following way:

y =
N

∑
i=1

(λi − γi)vi +

(
N

∑
i=1

γi

)
z,

with z ∈ P and ∑N
i=1 γi ≤

√
nµ
D ‖x− y‖ ≤ ∆. Since ∑N

i=1 λi = 1 ≥ ∆, there are numbers

γi ≤ η−i ≤ λi with ∑N
i=1 η−i = ∆. Let

p̃− :=
N

∑
i=1

η−i vi, (4.8)

p̃+ := y− x + p̃− =
N

∑
i=1

(η−i − γi)vi +
N

∑
i=1

γiz, (4.9)

so that p̃+/∆ ∈ P. To bound the function value we first observe that the choice of p− in the

algorithm assures that cu ≤ cp− for all u = ∑N
i=1 ηivi with ∑N

i=1 ηi = ∆ and all ηi ≥ 0. In

particular, cp̃− ≤ cp−. The function value of the positive part p̃+ can be bounded with the

guarantee of LPsepP:

c
(

p−
∆
− p̃+

∆

)
≤ Φ

∆
,

i.e., c(p− − p̃+) ≤ Φ. Finally combining these bounds gives

c(x− y) = c ( p̃− − p̃+) ≤ c(p− − p̃+) ≤ Φ

as desired.

We are ready to examine the Conditional Gradient algorithm based on LLPsepP:

Theorem 4.1.8. Algorithm 4 converges with the following rate:

f (xt+1)− f (x∗) ≤ Φt ≤ Φ0

(
1 + α/(2K)

1 + α/K

)t

.

Proof. The proof is similar to the proof of Theorem 4.1.4. We prove this rate by induction.

For t = 0 the choice of Φ0 guarantees that f (x1)− f (x∗) ≤ Φ0. Now assume the theorem
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holds for t ≥ 0. With strong convexity and the induction hypothesis we get

‖xt − x∗‖2 ≤ 2
S
( f (xt)− f (x∗)) ≤ 2

S
Φt−1 = r2

t ,

i.e., x∗ ∈ P ∩ Brt (xt). In the negative case, i.e., when pt = false, then case (ii) of

Lemma 4.1.7 applies:

f (xt+1)− f (x∗) = f (xt)− f (x∗) ≤ ∇ f (xt)(xt − x∗) ≤ Φt.

In the positive case, i.e., when Line 10 is executed, we get the same inequality via:

f (xt+1)− f (x∗) ≤ Φt−1 + α∇ f (xt)(pt − xt) +
β

2
α2‖x− pt‖2

≤ Φt−1 − α
Φt

K
+

β

2
α2 min{nµ2r2

t , D2}

= Φt.

Therefore using the definition of α and rt we get the desired bound:

Φt ≤
Φt−1 +

β
2 α2r2

t nµ2

1 + α/K
= Φt−1

(
1 + α/(2K)

1 + α/K

)
≤ Φ0

(
1 + α/(2K)

1 + α/K

)t

.

4.2 Lazy Online Conditional Gradients

In this section we lazify the Online Conditional Gradient algorithm (OCG) of Hazan and

Kale (2012) over arbitrary polytopes P = {x ∈ Rn | Ax ≤ b}, resulting in Algorithm 6.

We slightly improve constant factors by replacing Hazan and Kale (2012, Lemma 3.1) with

a better estimation via solving a quadratic inequality arising from strong convexity. In this

section the norm ‖·‖ can be arbitrary.

Theorem 4.2.1. Let 0 ≤ b, s < 1. Let K > 1 be an accuracy parameter. Assume ft is

L-Lipschitz, and smooth with curvature at most Ct−b. Let D := maxy1,y2∈P‖y1 − y2‖
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Algorithm 6 Lazy Online Conditional Gradients (LOCG)
Require: ft functions, x1 ∈ P start vertex, LPsepP weak linear separation oracle, parame-

ters K, C, b, S, s; diameter D
Ensure: xt points
1: for t = 1 to T − 1 do
2: ∇t ← ∇ ft(xt)
3: if t = 1 then
4: h1 ← min{‖∇1‖∗ D, 2 ‖∇1‖∗

2 /S}
5: else

6: ht ← Φt−1 + min

{
‖∇t‖∗ D, ‖∇t‖∗

2

St1−s + 2

√
‖∇t‖∗

2

2St1−s

(
‖∇t‖∗

2

2St1−s + Φt−1

)}
7: end if

8: Φt ←
ht+

Ct1−bγ2
t

2(1−b)

1+ γt
K

9: vt ← LPsepP(∑
t
i=1∇ fi(xt), xt, Φt, K)

10: if vt = false then
11: xt+1 ← xt
12: else
13: xt+1 ← (1− γt)xt + γtvt
14: Φt ← ht −∑t

i=1 fi(xt) + ∑t
i=1 fi(xt+1)

15: end if
16: end for
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denote the diameter of P in norm ‖·‖. Then the following hold for the points xt computed by

Algorithm 6 where x∗T is the minimizer of ∑T
t=1 ft:

(i) With the choice

γt = t−(1−b)/2,

the xt satisfy
1
T

T

∑
t=1

( ft(xT)− ft(x∗T)) ≤ AT−(1−b)/2, (4.10)

where

A :=
CK

2(1− b)
+ L(K + 1)D.

(ii) Moreover, if all the ft are St−s-strongly convex, then with the choice

γt = t(b+s−2)/3,

the xt satisfy
1
T

T

∑
t=1

( ft(xT)− ft(x∗T)) ≤ AT−(2(1+b)−s)/3, (4.11)

where

A := 2
(
(K + 1)(K + 2)

L2

S
+

CK
2(1− b)

)
.

Proof. We prove only Claim (ii), as the proof of Claim (i) is similar and simpler. Let

FT := ∑T
t=1 ft. Furthermore, let hT := AT1−(2(1+b)−s)/3 be T times the right-hand side of

Equation (4.11). In particular, FT is ST-strongly convex, and smooth with curvature at most

CFT where

CFT :=
CT1−b

1− b
≥ C

T

∑
t=1

t−b, ST := ST1−s ≤ S
T

∑
t=1

t−s. (4.12)

We prove Ft(xt)− Ft(x∗t ) ≤ ht ≤ ht by induction on t. The case t = 1 is clear. Let Φt

denote the value of Φt in Line 8, while we reserve Φt to denote its value as used in Line 6.
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We start by showing Ft(xt+1)− Ft(x∗t ) ≤ Φt ≤ Φt. We distinguish two cases depending

on vt from Line 9. If vt is false, then Φt = Φt and the weak separation oracle asserts

maxy∈P∇Ft(xt)(xt − y) ≤ Φt, which combined with the convexity of Ft provides

Ft(xt+1)− Ft(x∗t ) = Ft(xt)− Ft(x∗t ) ≤ ∇Ft(xt)(xt − xt∗) ≤ Φt = Φt.

Otherwise vt is a vertex of P, then Line 14 and the induction hypothesis provides Ft(xt+1)−

Ft(x∗t ) ≤ ht + Ft(xt+1)− Ft(xt) = Φt. To prove Φt ≤ Φt, we apply the smoothness of Ft

followed by the inequality provided by the choice of vt:

Ft(xt+1)− Ft(xt)−
CFt γ

2
t

2
≤ ∇Ft(xt)(xt+1 − xt) = γt∇Ft(xt)(vt − xt) ≤ −

γtΦt

K
.

Rearranging provides the inequality below.

Φt = ht + Ft(xt+1)− Ft(xt) ≤ ht −
γtΦt

K
+

CFt γ
2
t

2
= Φt.

For later use, we bound the difference between ht and Φt using the value of parameters,

ht ≤ ht, and γt ≤ 1:

ht −Φt ≥ ht −
ht +

CFt γ2
t

2
1 + γt

K
=

htγt
K −

CFt γ2
t

2
1 + γt

K
≥

htγt
K −

CFt γ2
t

2

1 + 1
K

=
A− CK

2(1−b)

K + 1
t[2s−(1+b)]/3.

We now apply Ft(xt+1)− Ft(x∗t ) ≤ Φt, together with convexity of ft+1, and the mini-

mality Ft(x∗t ) ≤ Ft(x∗t+1) of x∗t , followed by strong convexity of Ft+1:

Ft+1(xt+1)− Ft+1(x∗t+1) ≤ (Ft(xt+1)− Ft(x∗t )) + ( ft+1(xt+1)− ft+1(x∗t+1))

≤ Φt + ‖∇t+1‖∗ · ‖xt+1 − x∗t+1‖

≤ Φt + ‖∇t+1‖∗
√

2
St+1

(Ft+1(xt+1)− Ft+1(x∗t+1)).

(4.13)

121



Solving the quadratic inequality provides

Ft+1(xt+1)− Ft+1(x∗t+1) ≤ Φt +
‖∇t+1‖∗

2

St+1
+ 2

√√√√‖∇t+1‖∗
2

2St+1

(
‖∇t+1‖∗

2

2St+1
+ Φt

)
.

(4.14)

From Equation (4.13), ignoring the last line, we also obtain Ft+1(xt+1)− Ft+1(x∗t+1) ≤

Φt + ‖∇t+1‖∗ D via the estimate ‖xt+1 − x∗t+1‖ ≤ D. Thus Ft+1(xt+1)− Ft+1(x∗t+1) ≤

ht+1, by Line 6, as claimed.

Now we estimate the right-hand side of Equation (4.14) by using the actual value of

parameters, the estimate ‖∇t+1‖∗ ≤ L and the inequality s + b ≤ 2. Actually, we estimate

a proxy for the right-hand side. Note that A was chosen to satisfy the second inequality.

L2

St+1
+ 2

√
L2

2St+1
ht ≤

L2

St1−s + 2

√
L2

2St1−s ht ≤
L2

S
t[2s−(1+b)]/3 + 2

√
L2

2St1−s ht

=

(
L2

S
+

√
2

L2

S
A

)
t[2s−(1+b)]/3 ≤

A− CK
2(1−b)

K + 1
t[2s−(1+b)]/3

≤ ht −Φt ≤ ht −Φt.

In particular, L2

2St+1
+ Φt ≤ ht hence combining with Equation (4.14) we obtain

ht+1 ≤ Φt +
L2

St+1
+ 2

√
L2

2St+1

(
L2

2St+1
+ Φt

)

≤ Φt +
L2

St+1
+ 2

√
L2

2St+1
ht

≤ ht ≤ ht+1.

4.2.1 Stochastic and Adversarial Versions

Complementing the offline algorithms from Section 4.1, we will now derive various versions

from the online case. The presented cases here are similar to those in Hazan and Kale (2012)

and thus we state them without proof.
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For stochastic cost functions ft, we obtain bounds from Theorem 4.2.1 (i) similar to

Hazan and Kale (2012, Theorems 4.1 and 4.3) (with δ replaced by δ/T in the bound to

correct an inaccuracy in the original argument). The proof is analogous and hence omitted,

but note that ‖y1 − y2‖2 ≤
√
‖y1 − y2‖1‖y1 − y2‖∞ ≤

√
k for all y1, y2 ∈ P.

Corollary 4.2.2. Let ft be convex functions sampled i.i.d. with expectation E [ ft] = f ∗, and

δ > 0. Assume that the ft are L-Lipschitz in the 2-norm.

(i) If all the ft are smooth with curvature at most C, then Algorithm 6 applied to the ft

(with b = 0) yields with probability 1− δ

T

∑
t=1

f ∗(xt)−min
x∈P

T

∑
t=1

f ∗(x) ≤ O
(

C
√

T + Lk
√

nT log(nT2/δ) log T
)

. (4.15)

(ii) Without any smoothness assumption, Algorithm 6 (applied to smoothenings of the ft)

provides with probability 1− δ

T

∑
t=1

f ∗(xt)−min
x∈P

T

∑
t=1

f ∗(x) ≤ O
(√

nLkT2/3 + Lk
√

nT log(nT2/δ) log T
)

.

(4.16)

Similar to Hazan and Kale (2012, Theorem 4.4), from Theorem 4.2.1 (ii) we obtain the

following regret bound for adversarial cost functions with an analogous proof.

Corollary 4.2.3. For any L-Lipschitz convex cost functions ft, Algorithm 6 applied to

the functions f̃t(x) := ∇ ft(xt)x + 2L√
k
t−1/4‖x − x1‖2

2 (with b = s = 1/4, C = L
√

k,

S = L/
√

k, and Lipschitz constant 3L) achieving regret

T

∑
t=1

ft(xt)−min
x∈P

T

∑
t=1

ft(x) ≤ O(L
√

kT3/4) (4.17)

with at most T calls to the weak separation oracle.

Note that the gradient of the f̃t are easily computed via the formula∇ f̃t(x) = ∇ ft(xt) +

4Lt−1/4(x− x1)/
√

k, particularly because the gradient of the ft need not be recomputed,
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so that we obtain a weak separation-based stochastic gradient descent algorithm, where

we only have access to the ft through a stochastic gradient oracle, while retaining all the

favorable properties of the Frank-Wolfe algorithm with a convergence rate O(T−1/4) (c.f.,

Garber and Hazan 2013).

4.3 Parameter-free Conditional Gradients via Weak Sepa-

ration

In this section we provide the Conditional Gradient algorithm with the implementation

improvements that we sketched in Section 4.1.1 for completeness. In particular the ob-

tained algorithm is parameter-free; note that K is a parameter of the oracle and not the

algorithms. Similar improvements apply to the other algorithms and the adaptation of those

is straightforward and left to the interested reader.

If the weak separation oracle is realized via a linear minimization oracle at its core, then

we can slightly change the specification of the oracle. It still maintains the advantage of

caching and early termination, however we utilize the information obtained from the linear

optimization calls better. We present the adjusted oracle in Oracle 2. The major difference is

that in the negative case, where a Φ/K-improving vertex does not exist, the oracle does not

just return false as before but returns also a maximizing vertex. Note that this information

is obtained from the linear optimization oracle as a byproduct in the negative case. The

negative case (2) in Oracle 2 can be replaced by an approximate upper bound if desired; see

Remark 4.3.4.

Oracle 2 Weak Separation Oracle LPsepP(c, x, Φ, K)

Require: c ∈ Rn linear objective, x ∈ P point, K ≥ 1 accuracy, Φ > 0 objective value;
Ensure: y ∈ P vertex with either (1) c(x − y) > Φ/K, or
(2) y = argmaxy∈P c(x− z) ≤ Φ.

We now present the Lazy Conditional Gradient algorithm (see Algorithm 2) with im-
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provements in Algorithm 7 below. We stress that the worst-case convergence rate is identical

up to a small constant factor and at the same time the algorithm becomes parameter-free.

Here we perform the initial bound tightening of Φ0 with a single extra LP call, which

can be also done approximately as long as Φ0 is a valid upper bound. Alternative one

can perform binary search via the weak separation oracle as described earlier. Note that

Algorithm 7 does not include the primal tightening Φt ← Φt − ( f (xt) − f (xt+1)) as

outlined in Remark 4.1.3.(i), as we want to keep the Φt unchanged in the case of a positive

oracle call to promote more aggressive improvements: the guaranteed improvement is

quadratic or linear in Φt for positive calls depending on the magnitude of Φt.

Algorithm 7 Parameter-free Lazy Conditional Gradients (LCG)
Require: smooth convex f function, x1 ∈ P start vertex, LPsepP weak linear separation

oracle, accuracy K > 1
Ensure: xt points in P
1: Φ← maxx∈P∇ f (x1)(x1 − x) {Initial bound tightening}
2: for t = 1 to T − 1 do
3: vt ← LPsepP(∇ f (xt), xt, Φ, K)
4: Line search over γt to minimize f ((1− γt)xt + γtvt)
5: xt+1 ← (1− γt)xt + γtvt
6: if not ∇ f (xt)(xt − vt) > Φ/K then
7: Φ← ∇ f (xt)(xt−vt)

2 {Update Φ via dual gap and halve}
8: end if
9: end for

Theorem 4.3.1 shows that Algorithm 7 converges in the worst-case at a rate identical to

Algorithm 2 (up to a small constant factor).

Theorem 4.3.1. Algorithm 7 converges at a rate proportional to 1/t. In particular to achieve

a bound f (xt)− f (x∗) ≤ ε, the number of required steps is upper bounded by

t ≤ 4Kdlog Φ0/KCe+ 4K2C
ε

.

Proof. Let C be the curvature of the smooth convex function f and Φt be Φ at the end of

iteration t. Let us first establish that f (xt+1)− f (x∗) ≤ 2Φt at the end of each iteration:
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Initially, for t = 0, we have by Line 1 and convexity Φ0 = argmaxx∈P∇ f (x1)(x1− x) ≥

∇ f (x1)(x1 − x∗) ≥ f (x1)− f (x∗). This establishes the case t = 0, so that for induction

we assume that f (xt)− f (x∗) ≤ 2Φt−1 holds at the beginning of iteration t.

In the positive case (case (1) in Oracle 2). Via line search it follows that in any iteration

the primal gap is non-increasing, i.e.,

f (xt+1)− f (x∗) ≤ f (xt)− f (x∗) ≤ 2Φt−1 = 2Φt (4.18)

using the induction hypothesis and the fact that Φ does not change in the case of positive

oracle calls. For the negative case (case (2) in Oracle 2) by an argument similar to the positive

case we get

f (xt+1)− f (x∗) ≤ f (xt)− f (x∗) ≤ ∇ f (xt)(xt − x∗) ≤ ∇ f (xt)(xt − vt) = 2Φt,

using convexity for the second inequality and 2Φt = ∇ f (xt)(xt − vt) by Line 7 for the

equality, which completes the induction.

It is left to show that Φt decreases fast enough, which is done by bounding the number

of steps in which Φ is not halved. First observe that in an iteration with a positive oracle call

we have

f (xt)− f (xt+1) ≥ γt
Φt−1

K
− C

2
γ2

t ≥


Φ2

t−1
2CK2 if Φt−1

KC < 1

Φt−1
K − C

2 ≥
C
2 if Φt−1

KC ≥ 1
, (4.19)

via smoothness and optimality of γt from the line search; in both cases a non-negative change.

Let t′ be the number of consecutive steps in which Φ is not halved, then lower bounding the

progress in each step via (4.19), we have

2Φt−1 ≥ f (xt)− f (x∗) ≥
t+t′−1

∑
τ=t

f (xτ)− f (xτ+1) ≥


t′ Φ2

t−1
2CK2 if Φt−1

KC < 1

t′
(

Φt−1
K − C

2

)
if Φt−1

KC ≥ 1
,
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which gives in the case Φt−1 < KC that t′ ≤ 4CK2

Φt−1
and in the case Φt−1 ≥ KC that

t′ ≤ 2Φt−1
Φt−1

K − C
2

=
4KΦt−1

2Φt−1 − KC
≤ 4KΦt−1

2Φt−1 −Φt−1
= 4K.

Adding up the number of steps gives the desired rate: we have at most log(Φ0/ε) scaling

phases, where log(·) is the binary logarithm and ε is the (additive) accuracy. Further in each

scaling phase with scaling parameter Φ we make at most 4CK2

Φ positive steps if Φ ≤ KC

and at most 4K positive steps if Φ ≥ KC. Thus after a total of

t̄ := ∑
`∈[dlog Φ0/KCe]

4K + ∑
`∈[dlog KC/εe]

2`−1 · 4CK2

KC

= 4Kdlog Φ0/KCe+ 4K ∑
`∈[dlog KC/εe]

2`−1

≤ 4Kdlog Φ0/KCe+ 4K2C
ε

steps we have f (xt̄)− f (x∗) ≤ ε.

Remark 4.3.2. Observe that Algorithm 7 might converge much faster due to the aggressive

halving of the rate. In fact, Algorithm 7 convergences at a rate that is at most a factor 4K2

slower than the rate that the vanilla (non-lazy) Frank-Wolfe algorithm would realize for the

same problem. In actual wall-clock time Algorithm 7 is much faster though due to the use

of the weaker oracle; see Figure 4.1 for a comparison of the bounds on the Wolfe gap and

Section 4.5.3 for more experimental results.

Negative oracle calls tend to be significantly more expensive time-wise than positive

oracle calls due to proving dual bounds. The following corollary is an immediate consequence

of the argumentation from above:

Corollary 4.3.3. Algorithm 7 makes at most log(Φ0/ε) negative oracle calls.

Remark 4.3.4 (Approximate negative calls). In Oracle 2 in the negative call case the oracle

returns y = argmaxy∈P c(x − z) ≤ Φ. We can relax the exact linear optimization and
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replace it by a (weaker) upper bound τ satisfying

argmaxy∈P c(x− z) ≤ τ ≤ Φ,

and adjust Algorithm 7 appropriately; in particular in the negative case the algorithm simply

does not update the iterate.

4.4 Weak Separation through Augmentation

So far we realized the weak separation oracle via lazy optimization. We will now create

a (weak) separation oracle for integral polytopes, employing an even weaker, so-called

augmentation oracle, which only provides an improving solution but provides no guarantee

with respect to optimality. We call this approach lazy augmentation. This is especially useful

when a fast augmentation oracle is available or the vertices of the underlying polytope P are

particularly sparse. As before theoretical convergence rates are maintained.

For simplicity of exposition we restrict to 0/1 polytopes P here. For general integral

polytopes, one considers a so-called directed augmentation oracle, which can be similarly

linearized after splitting variables in positive and negative parts; we refer the interested reader

to see Schulz and Weismantel (2002) and Bodic et al. (2015) for an in-depth discussion.

Let k denote the `1-diameter of P. Upon presentation with a 0/1 solution x and a linear

objective c ∈ Rn, an augmentation oracle either provides an improving 0/1 solution x̄ with

cx̄ < cx or asserts optimality for c:

Oracle 3 Linear Augmentation Oracle AUGP(c, x)
Require: c ∈ Rn linear objective, x ∈ P vertex,

Ensure: x̄ ∈ P vertex with cx̄ < cx when exists, otherwise x̄ = x

Such an oracle is significantly weaker than a linear optimization oracle but also signifi-

cantly easier to implement and much faster; we refer the interested reader to Grötschel and
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Figure 4.1: Example behavior of parameter-free variant of the Lazy CG algorithm (Al-
gorithm 7) compared to the vanilla Frank-Wolfe algorithm with approximate optimization
(denoted by CG). We depict the behavior of the dual bound, i.e., the bound on Wolfe gap. In
the top row we report dual bound vs. iterations and in the lower row dual bound vs. wall-clock
time. We can see in the top row how the halving of Φ in Algorithm 7 approximates the
‘true’ Φ from the vanilla Frank-Wolfe. However in walk-clock time the lazy variant achieves
significantly better dual bounds in the same time. The example instances here are two maxcut
instances and we observe the same behavior across most instances. The time limit was 450s
on the left and 1000s on the right.
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Lovász (1993), Schulz, Weismantel, and Ziegler (1995), and Schulz and Weismantel (2002)

for an extensive list of examples. While augmentation and optimization are polynomially

equivalent (even for convex integer programming, see Oertel, Wagner, and Weismantel 2014)

the current best linear optimization algorithms based on an augmentation oracle are slow

for general objectives. While optimizing an integral objective c ∈ Rn needs O(k log‖c‖∞)

calls to an augmentation oracle (see Schulz, Weismantel, and Ziegler 1995; Schulz and

Weismantel 2002; Bodic et al. 2015), a general objective function, such as the gradient in

Frank–Wolfe algorithms has only an O(kn3) guarantee in terms of required oracle calls

(e.g., via simultaneous Diophantine approximations Frank and Tardos 1987), which is not

desirable for large n. In contrast, here we use an augmentation oracle to perform separation,

without finding the optimal solution. Allowing a multiplicative error K > 1, we realize

an augmentation-based weak separation oracle (see Algorithm 8), which decides given a

linear objective function c ∈ Rn, an objective value Φ > 0, and a starting point x ∈ P,

whether there is a y ∈ P with c(x − y) > Φ/K or c(x − y) ≤ Φ for all y ∈ P. In the

former case, it actually provides a certifying y ∈ P, i.e., with c(x − y) > Φ/K. Note

that a constant accuracy K requires a linear number of oracle calls in the diameter k, e.g.,

K = (1− 1/e)−1 ≈ 1.582 needs at most N ≤ k oracle calls.

At the beginning, in Line 2, the algorithm has to replace the input point x with an integral

point x0. If the point x is given as a convex combination of integral points, then a possible

solution is to evaluate the objective c on these integral points, and choose x0 the first one

with cx0 ≤ cx. This can be easily arranged for Frank–Wolfe algorithms as they maintain

convex combinations.

Proposition 4.4.1. Assume ‖y1 − y2‖1 ≤ k for all y1, y2 ∈ P. Then Algorithm 8 is

correct, i.e., it outputs either (1) y ∈ P with c(x − y) > Φ/K, or (2) false. In the

latter case c(x− y) ≤ Φ for all y ∈ P holds. The algorithm calls AUGP at most N ≤

dlog(1− 1/K)/ log(1− 1/k)e many times.

Proof. First note that (1− 2x)v + ‖x‖1 = ‖v− x‖1 for x, v ∈ {0, 1}n, hence Line 7 is
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Algorithm 8 Augmenting Weak Separation LPsepP(c, x, Φ, K)

Require: c ∈ Rn linear objective, x ∈ P point, Φ > 0 objective value; K > 1 accuracy
Ensure: Either (1) y ∈ P vertex with c(x− y) > Φ/K, or (2) false: c(x− z) ≤ Φ for all

z ∈ P.
1: N ← dlog(1− 1/K)/ log(1− 1/k)e
2: Choose x0 ∈ P vertex with cx0 ≤ cx.
3: for i = 1 to N do
4: if c(x− xi−1) ≥ Φ then
5: return xi−1
6: end if
7: xi ← AUGP(c +

Φ−c(x−xi−1)
k (1− 2xi−1), xi−1)

8: if xi = xi−1 then
9: return false
10: end if
11: end for
12: return xN

equivalent to xi ← AUGP(c +
Φ−c(x−xi−1)

k ‖· − xi−1‖1, xi−1).

The algorithm obviously calls the oracle at most N times by design, and always returns a

value, so we need to verify only the correctness of the returned value. We distinguish cases

according to the output.

Clearly, Line 5 always returns an xi−1 with c(x− xi−1) ≥ Φ > [1− (1− 1/k)N]Φ.

When Line 9 is executed, the augmentation oracle just returned xi = xi−1, i.e., for all y ∈ P

cxi−1 ≤ cy +
Φ− c(x− xi−1)

k
‖y− xi−1‖1 (4.20)

≤ cy +
Φ− c(x− xi−1)

k
k (4.21)

= c(y− x) + cxi−1 + Φ, (4.22)

so that c(x− y) ≤ Φ, as claimed.

Finally, when Line 12 is executed, the augmentation oracle has found an improving vertex

xi at every iteration, i.e.,

cxi−1 > cxi +
Φ− c(x− xi−1)

k
‖xi − xi−1‖1 ≥ cxi +

Φ− c(x− xi−1)

k
, (4.23)
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using ‖xi − xi−1‖1 ≥ 1 by integrality. Rearranging provides the convenient form

Φ− c(x− xi) <

(
1− 1

k

)
[Φ− c(x− xi−1)], (4.24)

which by an easy induction provides

Φ− c(x− xN) <

(
1− 1

k

)N
[Φ− c(x− x0)] ≤

(
1− 1

K

)
Φ, (4.25)

i.e., c(x− xN) ≥ Φ
K , finishing the proof.

4.5 Experiments

We implemented and compared the parameter-free variant of LCG (Algorithm 7) to the

standard Frank-Wolfe algorithm (CG).Moreover, we implemented and compared Algorithm 3

(LPCG) to the Pairwise Conditional Gradient algorithm (PCG) variant of Garber and Meshi

(2016) as well as implemented and compared Algorithm 6 (LOCG) to the Online Frank-Wolfe

algorithm (OCG) of Hazan and Kale (2012). While we did implement the Local Linear

Optimization Oracle based variant from Garber and Hazan (2013) as well, the very large

constants in the original algorithms made it impractical to run.

We have used K = 1.1 and K = 1 as multiplicative factors for the weak separation

oracle; for the impact of the choice of K see Section 4.5.4. For the baseline algorithms we

use inexact variants, i.e., we solve linear optimization problems only approximately. This

is a significant speedup in favor of non-lazy algorithms at the (potential) cost of accuracy,

while neutral to lazy optimization as it solves an even more relaxed problem anyways. To

put things in perspective, the non-lazy baselines could not complete even a single iteration

for a significant fraction of the considered problems in the given time frame if we were to

exactly solve the linear optimization problems.

The linear optimization oracle over P× P for LPCG was implemented by calling the
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respective oracle over P twice: once for either component. Contrary to the non-lazy version,

the lazy algorithms depend on the initial upper bound Φ0. For the instances that need a

very long time to solve the (approximate) linear optimization even once, we used for the

lazy algorithms a binary search for Φ0: starting from a conservative initial value, using

the update rule Φ0 ← Φ0/2 until the separation oracle returns an improvement for the

first time and then we start the algorithm with 2Φ0, which is an upper bound on the Wolfe

gap and hence also on the primal gap. This initial phase is also included in the reported

wall-clock time. Alternatively, if the linear optimization is less time consuming we used a

single (approximate) linear optimization at the start to obtain an initial bound on Φ0 (see

e.g., Section 4.3).

In some cases, especially when the underlying feasible region has a high dimension and

the (approximate) linear optimization can be solved relatively fast compared to the cost of

computing an inner product, we observed that the costs of maintaining the cache was very

high. In these cases we reduce the cache size every 100 steps by keeping only the 100 points

that were used the most so far. Both, the number of steps and the approximate size of the

cache are chosen arbitrarily, however 100 for both worked very well for all our examples. Of

course there are many different strategies for maintaining the cache, which could be used

here and which could lead to further improvements in performance.

The stopping criteria for each of the experiments is a given wall clock time limit in

seconds. The time limit was enforced separately for the main code, and the oracle code so in

some cases the actual time used can be larger, when the last oracle call started before the

time limit was reached and took longer than the time left.

We implemented all algorithms in Python 2.7 with critical functions cythonized for

performance employing Numpy. We used these packages from the Anaconda 4.2.0

distribution as well as Gurobi 7.0 Gurobi Optimization (2016) as a black box solver for

the linear optimization oracle and the weak separation oracle. The latter was implemented

via a callback function to stop the optimization as soon as a good enough feasible solution
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has been found. The parameters for Gurobi were kept at their default settings except for

enforcing the time limit of the tests and setting the acceptable duality gap to 10%, allowing

Gurobi to terminate the linear optimization early avoiding the expensive proof of optimality.

This is used to realize the inexact versions of the baseline algorithms. All experiments were

performed on a 16-core machine with Intel Xeon E5-2630 v3 @ 2.40GHz CPUs and 128GB

of main memory. While our code does not explicitly use multiple threads, both Gurobi and

the numerical libraries use multiple threads internally.

4.5.1 Considered problems

We performed computational tests on a large variety of different problems that are instances

of the three machine learning tasks video colocalization, matrix completion and structured

regression.

Video colocalization. Video colocalization is the problem of identifying objects in a

sequence of multiple frames in a video. In Joulin, Tang, and Fei-Fei (2014) it is shown that

video colocalization can be reduced to optimizing a quadratic objective function over a flow

or a path polytope , which is the problem we are going to solve. The quadratic functions are

of the form ‖Ax− b‖2 where we choose the non-zero entries in A according to a density

parameter at random and then each of these entries to be [0, 1]-uniformly distributed, while

b is chosen as a linear combination of the columns of A with random multipliers from [0, 1].

For some of the instances we also use ‖x− b‖2 as the objective function with bi ∈ [0, 1]

uniformly at random.

Matrix completion. The formulation of the matrix completion problem we are going to

use is the following:

min ∑
(i,j)∈Ω

‖Xi,j − ai,j‖2 s.t. ‖X‖∗ ≤ R, (4.26)
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where ‖·‖∗ denotes the nuclear norm, i.e., ‖A‖∗ = tr(
√

At A). The set Ω, the matrix A

with entries ai,j, and R are given parameters. Similarly to Lan and Zhou (2014) we generate

the m× n matrix A as the product of AL of size m× r and AR of size r× n. The entries in

AL and AR are chosen from a standard Gaussian. The set of entries Ω is chosen uniformly

of size s = min(5r(m + n− r), d0.99mne). The linear optimization oracle is implemented

in this case by a singular value decomposition of the linear objective function.

Structured regression. The structured regression problem consists of solving a quadratic

function of the form ‖Ax− b‖2 over some structured feasible set or a polytope. We construct

the objective functions in the same way as for the video colocalization problem.

We will present in the following two sections the complete set of results for various

problems grouped by the different versions of the considered algorithms. Every figure

contains two columns, each containing one experiment. We use different measures to report

performance: the first row reports loss or function value in wall-clock time (including time

spent by the oracle), the second row contains loss or function value in the number of iterations.

In some cases we include a row reporting the loss or function value over the number of

linear optimization calls. In some other cases we report in another row the dual bound or

Wolfe gap in wall-clock time. The last row always reports the cumulative number of calls

to the linear optimization oracle for the lazy algorithm. The red line denotes the non-lazy

algorithm and the greed line denotes the lazy variants. For each experiment we also report

the cache hit rate, which is the number of oracle calls answered with a point from the cache

over all oracle calls given in percent.

While we found convergence rates in the number of iterations quite similar (as expected!),

we consistently observe a significant speedup in wall-clock time. In particular for many

large-scale or hard combinatorial problems, lazy algorithms performed several thousand

iterations whereas the non-lazy versions completed only a handful of iterations due to the

large time spent approximately solving the linear optimization problem. The observed cache
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hit rate was at least 90% in most cases, and often even above 99%.

4.5.2 Online Results

Additionally to the quadratic objective functions we tested the online version on random

linear functions cx + b with c ∈ [−1,+1]n and b ∈ [0, 1]. We used in each experiment a

random sequence of 100 different random loss functions. For online conditional gradient

algorithms, in every figure the left column uses linear loss functions, the right one uses

quadratic loss functions of the form as described above over the same polytope.

As an instance of the structured regression problem we used the flow-based formulation

for Hamiltonian cycles in graphs, i.e., the traveling salesperson problem (TSP) for graphs

with 11 and 16 nodes (Figures 4.2 and 4.3). While relatively small, the oracle problem can

be solved in reasonable time for these instances. Another instance of the structured regression

problem uses the standard formulation of the cut polytope for graphs with 23 and 28 nodes

as the feasible region (Figures 4.4 and 4.5). Another set of feasible regions corresponding

to NP-hard problems for the structured regression problem we tested our algorithm on are

the quadratic unconstrained boolean optimization (QUBO) instances defined on Chimera

graphsDash (2013), which are available athttp://researcher.watson.ibm.com/

researcher/files/us-sanjeebd/chimera-data.zip. The instances are rel-

atively hard albeit their rather small size (Figure 4.6 and 4.7). One instance of the video colo-

calization problem uses a path polytope from http://lime.cs.elte.hu/~kpeter/

data/mcf/netgen/ that was generated with the netgen graph generator (Figure 4.8).

Most of these instances are very large-scale minimum cost flow instances with several tens

of thousands nodes in the underlying graphs, therefore solving still takes considerable time

despite the problem being in P. We tested on the structured regression problems with the

MIPLIB (Achterberg, Koch, and Martin 2006; Koch et al. 2011) instances eil33-2 (Fig-

ure 4.9) and air04 (Figure 4.10) as feasible regions. Finally for the spanning tree problem,

we used the well-known extended formulation with O(n3) inequalities for an n-node graph.

136

http://researcher.watson.ibm.com/researcher/files/us-sanjeebd/chimera-data.zip
http://researcher.watson.ibm.com/researcher/files/us-sanjeebd/chimera-data.zip
http://lime.cs.elte.hu/~kpeter/data/mcf/netgen/
http://lime.cs.elte.hu/~kpeter/data/mcf/netgen/


We considered graphs with 10 and 25 nodes (Figures 4.11 and 4.12).

We observed that while OCG and LOCG converge comparably in the number of iterations,

the lazy LOCG performed significantly more iterations; for hard problems, where linear

optimization is costly and convergence requires a large number of iterations, this led LOCG

converging much faster in wall-clock time. In extreme cases OCG could not complete even

a single iteration. This is due to LOCG only requiring some good enough solution, whereas

OCG requires a stronger guarantee. This is reflected in faster oracle calls for LOCG.

4.5.3 Offline Results

We describe the considered instances in the offline case separately for the vanilla Frank-Wolfe

method and the Pairwise Conditional Gradients method.

Vanilla Frank-WolfeMethod We tested the vanilla Frank-Wolfe algorithm on the six video

colocalization instances with underlying path polytopes from http://lime.cs.elte.

hu/~kpeter/data/mcf/netgen/ (Figures 4.13, 4.14 and 4.15). In these instances

we additionally report the dual bound or Wolfe gap in wall clock time. We further tested

the vanilla Frank-Wolfe algorithm on eight instances of the matrix completion problem

generated as described above. For these examples we did not use line search. We give the

used parameters for each example in the figures below (Figures 4.16, 4.17, 4.18 and 4.19).

The last tests for this version were performed on three instances of the structured regression

problem, two with the feasible region containing flow-based formulations of Hamiltonian

cycles in graphs (Figures 4.20), two on two different cut polytope instances (Figure 4.21)

and finally two on two spanning tree instances of different size (Figure 4.22).

Similarly to the online case, we observe a significant speedup of LCG compared to CG,

due to the faster iteration of the lazy algorithm.

Pairwise Conditional Gradient Algorithm As we inherit structural restrictions of PCG

on the feasible region, the problem repertoire is limited in this case. We tested the Pair-
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wise Conditional Gradient algorithm on the structured regression problem with feasible

regions from the MIPLIB instances eil33-2, air04, eilB101, nw04, disctom,

m100n500k4r1 (Figures 4.23, 4.24 and 4.25).

Again similarly to the online case and the vanilla Frank-Wolfe algorithm, we observe

a significant improvement in wall-clock time of LPCG compared to CG, due to the faster

iteration of the lazy algorithm.

4.5.4 Performance improvements, parameter sensitivity, and tuning

Effect of caching

As mentioned before, lazy algorithms have two improvements: caching and early termination.

Here we depict the effect of caching in Figure 4.26, comparing OCG (no caching, no early

termination), LOCG (caching and early termination) and LOCG (only early termination).

We did not include a caching-only OCG variant, because caching without early termination

does not make much sense: in each iteration a new linear optimization problem has to be

solved; previous solutions can hardly be reused as they are unlikely to be optimal for the

new linear optimization problem.

Effect of K

If the parameter K of the oracle can be chosen, which depends on the actual oracle imple-

mentation, then we can increase K to bias the algorithm towards performing more positive

calls. At the same time the steps get shorter. As such there is a natural trade-off between the

cost of many positive calls vs. a negative call. We depict the impact of the parameter choice

for K in Figure 4.27.
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Parameter-free vs. textbook variant

For illustrative purposes, we compare the textbook variant of the Lazy Conditional Gradient

method (Algorithm 2) with its parameter-free counterpart (Algorithm 7) in Figure 4.28. The

parameter-free variant outperforms the textbook variant due to the active management of Φ

combined with line search.

Similar parameter-free variants can be derived for the other algorithms; see discussion in

Section 4.3.
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Figure 4.2: LOCG vs. OCG with the TSP polytope for a graph with 11 nodes as the feasible
region and with a 500 seconds time limit. OCG completed only a few iterations, resulting in
a several times larger final loss for quadratic loss functions. Notice that with time LOCG
needed fewer and fewer LP calls.
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Figure 4.3: LOCG vs. OCG on the TSP polytope for a graph with 16 nodes with a time
limit of 7200 seconds. OCG was not able to complete a single iteration and in the quadratic
case even LOCG could not complete any more iteration after 50s. The quadratic losses on
the right nicely demonstrate speed improvements (mostly) through early termination of the
linear optimization as the cache rate is only 20.6%.
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Figure 4.4: LOCG vs. OCG on the cut polytope for a graph with 23 nodes. Both LOCG
and OCG converge to the optimum in a few iterations for linear losses, while LOCG is
remarkably faster for quadratic losses. It demonstrates that the advantage of lazy algorithms
strongly correlates with the difficulty of linear optimization. For linear losses, remarkably
LOCG needed no oracle calls after one third of the time.
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Figure 4.5: LOCG vs. OCG on the cut polytope for a 28-node graph. As for the smaller
problem, this also illustrates the advantage of lazy algorithms when linear optimization is
expensive. Again, LOCG needed no oracle calls after a small initial amount of time.
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Figure 4.6: LOCG vs. OCG on a small QUBO instance. For quadratic losses, both algorithms
converged very fast while LOCG still has a significant edge. For linear losses, LOCG is
noticeably faster than OCG.
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Figure 4.7: LOCG vs. OCG on a large QUBO instance. Both algorithms converge fast to
the optimum. Interestingly, LOCG only performs 4 LP calls.
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Figure 4.8: LOCG vs. OCG on a path polytope. Similar convergence rate in the number of
iterations, but significant difference in terms of wall-clock time.
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Figure 4.9: LOCG vs. OCG on the MIPLIB instance eil33-2. All algorithms performed
comparably, due to fast convergence in this case.
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Figure 4.10: LOCG vs. OCG on the MIPLIB instance air04. LOCG clearly outperforms
OCG as the provided time was not enough for OCG to complete the necessary number of
iterations for entering reasonable convergence.
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Figure 4.11: LOCG vs. OCG on a spanning tree instance for a 10-node graph. LOCG makes
significantly more iterations, few oracle calls, and converges faster in wall-clock time.
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Figure 4.12: LOCG vs. OCG on a spanning tree instance for a 25-node graph. On the left,
early fluctuation can be observed, bearing no consequence for later convergence rate. OCG
did not get past this early stage. In both cases LOCG converges significantly faster.
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Figure 4.13: LCG vs. CG on small netgen instances netgen 08a (left) and netgen
10a (right) with quadratic objective functions. In both cases both algorithms are able to
reduce the function value very fast, however the dual bound or Wolfe gap is reduced much
faster by LCG. Observe that the vertical axis is given with a logscale.
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Figure 4.14: LCG vs. CG on medium sized netgen instances netgen 12b (left) and
netgen 14a (right) with quadratic objective functions. The behavior of both versions
on these instances is very similar to the small netgen instances (Figure 4.13), however both
in the function value and the dual bound the difference between the lazy and the non-lazy
version is more prominent. Again, we used a logscale for the vertical axis.
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Figure 4.15: LCG vs. CG on large netgen instances netgen 16a (left) and netgen
16b (right) with quadratic objective functions. In both cases the difference in function value
between the two versions of the algorithm is large. In the dual bound the performance of
the lazy version is multiple orders of magnitude better than the performance of the non-lazy
counterpart. The cache hit rates for these two instances are lower due to the high dimension
of the polytope.
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Figure 4.16: LCG vs. CG on two matrix completion instances. We solve the problem as
given in Equation (4.26) with the parameters n = 3000, m = 1000, r = 10 and R = 30000
for the left instance and n = 10000, m = 100, r = 10 and R = 10000 for the right instance.
In both cases the lazy version is slower in iterations, however significantly faster in wall
clock time.
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Figure 4.17: LCG vs. CG on two more matrix completion instances. The parameters for
Equation (4.26) are given by n = 5000, m = 4000, r = 10 and R = 50000 for the left
instance and n = 100, m = 20000, r = 10 and R = 15000 for the right instance. In both of
these cases the performance of the lazy and the non-lazy version are comparable in iterations,
however in wall clock time the lazy version reaches lower function values faster.
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Figure 4.18: LCG vs. CG on our fifth and sixth instances of the matrix completion problem.
The parameters are n = 5000, m = 100, r = 10 and R = 15000 for the left instance and
n = 3000, m = 2000, r = 10 and R = 10000 for the right instance. The behavior is very
similar to Figure 4.17. similar performance over iterations however advantages for the lazy
version over wall clock time.
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Figure 4.19: LCG vs. CG on the final two matrix completion instances. The parameters
are n = 10000, m = 1000, r = 10 and R = 1000 for the left instance and n = 5000,
m = 1000, r = 10 and R = 30000 for the right instance. On the left in both measures,
instances and wall clock time, the lazy version performs better than the non-lazy counterpart,
due to a suboptimal direction at the beginning with a fairly large step size in the non-lazy
version.
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Figure 4.20: LCG vs. CG on structured regression problems with feasible regions being a
TSP polytope over 11 nodes (left) and 12 nodes (right). In both cases LCG is significantly
faster in wall-clock time.
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Figure 4.21: LCG vs. CG on structured regression instances using cut polytopes over a
graph on 23 nodes (left) and over 28 nodes (right) as feasible region. In both instances LCG
performs significantly better than CG.
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Figure 4.22: LCG vs. CG on structured regression instances with extended formulation of
the spanning tree problem on a 10 node graph on the left and a 15 node graph on the right.
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Figure 4.23: LPCG vs. PCG on two MIPLIB instances eil33-2 and air04. LPCG
converges very fast, making millions of iterations with a relatively few oracle calls, while
PCG completed only comparably few iterations due to the time-consuming oracle calls. This
clearly illustrates the advantage of lazy methods when the cost of linear optimization is
non-negligible. On the left, when reaching ε-optimality, LPCG performs many (negative)
oracle calls to (re-)prove optimality; at that point one might opt for stopping the algorithm.
On the right LPCG needed a rather long time for the initial bound tightening of Φ0, before
converging significantly faster than PCG.
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eilB101, 2818 dimensions nw04, 87482 dimensions

1600 2400 3200 4000
Wall-clock time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n 

va
lu

e

LPCG 
PCG 

0 800 1600 2400 3200 4000
Wall-clock time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n 

va
lu

e

LPCG 
PCG 

0 1 2 3 4
Iterations 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n 

va
lu

e

LPCG 
PCG 

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e5

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n 

va
lu

e

LPCG 
PCG 

0 1 2 3 4
Iterations 1e5

0
5

10
15
20
25
30
35
40

N
um

be
r o

f L
P 

ca
lls

LPCG 

0.0 0.5 1.0 1.5 2.0 2.5
Iterations 1e5

0

5

10

15

20

25

N
um

be
r o

f L
P 

ca
lls

LPCG 

cache hit rate: 99.995% cache hit rate: 99.995%

Figure 4.24: LPCG vs. PCG on MIPLIB instances eilB101 and nw04 with quadratic
loss functions. For the eilB101 instance, LPCG spent most of the time tightening Φ0,
after which it converged very fast, while PCG was unable to complete a single iteration even
solving the problem only approximately. For the nw04 instance LPCG needed no more
oracle calls after an initial phase, while significantly outperforming PCG.
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Figure 4.25: LPCG vs. PCG on MIPLIB instances disctom and m100n500k4r1. After
very fast convergence, there is a huge increase in the number of oracle calls for the lazy
algorithm LPCG due to reaching ε-optimality as explained before. On the right the initial
bound tightening for Φ0 took a considerable amount of time but then convergence is almost
instantaneous.
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Figure 4.26: Performance gain due to caching and early termination for stochastic optimiza-
tion over a maximum cut problem with linear losses. The red line is the OCG baseline, the
green one is the lazy variant using only early termination, and the blue one uses caching and
early termination. Left: loss vs. wall-clock time. Right: loss vs. total time spent in oracle
calls. Time limit was 7200 seconds. Caching allows for a significant improvement in loss
reduction in wall-clock time. The effect is even more obvious in oracle time as caching cuts
out a large number of oracle calls.
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Figure 4.27: Impact of the oracle approximation parameter K depicted for the Lazy CG
algorithm. We can see that increasing K leads to a deterioration of progress in iterations but
improves performance in wall-clock time. The behavior is similar for other algorithms.
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Figure 4.28: Comparison of the ‘textbook’ variant of the Lazy CG algorithm (Algorithm 2) vs.
the Parameter-free Lazy CG (Algorithm 7) depicted for two sample instances to demonstrate
behavior. The parameter-free variant usually has a slightly improved behavior in terms of
iterations and a significantly improved behavior in terms of wall-clock performance. In
particular, the parameter-free variant can execute significantly more oracle calls, due to the
Φ-halving strategy and the associated bounded number of negative calls (see Theorem 4.3.3).
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