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“People behave dishonestly enough to profit but honestly enough to delude

themselves of their own integrity.”

– Mazar et al. [46]
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SUMMARY

Most social choice algorithms rely on private data from individuals to maximize a social

utility. However, many algorithms are manipulable – an individual can manipulate her

reported data to obtain an outcome she prefers often at the cost of social good. Literature

addresses this by declaring an algorithm as “manipulable” or “strategy-proof”. However,

for many decisions we are forced to either use a manipulable algorithm or an algorithm with

negative properties; for instance, a dictatorship is the only strategy-proof way to decide an

election. Thus, we view it as unwise to take an all-or-nothing approach to manipulation

since we so often have to settle for nothing.

In this dissertation, we focus on algorithmic design with strategic behavior in mind.

Specifically, we develop the framework to examine the effect of manipulation on social

choice using a game theoretic model. Our model of human behavior is supported by a

myriad of experimental evidence in psychology and economics and allows us to better un-

derstand the likely outcomes of strategic behavior. We introduce a measure of manipulation

– the Price of Deception – that quantifies the impact of strategic behavior. With the Price

of Deception we are able to identify algorithms that are negligibly impacted by manipula-

tion, algorithms where strategic behavior leads to arbitrarily poor outcomes, and anything

in-between. We prove the power of our model and the Price of Deception by answering

open problems in assignments, facility location, elections, and stable marriages including

a 28-year open problem by Gusfield and Irving. Our results demonstrate that the Price

of Deception, like computational complexity, provides finer distinctions of manipulability

than between “yes” and “no”.

Assignments: We calculate the Price of Deception of various assignment procedures.

We show that manipulation has significantly different impacts on different procedures. We

find the Price of Deception tends to be larger when minimizing social costs than when max-

imizing social welfare – manipulation has a larger impact on minimization problems. We

xiv



also find that the Price of Deception is significantly lower when ties are broken randomly.

This indicates that even a small change to a decision mechanism, such as a tie-breaking

rule, can have a large effect on the impact of manipulation.

Facility Location: We calculate the Price of Deception for standard facility location

algorithms, including 1-Median and 1-Mean, and find significant differences among them.

We also find that the Price of Deception can increase significantly as the structure of al-

lowed facility locations deviates from a hyper-rectangle. Although some algorithms have

high Prices of Deception, we do give a family of fair tie-breaking rules for the 1-Median

Problem for which the Price of Deception is as low as possible – the algorithm remains

manipulable, but manipulation has no impact on social utility.

Elections: We calculate the Price of Deception for several standard voting rules, in-

cluding Borda count, Copeland, veto, plurality, and approval voting, and find significant

differences among them. In general, the more information a voting rule requires, the higher

its Price of Deception. However, plurality voting has the largest Price of Deception despite

using little information. Furthermore, we observe that tie-breaking rules in an election can

have a significant impact on the Price of Deception. For instance, breaking ties randomly

with Majority Judgment leads to better outcomes than lexicographic tie-breaking whereas

lexicographic tie-breaking is better for plurality elections.

Stable Marriage: We show that for all marriage algorithms representable by a mono-

tonic and INS function, every minimally dishonest equilibrium yields a sincerely stable

marriage. This result supports the use of algorithms less biased than the (Gale-Shapley)

man-optimal, which we prove yields the woman-optimal marriage in every minimally dis-

honest equilibrium. However, bias cannot be totally eliminated, in the sense that no mono-

tonic INS-representable stable marriage algorithm is certain to yield the egalitarian mar-

riage in a minimally dishonest equilibrium, thus answering a 28-year old open question of

Gusfield and Irving’s in the negative. Finally, we show that these results extend to the Stu-

dent Placement Problem, where women are polygamous and honest, but not to the College

xv



Admissions Problem, where women are both polygamous and strategic. Specifically, we

show no algorithm can guarantee stability in the College Admissions Problem.
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1

INTRODUCTION

In this thesis we examine the impact of manipulation in the assignment problem, facility

location procedures, election schemes and stable marriage mechanisms. We make signif-

icant contributions to each of these areas and highlight them more in Section 1.3. More

importantly however, we establish the necessary framework to understand the impact of

manipulation for any algorithm that relies on private information. Specifically, we in-

troduce a model of manipulation to represent human behavior that we justify inuitively,

theoretically, and experimentally in Section 2.3. We introduce a measure, the Price of De-

ception, that quantifies, not categorizes, the effect of manipulation. Our studies of the four

aforementioned areas demonstrate the power of the measure to understand the impact of

manipulation for any algorithm. The methods we present in this dissertation can readily be

extended to any decision problem that relies on private information including allocating a

limited capacity of goods within a network, truck-load sharing, and scheduling based on

consumer constraints.

1.1 The Price of Deception: A Finer Measure of Manipulability

The literature on strategic behavior in algorithmic design primarily labels algorithms as

“manipulable” or “strategy-proof”. Yet we know that strategy-proofness is often unob-

tainable: Zhou [69] tells us that no symmetric, pareto optimal assignment procedure is

strategy-proof; The Gibbard-Satterthwaite [28, 65], Gardenfors [27] and related theorems

tell us that every election rule that one would consider to be reasonable is manipulable

by a strategic voter; Roth [60] tells us any matching algorithm that guarantees stability is

also manipuable. Therefore, we always sacrifice non-manipulability in lieu of other prop-

erties. But is it wise to take such an all-or-nothing position with respect to manipulability,
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especially since we almost always settle for nothing?

We introduce a measure of how much strategic behavior can alter the outcome of an

algorithm. We call this measure the Price of Deception. For example, let the sincere

Borda count of a candidate in a strategic Borda election be his Borda count with respect to

the sincere voter preferences. Let a sincere Borda winner be a candidate with largest sincere

Borda count, i.e. a candidate who would win were all voters non-strategic. Suppose that

the sincere Borda count of a sincere Borda winner could not be more than twice the sincere

Borda count of the winner of a strategic Borda election. Then the Price of Deception of

Borda voting would be at most 2. As another example, suppose that approval voting had

an infinitely large Price of Deception. Then it might be that a candidate sincerely approved

by the fewest voters could win an approval vote election when voters are strategic.

We propose that the Price of Deception should be one of the criteria by which an algo-

rithm is assessed. In general, any algorithm can be represented as a maximizer of some util-

ity function. If the utility function has an intrinsic correspondence to the quality of the out-

come, then the Price of Deception has a correspondence to the capability of an algorithm’s

ability to select a quality outcome. Like the computational complexity of manipulation [9,

48] the Price of Deception offers finer distinctions than simply between “manipulable” and

“non-manipulable.”

1.2 Minimal Dishonesty

The standard complete-normal form game and the Nash equilibrium solution concept [24]

used to analyze games give absurd outcomes for “Games of Deception” for combinatorial

problems. For instance, consider a majority election betweenA andB where all individuals

sincerely prefer A to B. Suppose instead that everyone indicates they prefer to B to A.

Since the election is decided by majority, no single individual could alter their submitted

preferences to change the outcome of the election. Therefore, the Nash equilibrium solution

concept labels this as possible outcome despite its obvious absurdity.
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In Section 2.3, we introduce our refinement. We assume that individuals are minimally

dishonest – individuals will be dishonest enough to obtain a better result but will not be

more dishonest than necessary. We provide logical reasons for minimal dishonesty; lying

causes guilt and it is cognitively easier to be somewhat truthful than it is to lie spuriously.

We prove (Theorem 2.3.3) that our minimal dishonesty refinement is consistent with the

current literature’s assumptions regarding strategy-proof algorithms. Most importantly, we

show that our model to explain human behavior is backed by a myriad of evidence in

psychology and experimental economics.

Re-examine the majority election where everyone sincerely prefersA toB but indicates

that they preferB toA. As mentioned, the Nash equilibrium solution concept indicates that

this is a possible outcome despite its absurdity. Once we apply the minimal dishonesty re-

finement, the result changes; if any individual tries to alter their preferences and instead

honestly report they prefer A to B, then the outcome of the election will not change but

the individual will be more honest. Therefore the individual is not minimally dishonest

and we do not consider everyone voting B a reasonable outcome. For this particular exam-

ple, everyone honestly reporting that they prefer A to B in the only minimally dishonest

equilibrium which is precisely what we would expect.

Our model of minimal dishonesty allows us to make significant strides in understanding

the effects of manipulation in assignment problems, facility location procedures, election

schemes and stable marriage mechanisms as highlighted in the next section. Moreover,

minimal dishonesty establishes the necessary framework to understand the impact of ma-

nipulation in algorithms that rely on private information.

1.3 Contributions of this Thesis

The most important contribution of this thesis is the Price of Deception measure of the

impact of manipulation and the minimal dishonesty model to represent strategic behav-

ior. We demonstrate the power of these two concepts by making significant progress in

3



understanding the effect of manipulation in various settings.

In Chapter 3 we examine the Assignment Problem and find that algorithms that min-

imize social cost are more heavily impacted by manipulation (they have higher Prices of

Deception) than algorithms that maximize social welfare. Moreover, we establish that

small changes to an algorithm can have significant effects on the impact of manipulation –

on the Price of Deception. We find that a randomized tie-breaking rule in this settings has

a significantly lower Price of Deception than a deterministic tie-breaking rule.

However, when examining the Facility Location Problem in Chapter 4 we establish that

deterministic tie-breaking rules yield good societal outcomes despite manipulation while

randomized tie-breaking can lead to poor outcomes. Something as seemingly minor as a

tie-breaking rule can have a significant impact on the effect of manipulation and that effect

can be drastically different in different problem settings. In addition, we give a determin-

istic and fair variant of the 1-Median Problem that is not strategy-proof but manipulation

has no impact on social utility; strategic behavior may cause the outcome of the algorithm

to change but the quality of the outcome is unaffected by manipulation.

In Chapter 5 when studying election schemes we again observe that randomized and

deterministic tie-breaking rules yield different Prices of Deception. Moreover, for some

election schemes randomized tie-breaking is better than lexicographic and in other schemes

lexicographic tie-breaking is better. We prove this by determining the Price of Deception

for an array of popular voting schemes. Typically, the more information a voter provides

to the algorithm the higher the Price the Deception – the more strategic behavior impacts

the quality of the outcome. This seems intuitive as more information gives a voter more

opportunities to manipulate the system. However, it is not a universal truth; Plurality elec-

tions have the largest Price of Deception despite voters only providing a single piece of

information to the algorithm – their most preferred candidate.

Chapters 3-5 prove that the Price of Deception is able to discriminate between different

algorithms based on the impact of strategic behavior. Our results show that the impact of

4



manipulation varies greatly between algorithms and is sensitive to small changes such as a

tie-breaking rule. Moreover, we show that the effect of these sensitivities can vary drasti-

cally depending on the setting. The Price of Deception captures this behavior. Therefore

we propose that the Price of Deception, like computational complexity of manipulation,

should be one of the criteria used to access an algorithm.

Finally in Chapter 6, we study the Stable Marriage Problem. Using the minimal dis-

honesty solution concept, we answer a 28-year open problem by Gusfield and Irving by

showing that every reasonable stable marriage algorithm will guarantee stability even when

individuals are strategic. We also extend these results to the Student Placement Problem.

This result supports the use of less biased algorithms than the (Gale-Shapley) man-optimal

algorithm, the only algorithm currently known to guarantee stability when individuals are

strategic. Moreover we show that the Gale-Shapley algorithm is biased because it guar-

antees the best solution for women and the worst solution for men when individuals are

strategic. However, we also show that no reasonable algorithm can guarantee the fairest

outcome when individuals are strategic.
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2

PRELIMINARIES

2.1 The Game of Deception in Social Choice

In this chapter, we introduce the necessary definitions and solution concepts that will be

used throughout this dissertation. Each subsequent chapter addresses Games of Deception

where a central decision mechanism (algorithm, procedure, or rule) makes a social choice

(selects a winning candidate, allocates items, etc.) after receiving information (preferences

over candidates, valuations for items, etc.) from each individual (voter, bidder, etc.). Our

central decision mechanisms tend to have nice properties; we may guarantee an “equitable”

allocation, or a “stable” marriage, or a “facility location” that maximizes social utility.

However, to guarantee such properties we often must assume that individuals truthfully

reveal their information. We introduce many of the necessary concepts for this dissertation

in the context of the Fair Division Problem.

Definition 2.1.1. The Fair Division Problem consists of n individuals and m divisible

goods where individual i has an integer value of πij ∈ [0, cm] for item j. The integer

value c is a parameter of the Fair Division Problem. Furthermore,
∑m

j=1 πij = cm for each

individual i. A central decision maker in the Fair Division Problem assigns xij of item j to

individual i where
∑n

i=1 xij = 1.

The set of feasible allocations in the Fair Division Problem is a polytope. Specifically,

an allocation is feasible if it satisfies the following linear constraints:

n∑
i=1

xij ≤ 1 ∀j = 1, ...,m (2.1)

xij ≥ 0 ∀j = 1, ...,m ∀i = 1, ..., n (2.2)
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Therefore if the central decision maker maximizes a concave utility function to deter-

mine the division of goods, then an allocation can be found quickly.

Example 2.1.2. Maximizing the Minimum Utility in Fair Division.

In this example, we have a decision maker who seeks to maximize the minimum utility for each

individual. Let c = 40, n = 2 and m = 3. Individual i assigns item j a value πij ∈ [0, cm] =

[0, 120]. Furthermore, for each i, the sum of πij is cm = 120. Individuals’ values for the items are

given by Π below.

(Π)

π11 = 50 π12 = 50 π13 = 20 (2.3)

π21 = 10 π22 = 10 π23 = 100 (2.4)
If we assign Xi = {xi1, xi2, ..., xim} to individual i, then individual i receives a utility of∑m

j=1 πijxij . Therefore, the central decision maker seeks to maximize the minimum of
∑m

j=1 π1jx1j

and
∑m

j=1 π2jx2j . Given the individuals’ valuations, an optimal assignment can be found with the

following linear program:

max z (2.5)
m∑
j=1

πijxij ≥ z ∀i = 1, ..., n (2.6)

n∑
i=1

xij ≤ 1 ∀j = 1, ...,m (2.7)

xij ≥ 0 ∀j = 1, ...,m ∀i = 1, ..., n (2.8)

Thus, to maximize the minimum of each individuals’ utility, the central decision maker selects

the assignment x11 = x12 = x23 = 1 assigning items 1 and 2 to individual 1 and item 3 to

individual 2. With this assignment, each individual receives a utility of 100.

Each chapter addresses specific Games of Deception. In each game each individual

player has information, usually consisting of preference data. Ideally, individual i truth-

fully reveals their information πi to the centralized decision mechanism. If the mechanism
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selects an outcome deterministically, the central mechanism selects some outcome r(Π)

and individual i’s utility ui(πi, r(Π)) depends on the selected outcome.

In the Fair Division Problem individual i’s preferences are given by πi = (πi1, πi2, ..., πim).

The central decision mechanism assigns xij of item j in individual i. Therefore the out-

come is given by X = r(Π) according to (2.5)-(2.8) and individual i’s utility is given by

ui(πi, r(Π)) = πi ·Xi.

If individuals truthfully report Π to the central decision mechanism, then we can often

guarantee desirable properties. For instance, when maximizing the minimum utility in the

Fair Division Problem, the Maximin Problem guarantees a solution that Pareto dominates

all equitable outcomes. Furthermore if πij > 0 for all i and j, then the outcome is equitable.

Definition 2.1.3. An outcome r is equitable if ui(πi, r) = uj(πj, r) for each i and j.

However, these guarantees rely on the assumption of honesty. Regrettably, honesty is

not a realistic assumption.

Example 2.1.4. Individuals can have an incentive to be dishonest.

We continue Example 2.1.2. If each individual truthfully reveals their preferences as given in Π

in Example 2.1.2, then individual 1 will be assigned items 1 and 2 and individual 2 will be assigned

item 3. Furthermore, the allocation is equitable as each person has utility 100. However, individual

1 can get a strictly better outcome.

(Π̄)

π̄11 = 20 π̄12 = 20 π̄13 = 80 (2.9)

π̄21 = π21 = 10 π̄22 = π22 = 10 π̄23 = π23 = 100 (2.10)

If individual 1 alters her submitted preferences according to Π̄, then the outcome changes. Us-

ing the linear program described by Equations 2.5-2.8, we determine that individual 1 still receives

all of item 1 and item 2, but now also receives 1
3 of item 3. With respect to the putative preferences

Π̄, each individual receives a utility of 200
3 ≈ 67 and the central decision maker believes that it has

selected an equitable outcome. However, with respect to the sincere preferences Π, individual 1 re-

ceives a utility of 50+50+ 20
3 = 320

3 ≈ 107 while individual 2 receives a utility of only 1002
3 ≈ 67.
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Since individual 1 receives a utility of 107 > 100, individual 1 has incentive to misrepresent her

preferences.

Example 2.1.4 not only shows individuals may have incentive to lie, it highlights the

disturbing possibility that we cannot guarantee desirable properties when individuals be-

have strategically. As discussed in Section 1.1, existing literature acknowledges that mech-

anisms can be manipulable. However, much of the literature focuses on simply labeling a

mechanism as “manipulable” or “strategy-proof”. We have already described the pitfalls

of such labels in Section 1.1. Instead, in this dissertation we will focus on the outcomes

obtained when individuals behave strategically by using game theoretic techniques to ana-

lyze Games of Deception. We generalize the earlier notation to allow for games that select

outcomes randomly.

The Game of Deception G(N,P ,Π, r, u,Ω, µ)

• Each individual i has information πi ∈ Pi describing their preferences. The collec-

tion of all information is the (sincere) profile Π = {πi}ni=1 where |N | = n.

• To play the game, individual i submits putative preference data π̄i ∈ Pi. The collec-

tion of all submitted data is denoted Π̄ = {π̄i}ni=1.

• It is common knowledge that a central decision mechanism will select outcome

r(Π̄, ω) when given input Π̄ and random event ω.

• The random event ω ∈ Ω is selected according to µ. We denote r(Π̄) as the distribu-

tion of outcomes according to Ω and µ.

• Individual i evaluates r(Π̄) according to i’s sincere preferences πi. Specifically, in-

dividual i’s utility of the set of outcomes r(Π̄) is ui(πi, r(Π̄)).
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If the decision mechanism always selects the outcome deterministically, then we sim-

ply refer to the Game of Deception as G(N,P ,Π, r, u). In many settings, u is either equal

to Π or can be deduced from Π and the game can be further reduced to G(N,P ,Π, r).

For instance, in an election voter v’s preferences πv typically are an ordering of the candi-

dates. In this case, v prefers candidate A to candidate B (with respect to πv) if and only if

uv(πv, A) > uv(πv, B). In the Fair Division setting, an individual i’s information is pre-

cisely their values for each object (i.e. i’s utility of the allocationXi is ui(πi, Xi) = πi ·Xi).

We remark that ui is not necessarily unique and may be an uncountably large set of data.

Since individual i submits πi and not ui to the central decision mechanism, the complexity

of ui is irrelevant when computing the social outcome r(Π). The utility ui is a parameter

of a game used to determine the information π̄i that individual i is likely to submit. The

complexity of ui does not impede our ability to predict ui when we assume some properties

of the individual utility functions. For instance, in the Facility Location Problem where

individual i submits a preferred location πi, we assume i has a utility of ui(πi, x) = ||πi −

x||pi of the facilty location x for some pi ∈ (0,∞).

While there are many ways to analyze games, in this dissertation we focus on the most

common approach – the Nash equilibrium solution concept for normal-form games under

complete information [24].

Definition 2.1.5. The preference profile [Π̄−i, π̄
′
i] if obtained from Π̄ by replacing π̄i with

π̄′i.

Definition 2.1.6. The preference profile Π̄ ∈ P is a Nash equilibrium forG(n,P ,Π, r, u,Ω, µ)

if ui(πi, r(Π̄)) ≥ ui(πi, r([Π̄−i, π̄
′
i])) for each individual i and π̄′i ∈ Pi.

Example 2.1.7. A Nash Equilibrium of the Fair Division Game
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We continue Examples 2.1.2 and 2.1.4. The sincere preference profile Π is given again below.

π1 = (50, 50, 20) (2.11)

π2 = (10, 10, 100) (2.12)

Recall from Example 2.1.2, that if everyone is honest then the assignment r(Π) gives all of items

1 and 2 to individual 1 and gives item 3 to individual 2.

Example 2.1.2 shows that individual 1 has incentive to lie by updating her preference list to

π̄1 = (20, 20, 80) and therefore Π is not a Nash equilibrium. Furthermore the preferences given in

Example 2.1.4 are not a Nash equilibrium since individual 2 could obtain a strictly better result by

submitting π̄′2 = (19, 19, 82). With respect to the new preferences, the assignment gives all of items

1 and 2 and 42
162 of item 3 to player 1 and 120

162 of item 3 to individual 2.

We now might ask if {π̄1, π̄
′
2} forms a Nash equilibrium. The answer depends on how the

decision mechanism breaks ties. If individual 2 instead submits π̄2 = (20, 20, 80) there are a

variety of optimal allocations with respect to the sincere preferences. For this example, we assume

the decision mechanism break ties by assigning the lowest indexed individual the most of the lowest

indexed good as possible (i.e. decision mechanism prioritizes assigning item 1 to individual 1, then

item 2 to individual 1,..., then item 1 to individual 2,..., item m to individual 2,..., item m to individual

n). Therefore if both individuals submit (20, 20, 80) then individual 1 is assigned items 1 and 2 and

1
4 of item 3.

With this tie breaking rule, Π̄ = {π̄1, π̄2} is a Nash equilibrium. We begin by showing that

individual 1 cannot obtain an better outcome. Let (a, b, c) denote any allocation where individual

1 is assigned a, b, and c of items 1, 2, and 3 respectively. Individual 2 then receives 1 − a, 1 − b,

and 1 − c of items 1, 2, and 3. Regardless of the preferences submitted, (a, b, c) = (1
2 ,

1
2 ,

1
2) is

an allocation where both individuals receive a utility of cmn = 60 implying that individual 2 must

receive a utility of at least 60 with respect to π̄2 if (a, b, c) is the result of the decision mechanism.
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Therefore we know that

π̄21 · (1− a) + π̄22 · (1− b) + π̄23 · (1− c) ≥ 60 (2.13)

⇒ 20a+ 20b+ 80c ≤ 60 (2.14)

⇒ 5a+ 5b+ 20c ≤ 15 (2.15)

for any allocation (a, b, c) assigned when π̄2 is submitted. Suppose individual 1 alters her prefer-

ences to get a different outcome (a, b, c). We know that a and b are at most 1 implying 45a ≤ 45

and 45b ≤ 45. Combining these two inequalities with (2.15) we have

π1 · (a, b, c) = 50a+ 50b+ 20c ≤ 105 (2.16)

implying that no matter how individual 1 alters her preferences she will not receive a utility more

than 105. When she submits π̄1 = (20, 20, 80) then she receives a utility of π1 · (1, 1, 1
4) =

(50, 50, 20) · (1, 1, 1
4) = 105 and therefore π̄1 is a best response. Therefore individual 1 cannot

alter her preferences to get a better outcome.

Similarly, we show that individual 2 is reporting a best response with the inequalities 5
4(20a+

20b+ 80c) ≤ 5
460, −15a ≤ 0, and −15b ≤ 0, to get π1 · (a, b, c) = 10a+ 10b+ 100c ≤ 75. This

implies that individual 2 can obtain a utility of at most 75, which is precisely the value he gets when

submitting π̄2. Therefore Π̄ is a Nash equilibrium.

2.2 The Price of Deception

A centralized mechanism makes a decision that optimizes a measure of societal benefit

based on private information submitted by individuals. However, the individuals have their

own valuations of each possible decision. Therefore, there is a Game of Deception in which

they provide possibly untruthful information, and experience outcomes in accordance with

their own true valuations of the centralized decision that is made based on the information

they provide. As a result of this game, social benefit may decrease. The Price of Deception
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is the worst-case ratio between the optimum possible overall benefit and the expected over-

all benefit resulting from a pure strategy Nash equilibrium of the game. If the mechanism

minimizes a societal cost the Price of Deception is defined as the reciprocal of that ratio, so

that its value is always at least 1.

We remark that the revelation principle [49, 50] is irrelevant to the Price of Deception.

This is because revelation elicits sincere information only by yielding the same outcome

that strategic information would yield. The revelation principle can be a powerful tool for

analyzing outcomes. But for our purposes, the elicitation of sincere preference information

is not an end in itself.

The Price of Deception is similar to a concept known in the computer science commu-

nity as the “Price of Anarchy” [62]. However, the two concepts are not equivalent. The

Price of Anarchy measures the difference between the social values of an optimal solution

selected by a central coordinator and an equilibrium solution when all agents act selfishly.

As we discuss in Section 2.4, one can view the Price of Deception as a Price of Anarchy

only by assuming that a central coordinator can force individuals to be truthful, thus negat-

ing the existence of private information. Also, the term “anarchy” is a singularly inapt

descriptor of a democratic process. Although the Price of Deception is not a type of Price

of Anarchy, the converse turns out to be true. In Section 2.4 we show that, in a formal

sense, one can view any Price of Anarchy as a Price of Deception. We proceed to the

formal definition of Price of Deception.

Every Game of Deception, G(N,P ,Π, r, u,Ω, µ), can be modeled such that r is the

maximizer of some social utility function U while respecting some constraints. For in-

stance, in Examples 2.1.2-2.3.1,

r(Π̄, ω) ∈ argmax
X≥0

{
min
i∈[n]

ui(π̄i, X) :
n∑
i=1

xij ≤ 1 ∀j ∈ [m]

}
(2.17)

Therefore a social utility that represents the mechanism isU(Π̄, X) = mini∈[n] ui(π̄i, X).
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In the earlier examples, we established that r(Π) is not always the same as r(Π̄) even when

Π̄ is a Nash equilibrium. Therefore there is a disquieting possibility that U(Π, r(Π̄)) <

U(Π, r(Π) and social utility may decrease when individuals act strategically. The majority

of this dissertation focuses on quantifying how much manipulation impacts social utility.

Notably, another social utility that represents the mechanism is

U ′(Π̄, X) =


1 if X ∈ r(Π̄)

0 otherwise
(2.18)

With respect to the definition of U ′, manipulation impacts social utility if and only if the

outcome changes. Any analysis using U ′ is equivalent to simply labeling a system as ma-

nipulable or strategy-proof. Therefore, to describe how much manipulation impacts social

utility, it is important we work with a social utility that has a meaningful interpretation.

Fortunately, many mechanisms either have a well defined social utility function given by

the literature or are naturally defined by their social utilities.

Definition 2.2.1. For the Game of Deception G(N,P ,Π, r, u,Ω, µ) the set of Nash equi-

libria for the sincere preference Π is NE(Π) ⊆ P .

When analyzing a specific mechanism, ideally NE(Π) = Π or at least r(Π) = r(Π̄)

for all Π̄ ∈ NE(Π) and manipulation does not impact the social outcome. However, this

is often not the case. Next, we would hope that the social utility does not change (i.e.

U(Π, r(Π)) = U(Π, r(Π̄)) for all Π̄ ∈ NE(Π)). But in this dissertation we find very few

mechanisms where this is true. Thus we are left hoping that U(Π, r(Π̄)) is at least close to

U(Π, r(Π)).

Definition 2.2.2. Given an instance of preferences Π, the Price of Deception of the game
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G(N,P ,Π, r, u,Ω, µ) is

sup
Π̄∈NE(Π)

E
(
U
(
Π, r(Π)

))
E
(
U
(
Π, r(Π̄)

)) (2.19)

where E
(
U
(
Π, r(Π̄)

))
is the expected utility of r(Π̄) given Ω and µ. By definition,

U(Π, x) = U(Π, y) for all x, y ∈ r(Π) and therefore we simply write U(Π, r(Π)) for

the numerator.

If the Price of Deception of an instance is 100, then manipulation can cause the social

utility to decrease by a factor of 100. But if the Price of Deception is 2, then the social

utility of the Nash equilibrium is always within a factor of 2 of the social utility when

everyone is honest. If the Price of Deception is 1 then manipulation does not negatively

impact social utility! If the mechanism uses costs instead of utilities, then we define the

Price of Deception using the reciprocal of (2.19).

Example 2.2.3. The Price of Deception for Two Instances of the Fair Division Problem.

We continue with the Fair Division Problem using U(Π̄, X) = mini∈[n] ui(π̄i, X) while break-

ing ties lexicographically as in Example 2.3.1. For the first instance, individuals’ utilities given by

Pi below.

π11 = 50 π12 = 50 (2.20)

π21 = 0 π22 = 100 (2.21)

If both individuals are honest, then individual 1 receives all of item 1 and 1
3 of item 2 while

individual 2 receives all of item 2. Both individuals would receive a utility of 200
3 ≈ 66.7.

Computing the Price of Deception for this instance now requires finding a tight lower bound

l on the social utility of an equilibrium. This requires (i) a proof that the social utility cannot be

below l and (ii) an example (or family of examples) to show the bound is tight (asymptotically tight).

We begin with (i).
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A feasible allocation for this problem is xij = 1
n for all i = 1, ..., n and j = 1, ...,m. Further-

more, for each player i the utility of this allocation is
∑m

j=1 vijxij =
∑m

j=1
vij
n = cm

n . Since the

mechanism maximizes the minimum utility, if an individual is honest then they must receive a utility

of at least cmn . In this example, c = 50, m = 2 and n = 2 implying each individual most receive a

utility of at least 50 in every Nash equilibrium. Therefore the Price of Deception for this instance is

at most 200/3
50 = 4

3 .

Next, we must produce an example showing this bound is tight (ii). Consider the submitted

preferences Π̄ below.

π̄11 = 0 π̄12 = 100 (2.22)

π̄21 = 0 π̄22 = 100 (2.23)

These submitted preferences correspond to a Nash equilibrium. With these submitted prefer-

ences, individual 1 receives all of item 1 and half of item 2. Therefore with respect to the sincere

preferences, individual 1 receives a utility of 75 while individual 2 only has a utility of 50. Fur-

thermore if individual 1 increases their submitted preference for item 1, then they still receive all

of item 1 but less of item 2. Similarly, if individual 2 increases their submitted preference for item

1, then they receive all of item 1 and less of item 2. Therefore, for both individuals, altering their

preferences results in a worse solution and therefore the preference profile in Table Π̄ is a Nash

equilibrium. The social outcome of this Nash equilibrium is 50 and the Price of Deception is at

least 200
3 ·

1
50 = 4

3 . Combined with the previous bound, we conclude the Price of Deception of this

instance is 4
3 – it is possible that manipulation causes the social utility to decrease by a factor of

4
3 ≈ 1.33.

We also consider a second set of sincere preferences given in the Π′ below. With respect to

these preferences, individual 1 is assigned all of item 1 and 1
6 of item 2. Both individuals receive

a utility of 250
3 ≈ 83.33. Similar to the first instance, the preferences given by Π̄ above are a

Nash equilibrium with social utility of 50 (with respect to the sincere preferences). As before, at

every Nash equilibrium every individual must have a utility of at least 50 and therefore the Price of
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Deception of this instance if 250
3 ·

1
50 = 5

3 = 1.6.

π′11 = 80 π′12 = 20 (2.24)

π21 = 0 π22 = 100 (2.25)

In Example 2.2.3, we see that the Price of Deception of an instance can vary for differ-

ent sincere preference profiles. As mechanism designers, we only see individuals submitted

preferences. Therefore, if individuals submit the preferences given by Π̄, we cannot deter-

mine if their sincere preferences are given by Π or Π′ or something else and we cannot

conclude how close we are to the intended result. However, we can bound the Price of

Deception of an instance by conducting a worse-case analysis over all sincere preference

profiles.

Definition 2.2.4. The Price of Deception of a mechanism with U , N , P , r, u, Ω, and µ is

sup
Π∈P

sup
Π̄∈NE(Π)

U
(
Π, r(Π)

)
E
(
U
(
Π, r(Π̄)

)) (2.26)

where the expectation is taken with respect to Ω and µ.

If the mechanism uses costs instead of utilities, then we define the Price of Deception

using the reciprocal of (2.26).

Theorem 2.2.5. The Price of Deception for the Fair Division Problem with n individuals

and n objects when breaking ties lexicographically is between
cn−1+ 1

1+cn(n−1)

c+ cn−c
cn−1

→ n as c→

∞ and n.

For small c The Price of Deception may be slightly less than n. However, as c grows

large the problem approaches the continuous version of the Fair Division Problem and the

Price of Deception grows slightly. Fortunately the Price of Deception is bounded by n

instead of going to∞.
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Proof of Theorem 2.2.5. As with Example 2.2.3, we must (i) show that the Price of Decep-

tion is at least
cn−1+ 1

1+cn(n−1)

c+ cn−c
cn−1

(i.e. there is an instance with Price of Deception
cn−1+ 1

1+cn(n−1)

c+ cn−c
cn−1

)

and (ii) the Price of Deception is at most n (i.e. for every sincere Π ∈ P and every Nash

equilibrium Π̄ ∈ NE(Π), the utility of r(Π) is at most n times more than the utility of

r(Π̄).

(i) The Price of Deception of the Fair Division Problem is at least 2
3
n c

1+c
: Consider the

sincere preferences below with m = n objects where person i most prefers object i:

πii = cn− 1 ∀i = 1, ..., n− 1 (2.27)

πin = 1 ∀i = 1, ..., n− 1 (2.28)

πnn = cn (2.29)

πij = 0 ∀ other i, j (2.30)

It may also be easier to consider the preferences in the form

Π =



cn− 1 0 ... 0 1

0 cn− 1 ... 0 1

...
... . . . ...

...

0 0 ... cn− 1 1

0 0 ... 0 cn


(2.31)

When individual i is assigned object i then everyone receives utility of at least cn − 1.

The optimal choice is to give all of object i and 1
1+cn(n−1)

of object n to individual i for

i ≤ n−1, and 1− n−1
1+cn(n−1)

of object n to individual n for a social utility of U(Π, r(Π)) =
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cn− 1 + 1
1+cn(n−1)

. The following putative preferences are a Nash equilibrium for Π:

π̄ii = 1 ∀i = 1, ..., n− 1 (2.32)

π̄in = cn− 1 ∀i = 1, ..., n− 1 (2.33)

π̄n1 = 1 (2.34)

π̄nn = cn− 1 (2.35)

π̄ij = 0 ∀ other i, j (2.36)

Alternatively,

Π̄ =



1 0 ... 0 cn− 1

0 1 ... 0 cn− 1

...
... . . . ...

...

0 0 ... 1 cn− 1

1 0 ... 0 cn− 1


(2.37)

With respect to these preferences, since ties are broken lexicographically individual i

receives all of object i and 1
n

(
1− 1

cn−1

)
of object n for i ≤ n − 1 and individual n is

assigned 1
n

+ n−1
n

(
1

cn−1

)
of object n. With respect to the sincere preferences Π, individual

i’s utility for this allocation is ui(πi, r(Π̄)) = cn−1+ 1
n

(
1− 1

cn−1

)
for i ≤ n−1 – slightly

more than the cn−1+ 1
1+cn(n−1)

received when everyone was honest – and individual n has a

sincere utility of only un(πn, r(Π̄)) = c+ cn−c
cn−1

– significantly less than the cn−1+ 1
1+cn(n−1)

received when everyone was honest. The social utility of this outcome with respect to the

sincere preferences is U(Π, r(Π̄)) = c+ cn−c
cn−1

. If Π̄ is a Nash equilibrium, then the Price of

Deception of this instance is:

U(Π, r(Π))

U(Π, r(Π̄))
=
cn− 1 + 1

1+cn(n−1)

c+ cn−c
cn−1

(2.38)
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It remains to show that Π̄ is a Nash equilibrium. We first examine individual i 6= n.

Let π̄′i ∈ Pi a set of weights that i can submit. To determine that Π is a Nash equilibrium

we must show that ui(πi, r(Π̄)) ≥ ui(πi, r([Π̄−i, π̄
′
i])). Let π̄′i be such that individual i

gets a utility of at least ui(πi, r(Π̄)). We conclude π̄′ii ≥ 1 since otherwise individual 1 is

assigned item i (if i = 1 then individual n is assigned item 1) and this corresponds to a

strictly worse outcome for player i. Next we claim π̄′in ≥ cn − 1. If this is not the case,

then either π̄ii > 1 which results in i receiving all of i and less of item n, or π̄ij > 1 for

some j /∈ {i, n} and individual i receives item j and less of item n. Both outcomes are

worse than i and therefore π̄i = π̄′i. The argument to show that individual n is giving a best

response is similar implying Π̄ is a Nash equilibrium.

(ii) The Price of Deception of the Fair Division Problem is at most n: As in Exam-

ple 2.2.3, if an individual is honest then they receive an allocation with value at least∑m
j=1

vij
n

= cm
n

. Therefore for every sincere profile Π and equilibrium Π̄ ∈ NE(Π),

U(Π, r(Π̄)) = mini∈N ui(πi, r(Π)) ≥ cm
n

. Furthermore, since an individual can receive a

utility of at most
∑m

j=1 vij = cm, the social utility of r(Π̄) is

U(Π, r(Π̄)) = min
i∈N

ui(πi, r(Π̄)) ≤ cm. (2.39)

Therefore the Price of Deception is at most

sup
Π̄∈NE(Π)

U
(
Π, r(Π)

)
E
(
U
(
Π, r(Π̄)

)) ≤ cm
cm
n

= n (2.40)

2.3 Minimal Dishonesty

Anaylzing of “Games of Deception” is by no means novel [28, 65, 27, 64, 31, 53, 43,

13]. Yet the solution concept is neglected in many areas as researchers still simply label
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mechanisms as “manipulable” or “strategy-proof”. While we make no attempt to describe

the beliefs or intentions of other researchers, we believe there is a good reason to neglect

the Nash equilibrium solution concept as we have described it; the outcomes of Games of

Deception often make little sense.

Example 2.3.1. Games of Deception May Lead to Absurd Outcomes.

We continue with the Fair Division Problem. Once again we will maximize the minimum utility

with respect to the submitted preferences while breaking ties by assigning the lowest indexed indi-

vidual the most of the lowest indexed good as possible. Consider the sincere preference profile Π

given by Π below.

π11 = 100 π12 = 0 (2.41)

π21 = 0 π22 = 100 (2.42)

As a decision maker, these are the best preferences we can possibly hope for. We can give each

individual everything they want! The optimal allocation gives item i to individual i with a utility

of 100. The sincere preference profile Π is even a Nash equilibrium. Regrettably, it is not the only

Nash equilibrium.

π̄11 = 0 π̄12 = 100 (2.43)

π̄21 = 0 π̄22 = 100 (2.44)

Given the submitted preference profile Π̄, the central decision mechanism assigns item 1 to

individual 1 and evenly splits item 2 between individuals 1 and 2. With respect to the submitted

preferences, the central decision mechanism believes that each individual obtains a utility of 50.

However, with respect to the sincere preferences, individual 1 has a utility of 100 and individual

2 has a utility of 50. Moreover, Π̄ is a Nash equilibrium since neither individual can alter their

preferences to get a strictly better outcome.

Nash equilibria are meant to describe or predict the outcome of events [24]. However,
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the outcome in Example 2.3.1 is absurd; individual 1 is lying spuriously. The absurdity

shown in Example 2.3.1 is fairly tame compared to the others we mention in this disserta-

tion. If individual 1’s sincere preferences were slightly different, then the lie observed in

2.3.1 makes sense; if π1 = (99, 1) then individual 1 lied to receive half of item 2 and all

of item 1 which would be a strict improvement for individual 1. Moreover, individual 1’s

lie is not self-detrimental even though it negatively impacts others. This is not true in all

settings.

Consider a majority election between two candidates A and B and suppose every in-

dividual prefers A to B. Then obviously A should win the election. However, the Nash

equilibrium solution concept tells us something different. If everyone lies and indicates

they prefer B to A, then B wins the election. Furthermore, since the election is determined

by majority rule, if any single individual alters their submitted preferences thenB still wins

the election. Therefore there is a Nash equilibrium where B wins the election.

We believe these absurd equilibria are the biggest obstacle to

understanding the effects of strategic behavior.

To overcome this obstacle, we introduce the minimal dishonesty refinement to the Game

of Deception.

Definition 2.3.2. Let the putative preferences Π̄ be a Nash equilibrium for the sincere

preferences Π in the Game of Deception G(N,P ,Π, r, u,Ω, µ). Player i is minimally

dishonest if ui(πi, r([Π̄−i, π̄′i])) < ui(πi, r(Π̄)) for each π̄′i ∈ Pi that is more consistent

with πi than π̄i. In other words, if player i is minimally dishonest, then being more honest

should yield a worse outcome for i. A Nash equilibrium Π̄ is a minimally dishonest Nash

equilibrium if each player is minimally dishonest.

We provide an intuitive definition of minimial dishonesty, show it is consistent with

the current literature and provide a large amount of experimental evidence backing our

refinement. If individual i can be more honest and get at least as good a result, then the

22



individual would do so because lying causes guilt and because being somewhat truthful is

cognitively easier than lying spuriously. Thus, there is some “utility” associated with being

more honest. Therefore an individual is not minimally dishonesta and is not acting in their

best interest. Hence, we view minimally dishonest Nash equilibria as the set of reasonable

outcomes in a Game of Deception.

The assumption of minimal dishonesty is also consistent with the current literature’s

assumptions of “strategy-proof” or “non-manipulable” mechanisms. Current literature as-

sumes that if a mechanism is strategy-proof then every individual will be honest. But to

be strategy-proof mechanism only requires that the sincere profile Π be at least one of the

Nash equilibria. It does not require Π to be the only Nash equilibrium. The set of Nash

equilibria predicts the outcome of events, yet the literature ignores all other equilibria when

the mechanism is strategy-proof. This is reasonable because it makes little sense for people

to lie when there is not an incentive to do so. Minimal dishonesty captures this behavior.

Furthermore, if individuals are minimally dishonest, then being honest is the only Nash

equilibrium for a strategy-proof mechanism.

Theorem 2.3.3. A mechanism is strategy proof if and only if the sincere profile Π is the

only minimally dishonest equilibrium for all Π ∈ P .

Proof. The second direction follows by definition; if Π is a minimally dishonest Nash

equilibrium then it is also a Nash equilibrium and therefore the mechanism is strategy-

proof.

For the first direction, since the mechanism is strategy-proof, Π is a Nash equilibrium

for Π. Certainly individual v is minimally dishonest since v is completely honest and Π

is a minimally dishonest Nash equilibrium. Now we need to show there can be no other

minimally dishonest equilibria. Suppose Π̄ 6= Π is a minimally dishonest Nash equilibrium

and let v be such that π̄v 6= πv. Since the mechanism is strategy proof, individual gets at

least as good an outcome if they submit the more honest πv. Therefore Π̄ is not a minimally

dishonest Nash equilibrium and the theorem statement holds.
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We’ve argued that minimal dishonesty is logically intuitive and that it explains the as-

sumptions researchers make when using strategy-proof mechanisms. Most importantly,

our hypothesis is supported by a substantial body of empirical evidence from the experi-

mental economics and psychology literatures that people are averse to lying. Gneezy [29]

experimentally finds that people do not lie unless there is a benefit. Hurkens and Kartik

[32] perform additional experiments that confirm an aversion to lying, and show their and

Gneezy’s data to be consistent with the assumption that some people never lie and others

always lie if it is to their benefit. Charness and Dufwenberg [14] experimentally find an

aversion to lying and show that it is consistent with guilt avoidance. Battigalli [10] experi-

mentally find some contexts in which guilt is insufficient to explain aversion to deception.

Several papers report evidence of a “pure” i.e., context-independent, aversion to lying [42,

15, 29, 32] that is significant but not sufficient to fully explain experimental data.

The set of research results we have cited here is by no means exhaustive. Two additional

ones are of particular relevance to our concept of minimal dishonesty. Mazar et al. [46] find

that “people behave dishonestly enough to profit but honestly enough to delude themselves

of their own integrity.” Lundquist et al. [44] find that people have an aversion to lying

which increases with the size of the lie. Both of these studies support our hypothesis that

people will not lie more than is necessary to achieve a desirable outcome.

Some experimental evidence is less confirmatory of our hypothesis. Several studies,

beginning with [29], have found an aversion to lying if doing so would disbenefit someone

else substantially more than the benefit one would accrue.

2.4 The Price of Anarchy and The Price of Deception

Let us now elaborate on the differences between the Price of Deception and the Price of An-

archy. The latter measure was initially employed in [19] and then [8], later aptly named by

[40, 52], and now is widely employed in computer science. It is defined as the worst-case

ratio between the maximum overall benefit achievable by a theoretical centralized author-

24



ity and the overall benefit that would be achieved if all agents behaved autonomously to

maximize their individual utilities. For example, each packet traversing the internet might

“selfishly” route itself to arrive as quickly as possible, slowed by other packets utilizing the

same communication links, but without regard for the overall performance of the internet

[63]. The overall internet performance with selfish autonomous packets would be com-

pared with the overall performance if a centralized authority routed each packet. Thus, the

Price of Anarchy measures the decrease in benefit motivated by differences among individ-

ual utility functions that is enabled by individual control of actions. The Price of Deception

is the decrease in benefit motivated by differences among individual utility functions that

is enabled by individual control of information. The submission of preference information

can be viewed as an action, but the Price of Deception cannot be viewed as a Price of Anar-

chy unless we deny the existence of private information, because the centralized authority

would have to know each voter’s sincere preferences. However, one can view a Price of

Anarchy as a Price of Deception through a valid transformation.

2.4.1 Games of Anarchy

A Game of Anarchy, GA(N,S, µ), consists of

N := a set of n players.

Si := the set of actions player i can commit.

S = (s1, ..., sn) ∈ S1 × ...× Sn = S := set of actions committed by all players.

µi(S) := individual i’s value of S.

W (S) := society’s value for S.

Eq := set of S ′ ∈ S that form a Nash equilibrium.

In a Game of Anarchy, individual i decides to commit an action si ∈ Si. Individ-

ual i then receives a utility of µi(S) and society receives a utility of W (S). If instead a
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centralized coordinator controlled the actions of others, society would receive a utility of

maxS′∈SW (S ′). The set of equilibria Eq are the set of S ′ ∈ S where no individual i can

alter s′i in order to increase the value of µi(S ′). The Price of Anarchy is the worst case ratio

between the societal value obtained with a centralized coordinator and the societal value at

an equilibrium without a coordinator. Formally, the Price of Anarchy is

sup
S∈S

sup
S∈Eq

W (S)

W (S)
. (2.45)

The Price of Anarchy naturally occurs when information is public but each individual

has control of his actions.

2.4.2 The Obstacle to Reducing Deception to Anarchy

The Price of Anarchy arises naturally in settings where information is public but control of

actions is determined in private whereas the Price of Deception arises naturally in settings

where information is private but control of actions is determined by the public. Concep-

tually, Price of Anarchy and Price of Deception are very different despite their similarity

of mathematical form. We now attempt to reduce the latter to the former. Given a de-

terministic Game of Deception , GD(N,P ,Π, r, u) one can define a Game of Anarchy

GA,Π(N,S, µ) that has the same set of equilibria. Let S ∈ P correspond to the action

of submitting information S to the decision mechanism. The set of all possible combi-

nations of information that the players can submit is S := P . Individual i’s utility is

µi(S) = ui(Π, r(S)) and society receives a utility of W (S) = U(Π, r(S)). If there were

a centralized coordinator that could control the information that each player submits, the

coordinator would force each player to be honest and society would receive a utility of

maxS∈SW (S) = W (Π). The set of equilibria Eq would then equal E(Π). We have the
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following relationship:

PriceofDeception
(
GD(N,P ,Π, r, u)

)
= PriceofAnarchy

(
GA,Π(N,P , u(Π, ·))

)
(2.46)

However, this reduction only yields the Price of Deception of a decision mechanism for

a specific set of sincere preferences Π. To obtain the Price of Deception of the decision

mechanism, we would have to take the supremum of the Price of Anarchy of a family of

games of anarchy. This may be problematic, but it is not the primary obstacle blocking

the reduction of Price of Deception to Price of Anarchy. The primary obstacle is that the

transformation we have sketched from Price of Deception to Price of Anarchy violates the

premise of Price of Deception. The central coordinator required in the Game of Anarchy to

obtain an optimal outcome for society would have to force individuals to be honest, which

is impossible since a central coordinator would need access to private information to verify

that players are honest. Furthermore, there is still a central decision mechanism embedded

in the individual’s utility functions in the game with anarchy – the Game of Anarchy lacks

anarchy.

2.4.3 Reducing Anarchy to Deception

In contrast, Price of Anarchy can reduce to Price of Deception. Given a Game of Anarchy,

GA(N,S, µ), we define a Game of Deception, GD(N,P ,Π, r, u), that has the same set of

equilibria. Let S∗ ∈ argmaxS∈SW (S). Individual i’s private information πi corresponds

to the action that individual i should take in order to maximize society’s utility (i.e. πi =

s∗i ). However, individual i may act strategically and may tell the decision mechanism that

π̄i ∈ Si is the action that i should take in order to maximize society’s utility (i.e. P = S).

The central decision mechanism then selects the outcome r(Π̄) where each individual must

complete the action described by Π̄. Individual i receives utility ui(S∗i , r(Π̄)) = µ(Π̄) and

society receives a utility of U(S∗, r(Π̄)) = W (Π̄). If each individual were honest, then
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the central mechanism would assign individual i the action described by S∗i . The set of

equilibria E(S∗) is then precisely equal to Eq. We then have the following relationship:

PriceofAnarchy
(
GA(N,S, µ)

)
= PriceofDeception

(
GD(N,S, S∗, r, u)

)
(2.47)

Whereas our attempted reduction from Price of Deception to Price of Anarchy violates

the existence of private information that is a premise of the Price of Deception, reducing

Price of Anarchy to Price of Deception can be easily explained by a traveling consultant

and a lazy or incompetent central coordinator.

Suppose we have a lazy or incompetent central coordinator who simply lets everyone

act on their own. Further suppose that one day a traveling consultant visits, analyzes the

system, informs each individual what task they should perform to optimize society’s utility

and leaves forever. Upon hearing of the consultant’s visit, the central coordinator wishes to

make everyone act in the optimal way. However, the task an individual should complete is

private information known only by the individual. Thus, the coordinator asks every indi-

vidual to report their private information and instructs each individual to do their reported

task. Individuals interested in their own self-gain may strategically alter their information

to be assigned any task that they desire.

We view the reduction just given as artificial, despite its logical validity. Hence we

prefer to view Price of Anarchy and Price of Deception as distinct concepts.
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3

PRICE OF DECEPTION IN THE ASSIGNMENT PROBLEM

3.1 Introduction

In this chapter, we study algorithms that assign indivisible jobs to individuals based on the

individuals’ valuations of tasks. Some authors have observed that when there are many

individuals, each individual’s contribution to the problem is small and hence there is no

incentive to be dishonest [33]. These assumptions cannot be valid since it is well known

that no assignment algorithm satisfies symmetry, pareto optimality, and strategy-proofness

[69]. Therefore the use (and analysis) of manipulable assignment algorithms is necessary.

We consider two common models for submitting preference individuals. In the first,

individuals submit valuations for each task. The values come from the continuous domain

[0, 1]. Second, we consider ordinal based information where individuals rank each task.

This corresponds to each individual assigning a unique integer value in {1, ..., n} to each

job. In both variants we find that minimization problems have higher Prices of Deception

than maximization problems. We also consider both lexicographic and randomized tie-

breaking rules. For this setting, we find that the tie-breaking rule can lead to significant

changes in the Price of Deception. Specifically for the Max Benefit Assignment Problem

with continuous valuations, the Price of Deception with lexicographic tie-breaking is Θ(n2)

while random tie-breaking has a Price of Deception of only O(n
2
3 ). These analyses prove

that manipulable mechanisms may suffer from manipulation in different ways. Moreover,

the Price of Deception captures this behavior and is an essential tool for evaluating the

quality of a decision mechanism.

All mechanisms we analyze yield Pareto optimal solutions when individuals are sin-

cere. Moreover, when ties are broken randomly, the mechanisms are also symmetric and
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therefore not strategy-proof. We also consider manipulable non-symmetric lexicographic

tie-breaking rules. The results of our analyses are in Table 3.1 below.

Lexicographic Random

[0, 1] Max Assignment n2 − n+ 1 Ω (
√
n) , O

(
n

2
3

)
[0, 1] Min Assignment ∞ ≥ n

Integral Max Assignment 2n−1
n

< 4
Integral Min Assignment n

2
< 3n+1

4

Table 3.1: Price of Deceptions for Various Assignment Procedures

3.1.1 Lexicographic Tie-Breaking

The two Prices of Deception that stand out most in Table 3.1 are [0, 1] Min Assignments

with lexicographic tie-breaking and Integral Max Assignments. With a Price of Deception

of∞, the [0, 1] Min Assignment Problem is heavily impacted by manipulation – strategic

behavior can lead to results that are arbitrarily poor relative to the sincere solution. On the

other end of the spectrum, the Integral Max Assignment Problem, while still impacted by

manipulation, has a constant sized Price of Deception – strategic behavior will never cause

the social utility to change by more than a factor of two.

The minimization problems have worse Prices of Deceptions than maximization prob-

lems. When individuals submit ordinal data (Integral Min/Mas Assignments) there is a

simple reason for this: Both variants can have a solution with value anywhere in the in-

terval of [n, n2]. Moreover, in the worst-case equilibrium for both variants, the value of

the solution will have a value of approximately n2

2
. While n2

2
is approximately the same

distance from n and n2, it is of a different magnitude of n (the best-case value for the Min

Assignment Problem) whereas it is the same magnitude as n2 (the best-case value for the

Max Assignment Problem). Hence why we see that one Price of Deception is approxi-

mately n
2

while the other is 2. While this difference is significant for measuring how close

we remain to the desired outcome, it may be seen as somewhat artificial.
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However in the [0, 1] variant, the differences between the Prices of Deception are caused

by something more significant than an affine scaling of utilities. We show in Theorem 3.3.3

that in the [0, 1] Max Assignment Problem with lexicographic tie-breaking that the kth in-

dividual will receive one of her k favorite jobs which heavily restricts what an equilibrium

solution can look like. But when we analyze the Min Assignment Problem with lexico-

graphic tie-breaking, we can only guarantee that the kth individual can avoid one of her k

least favorite jobs. This places almost no restrictions on the set of equilibria and manipula-

tion can lead to very poor results.

3.1.2 Random Tie-Breaking

In the [0, 1] Max Assignment Problem where lexicographic tie-breaking yields a Price of

Deception of n2 − n + 1 where as random tie-breaking yields a Price of Deception of

only at most n
2
3 – an improvement of n

4
3 . Something as small as a tie-breaking rule can

significantly decrease the impact of manipulation. This seems intuitive; lexicographic tie-

breaking is by definition unfair and gives lower indexed individuals additional power to

manipulate the system. However, we will see in later chapters that random tie-breaking

can actually lead to worse outcomes than lexicographic tie-breaking. This means we must

be careful when selecting a tie-breaking rule – it seems unlikely that there is a single tie-

breaking rule that is always best.

In the remaining algorithms we examine, it is unclear whether random tie-breaking is

better or worse than lexicographic tie-breaking. We conjecture that the Prices of Deception

of the three remaining mechanisms when breaking ties randomly are lower than when ties

are broken lexicographically. We have, however, proved that manipulation still impacts

the [0, 1] Min Assignment Problem more than the [0, 1] Max Assignment Problem and that

manipulation has a relatively small impact on the Integral Max Assignment Problem – once

again it has a constant sized Price of Deception.
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3.1.3 Price of Deception’s Response to Indifference

The Price of Deception of ∞ of the [0, 1] Min Assignment Problem with lexicographic

tie-breaking does not tell the full story of the effect of manipulation. The proof of Theo-

rem 3.3.7 provides a family of instances where the value of the sincere optimal solutions

converge to zero while the value of the strategic solution is always at least some constant

c. The value of the constant c is important.

Suppose we have two mechanisms with Prices of Deceptions of∞. For the first mech-

anism suppose that c = 1 meaning that as the cost of the sincere solution approaches zero,

the cost of the strategic solution is 1. For the second mechanism, suppose c = n. The

second mechanism is n times as bad even though they have the same Prices of Deception.

To capture the difference, we artificially bound each valuation of each job to be at least

δ
n

for some δ < 1. This implies that the cost of the sincere solution is bounded below by

δ. Therefore for the first mechanism mentioned above, the Price of Deception is 1
δ

while

the second mechanism has a Price of Deception of n
δ
. Thus we are able to distinguish

between the two. When we apply this concept to the the [0, 1] Min Assignment Problem,

we determine that the Price of Deception is Θ(n
δ
) (Theorem 3.3.8) which is the worst Price

of Deception any of our assignment procedures can have.

The process of bounding valuations has another important property; it measures how

much individual preferences vary between jobs. Since every valuation sums to 1 (i.e.∑n
j=1 πij = 1), we know that if all valuations are at least δ

n
, then all valuations are also

at most 1 − n−1
n
δ. This implies that the difference in valuations of an individuals most

preferred and least preferred tasks is at most 1 − δ. Thus, we can think of δ as a quanti-

tative measure of indifference; δ approaching 1 is equivalent to individuals being almost

indifferent between all jobs.

In the context of the [0, 1] Min Assignment Problem, the Price of Deception can still be

large (n
δ

even when individuals are mostly indifferent between jobs). However, the Price

of Deception of the [0, 1] Max Assignment Problem is highly impacted by indifference.
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Specifically, if each individual has a value of at least δ
n

on each job, then the Price of

Deception is at most n2−n−1+(n−1)2δ
1+(n−1)δ

implying that as individuals become more indifferent

between jobs (as 1−δ becomes small), the Price of Deception converges to 1 at a relatively

quick rate; that is to say that if people are almost indifferent, then manipulation has little

impact on the quality of the outcome.

3.1.4 Serial Dictatorship and Aversion to Lying

In Theorem 3.3.3 and Corollary 3.3.12 we show that if individuals are strategic in the [0, 1]

Max, Integral Max, and Integral Min Assignment Problems with lexicographic tie-breaking

then the kth individual is guaranteed one of their top k ranked jobs; specifically we show

that if each individual is strategic then each algorithm is equivalent to individuals iteratively

picking their most preferred job. This process is referred to as Serial Dictatorship. Notably

in [69], Zhou gives the Serial Dictatorship algorithm as an example of a pareto optimal,

strategy-proof algorithm.

Since the outcomes of all three manipulable algorithms are equivalent to the outcome

of Serial Dictatorship and since Serial Dictatorship is strategy-proof it may seem an im-

provement to just use Serial Dictatorship. However, we claim that running Serial Dicta-

torship does not guarantee the same results as [0, 1] Max, Integral Max, and Integral Min

algorithms; recall from Section 2.3 that some individuals act strategically but minimally

dishonesty while other individuals have a pure aversion to lying. When some individuals

are truthful, Theorem 3.3.3 and Corollary 3.3.12 only extend to strategic individuals; i.e. if

the kth individual is strategic, she is guaranteed one of her top k ranked jobs. Therefore if

our objective is the Integral Max Assignment, then it will still obtain better outcomes than

Serial Dictatorship as long as we have some truthful individuals.

We also remark that opting to use Serial Dictatorship, like the revelation principle (see

Section 2.2), does not truly remove the impact of manipulation even when all individuals

are strategic; while we manage to induce individuals to be honest, if our goal is the outcome
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of the [0, 1] Max Assignment Problem, then, by using Serial Dictatorship, we may still end

up with a solution that is worse by a factor of n2 − n+ 1.

3.2 The Model

We begin by reinforcing many of the definitions from Chapter 2 by presenting them in

context of the Assignment Problem.

Definition 3.2.1. An instance of the Assignment Problem consists of

• Sets V = {v1, ..., vn} and J = {j1, ..., jn} of people and jobs, respectively.

• For each i ∈ V , a set of values or costs πi where πij is where j is the ith person’s

value (cost respectively) of job j for each j ∈ J . Individual i’s utility of j, ui(j) is

not necessarily equal to πij but ui(j) > ui(j
′) if and only if πij > πij′ .

• Denote by Pi the set of possible preferences player i can submit.

• Denote by Π the collection of πi over all i ∈ V . Π ∈ P is called the preference

profile.

• The profile Π is submitted to a publicly known matching procedure r. The outcome

r(Π) corresponds to a perfect matching between people and jobs or a distribution

over the set of perfect matchings (for randomized matching procedures).

A mechanism r may impose restrictions on how an individual may report their prefer-

ences. For instance, in the [0, 1] Max Assignment Problem, πij corresponds to the value

person i places on job j. Utilities are normalized such that
∑

j∈J πij = 1 for each individual

i. Therefore person i defines πij as ui(j)∑
j′∈J ui(j

′)
.

Let M be a perfect matching between V and J . A matching procedure r selects assign-

ment(s) r(Π) ⊆ argmaxM U(Π,M) where U(Π,M) =
∑
{i,j}∈M πij is society’s value of

the assignment M . If Π instead refers to costs, then replace argmax with argmin. The set
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∑
{i,j}∈M πij is not necessarily a singleton and therefore we must determine how to break

ties to find an assignment of jobs to individuals. We consider two tie-breaking rules: lex-

icographic tie-breaking – assigning the lowest indexed individual their most valued task

– and random tie-breaking – randomly re-indexing individuals and then using the lexico-

graphic tie-breaking rule. When a random tie-breaking rule is used, we assume individuals

and society are risk neutral when evaluating the quality of the outcome r(Π).

Unfortunately, there is no a priori guarantee that individuals will be honest; individual

i may falsely report a strategic π̄i 6= πi to obtain a better outcome. Therefore the submitted

preferences Π̄ may be significantly different than the sincere preferences Π. Not only

does this mean the outcome may change when individuals act strategically (i.e. r(Π) 6=

r(Π̄)), but the social of utility of the outcome may drastically decrease (i.e. U(Π, r(Π̄)) <

U(Π, r(Π))). To understand the effect of manipulation of various assignment procedures,

we analyze the Strategic Assignment Game.

Strategic Assignment Game

• Each individual i has information πi ∈ Pi describing their preferences. The collec-

tion of all information is the (sincere) profile Π = {πi}ni=1.

• To play the game, individual i submits putative preference data π̄i ∈ Pi. The collec-

tion of all submitted data is denoted Π̄ = {π̄i}ni=1.

• It is common knowledge that a central decision mechanism will select assignment

r(Π̄, ω) when given input Π̄ and random event ω.

• The random event ω ∈ Ω is selected according to µ. We denote r(Π̄) as the distribu-

tion of outcomes according to Ω and µ.

• Individual i evaluates r(Π̄) according to i’s sincere preferences πi. Specifically, in-

dividual i’s utility of the set of outcomes r(Π̄) is ui(πi, r(Π̄)).
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By the definition of the Strategic Assignment Game, a set of submitted preferences Π̄

forms a pure strategy Nash equilibrium if no individual i would obtain an outcome they

sincerely prefer to r(Π̄) (with respect to πi) by altering π̄i.

Example 3.2.2. A Nash equilibrium of the Strategic Assignment Game.

Consider the [0, 1] Max Assignment Problem where
∑

j∈J πij = 1 and we seek a matching that

maximizes
∑
{i,j}∈M πij . In the event of more than one such matching, we break ties lexicograph-

ically by assigning the lowest index individual their most preferred task. Consider the following

sincere preferences:

π1 = (.30, .20, .40, .10) (3.1)

π2 = (.24, .24, .25, .23) (3.2)

π3 = (.50, .20, .10, .20) (3.3)

π4 = (.20, .10, .60, .10) (3.4)

When individuals are honest, we obtain the assignment r(Π) = {{1, 2}, {2, 4}, {3, 1}, {4, 3}}

indicating that individual 1 is assigned job 2, individual 2 is assigned job 4, etc. With respect to the

sincere preferences, the social utility of this outcome is U(Π, r(Π)) = π12+π24+π31+π43 = 1.53.

However, honesty is not the best policy for each of these individuals. For instance, if individual

1 instead submits π̄1 = (1, 0, 0, 0) then he will be assigned job 1, a job she prefers. A Nash

equilibrium is given below:

π̄1 = (0, 0, 1, 0) (3.5)

π̄2 = (.24, .24, .25, .23) (3.6)

π̄3 = (1, 0, 0, 0) (3.7)

π̄4 = (.20, .10, .60, .10) (3.8)

When individuals submit the putative Π̄, the outcome is r(Π̄) = {{1, 3}, {2, 2}, {3, 1}, {4, 4}}.
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Society believes it has selected an outcome with utility U(Π̄, r(Π̄)) = π̄13 + π̄22 + π̄31 + π̄44 = 2.84.

But society’s true utility is defined with respect to Π and is U(Π, r(Π̄)) = π13 + π22 + π31 + π44 =

1.24 and therefore social utility decreased as a result of strategic behavior.

To establish that Π̄ is a Nash equilibrium, consider each person individually. Neither individual

1 nor 3 can alter their preferences to get a better result since they already have their most preferred

outcome. Individual 2 only prefers job 3 but since π̄1 = (0, 0, 1, 0) individual 1 will always be

assigned job 3 by the lexicographic tie-breaking rule regardless of the other preferences. Similarly,

individual 4 can not alter her preferences to obtain job 1 or 3, the only jobs she prefers to her

current assignment. Therefore Π̄ is a Nash equilibrium and strategic behavior not only changes the

outcome, it decreases social utility from 1.53 to 1.24

Example 3.2.2 shows an instance where the social utility decrease from 1.53 to 1.24;

manipulation resulted in an outcome that is 1.53
1.24
≈ 1.234 times as bad. For the remainder

of the chapter, we focus on finding a bound, the Price of Deception (see Section 2.2), on

how much manipulation impacts social utility of various assignment procedures.

Definition 3.2.3 (Price of Deception for Strategic Assignment Games). Let r be the an

assignment procedure. Let U be an associated real-valued function that, given a profile Π

of individual preferences over J , outputs for each assignment M a societal utility (or cost)

U(Π,M) of assignment M with respect to Π. The function r must be such that for all Π,

r(Π) ⊆ argmaxM U(Π,M) (respectively argmin). LetNE(Π) denote the set of equilibria

of the Strategic Assignment Game. Then the Price of Deception of procedure r is

sup
Pi∈P

sup
Π̄∈NE(Π)

U(Π, r(Π))

E(U(Π, r(Π̄)))
. (3.9)

If U corresponds to a cost, the Price of Deception is instead the reciprocal of (3.9).

Based on Example 3.2.2, we know the Price of Deception of the [0, 1] Max Assignment

Problem is at least 1.234. In this chapter we do not consider minimal dishonesty; unlike

facility location, voting and stable marriage algorithms that we analyze later, we show
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that there is an intuitive characterization for the set of Nash equilibria in the Strategic

Assignment Game and that there is no need for minimal dishonesty.

3.3 The Price of Deception with Lexicographic Tie-Breaking

We first find the Price of Deception when ties are broken lexicographically. If there exist

multiple optimal solutions, we select one where the lowest indexed individual is assigned

their most valued (or least costly) object/task that is lowest indexed iteratively.

3.3.1 [0, 1] Max Assignments

We define the [δ, γ] Max Assignment Problem to be such that πij ≥ δ
n

and
∑

j πij = γ

for each individual i. Unlike the Fair Division Problem, the valuations for each item come

from a continuous domain. Without loss of generality, it suffices to analyze this model

when γ = 1. We begin with the most common δ = 0.

Lemma 3.3.1. If π11 = 1, then r(Π) assigns individual 1 to job 1 in the [0, 1] Max Benefit

Assignment Problem.

Proof. For contradiction, assume that individual 1 is assigned task k 6= 1 and that player

i gets job 1. Consider switching these two assignments. We have that the change in the

objective value is given by π11 + πik − π1k − πi1 = 1 + πik − πi1 ≥ 0. But this implies the

objective value is at least as good when assigning k to individual 1. This is a contradiction

since ties are broken lexiographically.

Corollary 3.3.2. Individual i can alter her preferences to obtain one of her top i ranked

jobs.

The proof of Corollary 3.3.2 follows in the same fashion as Lemma 3.3.1. Individual

i simply needs to submit π̄ij = 1 for a job j where π̄i′j < 1 for all i′ < i. Corollary

3.3.2 shows that the [0, 1] Max Assignment Problem with lexicographic tie-breaking is

so responsive to preferences that strategic behavior results in players iteratively picking the
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task or object remaining that they most prefer. This process is known as Serial Dictatorship.

We describe the set of outcomes of Nash equilibria with the following algorithm.

Algorithm 1 Algorithm for finding outcomes for [0, 1] Max Assignment
1: procedure SERIALDICTATORSHIP

2: Jobs← [n]
3: xij ← 0 ∀{i, j} ∈ [n]2

4: for i = 1 to n do
5: Select j ∈ argmaxk∈Jobs πik
6: Jobs← Jobs \ {j}
7: xij = 1
8: end for
9: Output r

10: end procedure

The output x of Algorithm 1 decribes the matching. Specifically, xij = 1 if and only if

individual i is assigned to job j. Similarly, we write rij(Π) = 1 if mechanism r assigns i

to j when given profile Π.

Theorem 3.3.3. Let Π be a set of sincere preferences. The assignment x is obtainable at a

Nash equilibrium iff x is a possible output from Algorithm 1

Proof. One direction is simple; if x is not obtainable from Algorithm 1 then there is an

individual i that not obtain one of her top i preferred jobs contradicting Corollary 3.3.2.

For the other direction, let x be an output of Algorithm 1 and consider the putative

profile Π̄ = x. We have that π̄ij > 0 iff π̄ij = 1 iff xij = 1 and therefore r(Π̄) = x. We

now establish that Π̄ is a Nash equilibrium. Consider individual i and her assigned job j

where π̄ij = xij = 1. Let job k be such that πij > πik. By line 5 of Algorithm 1, xlk = 1 for

some l < i. By definition, π̄lk = 1 and individual i cannot alter her preferences to obtain

job k since l < i and ties are broken lexicographically. Therefore individual i cannot alter

her preferences to obtain a better outcome and Π̄ is a Nash equilibrium.

Theorem 3.3.4. The Price of Deception in the [0, 1] Max Benefit Assignment Problem is

n2 − n+ 1.
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Proof. Let Xi = ui(πi, r(Π)) be the value individual i obtains when she is sincere and let

Yi = ui(πi, r(Π̄)) be the value at a Nash equilibrium Π̄. Each Xi is at most one, each Yi is

at least zero, and by Lemma 3.3.1, Y1 ≥ X1. Therefore the Price of Deception is

U(Π, r(Π))

U(Π, r(Π̄))
=
X1 +X2 + · · ·+Xn

Y1 + Y2 + · · ·+ Yn
(3.10)

≤ X1 + (n− 1)

Y1

(3.11)

≤ Y1 + (n− 1)

Y1

. (3.12)

By Lemma 3.3.1, Y1 corresponds to the value of individual 1’s sincerely most preferred

task and therefore Y1 ≥
∑n

j=1
π1j
n
≥ 1

n
and the Price of Deception is at most n2 − n+ 1.

We now give an example to show that this is tight:

π11 =
1

n
+ ε (3.13)

π1j =
1

n
− ε

n− 1
∀j > 1 (3.14)

πii = ε ∀i > 1 (3.15)

πi,i−1 = 1− ε ∀i > 1 (3.16)

πij = 0 ∀i > 1, ∀j /∈ {i, i− 1} (3.17)

The optimal solution for this problem is (n − 1)(1 − ε) + 1
n
− ε

n−1
and is obtained

by giving everyone but person 1 her favorite job. By Theorem 3.3.3, there exists a Nash

equilibrium Π̄ where r(Π̄)ii = 1 ∀i ∈ [n] with a value of U(Π, r(Π̄)) = 1
n

+ ε + (n − 1)ε

yielding a Price of Deception of:

(n− 1)(1− ε) + 1
n
− ε

n−1
1
n

+ ε+ (n− 1)ε
→ n2 − n+ 1 as ε→ 0 (3.18)

completing the proof of the theorem.
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In the proof of Theorem 3.3.4 we could have easily taken ε = 0 for the instance Π

to obtain the same result without examining the limiting behavior. However, individual 1

would be indifferent among all tasks. While Π̄ would still be a Nash equilibrium, it would

be an equilibrium where individual 1 is lying spuriously – she had no incentive to lie and

would have received the same utility had she been honest. However, by taking ε > 0,

individual 1 has reason to lie and is minimally dishonest (Section 2.3).

3.3.2 [δ, 1] Max Assignments

In some settings, we may know a priori that πij ≥ δ
n

for some δ. Thus we may impose such

a restriction on the individuals for their submitted preferences. As discussed in Section

3.1.3, 1− δ indicates how much individual preferences vary between tasks.

Both Corollary 3.3.2 and Theorem 3.3.3 extend to this setting (although π̄ij = 1− n−1
n
δ

for all i, j where xij = 1 and π̄ij = δ
n

in the proof of Theorem 3.3.3).

Theorem 3.3.5. The Price of Deception in the [δ, 1] Max Benefit Assignment Problem is

n2−n+1−(n−1)2δ
1+(n−1)δ

.

Proof. The proof follows in the same fashion as Theorem 3.3.4. Once again, let Xi be the

value individual i gets when she is sincere and let Yi be the value individual i gets in some

equilibrium Π̄. As before, Yi ≥ δ
n

for all i and πij = 1 −
∑

k 6=j πik ≤ 1 − n−1
n
δ implying
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Xi ≤ 1− n−1
n
δ. Thus, the Price of Deception is given by

U(Π, r(Π))

U(Π, r(Π̄))
=
X1 +X2 + · · ·+Xn

Y1 + Y2 + · · ·+ Yn
(3.19)

≤
X1 + (n− 1)(1− n−1

n
δ)

Y1 + (n− 1) δ
n

(3.20)

≤
Y1 + (n− 1)(1− n−1

n
δ)

Y1 + (n− 1) δ
n

(3.21)

≤
1
n

+ (n− 1)(1− n−1
n
δ)

1
n

+ (n− 1) δ
n

) (3.22)

=
n2 − n+ 1− (n− 1)2δ

1 + (n− 1)δ
(3.23)

The problem instance demonstrating that the bound is tight is similar to Theorem 3.3.4:

π11 =
1

n
+ ε (3.24)

π1j =
1

n
− ε

n− 1
∀j > 1 (3.25)

πii =
δ

n
+ ε ∀i > 1 (3.26)

πi,i−1 = 1− ε− n− 1

n
δ ∀i > 1 (3.27)

πij =
δ

n
∀i > 1, j /∈ {i, i− 1} (3.28)

The optimal value for this problem is (n− 1)(1− ε− n−1
n
δ) + 1

n
− ε

n−1
and is obtained

by assigning everyone but person 1 his favorite job. By Theorem 3.3.3, there exists a Nash

equilibrium Π̄ where r(Π̄)ii = 1 ∀i ∈ [n] with a value of U(Π, r(Π̄)) = 1
n

+ nε + n−1
n
δ

yielding a Price of Deception of:

1
n
− ε

n−1
+ (n− 1)(1− ε− n−1

n
δ)

1
n

+ ε+ n−1
n
δ

→ n2 − n+ 1− (n− 1)2δ

1 + (n− 1)δ
as ε→ 0 (3.29)
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completing the proof of the theorem.

To obtain the guaranteed bound of n2−n+1−(n−1)2δ
1+(n−1)δ

, we need not impose the restriction

that all submitted preferences have value at least δ
n

. It is only necessary that the each sincere

value πij is at least δ
n

. This holds because Corollary 3.3.2 holds regardless of the value of

δ < 1 we give to the individuals. Thus there may seem to be no purpose in analyzing the

[δ, 1] Max Assignment Problem. However, Theorem 3.3.5 tells us how much manipulation

impacts society depending on how much individual preferences vary between jobs. For

instance, if everyone is almost indifferent among tasks and 1
2n
≤ πij ≤ n+1

2n
(δ = 1

2
) for

each individual then manipulation can only impact society by a factor of n2−n+1−(n−1)2 1
2

1+(n−1) 1
2

=

n2+1
n+1
≈ n.

3.3.3 [0, 1] Min Assignments

In the Min Assignment Problem, πij ≥ 0 denotes the cost for individual i to complete job

j. Once again we require
∑

j πij = 1 for each individual i. We seek an assignment of jobs

to individuals that minimizes the total cost.

Theorem 3.3.6. For n = 2, the Price of Deception of the [0, 1] Min Cost Assignment

Problem is 3.

Proof. We begin by establishing the upper bound. When there are only two individuals,

there is a bijection between instances of the [0, 1] Min Assignment Problem and instances

of the [0, 1] Max Assignment Problem; if individual i has a cost (benefit) of πij for job

j in the Min (Max) Assignment Problem, that corresponds to a benefit (cost) of π′ij =

1 − πij . Moreover
∑2

j=1 π
′
ij =

∑2
j=1(1 − πij) = 1 and Π′ is a valid set of preferences.

Furthermore, the social choice mechanism selects the same outcome in both instances:

an assignment x minimizes (maximizes)
∑2

i=1

∑2
j=1 πijxij if and only if it maximizes

(minimizes) 2 −
∑2

i=1

∑2
j=1 πijxij =

∑2
i=1

∑2
j=1 π

′
ijxij . Therefore Corollary 3.3.2 holds

in this setting and individual 1 receives her most preferred job at a Nash equilibrium.
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As in Theorem 3.3.4, let Xi = ui(πi, r(Π)) be the cost to individual i when everyone

is honest and let Yi = ui(πi, r(Π̄)) be the cost at some Nash equilibrium Π̄. By Corollary

3.3.2, Y1 ≤ X1 and therefore Y1 ≤ .5. Since social “utility” is actually a cost we use the

reciprocal of (2.19) to find the Price of Deception:

U(Π, r(Π̄))

U(Π, r(Π))
=

Y1 + Y2

X1 +X2

(3.30)

≤ Y1 + 1

X1

(3.31)

≤ Y1 + 1

Y1

(3.32)

=
.5 + 1

.5
= 3 (3.33)

To establish the lower bound, consider the following preferences:

π11 = .5− ε π12 = .5 + ε (3.34)

π21 = 0 π22 = 1. (3.35)

In the optimal assignment individual 1 completes task 2 and individual 2 completes task 1

for a total cost of .5 + ε. By Theorem 3.3.4, there is a Nash equilibrium Π̄ where individual

i is assigned task i for a sincere cost of 1.5 − ε yielding a Price of Deception that tends to

3 as ε→ 0.

In the proof of Theorem 3.3.6 we established that the [0, 1] Min Assignment Problem is

the same as the [0, 1] Max Assignment Problem when there are only 2 individuals. This is

not true when there are more players and Corollary 3.3.2 does not extend. While individuals

do not have the power to get whatever job they desire, manipulation has a much larger

impact on the [0, 1] Min Cost Assignment Problem.

Theorem 3.3.7. The Price of Deception of the [0, 1] Min Cost Assignment Problem is ∞
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for n ≥ 3.

Thus far we have only seen mechanisms with finite Prices of Deception. An infinite

Price of Deception indicates that manipulation can lead to arbitrarily poor results. The

proof of such only requires a family of instances where the Prices of Deception of the

instances tend to infinity.

Proof of Theorem 3.3.7. Consider the following sincere profile Π:

πin = 1 ∀i 6= 1 (3.36)

πij = 0 ∀i 6= 1 ∀j 6= n (3.37)

π1n = ε (3.38)

π11 = 0 (3.39)

π1j =
1− ε
n− 2

∀ 2 ≤ j ≤ n− 1 (3.40)

The sincere outcome r(Π) assigns individual i to job i − 1 for i ≥ 2 and assigns indi-

vidual 1 to job n for a total cost of U(Π, r(Π)) = ε. Individual 1 can alter her preferences

such that individual i is assigned to job i with the preferences given below:

π̄1n = 1 (3.41)

π̄1j = 0 ∀j 6= n (3.42)

π̄ij = πij ∀i 6= 1 ∀j (3.43)

The selected outcome r(Π̄) assigns individual i to job i. This corresponds to a sincere

cost of U(Π, r(Π̄)) = 1. The profile Π̄ corresponds to a Nash equilibrium. Only individual

n would like to deviate from the solution but she cannot as any alterations to π̄n give

the appearance that she can complete job n for the cheapest amount. Thus, the Price of

Deception of this instance is 1
ε
→∞ as ε→ 0.
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When there is an infinite Price of Deception, we actually lose some information. We

cannot distinguish between a mechanism where the cost when everyone is honest is ε and

the cost of the equilibrium is 1 and a mechanism where the cost when everyone is honest

is again ε but the cost of the equilibrium is n. Both mechanisms have Prices of Deception

that approach infinity as ε → 0, the effect of manipulation on the latter is n times worse.

Although the instance in the proof of Theorem 3.3.7 makes the [0, 1] Min Assignment

Problem look like the former, we will show in the next section that it is more similar to the

latter.

3.3.4 [δ, 1] Min Assignments

Similar to the [δ, 1] Max Assignment Problem, we restrict πij such that it is at least δ
n

. As

with the Max Assignment Problem, such a restriction will give us a better idea of how

the Price of Deception behaves with indifference between tasks. As mentioned at end of

the previous section, this restriction will also give us an idea of just how bad the Price of

Deception of∞ is in the [0, 1] Min Assignment Problem.

Theorem 3.3.8. The Price of Deception in the [δ, 1] Min Cost Assignment Problem is in

Θ(n
δ
).

Proof. We begin by establishing the upper bound. The worst possible assignment has a

cost of at most n(1 − (n−1)δ
n

) = n − (n − 1)δ since a job costs at most 1 − (n−1)δ
n

for an

individual to complete. Similarly, the best possible assignment has a cost of δ. Therefore

the Price of Deception is at most

n− (n− 1)δ

δ
=
n

δ
− n+ 1 ∈ Θ

(n
δ

)
(3.44)
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We now establish the lower bound. Consider the following sincere preferences:

π11 =
δ

n
(3.45)

π1j =
1− 2 δ

n
− ε

n− 2
∀j /∈ {1, n} (3.46)

π1n =
δ

n
+ ε (3.47)

πii =
1

2
− ε− n− 2

n
δ ∀i /∈ {1, n} (3.48)

πin =
1

2
+ ε− n− 2

n
δ ∀i /∈ {1, n} (3.49)

πij =
δ

n
∀i /∈ {1, n} ∀j /∈ {i, n} (3.50)

πnn = 1− n− 1

n
δ (3.51)

πnj =
δ

n
∀j 6= 1 (3.52)

According to the lexicographic tie-breaking rules, r(Π) assigns individual i to task i−1

for i 6= 1 and assigns individual 1 to task n for a total cost of δ + ε.

We now examine a set of putative preferences forming a Nash equilibrium with respect

to Π.

π̄in = 1− (n− 1)δ

n
∀i (3.53)

π̄ij =
δ

n
∀i ∀j 6= n (3.54)

Since ties are broken lexicographically, r(Π̄) assigns individual i to task i. This corre-

sponds to a real cost of

U(Π, r(Π̄) =
δ

n
+ (n− 2)

(
1

2
− ε− n− 2

n
δ

)
+

(
1− n− 1

n
δ

)
(3.55)

=
n

2
− (n− 1)(n− 2)

n
δ − (n− 2)ε (3.56)

Similar to Theorem 3.3.7, Π̄ is a Nash equilibrium since any deviation from π̄i by individual
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i causes i to be assigned to task n. Thus the Price of Deception is

n
2
− (n−1)(n−2)

n
δ − (n− 2)ε

δ + ε
→

n
2
− (n−1)(n−2)

n
δ

δ
as ε→ 0 (3.57)

=
n

2δ
− (n− 1)(n− 2)

n
∈ Θ

(n
δ

)
(3.58)

completing the proof of the theorem.

3.3.5 Integral Max Assignments

In some cases of the assignment problem, we collect ordinal information from individuals

and then treat it as cardinal data. Specifically, we have them rank their jobs such that

πij = n − k + 1 if and only if individual i’s kth favorite task is job j. In this setting,

we seek to maximize the sum of individual benefits. Similar to the [0, 1] Max Assignment

Problem we show that the decision mechanism is very responsive to players’ preferences.

Lemma 3.3.9. Individual 1 can always change her preferences so there is at least one

assignment M ′ that maximizes individuals’ reported utilities and assigns individual 1 to

job a for any a.

Lemma 3.3.9 does not quite guarantee that player 1 can alter her preferences to receive

her most preferred job. If she updates her preferences in accordance with Lemma 3.3.9 it

does not guarantee the lexicographic tie-breaking rule will match her to her most preferred

task. We address this later.

Prior to proving Lemma 3.3.9, we estalish a few preliminaries on finding optimal as-

signments. Every assignment problem can be represented by a complete bipartite graph

with one set of nodes representing individuals and the other set representing jobs. The

edge {i, j} connecting individual i to job j has weight πij . An optimal assignment now

corresponds to a max weight matching in the bipartite graph. We now present a characteri-

zation of the set of max weight matchings.
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Definition 3.3.10. Let M be a perfect matching on a complete bipartite graph and let C be

an even cycle such that 2 · |M ∩ C| = |C|
2

. That is to say that every other edge in C is also

in M . The cycle C is augmenting if
∑
{i,j}∈C\M πij >

∑
{i,j}∈M\C πij .

If there exists an augmenting cycle C with respect to M then a better matching M ′

can be obtained by removing edges in M ∩ C and adding edges in C \ M . Formally,

M ′ = (M \ C) ∪ (C \M). Since
∑
{i,j}∈C\M πij >

∑
{i,j}∈M∩C πij , this will increase

the value of the assignment and maintain the validity of the matching. Thus M is optimal

if and only if M has no augmenting cycles. The ‘only if’ is an immediate extension of

Berge’s lemma [11].

Proof of Lemma 3.3.9. Suppose Π is a set of preferences where individual 1 is not assigned

her job a in any optimal matching. Let M be an optimal matching and {1, a} /∈ M . Let

b and k be such that {1, b} ∈ M and {k, a} ∈ M ; individual 1 is assigned task b and

individual k is assigned task a according to M .

Let Π̄ = [Π−1, πk] be the profile obtained when individual 1 updates her preferences

to k’s preferences list πk. Suppose for contradiction that no assignment that maximizes

the sum of individual utilities with respect to Π̄ matches individual 1 to job a. Let M ′ =

(M \ {{1, b}, {k, a}}) ∪ {{1, a}, {k, b}} be the matching obtained by forcing individuals

1 and k to switch tasks in the assignment M . Since M ′ assigns individual 1 to job a, M ′

is not optimal with respect to Π by assumption. Thus, M ′ contains an augmenting cycle C

with respect to Π.

First we claim that if no optimal matching contains {1, a} then there is an augmenting

cycle C where {1, a} ∈ C. This follows in the same fashion as Berge’s lemma. Consider

(M ∪M ′) \ (M ∩M ′) – the symmetric difference between M and M ′. Since both M and

M ′ are perfect matchings on a bipartite graph the symmetric difference consists of even

cycles. Since {1, a} ∈M ′, there is a cycle C ∈ (M ∪M ′) \ (M ∩M ′) where {1, a} ∈ C.

If C is not augmenting, then the matching M ′′ = (M \C)∪ (C \M) has at least as high a
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value as M implying M ′′ is also optimal and contains {1, a}. By assumption this is not the

case and therefore there is an augmenting cycle containing {1, a}.

Let C be an augmenting cycle containing {1, a}. We now examine two cases:

Case 1: {1, a} ∈ C and {k, b} /∈ C. This implies the following:

∑
{i,j}∈C:

{i,j}∈M′

π̄ij <
∑
{i,j}∈C:

{i,j}/∈M′

π̄ij (3.59)

⇒ π̄1a +
∑
{i,j}∈C:
{i,j}∈M

i 6=1

πij < π̄1w +
∑
{i,j}∈C:
{i,j}∈M

i 6=1

πij (3.60)

⇒ πka +
∑
{i,j}∈C:
{i,j}∈M

i 6=1

πij < πkw +
∑
{i,j}∈C:
{i,j}∈M

i 6=1

πij (3.61)

wherew 6= a is such that {1, w} ∈ C\M ′. These inequalities hold because by the definition

of Π̄ and M ′, π̄i and πi differ for only i = 1; if i /∈ {1, k} then {i, j} ∈ M ′ if and only if

{i, j} ∈M ; and π̄i = πk. But (3.61) implies that (C \ {{1, a}{1, w}})∪{{k, a}{k, w}} is

a cycle that augments M with respect to Π as shown in Figure 3.1. This is a contradiction

since M is optimal with respect to Π. Therefore Case 1 cannot occur.

Case 2: {1, a}, {k, b} ∈ C. Denote P1k as the path that goes from individual 1 to

individual k within the cycle C and contains the edge {1, a} (see Figure 3.2). Let Pk1 be

the edge-disjoint path going from individual k to individual i in the cycle C. Therefore

Pk1 ∪ P1k = C. The cycle C is augmenting and therefore

∑
{i,j}∈C:

{i,j}∈M′

π̄ij <
∑
{i,j}∈C:

{i,j}/∈M′

π̄ij (3.62)

⇒
∑

{i,j}∈P1k:

{i,j}∈M′

π̄ij +
∑

{i,j}∈Pk1:

{i,j}∈M′

π̄ij <
∑

{i,j}∈P1k:

{i,j}/∈M′

π̄ij +
∑

{i,j}∈Pk1:

{i,j}/∈M′

π̄ij. (3.63)

This implies that either the edges in P1k∩M ′ are less valuable than the edges in P1k\M ′

or the edges in Pk1 ∩M ′ are less valuable than the edges in Pk1 \M ′ (or both). Either way
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Individuals Jobs

π̄1a = πka

π̄1w
=
πkw

k

1 a

w

(a) Augmenting Cycle for M ′ and Π̄.

Individuals Jobs

πka

π k
w1 a

w

k

(b) Augmenting Cycle for M and Π.

Figure 3.1: Augmenting Cycles for Case 1.

we can construct an augmenting cycle as shown in Figure 3.2 with the original matching

M and preferences Π. Without loss of generality assume the edges in P1k ∩M ′ are less

valuable than the edges in P1k \M ′ implying

∑
{i,j}∈P1k:

{i,j}∈M′

π̄ij <
∑

{i,j}∈P1k:

{i,j}/∈M′

π̄ij (3.64)

⇒ π̄1a +
∑

{i,j}∈P1k:

{i,j}∈M′
i 6=1

πij <
∑

{i,j}∈P1k:

{i,j}/∈M′

πij (3.65)

⇒ π̄1a +
∑

{i,j}∈P1k:

{i,j}∈M
i 6=1

πij <
∑

{i,j}∈P1k:

{i,j}/∈M

πij (3.66)

⇒ πka +
∑

{i,j}∈P1k:

{i,j}∈M
i 6=1

πij <
∑

{i,j}∈P1k:

{i,j}/∈M

πij. (3.67)

Similar to Case 1, all steps hold by the definition of Π̄ and M ′. But (3.67) implies that

the cycle (P1k \{1, a})∪{k, a} augments M with respect to Π, a contradiction completing
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Individuals Jobs
π̄1a = πka

1 a

k

(a) Augmenting Cycle for M ′ and Π̄
with P1k Highlighted and Pk1 Not High-
lighted.

Individuals Jobs

π k
a

1 a

k

(b) Augmenting Cycle for M and Π

Figure 3.2: Augmenting Cycles for Case 2.

Case 2.

Both cases result in contradictions and thus, individual 1 can change her preferences so

that there is an optimal solution where she is assigned job a.

Corollary 3.3.11. Individual 1 can always change her preferences so she gets her highest

ranked job in the Integral Max Assignment Problem when breaking ties lexicographically.

Proof. By Lemma 3.3.9, individual 1 can adjust her preferences to π̄1 so that there is a

maximum valued solution where she gets her favorite job. We now show how we can adjust

these preferences so that individual 1 gets her favorite job when using the lexicographic

ranked order tie-breaking system.

Denote individual 1’s favorite job as job a. If π̄1a = n, then player 1 gets job a by

our tie-breaking rule. Otherwise, π̄1a = l < n and π̄1b = n where b 6= a. Let M be

an maximum matching assigning individual 1 to job a. If instead individual 1 instead

reports π̄1a = n and π̄1b = l then M remains maximum. Moreover, in every maximum
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matching individual 1 is assigned to job a after setting π̄ia to n, completing the proof of the

corollary.

We note here that this proof only relies on there being a unique maximum weighted job

and hence the same proof technique could have been used in the sections corresponding to

[0, 1] and [δ, 1] Max Benefit Assignments but not the Min Cost Assignment versions.

Corollary 3.3.12. Individual i can alter her preferences so she is assigned one of her i

highest-ranked jobs in the Integral Max Assignment Problem when ties are broken lexico-

graphically.

The proof of Corollary 3.3.12 follows in the same fashion as Corollary 3.3.11. Similar

to Theorem 3.3.3, Algorithm 1 finds all possible outcomes of Nash equilibria. Algorithm 1

iteratively assigns each individual their most valued task of those that remain. Since each

individual assigns each task a unique value, Algorithm 1 has a unique output. More impor-

tantly, this output corresponds to the only outcome we can expect at a Nash equilibrium.

Theorem 3.3.13. Let x be the assignment obtained from Algorithm 1 with sincere pref-

erences Π. Then there is a Nash equilibrium Π̄ where r(Π̄) = x. Moreover, for every

equilibrium Π̄, r(Π̄) = x.

Proof. The second part of the the theorem holds immediately by Corollary 3.3.12.

Since lexicographic tie-breaking only relies on the index of the individual, we may

relabel the jobs so that x assigns task i to individual i for all i. This implies that individual

i prefers task j to i if and only if j < i. We will prove that the following set of preferences

form a Nash equilibrium:

π̄ij = n− i+ j ∀i < n ∀j ≤ i (3.68)

π̄ij = n− j + 1 ∀i < n ∀j > i (3.69)

π̄nj = n− j + 1 ∀j (3.70)
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Equivalently,

Π̄ =



n n− 1 n− 2 n− 3 . . . 2 1

n− 1 n n− 2 n− 3 . . . 2 1

n− 2 n− 1 n n− 3 . . . 2 1

...
...

...
... . . . ...

...

2 3 4 5 . . . n 1

n n− 1 n− 2 n− 3 . . . 2 1


. (3.71)

Since ties are broken lexicographically r(Π̄) = x and assigns individual i to task i for

all i. We show Π̄ is a Nash equilibrium via contradiction.

Suppose that Π̄ is not a Nash equilibrium and that individual k can alter her preferences

to π̄′k such that she is assigned task l < k. LetM be the assignment obtained after k updates

her preferences.

We first claim that for all i /∈ {k, l} individual i is assigned job i. We proceed by

minimal counter example and let i /∈ {k, l} be the lowest indexed individual that is assigned

to j 6= i. Suppose instead that individual w is assigned i. By minimality, one of the

following holds: i = n, j = k, w = l; i < n,w > i, j > i; i < n,w > i, j = k < i;

i < n, i > w = l, j > i; or i < n, i > w = l, j = k < i. In each case we will

either give an augmenting cycle for M that yields a higher valued matching, or a value-

neutral cycle for M that yields a matching with same value that is preferred according

to the lexicographic tie-breaking rule. Either way M is not selected after k updates her

preferences, a contradiction.

Case 1: i = n, j = k, w = l. Update M with

the cycle shown in Figure 3.3.

n n

l

k

Figure 3.3: Cycle for Case 1.
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If we update M according to the cycle in Figure 3.3 by adding edges {n, n} and {l, k}

and removing edges {n, k} and {l, n} then the value of the matching increases by

π̄ii + π̄wj − π̄ij − π̄wi = π̄nn + π̄lk − π̄nk − π̄ln (3.72)

= 1 + (n− k + 1)− (n− k + 1)− 1 = 0. (3.73)

Hence the value of the matching is the same if we assign l to k and n to n. Since the lower

indexed l prefers the new matching, the lexicographic tie-breaking rule does not assign l to

n contradicting that M was selected. This completes Case 1.

Case 2: i < n,w > i, j > i. Update M with

the augmenting cycle shown in Figure 3.4.

i i

w

j

Figure 3.4: Augmenting Cycle for Case 2.

If we update M according to the cycle in Figure 3.4 by adding edges {i, i} and {w, j}

and removing edges {i, j} and {w, i} then the value of the matching increases by

π̄ii + π̄wj − π̄ij − π̄wi = n+ (n− j + 1)− (n− j + 1)− (n− w + i) (3.74)

= w − i > 0 (3.75)

if w < j and

π̄ii + π̄wj − π̄ij − π̄wi = n+ (n− w + j)− (n− j + 1)− (n− w + i) (3.76)

= 2j − 1− i ≥ 0 (3.77)

if w ≤ j. Either way the value of the matching does not decrease and the cycle C in Figure

3.4 is such that (M \ C) ∪ (C \M) is a matching preferred by the decision mechanism.

This is a contradiction and completes Case 2.
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Case 3: i < n,w > i, j = k < i. Update M

with the cycle shown in Figure 3.5.
i i

w

k

Figure 3.5: Cycle for Case 3.

If we update M according to the cycle in Figure 3.5 by adding edges {i, i} and {w, k}

and removing edges {i, k} and {w, i} then the value of the matching increases by

π̄ii + π̄wj − π̄ij − π̄wi = π̄ii + π̄wk − π̄ik − π̄wi (3.78)

= n+ (n− w + k)− (n− i+ k)− (n− w + i) = 0 (3.79)

Thus the value of the matching is the same if we assign i to i and w to k. Similar to

Case 1, this is a contradiction and Case 3 is complete.

Case 4: i < n, i > w = l, j > i. Update M

with the augmenting cycle shown in Figure

3.6.

i i

l

j

Figure 3.6: Augmenting Cycle for Case 4.

If we update M according to the cycle in Figure 3.6 by adding edges {i, i} and {l, j}

and removing edges {i, j} and {l, i} then the value of the matching increases by

π̄ii + π̄wj − π̄ij − π̄wi = π̄ii + π̄lj − π̄ij − π̄li (3.80)

= n+ (n− j + 1)− (n− j + 1)− (n− i+ 1) = i− 1 > 0

(3.81)

since i > l ≥ 1. Therefore the cycle in Figure 3.6 is augmenting. This contradicts that M
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was selected after k updated her preferences and completes Case 4.

Case 5: i < n, i > w = l, j = k < i. Up-

date M with the augmenting cycle shown in

Figure 3.7.
i i

l

k

Figure 3.7: Augmenting Cycle for Case 5.

If we update M according to the cycle in Figure 3.6 by adding edges {i, i} and {l, k}

and removing edges {i, k} and {l, i} then the value of the matching increases by

π̄ii + π̄wj − π̄ij − π̄wi = π̄ii + π̄lk − π̄ik − π̄li (3.82)

= n+ (n− k + 1)− (n− i+ k)− (n− i+ 1) = 2i− 2k > 0

(3.83)

The cycle in Figure 3.7 is augmenting for M . This contradicts that M was selected after k

updated her preferences and this completes Case 5.

The claim holds for all five cases and therefore M assigns individual i to task i for all

i /∈ {k, l}, individual k to task l < k, and individual l to task k. However, this implies

there is an augmenting cycle for M after k updates her preferences. Suppose instead that

we try to assign individual l to task l, individual n to task k and individual k to task n. This

increases the value of the matching by

π̄ll + π̄nk + π̄′kn − π̄lk − π̄nn − π̄′kl (3.84)

= n+ (n− k + 1) + π̄′kn − (n− k + 1)− 1− π̄′kl (3.85)

= n− 1 + π̄′kn − π̄′kl (3.86)

≥ 0 (3.87)

However, by the lexicographic tie-breaking rule, the new matching is preferred to M
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since it assigns the lower indexed individual l her more preferred job l. This contradicts

that r([Π̄−k, π̄′k]) = M . Therefore individual k cannot alter her preferences to get a better

outcome and therefore Π̄ is a Nash equilibrium for Π.

Theorem 3.3.14. The Price of Deception of the Integral Max Assignment Problem with

lexicographic tie-breaking is 2(n−1)
n

.

Proof. By Theorem 3.3.13, an equilibrium solution haves value at least
∑n

i=1(n− i+ 1) =∑n
i=1 i =

(
n+1

2

)
. The highest value an assignment can have is

∑n
i=1 n = n2. However, by

Theorem 3.3.13 any set of preferences Π where U(Π, r(Π)) = n2 also has U(Π, r(Π̄)) =

n2 yielding a Price of Deception of 1 for that particular instance. Therefore, if the Price

of Deception is more than 1, then U(Π, r(Π)) is at most n2 − 1 yielding an upper bound

of 2(n−1)
n

on the Price of Deception. To obtain the lower bound, consider the following

possible preferences:

π11 = n (3.88)

π1n = n− 1 (3.89)

πi,i−1 = n ∀i > 1 (3.90)

πii = n− i+ 1 ∀i > 1 (3.91)

πij > n− i+ 1 ∀i > 1 ∀j < i− 2 (3.92)

πij < n− i+ 1 ∀i > 1 ∀j > i+ 1 (3.93)

where π1j is arbitrary for j /∈ {1, n}. The optimal matching r(Π) assigns task i − 1 to

individual i for all i > 1 and task n to individual 1 for a total benefit ofU(Π, r(Π)) = n2−1.

By Theorem 3.3.13, there is a Nash equilibrium Π̄ that assigns task i to individual i for all

i for a sincere cost of U(Π, r(Π̄)) =
(
n+1

2

)
yielding a Price of Deception of 2(n−1)

n
and

completing the proof of the theorem.
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3.3.6 Integral Min Assignments

In Integral Max Assignment Problem, each individual i submits a integer weight πij ∈ [n]

to task j. As in the Max Assignment Problem πij = πik if and only if j = k. This time πij

corresponds to the cost. There is an immediate bijection between instances of the Integral

Min Assignments and Integral Max Assignments. If an individuals’ cost (benefit) in the

Min (Max) Assignment Problem is πij , then this corresponds to a benefit (cost) in the Max

(Min) Assignment Problem of π′ij = n − πij + 1. Therefore Theorem 3.3.13 holds in this

setting and we can immediately find the Price of Deception.

Theorem 3.3.15. The Price of Deception of the Integral Min Assignment Problem with

lexicographic tie-breaking is n
2
.

Proof. As in the proof of Theorem 3.3.14, by Theorem 3.3.13, an equilibrium has value

at most
∑n

i=1 i =
(
n+1

2

)
. The cheapest assignment possible has value U(Π, r(Π)) =∑n

i=1 1 = n but once again Theorem 3.3.13 implies that U(Π, r(Π̄)) = n. Therefore if

the Price of Deception is more than one then U(Π, r(Π̄)) ≥ n+ 1 yielding an upper bound

of n
2

on the Price of Deception. To achieve the matching lower bound, simply consider the

preferences Π′ = {π′ij = n − πij + 1}ni,j=1 where Π is defined in the proof of Theorem

3.3.14.

3.4 The Price of Deception with Random Tie-Breaking

In this section, we find the Prices of Deception using a random tie-breaking rule. To break

ties randomly, we re-index individuals uniformly at random and then use the lexicographic

tie-breaking rule with respect to the new indices.

3.4.1 [0, 1] Max Assignment Problem

Theorem 3.4.1. The Price of Deception in the [0, 1] Max Assignment Problem breaking

ties randomly is in Ω (
√
n).
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Proof. We begin by assuming that n = k2 where k ∈ Z. We now define our weights in the

following way:

πik+1,ik+1 = 1 ∀i = 0, 1, . . . , k − 1, (3.94)

πik+1,j = 0 ∀i = 0, 1, . . . , k − 1 ∀j 6= ik + 1, (3.95)

πik+j,ik+1 =
1

n
+ ε ∀i = 0, 1, . . . , k − 1 ∀j = 2, 3, . . . , k, (3.96)

πik+j,t =
1

n
− ε

n− 1
∀i = 0, 1, . . . , k − 1 ∀j = 2, 3, . . . , k ∀t 6= ik + 1. (3.97)

These preferences correspond to k groups of k individuals where each group has a

single task they most prefer1. One member of the group likes only this job and dislikes

all other jobs. The other members of the group are basically indifferent between all jobs.

Ignoring ε terms, the optimal solution to this has value U(Π, r(Π)) = k + (n − k) 1
n

by

giving everyone their job if they place a value 1 on it and assigning all other jobs randomly.

We now consider the following set of putative preferences:

π̄ik+j,ik+1 = 1 ∀i = 0, 1, . . . , k − 1,∀j = 1, ..., k (3.98)

π̄ik+j,t = 0 ∀i = 0, 1, . . . , k − 1 ∀j = 1, ..., k ∀t 6= ik + 1. (3.99)

With respect to Π̄, each group selects one member to receive the most preferred job. All

other tasks are assigned uniformly at random. Again, ignoring ε terms, the optimal solution

to this has value U(Π, r(Π̄)) = k 1
k

+ (n− k) 1
n

since each player with a true value of 1 on

their favorite job only receives it if they are the first that gets to decide amongst those which

prefer that job (which occurs with probability 1
k
). These values are at equilibrium since any

player altering their value ensures she will get her lowest weighted job. This example yields

1For n where
√
n /∈ Z we have various groups of size b

√
nc or d

√
ne. This has a negligible effect on the

Price of Deception for large n.
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a Price of Deception of

k + 1− k
n

k2

n
+ 1− k

n

=

√
n+ 1− 1√

n

2− 1√
n

≈
√
n

2
(3.100)

completing the proof of the theorem.

We did not obtain a matching upper bound in the proof of Theorem 3.4.1. We give an

upper bound in the following theorem.

Theorem 3.4.2. The Price of Deception for the [0, 1] Max Assignment Problem is inO(n
2
3 ).

The proof of Theorem 3.4.2, consists of two parts. First we show that the Price of

Deception is inO(n
2

k2
) where k = U(Π, r(Π)). Second, we show that the Price of Deception

is in O(k). Setting n2

k2
equal to k, we obtain that the upper bound is at most n

2
3 . Prior to

establishing the first part, we present the following lemma.

Lemma 3.4.3. For n ≥ k,
∑k

i=1
1
xi
≥ k2

n
when

∑k
i=1 = n and xi ≥ 1 ∀i = 1, .., k.

Proof. The value
∑k

i=1
1
xi

is bounded below by the following mathematical program:

min z =f(x) :=
k∑
i=1

1

xi
(3.101)

subject to : (3.102)
k∑
i=1

xi = n (3.103)

x ≥ 1 (3.104)

The Hessian of f , ∇2f , is such that ∇2fij = 0 if i 6= j and ∇2fii = 2
x3i

. This implies

that ∇2f is positive definite over the domain {x :
∑k

i=1 xi = n, x ≥ 1} implying that f is

strictly convex over its domain. Furthermore, the domain is symmetric and convex and, by

strict convexity of f , the optimal solution x∗ is symmetric. Therefore, x∗i = x∗j = n
k

and

f(x∗) = k2

n
completing the proof of the lemma.
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Theorem 3.4.4. The Price of Deception for the [0, 1] Max Assignment Problem is in O(n
2

k2
)

where k is the value of the sincere optimal solution.

Proof. Since U(Π, r(Π)) ≥ k there are at least l = dk
2
e individuals getting a value at least

k
2n

in an optimal sincere solution. Otherwise the value of the optimal solution is less than

k
2

+ (n − k
2
) k

2n
= k − k2

4n
< k. Suppose without loss of generality these individuals are

indexed by {1, ..., l} and player i gets job i in the sincere optimal solution.

Let Π̄ be a Nash equililbrium for Π and let αi be the number of individuals placing a

value of 1 on job i (excluding player i) in Π̄. If player i ∈ {1, ..., l} places 1 on job i, then

player i receives job i with probability 1
αi+1

indicating player i has a utility in r(Π̄) of at

least k
2n(αi+1)

. Thus the value of the equilibrium is at least

l∑
i=1

k

2n(αi + 1)
=

k

2n

l∑
i=1

1

αi + 1
≥ k

2n

l2

n+ l
=

kl2

2n2 + 2nl
(3.105)

by Lemma 3.4.3 since
∑l

i=1(αi + 1) ≤ n+ l. Thus the Price of Deception is at most

k
kl2

2n2+2nl

=
2n2 + 2nl

l2
∈ O

(
n2

k2

)
(3.106)

Theorem 3.4.5. The Price of Deception for the [0, 1] Max Assignment Problem is in O(k)

where k is the value of the sincere optimal solution.

Proof. It suffices to show that for any set of preferences, the value of a solution in an equi-

librium is at least some constant c (we will select c = 1
2
).

Let αi be the number of 1’s on job i excluding player 1. As in Theorem 3.4.4, if player

i places 1 on job i then she receives job i with probability 1
αi+1

. Therefore, player 1’s value
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from r(Π̄) is at least

t1 =
max

1 ≤ j ≤ n

{
π1j

1 + αj

}
(3.107)

⇒ t1 ≥
π1j

1 + αj
∀j (3.108)

⇒ t1(1 + αj) ≥ π1j ∀j (3.109)

⇒ t1

n∑
j=1

(1 + αj) ≥
n∑
j=1

π1j = 1 (3.110)

⇒ t1(2n− 1) ≥ t1

n∑
j=1

(1 + αj) ≥ 1 (3.111)

⇒ t1 ≥
1

2n
(3.112)

This holds for every player, implying that the value of the solution in equilibrium is at least

1
2
, thus completing the proof.

Theorems 3.4.4 and 3.4.5 immediately imply Theorem 3.4.2.

3.4.2 [0, 1] Min Assignment Problem

Theorem 3.4.6. The Price of Deception in the [0, 1] Min Assignment Problem breaking ties

randomly is at least n.

Proof. Consider the following sincere preferences:

πin = 1 ∀i 6= 1 (3.113)

πij = 0 ∀i 6= 1 ∀j 6= n (3.114)

π1i =
1

n
− ε

n− 1
∀i 6= n (3.115)

π1n =
1

n
+ ε (3.116)

This instance has an optimal solution given by U(Π, r(Π)) = 1
n

+ ε obtained by as-

signing job n to individual 1 and all other jobs uniformly at random. We now consider the
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following set of false preferences:

π̄in = 1 ∀i (3.117)

π̄ij = 0 ∀i ∀j 6= n. (3.118)

The assignment r(Π̄) gives out a completely random matching since everyone has the

same preferences. No players can do better since any change would ensure they get their

worst job. This solution has a since expected value of U(Π, r(Π̄)) = 1 yielding a Price of

Deception of n as ε→ 0.

3.4.3 Integral Max Assignment Problem

Theorem 3.4.7. The Price of Deception in the Integral Max Assignment Problem breaking

ties randomly is at most 4(n2−1)
n2+3n

< 4.

Proof. This proof proceeds in a similar fashion to Theorems 3.4.4 and 3.4.5. Let αj be the

number of individuals that place a value of n on job j excluding player i with respect to

equilibrium preferences Π̄. Let α =
∑n

j=1 αj ≤ n. Following from the same strategy as

decribed by Theorem 3.3.13, player 1 can adjust her preferences so that she receives job i

with probability at least 1
αi+1

. If she commits to such a strategy, then her utility of the new

outcome will be at least π1j
αj+1

+
αj

αj+1
. Therefore her value of r(Π̄) must be at least

t1 =
max

1 ≤ j ≤ n

{
π1j

αj + 1
+

αj
αj + 1

}
(3.119)

⇒ t1(1 + αj) ≥ π1j + αj ∀j (3.120)

⇒ t1

n∑
j=1

(1 + αj) ≥
n∑
j=1

(π1j + αj) =

(
n+ 1

2

)
+ α (3.121)

⇒ t1 ≥
n(n+ 1) + 2α

2n+ 2α
(3.122)

⇒ t1 ≥
n2 + 3n

4n
(3.123)
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This holds for all individuals and therefore the value of r(Π̄) is at least

U(Π, r(Π̄)) ≥ n2 + 3n

4
(3.124)

Similar to Theorem 3.3.14, if the Price of Deception is more than one, thenU(Π, r(Π̄)) ≤

n2 − 1 implying that the Price of Deception of the Max Integral Assignment Problem is at

most

4(n2 − 1)

n2 + 3n
< 4. (3.125)

3.4.4 Integral Min Assignment Problem

Theorem 3.4.8. The Price of Deception in the Integral Min Assignment Problem breaking

ties randomly is at most 3n2+n
4(n+1)

≤ 3n+1
4

.

Proof. As stated earlier, there is a bijection between the Integral Min and Max Assignment

Problems. In the proof of Theorem 3.4.7, it was established that each individual receives a

utility of at least n − n2+3n
4

+ 1 in the Integral Max Assignment Problem. As in the proof

of Theorem 3.3.15, this means that each individual can select π̄i such that their cost at an

equilibrium Π̄ is at most n − (n − n2+3n
4

+ 1) + 1 = 3n2+n
4n

. As established in Theorem

3.3.15, the Price of Deception is greater than one only if U(Π, r(Π)) ≥ n+ 1. This implies

that the Price of Deception is at most

n3n2+n
4n

n+ 1
=

3n2 + n

4(n+ 1)
≤ 3n+ 1

4
(3.126)
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4

PRICE OF DECEPTION IN SPATIAL VOTING AND FACILITY LOCATION

4.1 Introduction

In this chapter, we study the Price of Deception for algorithms that select a single fa-

cility location (or political policy) from anywhere in a compact convex region based on

a st of individually reported facility locations (political preferences). The standard solu-

tion techniques (1-Median and 1-Mean algorithms) give solutions that minimize the sum

of distances between the facility location and the locations preferred by each individual.

While there has been quite a bit of work focused on developing strategy-proof variants of

the 1-Median or p-Median (p facilities) [43, 22, 23], there has not been much working in

understanding the type of outcomes obtained when individuals are strategic.

In this chapter we consider three variants of the Facility Location Problem. We first

examine the 1-Median Problem where a central coordinator attempts to minimize the sum

of individual distances to the facility location where distances are measured with the L1

norm. We also consider the same problem while measuring distances with the L2 or eu-

clidean norm. Finally we consider the 1-Mean Problem where the sum of squared euclidean

distances is minimized. For the first two mechanisms, we consider both randomized and

deterministic tie-breaking rules. For the third, there is always a unique optimal facility

location and there is no need to break ties.

When analyzing a player’s best response, a common approach is to assume individuals

measure the quality of the facility location by measuring the euclidean distance (L2 norm)

between the individual’s preferred location and the facility location. We prove our results

for individual utilities based on any Lp norm where p ∈ (0,∞) (i.e. ui(πi, x) = ||πi−x||pi).

We begin by analyzing the Facility Location Problem without minimal dishonesty. In
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Theorem 4.3.1 we show for the 1-Median Problem when using either the L1 of L2 norm,

for any feasible facility location, there is a Nash equilibrium that yields that location. That

is to say that the Nash equilibrium solution concept considers every facility location an

acceptable outcome regardless of the sincere preferences. There is disappointing from a

normative perspective; there are infinitely many possible facility locations and the Nash

equilibrium concept gives no way to discriminate between them. Morever, it is unrealistic

from a predictive perspective; in the proof of Theorem 4.3.1, each individual submits that

there preferred outcome is location x. As a result the facility is placed at x and these

preferences form a Nash equilibrium because no individual can cause the facility to move

at all. This indicates that people are lying without reason and thus the 1-Median Problem

needs the minimal dishonesty refinement defined in Section 2.3. We remark that the Price

of Deception is the same in the 1-Mean Problem with or without the minimal dishonesty

refinement. Unlike the 1-Median Problem, if any individual changes their preference in

the 1-Mean Problem then the facility location changes; the responsiveness of the facility

location procedure prevents absurd outcomes like the ones we see in Theorem 4.3.1.

After applying the minimal dishonesty refinement we obtain far more satisfying results.

We first observe that tie-breaking rules once again have a large effect on the Price of De-

ception. Unlike the assignment problem however, lexicographic tie-breaking rules yield

quality outcomes while random tie-breaking can lead to arbitrarily poor results. Specifi-

cally, we give a fair variant of the 1-Median Problem that, while manipulable, has a Price

of Deception of one. This represents our best possible hope for a manipulable algorithm;

while manipulation can change the outcome, it does not negatively impact the quality of

the outcome. We also observe that the set of allowed facility locations can have a signif-

icant impact of the Price of Deception; for many of the algorithms we examine the Price

of Deception can be arbitrarily large if the set of allowed facility locations is a triangle.

However, if the set of allowed facility locations is a rectangle then the Price of Deception is

bounded for most mechanisms. These results provide evidence that the Price of Deception
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helps discriminate among various facility location procedures.

4.1.1 Facility Location in R

We begin by examining the problem in one dimension. Since ||x||2 = ||x||1 in R we

consider only the 1-Median and 1-Mean Problem. The results are given in Table 4.1 below.

Price of Deception in R
Number of Individuals |N | is odd |N | is even
Deterministic 1-Median 1 1

Random 1-Median 1
√

2
1-Mean O(n) O(n)

Table 4.1: Prices of Deception of the Facility Location Problem in R.

Perhaps most striking in Table 4.1 is the difference in the Prices of Deception of the 1-

Median Problem with deterministic and random tie-breaking rules. In the previous chapter,

we observed a significant difference between randomized and lexicographic tie-breaking

rules. Specifically, we observed that randomized methods outperformed lexicographic

methods due to the biased nature of lexicographic tie-breaking. We examine a stark con-

trast in this setting; deterministic tie-breaking rules have no impact on manipulation while

random tie-breaking can lead to sub-optimal outcomes. This emphasizes the importance

of very carefully considering small changes to an algorithm because small differences can

have significant impacts on performance and those impacts can vary greatly depending on

the setting.

In the 1-Median Problem, the set of optimal facility locations will be given by an inter-

val [a, b] (possibly a = b and always a = b when |N | is odd) for some a ≤ b. To break ties

in the deterministic setting, we select λ ∈ [0, 1] and then place the facility at (1−λ)a+λb.

In Theorem 4.4.6, we establish for λ ∈ {0, 1} that the 1-Median Problem is strategy-proof –

no individual will have incentive to behave dishonesty – and it immediately follows that the

Price of Deception is one. More fascinating however is that for λ ∈ (0, 1) and for |N | even,

the 1-Median Problem is manipulable but the Price of Deception is still one; manipulation
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has an impact on the outcome – the facility location may change due to strategic behavior –

but the social utility of the outcome remains unchanged. This is significant; in accordance

with current literature’s preference for strategy-proof algorithms, we would select λ = 0

to guarantee that the mechanism is unaltered by manipulation. However, selecting λ = 0

prioritizes placing the facility to the left which appears unfair to everyone to the right of

the facility. As a result of this research, we instead recommend that we set λ = .5 because

it is more fair and still guarantees that manipulation has no impact on social utility since

the Price of Deception is one.

We also examine the 1-Mean Problem in R. It has a significantly higher Price of Decep-

tion Θ(n) indicating that the impact of manipulation increases linearly with the number of

individuals in the game. Denoting Π as the set of locations individuals sincerely prefer, we

guarantee that the facility location is placed in conv.hull(Π) when individuals are strate-

gic. However, no further guarantees exist and the strategic facility location can be quite far

from the facility location obtained when everyone is honest.

4.1.2 Facility Location in Rk for k ≥ 2

We also consider the Facility Location Problem in higher dimensions. It is most common

to consider the problem in R2 but we generalize for all higher dimensions. We have only

required that the set of allowed facility locations X be compact and convex. In R, this

describes a line segment. However, in higher dimensions, there are an infinite number of

possibilities for the shape of the set of allowed locations. We consider both arbitrary shapes

as well as hyper-rectangles – the most common set of allowed facility locations. The Prices

of Deceptions for our various procedures are given in Table 4.2.

Perhaps what stands out most is that the Price of Deception is ∞ for arbitrary X re-

gardless of the facility location procedure. Specifically, in Theorems 4.4.26 and 4.4.19 we

show that for a triangle with largest angle α that the Price of Deception converges to ∞

as α tends to π. The only exceptions are a few variants of the deterministic version of
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Price of Deception in Rk for k ≥ 2
Allowed Locations X Arbitrary X Rectangular X
Number of Individuals |N | is odd |N | is even |N | is odd |N | is even
Deterministic 1-Median 1 1 or∞ 1 1

Random 1-Median 1 ∞ 1
√

2
1-Mean ∞ O(n)

Minimize L2 Norm ? ∞ ? ∞

Table 4.2: Prices of Deception of the Facility Location Problem in Rk for k ≥ 2.

the 1-Median Problem using the L1 norm. In k dimensions, the set of optimal solutions is

some hyper-rectangle {x : a ≤ x ≤ b}. To break ties deterministically, we select some

λ ∈ [0, 1]k and select the facility location (1− λ)a + λb. In Theorem 4.4.17, we establish

that for λ ∈ {0, 1}k that the 1-Median Problem is strategy-proof regardless of the set of

allowed facility locations and therefore has a Price of Deception of 1.

The results improve significantly when the set of allowed facility locations is a hyper-

rectangle. As with the Facility Location Problem in R, we establish that the Price of De-

ception of the 1-Median Problem using the L1 norm is one (Theorem 4.4.14). Specifically

selecting λ = {1
2
}k, we have a fair procedure that, while not strategy-proof, guarantees

that manipulation will have no impact on the quality of the outcome. Moreover, Theorem

4.4.14 holds for all individual utility functions ui(πi, x) = ||πi − x||pi for all pi ∈ (0,∞).

However, if ties are broken randomly in the 1-Median Problem, then manipulation can lead

to sub-optimal outcomes. Even worse, if we use the L2 norm instead for the social utility,

the Price of Deception is unbounded regardless of the tie-breaking rule (Theorem 4.4.26)

and we may obtain arbitrarily poor results. For the 1-Mean Problem, in Theorem 4.4.24

we show that the facility location will always be in the smallest bounding box containing

all the sincere preferences and therefore the Price of Deception is Θ(n) and once again the

impact of manipulation, while finite, scales linearly with the number of individuals. Once

again this result holds for all utility functions.
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4.2 The Model

Once again we present the definitions from Chapter 2 as they relate the Facility Location

Problem.

Definition 4.2.1. An instance of the Facility Location Problem consists of

• A compact convex set X ⊆ Rk of allowed facility locations.

• A Set V = {1, 2, ..., n} of individuals.

• For each individual i ∈ V , a location πi ∈ Pi = X representing i’s preferred facility

location. In voting theory πi is called individual i’s ideal point.

• Denote by Π the collection of πi over all i ∈ V . Π ∈ P is called the preference

profile.

• The profile Π is submitted to a publicly known facility location procedure r. The

outcome r(Π) corresponds to a facility location or a distribution of facility locations.

In context of this chapter, r(Π) is a maximizer of a social utility function. We consider

three mechanisms, each having a different social utility function:

• 1-Median Problem: U(Π, x) =
∑n

i=1 ||πi − x||1.

• 1-Mean Problem: U(Π, x) =
∑n

i=1 ||πi − x||22.

• Minimize L2 Norm: U(Π, x) =
∑n

i=1 ||πi − x||2.

Only the 1-Mean Problem is guaranteed a unique optimizer. For the other problems we

consider both lexicographic and random tie breaking rules.

Individual i’s valuation of the location x ∈ X is given by ui(πi, x) = ||πi − x||pi for

some pi ∈ (0,∞). Typically pi is taken to be 2 (the Euclidean norm). We derive our results
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for any pi. In the event that the procedure r is non-deterministic, we assume that individuals

are risk-neutral and that ui(πi, X) for some distribution X is equal to its expected value.

Strategic Facility Location Game

• Each individual i has information πi ∈ X describing their preferred facility location.

The collection of all information is the (sincere) profile Π = {πi}ni=1.

• To play the game, individual i submits putative location π̄i ∈ X . The collection of

all submitted data is denoted Π̄ = {π̄i}ni=1.

• It is common knowledge that a central decision mechanism will select facility loca-

tion r(Π̄, ω) when given input Π̄ and random event ω.

• The random event ω ∈ Ω is selected according to µ. We denote r(Π̄) as the distribu-

tion of facility locations according to Ω and µ.

• Individual i evaluates r(Π̄) according to i’s sincere preferences πi. Specifically, in-

dividual i’s utility of the distribution of outcomes r(Π̄) is ui(πi, r(Π̄)) = E(||πi −

r(Π̄)||pi) for some pi ∈ (0,∞).

By the definition of the Strategic Facility Location Game, a set of submitted preferences

Π̄ forms a pure strategy Nash equilibrium if no individual i would obtain an outcome they

sincerely prefer to r(Π̄) (with respect to πi) by altering π̄i.

Example 4.2.2. A Nash Equilibrium of the Strategic Location Game.

Consider the 1-Mean Problem where the facility location is r(Π) that minimizes U(Π, x) =∑n
i=1 ||πi − x||22. It is well known that the minimizer of this function is r(Π) =

∑n
i=1

πi
n . Consider

the feasible region X = {x ∈ R2 : (0, 0) ≤ x ≤ (1, 1)} and the sincere preferences π1 =

(1
8 ,

1
8), π2 = (1

8 ,
1
2) and π3 = (1

2 ,
1
8). With respect to these preferences, the facility location is
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located at r(Π) = (1
4 ,

1
4). This corresponds to a cost of U(Π, r(Π)) =

∑3
i=1 ||πi − r(Π)||22 =

√
2+2
√

5
8 ≈ .736. The region X and sincere preferences are given in Figure 4.1 below.

π1

π2

π3

r(Π)

Figure 4.1: Sincere Preferences for Example 4.2.2

Individual 1 would like to move the facility to the lower left, individual 2 to the upper left, and

individual 3 to the lower right. A Nash equilibrium where individuals attempt to do just this is

given by π̄1 = (0, 0), π̄2 = (0, 1), and π̄3 = (1, 0). With respect to the submitted preferences Π̄,

the facility is located at r(Π̄) = (1
3 ,

1
3). The central decision mechanism believes it has selected a

facility with cost U(Π̄, r(Π̄)) =
∑3

i=1 ||π̄i − r(Π̄)||22 =
√

2+2
√

5
3 ≈ 1.96. With respect to the true

preferences Π, the facility actually costs U(Π, r(Π̄)) =
∑3

i=1 ||πi − r(Π̄)||22 = 5
√

2+2
√

41
24 ≈ .828.

The putative preferences are given in Figure 4.2 below.

π̄1

π̄2

π̄3

r(Π̄)

π1

π2

π3

Figure 4.2: Putative Preferences for Example 4.2.2

To see that Π̄ corresponds to a Nash equilibrium, first consider individual 1. If individual 1
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alters her submitted location π̄1, then she must move it up or to the right. Such an action causes

the facility location to move up or to the right respectively. Both possibilities cause the facility to

move further away from π1 and therefore individual 1 cannot alter her submitted preferences to get

a better result. Individual 2 and Individual 3 are giving best responses by symmetric reasoning and

Π̄ is a pure strategy Nash equilibrium.

Example 4.2.2 demonstrates that manipulation in the 1-Mean can cause the social cost

to increase from .736 to .828 – a cost that is .828
.736

= 1.25 times as bad. For the remainder

of the chapter, we focus on finding the Price of Deception (see Section 2.2) to measure the

impact of manipulation in the Facility Location Problem.

Definition 4.2.3 (Price of Deception for Strategic Facility Location Games). Let r be a

facility location procedure. Let U be an associated real-valued cost that, given a profile

Π of preferred facility locations, outputs a social cost U(Π, x) for each possible facility

location x ∈ X . The decision procedure r is such that r(Π) ⊆ argmaxx∈X U(Π, x). Let

NE(Π) denote the set of equilibria of the Strategic Facility Location Game with procedure

r. Then the Price of Deception of r is

sup
Π∈P

sup
Π̄∈NE(Π)

E(U(Π, r(Π̄)))

U(Π, r(Π))
(4.1)

Based on Example 4.2.2, we know that the Price of Deception of the 1-Mean Problem

is at least 1.25. Prior to finding the Price of Deception for these algorithms, we first demon-

strate the need for minimal dishonesty when we minimize the sum of L1 or L2 norms.

4.3 Strategic Facility Location Without Refinement

Theorem 4.3.1. Let x be an arbitrary point in X and let n ≥ 3. Regardless of the sincere

preference profile Π, there is a Nash equilibrium Π̄ where r(Π̄) = x when distance is

measured with the L1 or L2 norm.

Proof. Suppose each voter v submits π̄v = x, then r(Π̄) = x and the central decision
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mechanism believes it has selected a facility that is 0 away from everyone. We now show

Π̄ is a Nash equilibrium by showing that no individual can change the facility location.

Suppose voter v submits π̄′v instead. With respect to [Π̄−v, π̄
′
v], the cost to place the facility

at x = r(Π̄) is ||π̄′v − x|| while the cost to place the facility at x′ = x+ d is

∑
v′ 6=v

||π̄v′ − x′||+ ||π̄′v − x′|| = (n− 1)||d||+ ||π̄′v − x′|| (4.2)

= (n− 2)||d||+ ||d||+ ||π̄′v − x′|| (4.3)

≥ (n− 2)||d||+ ||π̄′v − (x′ − d)|| (4.4)

= (n− 2)||d||+ ||π̄′v − x|| (4.5)

Since n ≥ 3, then x′ = x + d costs more with respect to [Π̄−v, π̄
′
v] than x whenever

||d|| > 0. Therefore, r([Π̄−v, π̄′v]) = x and individual cannot alter their submitted prefer-

ences to get a better result and Π̄ is a Nash equilibrium.

Corollary 4.3.2. The Price of Deception of the Facility Location Problem is∞ when dis-

tance is measured with the L1 or L2 norm.

Proof. Let y ∈ X . Suppose n ≥ 3 and let πv = y for all v ∈ N . If individuals are honest

then the central decision mechanism selects r(Π) = y which is 0 away from all individuals.

Let x ∈ X \ y. By Theorem 4.3.1 there is a Nash equilibrium Π̄ where r(Π̄) = x which is

||y−x|| > 0 away from individual v’s sincere location πv. Therefore the Price of Deception

is at least n||y−x||
0

=∞.

Theorem 4.3.1 and Corollary 4.3.2 demonstrate that the Nash equilibria concept can

lead to illogical outcomes. Therefore we apply the minimal dishonesty solution concept

from Section 2.3.

Definition 4.3.3. Let Π be the sincere preferences and let Π̄ be a Nash Equilibrium in the

Strategic Facility Location Game. An individual v is minimally dishonest if ||πv − π̄′v|| <
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||πv − π̄v|| implies that v’s cost of the more honest outcome, uv(πv, r([Π̄−v, π̄′v)]), is more

than v’s cost of the equilibrium outcome, uv(πv, r(Π̄)).

A pure strategy Nash equilibrium is minimally dishonest if each individual is minimally

dishonest.

Said in the contrapositive, an individual submitting location π̄v is not minimally dishon-

est if she can report a location closer π̄′v to her preferred location πv and obtain at least as

good an outcome. We proceed by examining each problem with deterministic and random

tie-breaking rules.

4.4 Prices of Deception for Facility Location Procedures

4.4.1 1-Median Problem

We begin by analyzing the 1-Median Problem where the facility location r(Π) is a mini-

mizer of U(Π, x) =
∑n

i=1 ||πi−x||1 =
∑n

i=1

∑k
j=1 |πij−xj|where πij is the jth coordinate

of πi. While there is no closed form solution for this problem, the problem is separable and

easy to solve. Let a be minimal and b be maximal and such that |{πv : πv ≤ a}| ≥ dn
2
e

and |{πv : πv ≥ b}| ≥ dn
2
e. Then the set of optimal facility locations is given by

{x : a ≤ x ≤ b}. When selecting a facility location we assume r(Π)’s only dependence on

Π is a and b.

1-Median Problem in R.

Breaking Ties Deterministically

We begin by breaking ties deterministically. Consider the λ-1-Median Problem for

when voters submit locations in Rk:

Definition 4.4.1. Let λ ∈ [0, 1]k. For the profile Π, let {x ∈ Rk : a(Π) ≤ x ≤ b(Π)}

be the set of optimal facility locations. The λ-1-Median Problem selects facility location

r(Π) = (1− λ)a(Π) + λb(Π).
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Example 4.4.2. Three Nash Equilibria With the Minimal Dishonesty Refinement

Suppose the set of allowed facility locations is X = [0, 6] and that the sincere preferences

are given in Figure 4.3. Furthermore suppose the 1
2 -1-Median Problem is used to select a facility

location. Given the sincere preferences, any location in [1, 3] minimizes the sum of L1 norms. If

everyone is sincere, then the procedure places the facility at r(Π) = 2. The total cost of this facility

is
∑6

v=1 |πv − r(Π)| = 12.

0 1 2 3 4 5 6

π1 π2
π3 π4 π5 π6

Figure 4.3: Individuals’ Sincere Locations for Example 4.4.2.

The sincere preferences Π do not correspond to a Nash equilibrium since individual 4 can

submit π̄v = 4 to obtain a better result. We present 3 minimally dishonest Nash equilibria for Π

below.

0 1 2 3 4 5 6

π̄1 π̄2
π̄3 π̄4π̄5 π̄6

Figure 4.4: First Minimally Dishonest Nash Equilibrium for Example 4.4.2.

In the first equilibrium shown in Figure 4.4, only individual 4 is dishonest. Any location in

[1, 5] minimizes the sum of the L1 norms with respect to the submitted preferences Π̄. Therefore

r(Π̄) = 3 and the actual cost of this facility location (with respect to the sincere locations) is∑6
v=1 |πv− r(Π̄)| = 12. Although someone has successfully manipulated this system, the total cost

for the facility location remains unchanged.

0 1 2 3 4 5 6

π̄1
π̄2
π̄3 π̄4π̄5 π̄6

Figure 4.5: Second Minimally Dishonest Nash Equilibrium for Example 4.4.2.

In the second equilibrium, shown in Figure 4.5, individuals 2, 3 and 4 are dishonest resulting in

the facility location r(Π̄) = 2.5. Once again the actual cost of the facility location is 12.
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0 1 2 3 4 5 6

π̄1
π̄2
π̄3 π̄4π̄5π̄6

Figure 4.6: Third Minimally Dishonest Nash Equilibrium for Example 4.4.2.

In the third equilibrium, shown in Figure 4.6, only individuals 1 and 6 are honest resulting in

the facility location r(Π̄) = 3. The actual cost of the facility location is again 12.

In Example 4.4.2, we observe that we reach the ideal outcome for manipulable systems;

The system is manipulable and we have individuals acting strategically by altering their

preferences to obtain better results, but manipulation has no effect on the social utility.

In Theorem 4.4.3, we present a class of mechanisms where manipulation does not impact

the social utility when minimizing the sum of the L1 norms.

Theorem 4.4.3. When individuals are minimally dishonest, the Price of Deception for the

λ-1-Median decision mechanism in R is 1.

Let [a(Π̄), b(Π̄)] be the set of facility locations that minimizes the sum of L1 norms

given the the submitted preferences Π̄. We know |{v : π̄v ≤ a(Π̄)}| ≥ n
2

and that there

is a median voter such that π̄v = a(Π̄). An equivalent statement holds for b(Π̄) implying

a(Π̄) = b(Π̄) = r(Π̄) when n is odd. Prior to proving Theorem 4.4.3, we begin with the

following results describing a relationship between the submitted and the sincere prefer-

ences.

Lemma 4.4.4. Let Π be the sincere preferences and Π̄ be a minimally dishonest equilibrium

when selecting a facility location by minimizing the L1 norm. Then {v : πv ≤ a(Π̄)} =

{v : π̄v ≤ a(Π̄)}.

Proof. First we show (⊆). Let v be such that πv ≤ a(Π̄) and suppose for contradiction that

π̄v > a(Π̄). Let Π̄′ = [Π̄−v, a(Π̄)] be the preference profile obtained after replacing π̄v with

a(Π̄). With respect to Π̄′, the facility is located at r(Π̄′) = a(Π̄) which is at least as close
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to πv as r(Π̄). However, this is a contradiction to minimal dishonesty since v can be more

honest and get at least as good a result. Therefore {v : πv ≤ a(Π̄)} ⊆ {v : π̄v ≤ a(Π̄)}.

Showing (⊇) uses an identical argument. Let v be such that π̄v ≤ a(Π̄) and assume

πv > a(Π̄) for contradiction. However, v can obtain at least as good a result by submit-

ting π̄′v = πv causing the facility to be located somewhere in [b(Π̄), πv]. This contradicts

minimal dishonesty. Therefore {v : πv ≤ a(Π̄)} = {v : π̄v ≤ a(Π̄)} and the lemma

holds.

An identical equality holds for voters to the right of b(Π̄). Therefore, Lemma 4.4.4

allows us to give a partial ordering over the voters’ sincere preferences when we only know

the submitted preferences. Specifically for v where π̄v ≤ a(Π̄) and v′ where π̄v′ ≥ b(Π̄),

we know πv ≤ πv′ and the following corollary holds immediately:

Corollary 4.4.5. Let Π be the sincere preferences and Π̄ be a minimally dishonest equi-

librium when selecting a facility location by minimizing the L1 norm. Then {v : πv ≤

a(Π)} = {v : π̄v ≤ a(Π̄)}.

We are now able to prove Theorem 4.4.3. We show that manipulation has no impact on

social utility when we solve the 1-Median Problem and break ties by using the center point.

Proof of Theorem 4.4.3. Let Π and Π̄ be sincere and submitted preferences where Π̄ is a

minimally dishonest Nash equilibrium. It suffices to show r(Π̄) = (1− λ)a(Π̄) + λb(Π̄) ∈

[a(Π), b(Π)] since every x ∈ [a(Π), b(Π)] is an optimal solution to the 1-Median Problem

for preferences Π.

First we show that a(Π̄) ≤ a(Π). For contradiction, suppose this is not the case and that

there is a median voter with π̄v = a(Π̄) > a(Π) ≥ πv. If v instead is honest and reports

πv then either the facility location will not change or the new facility location will be in

the interval [πv, r(Π̄)). In both cases, v obtains at least as good an outcome contradicting

minimal dishonesty and completing the claim. Symmetrically, b(Π̄) ≥ b(Π).
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We now show r(Π̄) ∈ [a(Π), b(Π)]. For contradiction, and without loss of generality,

assume r(Π̄) < a(Π) implying λ < 1. There must exist a voter v such that πv = a(Π). By

Lemma 4.4.4, π̄v ≤ a(Π̄) < πv. If b(Π̄) ≤ πv, then v can submit π̄′v = πv which will yield

an outcome in [b(Π̄), πv]. If b(Π̄) > πv, then there is an even number of voters and v can

instead submit π̄v = πv−λb(Π̄)
1−λ which will yield the facility location πv.

In both cases, v can be more honest and get at least as good an outcome contradicting

minimal dishonesty. Therefore r(Π̄) ∈ [a(Π), b(Π)]. Thus the social utility of the outcome

r(Π̄),
∑

v∈N |πv−r(Π̄)|, is equal to the utility of the intended outcome,
∑

v∈N |πv−r(Π)|.

Therefore, the Price of Deception is

∑
v∈N |πv − r(Π̄)|∑
v∈N |πv − r(Π)|

=

∑
v∈N |πv − r(Π)|∑
v∈N |πv − r(Π)|

= 1 (4.6)

completing the proof of the theorem.

Example 4.4.2 shows that people can manipulate the system and Theorem 4.4.3 shows

that manipulation will not impact social utility. Furthermore, we can select λ such that the

mechanism is not manipulable. Specifically, for λ ∈ {0, 1}, the λ-1-Median Problem is

strategy-proof.

Theorem 4.4.6. Fix λ ∈ {0, 1}. The λ-1-Median Problem in R is strategy-proof.

Proof. By definition of strategy-proof, we need to show that Π is a Nash equilibrium for Π.

Let [a(Π), b(Π)] be the set of optimal facility locations. Without loss of generality assume

λ = 1 and r(Π) = b(Π). Suppose voter v changes her submitted preferences to a minimally

dishonest best response π̄v and the facility is now located at r([Π−v, π̄v]) = b([Π−v, π̄v]).

If πv = b(Π), then v has no incentive to change her preferences. If πv > b(Π) then

by Corollary 4.4.5 π̄v ≥ b(Π). However, there is still a median voter v′ where πv′ =

b(Π) and therefore b([Π−v, π̄v]) = b(Π) and v has no incentive to change her preferences.

Symmetrically no voter v where πv ≤ a(Π) can alter her preferences to get a better outcome

for herself. Therefore Π is a Nash equilibrium.
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When |N | is odd, a(Π̄) = b(Π̄) and the tie-breaking rule is never invoked. Therefore

the 1-Median Problem is strategy-proof with an odd number of voters.

Corollary 4.4.7. When |N | is odd the 1-Median Problem in R is strategy-proof.

Breaking Ties Randomly

Next, we consider breaking ties uniformly at random. If |N | is odd then there are no ties

and the 1-Median Problem is strategy-proof. When there are an even number of voters we

show that the Price of Deception is
√

2. First we characterize an individual’s best response.

Lemma 4.4.8. Suppose |N | = 2 and each voter must submit a location in the interval Pi =

X = [l, u] for the 1-Median Problem when breaking ties uniformly at random. If π̄1 ≤ π2,

then voter 2’s unique minimally dishonest best response is π̄2 = min{u, π̄1+
√

2(π2−π̄1)}.

Proof. Trivially if π̄1 = π2 then the best response for player 2 is π̄1 +
√

2(π2 − π̄1) = π2.

Otherwise π̄1 < π2. By scaling and translating we may assume π̄1 = 0 and π2 = 1 and

show that player 2’s best response is min{u,
√

2}. It is straightforward to show that voter

2 should submit a location x ≥ 1. The facility location Y is selected uniformly at random

from [0, x] and voter 2 has an expected utility of

E(|Y − 1|) = P (Y ≤ 1)E(1− Y |Y ≤ 1) + P (Y ≥ 1)E(Y − 1|Y ≥ 1) (4.7)

=
1

x
· 1

2
+
x− 1

x
· x− 1

2
(4.8)

=
x2 − 2x+ 2

2x
(4.9)

It is straightforward to verify that this function is uniquely minimized at x =
√

2 on

the domain [1,∞]. Therefore if u ≥
√

2 the unique best response for player 2 is
√

2. If

u <
√

2 then it is easily verified that E(|Y − 1|) is strictly decreasing on the interval [1, u]

and therefore player 2’s unique best response is x = u. Either way, player 2’s unique

best response is min{u,
√

2}. By the uniqueness of the best response, any more honest
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π̄2 yields a worse outcome for player 2 and therefore min{u,
√

2} is player 2’s unique

minimally dishonest best response.

Theorem 4.4.9. Let |N | = 2. When both individuals are minimally dishonest and ties are

broken uniformly at random, the Price of Deception for the 1-Median decision mechanism

in R is
√

2.

Proof. Without loss of generality π1 ≤ π2.

First we consider π1 = π2 = 0 and show that the Price of Deception is 1. Let Π̄ be a

minimally dishonest Nash equilibrium. If π̄1 < 0 then Lemma 4.4.8 implies π̄2 > 0 thus

without loss of generality we may assume π̄1 ≤ 0 ≤ π̄2. By Lemma 4.4.8,

π̄2 = min{u, π̄1 −
√

2π̄1} (4.10)

≤ π̄1 −
√

2π̄1 = (1−
√

2)π̄1 (4.11)

This implies player 2 should submit a locations slightly closer to 0 than player 1. Symmet-

rically, player 1 should submit a location closer to 0 than player 2. Both conditions cannot

simultaneously happen and the only Π̄ satisfying (4.11) and it’s symmetric statement is

Π̄ = Π = (0, 0). It is straightforward to verify this is also a minimally dishonest Nash

equilibrium.

Second we consider π1 < π2. By scaling, translating, and reflecting we may assume

π1 = −1 and π2 = 1 and that u ≥ −l. The sincere outcome r(Π̄) selects a facility

location uniformly at random in [−1, 1] with cost U(Π, r(Π)) = 2. Again let Π̄ be a

Nash equilibrium. By Lemma 4.4.8 π̄2 = min{u, π̄1 +
√

2(1 − π̄1)}. Symmetrically,

π̄1 = max{l, π̄2 +
√

2(−1− π̄2)}.

Observe that if π̄2 = u then

π̄2 +
√

2(−1− π̄2) = (1−
√

2)u−
√

2 (4.12)

≤ (
√

2− 1)l −
√

2 < l (4.13)
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This implies that if π̄2 = u then π̄1 = l. Therefore we can break the problem into two

cases: π̄1 > l, π̄2 < u; and π̄1 = l.

Case 1: π̄1 > l, π̄2 < u. By Lemma 4.4.8

π̄2 = (1−
√

2)π̄1 +
√

2 (4.14)

π̄1 = (1−
√

2)π̄2 −
√

2 (4.15)

which has the unique solution π̄2 = −π̄1 = 1 +
√

2 and the facility location is selected

uniformly at random from [−1 −
√

2, 1 +
√

2]. For brevity, let U = U(Π, r(Π̄)). Let

Y ∼ Unif(π̄1, π̄2) be the randomly selected facility location. We have the following

P (Y ≤ −1) =
−π̄1 − 1

π̄2 − π̄1

E(U |Y ≤ −1) = 1− π̄1 (4.16)

P (Y ≥ 1) =
π̄2 − 1

π̄2 − π̄1

E(U |Y ≥ 1) = 1 + π̄2 (4.17)

P (−1 ≤ Y ≤ 1) =
2

π̄2 − π̄1

E(U | − 1 ≤ Y ≤ 1) = 2. (4.18)

Putting all three together,

E(U) =
π̄2

2 + π̄2
1 + 2

π̄2 − π̄1

. (4.19)

For Case 1 where π̄2 = −π̄1 =
√

2 + 1 the expected cost of Π̄ is E(U) = 2
√

2. Since the

cost when everyone is sincere is U(Π, r(Π)) = 2, the Price of Deception in Case 1 is
√

2.

Case 2: π̄1 = l. By Lemma 4.4.8, l ≥ (1 −
√

2)π̄2 −
√

2 and π̄2 ≤ (1 −
√

2)l +
√

2.

Combining both inequalities, l ≥ −
√

2 − 1. Combining the last two inequalities, π̄2 ≤
√

2 + 1.

The function (z2 + y2 + 2)/(z − y) is increasing on the interval 0 ≤ z ≤
√

2 + 1 when
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y ∈ [−
√

2− 1, 0] and therefore by (4.21),

E(U) =
π̄2

2 + π̄2
1 + 2

π̄2 − π̄1

≤ (
√

2 + 1)2 + π̄2
1 + 2

(
√

2 + 1)− π̄1

. (4.20)

Symmetrically,

E(U) ≤ (
√

2 + 1)2 + π̄2
1 + 2

(
√

2 + 1)− π̄1

≤ (
√

2 + 1)2 + (−
√

2− 1)2 + 2

(
√

2 + 1)− (−
√

2− 1)
= 2
√

2. (4.21)

As in Case 1, the value of the sincere outcome is always 2 and the Price of Deception

is at most
√

2.

Theorem 4.4.10. Suppose |N | is even. When individuals are minimally dishonest and ties

are broken uniformly at random, the Price of Deception for the 1-Median Problem in R is
√

2.

Proof. The lower bound is given by Theorem 4.4.9.

Let Π be a set of sincere preferences and Π̄ be a corresponding minimally dishonest

Nash equilibrium. Given a game with |N | players we show how to reduce the game to 2

players that yields the same r(Π̄). Finally we show that the Price of Deception of the 2-

player game is at least as large as the Price of Deception of the |N |-player game. Therefore

the Price of Deception is at most
√

2 by Theorem 4.4.9.

Corollary 4.4.5 extends to this setting and {πv : πv ≤ a(Π)} = {π̄v : π̄v ≤ a(Π̄)}. We

begin by showing πi ≤ πj implies π̄i ≤ π̄j . The result immediately holds if πi ≤ a(Π)

but πj > a(Π). Therefore by symmetry assume πj ≤ a(Π̄). If π̄k < a(Π̄) then k obtains

the same outcome if they submit min{a(Π̄), πk}. Therefore by minimal dishonesty π̄k =

min{a(Π̄), πk} and π̄i ≤ π̄j as desired. We proceed to the main result.

Let k = |N |/2 and index players so that π−k ≤ π−k+1 ≤ ... ≤ π−1 ≤ π1 ≤ ... ≤ πk.

By the previous claim, if Π̄ is a minimally dishonest Nash equilibrium then π̄−k ≤ π̄−k+1 ≤

... ≤ π̄−1 ≤ π̄1 ≤ ... ≤ π̄k and players 1 and−1 are median voters with respect to Π and Π̄.
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Construct the following 2-player game. Let u = π̄2 and l = π̄−2. Similar to Theorem 4.4.6,

u ≥ b(Π) = π1 and l ≤ a(Π) = π−1. Players 1 and −1 have preferences π′i = πi. This

is a valid game since l ≤ π′−1 ≤ π′1 ≤ u. It immediately follows that Π̄′ = {π̄−1, π̄1} is a

minimally dishonest Nash equilibrium for Π′ with the same outcome as Π̄ since otherwise

Π̄ is not a minimally dishonest Nash equilibrium for Π.

DenoteUi(Π, r) as the cost for player i given location πi and outcome r. ThusE[U(Π, r(Π̄))] =∑
iE[Ui(Π, r(Π̄))]. Since b(Π) = π1 ≤ πi for i ≥ 1,

Ui(Π, r(Π)) = U1(Π, r(Π)) + πi − π1 ∀i ≥ 1. (4.22)

= U1(Π′, r(Π′)) + πi − π1 ∀i ≥ 1. (4.23)

By the triangle inequality,

E[Ui(Π, r(Π̄))] ≤ E[U1(Π, r(Π̄))] + πi − π1 ∀i ≥ 1. (4.24)

= E[U1(Π′, r(Π̄′))] + πi − π1 ∀i ≥ 1. (4.25)

Symmetrically,

Ui(Π, r(Π)) = U−1(Π′, r(Π′)) + π−1 − πi ∀i ≤ −1. (4.26)

E[Ui(Π, r(Π̄))] ≤ E[U−1(Π′, r(Π̄′))] + π−1 − πi ∀i ≤ −1. (4.27)

We proceed by bounding the Price of Deception by grouping players i and−i. Observe

that for n1, n2, d1, d2 ≥ 0 that n1+n2

d1+d2
≤ max{n1

d1
, n2

d2
} where 0

0
= 1 and x

0
= ∞ for x > 0.
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Therefore

E[Ui(Π, r(Π̄))] + E[U−i(Π, r(Π̄))]

Ui(Π, r(Π)) + U−i(Π, r(Π))
(4.28)

≤E[U1(Π′, r(Π̄′))] + E[U−1(Π′, r(Π̄′))] + πi − π1 + π−1 − π−i
U1(Π′, r(Π′))] + U−1(Π′, r(Π′))] + πi − π1 + π−1 − π−i

(4.29)

≤max
{
E[U1(Π′, r(Π̄′))] + E[U−1(Π′, r(Π̄′))]

U1(Π′, r(Π′))] + U−1(Π′, r(Π′))]
,
πi − π1 + π−1 − π−i
πi − π1 + π−1 − π−i

}
(4.30)

≤max{
√

2, 1} =
√

2 (4.31)

by Theorem 4.4.9 since Π′ and Π̄′ are from a 2-player game.

Thus the Price of Deception for Π and Π̄ is given by

E[U(Π, r(Π̄))]

U(Π, r(Π))
=

∑
iE[Ui(Π, r(Π̄))]∑
i Ui(Π, r(Π))

(4.32)

=

∑k
i=1

(
E[Ui(Π, r(Π̄)) + E[U−i(Π, r(Π̄))]

)
∑k

i=1

(
Ui(Π, r(Π)) + U−i(Π, r(Π))

) (4.33)

≤ maxi∈[k]
E[Ui(Π, r(Π̄)) + E[U−i(Π, r(Π̄))]

Ui(Π, r(Π)) + U−i(Π, r(Π))
(4.34)

≤
√

2 (4.35)

completing the proof of the theorem.

1-Median Problem in Rk

Since the 1-Median Problem is separable we might expect that Theorem 4.4.3 and Theorem

4.4.10 hold in higher dimensions. However, while determining r(Π) might be separable,

determining a minimally dishonest best response π̄v is not as shown in the following exam-

ple:

Example 4.4.11. Finding a Minimally Dishonest Best Response is not Separable.

If determining the minimally dishonest best response an individual v cannot separately compute
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each component of their best response π̄v for general X . Consider the following preferences where

individuals must submit preferences inside X as given by the triangle in Figure 4.7.

3

π̄2 = (3, 0)

π1 = (2, 1)

Figure 4.7: Determining a Best Response is not Separable in the 1-Median Problem.

Let λ = (1
2 ,

1
2). Ideally, voter 1 would like to submit π̄1 such that r(Π̄) = (2, 1). Denote

π̄ij and rj(Π̄) as the jth coordinate of π̄i and r(Π̄) respectively. Voter 1 can cause r1(Π̄) = 2

by submitting π̄11 = 1 and can cause r2(Π̄) = 1 by submitting π̄12 = 2. Therefore, voter 1 can

only cause r(Π̄) = (2, 1) by submitting π̄1 = (1, 2). This point is not in the triangle and therefore

voter 1 cannot submit (1, 2). The optimal choice of π̄11 depends on the choice of π̄12 and therefore

determining a best response is not a separable problem.

Regrettably, the lack of separability in determining a best response can lead to a large

Price of Deception in higher dimensions.

Theorem 4.4.12. Suppose λ1 ∈ (0, 1) and voter v’s cost of outcome x is uv(πv, x) =

||πv − x||pv for some pv ∈ (0,∞) for each v. Then the Price of Deception of the λ-1-

Median Problem in Rk is∞ for k ≥ 2.

Proof. It suffices to show the result for k = 2 since the bad example can always be placed

in higher dimensions. Let |N | = 2k for some integer k ≥ 2. The sincere preferences are

πv = 0 for all v. The set of feasible facility location placements is X = conv.hull(π1, a, b)

as shown in Figure 4.8.

If everyone is honest, then the facility is placed at r(Π) = (0, 0) with total cost 0.

Suppose half the voters submit π̄v = a and half the voters submit π̄v = b. Then r(Π̄) =
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πv = (0, 0)

b = (1, 1)a = (λ1−1
λ1

, 1)

Figure 4.8: Preferences Showing the Price of Deception is∞ for the λ-1-Median Problem.

λa + (1 − λ)b = (0, 1) with a sincere cost of |N |. If Π̄ is a minimally dishonest Nash

equilibrium, then the Price of Deception is∞.

We now show that Π̄ is a minimally dishonest Nash equilibrium. Consider voter v

that submits π̄v = b. Regardless of how she alters her submitted information, more than

half the voters submit a height of 1 and therefore she cannot change the height of the

facility. Moreover, if she alters her preferences at all then the facility moves to the left

corresponding to a worse outcome for her. There v is providing a minimally dishonest best

response. Symmetrically voter v submitting π̄v = a is providing a minimally dishonest

best response and Π̄ is a minimally dishonest Nash equilibrium.

Theorem 4.4.13. Suppose voter v’s cost of outcome x is uv(πv, x) = ||πv − x||pv for some

pv ∈ (0,∞) for each v and that ties are broken uniformly at random. Then the Price of

Deception of the 1-Median Problem in Rk is∞ for k ≥ 2.

Proof. The proof is similar identical to Theorem 4.4.13. Again let N = [2k] for some

integer k ≥ 2. The sincere preferences are πv = (−1, 0) for odd indexed voters and let

πv = (1, 0) for even indexed voters. Fix h > 0 and let a = (−1−
√

2, h) and b = (1+
√

2, h)

and let X = conv.hull(π1, a, b) as shown in Figure 4.9.

If everyone is honest then the facility is again placed at r(Π) = (0, 0) with total cost

2|N |. Suppose the odd indexed voters submit π̄v = a and the even indexed voters sub-

mit π̄v = b. Then the facility is selected uniformly at random from [a, b] with total cost
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π1 = (−1, 0)π2 = (1, 0)

b = (1 +
√

2, h)a = (−1−
√

2, h)

Figure 4.9: Preferences Showing the Price of Deception is∞ for the 1-Median Problem
with Random Tie-Breaking.

2
√

2|N | + h → ∞ as h → ∞. Therefore if Π̄ is a minimally dishonest Nash equilibrium

then the Price of Deception is∞.

We now show that Π̄ is a Nash equilibrium. By symmetry consider voter 2. As in

Theorem 4.4.12 more than half the voters submit a height of h and therefore voter 2 cannot

change the height of the facility. If voter 2 submits π̄′2 = (x, y) then the facility will be se-

lected uniformly at random between (−1−
√

2, h) and (x, h). Let X ∼ Unif(−1,
√

2, x).

Then voter 2’s utility of the outcome is

u2(π2, r([Π̄−2, π̄
′
2])) = p2

√
E(|X − 1|)p2 + hp2 (4.36)

which is minimized when E(|X − 1|) is minimized since h is a constant. Therefore the 2-

dimensional game reduces to a 1-dimensional game. By Lemma 4.4.8, voter 2’s minimally

dishonest best response is to submit x = 1 +
√

2 which requires y = h. Therefore voter

2 is submitting a minimally dishonest best response and Π̄ is a minimally dishonest Nash

equilibrium. Thus the Price of Deception is∞.

Theorems 4.4.12 and 4.4.12 show there is always a set of allowed locations X such that

the Price of Deception is arbitrarily large. In the proof of Theorem 4.4.12, X is a triangle.

In Theorem 4.4.13, X is a trapezoid and could easily be extended to a triangle without

changing the proof. As mechanism designers, we may alter X such that we obtain more
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desirable results. Specifically, we show that if X = {x ∈ Rk : l ≤ x ≤ u} then the Price

of Deception of the λ-1-Median Problem and 1-Median Problem with random tie-breaking

are 1 and
√

2 respectively.

Theorem 4.4.14. Suppose X = {x ∈ Rk : l ≤ x ≤ u}. Then the Price of Deception of the

λ-1-Median Problem is 1 for all λ ∈ [0, 1]k.

Theorem 4.4.15. Suppose |N | is even. Suppose X = {x ∈ Rk : l ≤ x ≤ u} and that ties

are broken uniformly at random. Then the Price of Deception of the 1-Median Problem is
√

2.

Unlike Example 4.4.11, the optimal selection of π̄vj is independent of π̄vi for all i 6= j.

Thus, the k-dimensional case reduces to the 1-dimensional case and Theorems 4.4.14 and

4.4.15 hold by Theorems 4.4.6 and 4.4.10. Moreover, we also immediately obtain a variety

of strategy-proof mechanisms regardless of X .

Theorem 4.4.16. Fix λ ∈ {0, 1}k and X = {x ∈ Rk : l ≤ x ≤ u}. The λ-1-Median

Problem is strategy-proof.

Given the description of X , determining a best a response is again separable. Therefore

it suffices to show the result holds for the one dimensional case and Theorem 4.4.16 follows

from Theorem 4.4.6.

Theorem 4.4.17. Fix λ ∈ {0, 1}k and let X be arbitrary. The λ-1-Median Problem is

strategy-proof.

Proof. Given the setX and preferences Π ⊆ X , it suffices to show Π is a Nash equilibrium.

We begin by defining a second voting procedure by expanding X . Let l, u ∈ Rk be

such that X ⊆ X ′ = {x ∈ Rk : l ≤ x ≤ u}. Consider the λ-1-Median Problem on the

set X ′ with sincere preferences Π. By Theorem 4.4.16, Π is a Nash equilibrium implying

πv ∈ X is a best response for each voter v.
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Since X ⊆ X ′ and πv ∈ X for all v, πv must also be a best response in the original

procedure with the smaller feasible setX . Therefore Π is a Nash equilibrium in the original

problem and the λ-1-Median Problem is strategy-proof regardless of X .

Corollary 4.4.18. Let X be arbitrary. When |N | is odd, the 1-Median Problem is strategy-

proof.

As with Corollary 4.4.7, Corollary 4.4.18 immediately holds because there are never

any ties when |N | is odd.

4.4.2 1-Mean Problem

We now proceed to the 1-Mean Problem where the facility location r(Π) is the unique

minimizer of
∑n

v=1 ||πv − x||22. It is well known that r(Π) =
∑n

v=1
πv
n

.

Theorem 4.4.19. Suppose voter v’s cost of outcome x is uv(πv, x) = ||πv − x||pv for some

pv ∈ (0,∞) for each v. Then the Price of Deception of the 1-Mean Problem in Rk for ≥ 2

is∞.

r(Π̄)

π2

π̄2

π3

π̄3

π1 = π̄1

2α

Figure 4.10: Preferences for Theorem 4.4.19

Proof. We show the result for pv = 2 for all v and explain how to generalize the re-

sult at the end. Consider the three points π̄1 = (0, 0), π̄2 = ( 3
2sin(α)

, 3
2cos(α)

), and π̄3 =

(− 3
2sin(α)

, 3
2cos(α)

) where α < π
2
. Define X = conv.hull(π̄1, π̄2, π̄3). Suppose the sincere

facility locations are given by π1 = (0, 0), π2 = (cos(α), sin(α)), and π3 = (−cos(α), sin(α))
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as shown in Figure 4.10. With respect to the sincere data, the facility would be placed at

r(Π) = (0, 2sin(α)
3

) with total distance (societal cost)

U(Π, r(Π)) =
3∑
i=1

||r(Π)− πi||22 =
2sin(α)

3
+ 2

√
1− 8sin2(α)

9
≤ 2 (4.37)

Now consider the putative preferences given by Π̄ = (π̄1, π̄2, π̄3). With respect to Π̄ the

facility is placed at r(Π̄) = (0, 1
cos(α)

). With respect to the sincere preferences Π, this has a

total cost of

U(Π, r(Π̄)) =
3∑
i=1

||r(Π̄)− πi||22 =
1

cos(α)
+ 2

√
cos2(α) +

(
1

cos(α)
− sin(α)

)2

≥ 1

cos(α)
.

(4.38)

If Π̄ corresponds to a minimally dishonest Nash equilibrium of Π, then the Price of Decep-

tion of this instance is

U(Π, r(Π̄))

U(Π, r(Π))
≥ 1

2cos(α)
→∞ as α→ π

2
. (4.39)

It remains to show that Π̄ is a minimally dishonest Nash equilibrium. To do this, it

suffices to show that any change to π̄i yields a worse outcome for individual i. Start with

i = 1. Suppose player 1 changes her preferences to π̄′1 = π̄1 + d where ||d|| 6= 0. The

location π̄′1 is inX and therefore d2 > 0. After updating her preferences the facility location

is moved to r([Π̄−1, π̄
′
1]) = r(Π̄) + 1

3
d. This causes the facility to up and possibly to the

left or the right. Regardless of p1 this is worse for player 1 and therefore she is reporting a

minimally dishonest best response.

The idea is similar to show players 2 and 3 are providing minimally dishonest best

responses. By symmetry, it suffices to consider player 2. Suppose player 2 updates her

preferences to π̄′2 = π̄2 − d. Since π̄′2 ∈ X , d ∈ cone ((1, 0), (π2)). After updating her

preferences, the facility will be located at r([Π̄−2, π̄
′
2]) = r(Π̄) − 1

3
d. Let B2 = {x :
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||x− π2||2 ≤ ||π2 − r(Π̄)||2 be the set of points player 2 prefers to r(Π̄). By construction,

{x ∈ R : r(Π̄) − 1
3
dx} is tangent to B2 as shown in Figure 4.11 hence for all d where

||d|| > 0, reporting π̄2 − d would yield a worse solution for player 2. Thus she has given

a minimally dishonest best response. This implies that Π̄ is a minimally dishonest Nash

equilibrium and therefore the Price of Deception converges to∞ as α approaches π
2
.

r(Π̄)

π2

π̄2

π̄′2
([Π̄−2, π̄

′
2]) Possible Locations

for r([Π̄−2, π̄
′
2])

B2

Figure 4.11: Possible Locations for r([Π̄−2, π̄
′
2])

We now consider other pv ∈ (0,∞). As observed previously, player 1 is minimally

dishonest. In the construction given in Figure 4.10, π̄2 is placed such A = {x ∈ R :

r(Π̄) − 1
3
dx} is tangent to B2 ensuring that voter 2 cannot alter her preferences to get a

better outcome. However, if p2 6= 2 then the non-euclidean ball B = {x : ||π2 − x||p2 ≤

||π2 − r(Π̄)||p2} may overlap with A. However, if Figure 4.11 is stretched horizontally,

then the set A converges to a horizontal line. Therefore for any finite norm, we can stretch

the set of allowed feasible locations such that no individual can alter their preferences to

get a better outcome.

The proof of Theorem 4.4.19 suggests that the Price of Deception is dependent on the

feasible region X . To better understand the Price of Deception, we first aim to understand

the possible locations for r(Π̄).

Definition 4.4.20. Given a ∈ Rk and any compact S ⊆ X , let b(a, S) = maxx∈Sa · x.

Definition 4.4.21. The vector a ∈ Rk is limiting for S ⊆ X if for each x ∈ X such that

a · x > b(a, S) there an ε > 0 such that x− εa ∈ X .
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Lemma 4.4.22. Suppose voter v’s cost of outcome x is uv(πv, x) = ||πv − x||pv for some

pv ∈ (0,∞) for each v. Let Π̄ be a Nash equilibrium for Π in the 1-Mean Problem. If a is

limiting for Π in X , then a · r(Π̄) ≤ b(a,Π).

Proof. Without loss of generality let a be a unit vector. For contradiction, suppose that

a · r(Π̄) = b(a,Π) + c for some c > 0. Then there must be at least one voter v such that

a · π̄v > b(a,Π). By Definition 4.4.21 and by convexity of X , there is an ε ∈ (0, c|N |] such

that π̄′v = π̄v − εa ∈ X . Moreover, if v instead submits π̄′v, then the facility location moves

to r = r(Π̄)− εa
|N | where b(a,Π) ≤ a · r < b(a,Π) + c by selection of ε. Therefore the new

location r is strictly closer to every point in Π including πv and therefore v is able to alter

π̄v to get a better outcome contradicting that Π̄ is a Nash equilibrium.

Example 4.4.23. Limiting Directions for a Rectangle

Suppose individuals must submit locations inside of the rectangle X = {x : −2 ≤ x1 ≤

2,−1 ≤ x2 ≤ 1} and that Π = {(0, 0), (1.5, 0), (0, .5)} as shown in Figure 4.12.

a = (−1, 1) Limiting Direction
Not Limiting Direction

x
x− εa /∈ X

Figure 4.12: Voters’ Sincere Locations and Some Limiting Directions for Example 4.4.23.

The direction a = (−1, 1) is not limiting. Consider the point x = (−2,−1). We cannot

move from x orthogonally toward the dash-dotted line without leaving the set X . Moreover, it is

straightforward to verify that (1, 0), (−1, 0), (0, 1) and (0,−1) are limiting regardless of the of the

sincere profile Π. In general, for any hyperrectangle R = {x ∈ Rk : ai ≤ xi ≤ bi ∀i = 1, ..., k}

has limiting directions ±ei where ei is the ith standard basis vector regardless of the sincere profile

Π.
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Lemma 4.4.22 is sufficient for us to find the Price of Deception for the most common

set of feasible locations, the hyperrectangle.

Theorem 4.4.24. Suppose voter v’s cost of outcome x is uv(πv, x) = ||πv − x||pv for some

pv ∈ (0,∞) for each v and that the set of feasible facility locations is X = {x ∈ Rk : xi ∈

[ai, bi] ∀i = 1, ..., k} for all j = 1, ..., n. Then the Price of Deception of of the 1-Mean

Problem with n individuals is Θ(n).

Proof. First we show an upper bound of 2n. Let Π̄ be a Nash equilibrium for the sincere

profile Π. Let [a′j, b
′
j] ⊆ [aj, bj] be minimal such thatX ′ = [a′1, b

′
1]×...×[a′k, b

′
k] contains Π.

Without loss of generality, we may assume a′j = 0. As established, the decision mechanism

selects r(Π) =
∑n

i=1
πi
n

to minimize
∑
||πi − x||22 and therefore rj(Π) ∈ [0, b′j] for all j.

Denoting rj(Π) and πij as the jth coordinate of r(Π) and πi respectively, we have that

n∑
i=1

||πi − r(Π)||22 =
k∑
j=1

n∑
i=1

(πij − rj(Π))2 (4.40)

≥
k∑
j=1

b′2j
2

(4.41)

and therefore the facility cost
∑n

i=1 ||πi − r(Π)||22 is at least
∑k

j=1

b′2j
2

.

Given equilibrium Π̄, the facility is located at r(Π̄). In Example 4.4.23, we demon-

strated that the standard basis vector ej is limiting for Π and therefore rj(Π̄) ∈ [0, b′j] by

Lemma 4.4.22. Therefore, the total cost for facility location r(Π̄) is

n∑
i=1

||πi − r(Π̄)||22 =
k∑
j=1

n∑
i=1

(πij − rj(Π̄))2 (4.42)

≤
k∑
j=1

n∑
i=1

b′2j (4.43)

=
k∑
j=1

nb′2j . (4.44)
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Therefore, the Price of Deception for sincere Π and submitted Π̄ is

∑n
i=1 ||πi − r(Π)||22∑n
i=1 ||πi − r(Π)||22

≤
∑k

i=1 nb
′2
j∑k

i=1

b′2j
2

= 2n (4.45)

We now present an instance with a Price of Deception n. Suppose we have n players

and let X be the hypercube {x : 0 ≤ xi ≤ n ∀i = 1, ..., k}. Let π1 = e1 and πi = 0 for

all i > 1. If everyone is sincere, then the facility is located at r(Π) = ( 1
n
, 0) with a societal

cost of

U(Π, r(Π)) =
n∑
i=1

||πi − r(Π)||22 =
(n− 1)

n
(4.46)

Now consider the putative preferences Π̄ where π̄1 = ne1 and π̄i = πi for i > 1. With

respect to these preferences, the facility is located at r(Π̄) = (1, 0) for a sincere total cost

of

U(Π, r(Π̄)) =
n∑
i=1

||πi − r(Π̄)||22 = (n− 1) (4.47)

If Π̄ is a minimally dishonest Nash equilibrium, then the Price of Deception of this

instance is

U(Π, r(Π̄))

U(Π, r(Π))
= n (4.48)

Showing that Π̄ is a minimally dishonest Nash equilibrium follows in the same fashion

as Theorem 4.4.19; if player i deviates from π̄i, then the facility moves further from πi

implying player i is minimally dishonest. Therefore the Price of Deception is between n
2

and n implying the Price of Deception is in Θ(n).
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4.4.3 Minimizing L2 Norm

Theorem 4.4.25. Let X ⊆ R. The Price of Deception for facility location when minimiz-

ing the sum of L2 norm distances is 1 when breaking ties deterministically and ∞ when

breaking ties uniformly at random.

Theorem 4.4.25 follows directly from Theorems 4.4.3 and 4.4.10 since the L1 and L2

norm are equivalent in R.

Theorem 4.4.26. Suppose voter v’s outcome of x is uv = (πv, x) = ||πv − x||pv for some

p ∈ (0,∞). Let X ⊆ Rk for k ≥ 2. The Price of Deception for facility location when

minimizing the sum of L2 norm distances is∞ when breaking ties by selecting the center

point or uniformly at random.

Proof. It suffices to show this is true in R2. Let n = 2c and suppose πi = (0, 0) for all

i. If everyone is honest then the facility is located at r(Π) = (0, 0) with a total cost of

0. Suppose instead that the players submit Π̄ where π̄i = (−1, 1) for i = 1, ..., c and

π̄i = (1, 1) for i = c − 1, ..., 2c. With respect to these preferences, the facility is either

located at (0, 1) or uniformly at random between (−1, 1) and (1, 1) with a sincere cost of

at least 1. Furthermore, if Π̄ is a minimally dishonest Nash equilibrium, then the Price of

Deception of this instance is∞.

We now show Π̄ is a minimally dishonest Nash equilibrium. It suffices to examine

player 1. If player 1 instead submits π̄′1 where π̄′12 6= π̄12, then r([Π̄−1, π̄
′
1]) = (1, 1)

yielding a worse outcome for player 1. If π̄′1 is directly to the left of π̄1, then the outcome

does not change and player 1 is less honest. If player 1 submits π̄′1 = (w, 1) for some

w ∈ (−1, 1), then the facility is located either at (1+w
2
≥ 0, 1) or uniformly at random

between (w, 1) and (1, 1). Both correspond to worse outcomes for player 1. Finally, if

player 1 submits π̄′1 = (w, 1) for some w ≥ 1, then r([Π̄−1, π̄
′
1]) = (1, 1) yielding a worse

outcome for player 1. All possibilities yield either worse outcomes for player 1 or cause

player 1 to be less honest without any benefit. Thus player 1 is giving the unique minimally
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dishonest best response and Π̄ is a minimally dishonest Nash equilibrium. Therefore the

Price of Deception when minimizing the L2 norm is∞.
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5

PRICE OF DECEPTION IN ELECTIONS

5.1 Introduction

Arrow’s possibility theorem [4] and its many descendants (see e.g. [5, 47]) tell us that to

choose a voting rule is to trade off some desirable rationality properties against others be-

cause they are not mutually attainable. The Gibbard-Satterthwaite [28, 65], Gardenfors [27]

and related theorems tell us that every election rule that one would consider to be reason-

able is manipulable by a strategic voter. Therefore, we always sacrifice non-manipulability

in lieu of other properties. But is it wise to take such an all-or-nothing position with respect

to manipulability, especially since we always settle for nothing? To quantify the effect of

manipulation in voting, we examine the game of deception known as the Strategic Voting

Game.all

We first prove (Theorem 5.3.2) that the straightforward definition of the Game of De-

ception is not adequate because it permits arbitrarily bad but absurd outcomes. Branzei

et al. [13] eliminate these spurious outcomes by examining only equilibria that can be

obtained through an iterative process where each player selects their best response with

respect to the previous iteration given that everyone was truthful in the first iteration. How-

ever, we prove (Theorem 5.3.4) that as the number of voters increases, the probability

converges to 1 that this iterative process terminates at the first iteration. Hence that refine-

ment cannot provide an accurate model since strategic behavior is known to occur in large

populations.

To better understand human behavior we again incorporate our minimal dishonesty

refinement, a plausible and experimentally supported refinement (see Section 2.3), into the

players’ Game of Deception. We then analyze the Price of Deception of several standard
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voting rules, including Borda count, approval voting, and plurality voting. Different rules

turn out to have significantly different Prices of Deception. The results therefore support

our proposal that the Price of Deception can help discriminate among different voting rules.

For instance, plurality voting has the worst Price of Deception of all the voting rules we

analyze, despite its widespread use in U.S.A. elections.

5.1.1 Lexicographic Tie-Breaking

We begin by analyzing voting procedures when ties are broken lexicographically. Table 5.1

summarizes our results for several voting mechanisms given m > 2 candidates.

Price of Deception

Voting Mechanism Standard Scores Normalized Scores

Dictatorship 1 1

Veto 1 + 1
m−1

1 + m−1
m2−m+1

Approval 2 2m
m+1

Borda Count m [m+2
3
, m2

2m−1
]

Majority Judgment u− 1 um−2m+1
u−1

α-Copeland [m− 2,∞] [m−1
2
,m]

Plurality ∞ 2m+1
3

Table 5.1: Prices of Deception for Various Voting Mechanisms.

The Price of Deception for each mechanism is given in the “Standard Scores” col-

umn of Table 5.1. For instance, in approval voting, if candidate c would win the elec-

tion with 30 points when everyone is sincere, then the winner at any minimally dishonest

equilibrium will have at least 15 points with respect to the sincere preferences. We also

normalize each social utility for each voting rule so that minΠ∈P minc∈C U(Π, c) = 1 and

maxΠ∈P maxc∈C U(Π, c) = m for each pair of profile Π and candidate c via an affine trans-

formation. Normalization enables us to make comparisons between otherwise dissimilar

voting procedures.

With the exception of plurality voting, our results show a striking relationship between
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the use of information and the Price of Deception. Dictatorship employs one datum, the

candidate most preferred by the dictator. Of the procedures analyzed, it ignores the most

voter preference data and has the least Price of Deception. Veto voting relies on one datum

per voter, the least preferred candidate. It uses the next smallest amount of information, and

has the next lowest Price of Deception. Approval voting uses one bit of information per

candidate from each voter, and has the next lowest Price of Deception. The next three pro-

cedures in Table 5.1 use full information and have substantially larger Prices of Deception,

all of order m.

Plurality uses the same amount of information as veto voting, but has the largest Price

of Deception. And indeed, plurality voting has received heavy criticism for encouraging

strategic voting [16]. (It has also been criticized for limiting the number of political parties

[21], wasted votes resulting in lower voter turnout, and being vulnerable to the spoiler effect

(i.e. grossly violating independence of irrelevant alternatives (IIA)). We find it confirmatory

that, of the voting mechanisms we have analyzed, plurality has the worst price of deception

- a candidate is able to win at an equilibrium even if the candidate would receive no votes

when everyone is honest. We also find it both ironic and confirmatory that plurality voting

was employed in many state primary elections in the U.S. in 2016, amid many reports of

strategic voting.

On the other hand, approval voting has been used by organizations such as the Mathe-

matical Association of America, the Institute for Operations Research and the Management

Sciences, the American Statistical Association, the Institute of Electrical and Electronics

Engineers and the United Nations [56]. In addition, it is believed that approval voting im-

proves voter turnout, deters the spoiler effect and reduces negative campaigning [12]. Of

the voting mechanisms analyzed, approval voting has one of the lowest Prices of Deception.

Majority Judgment has been proposed by Balinski [7] as an alternative to voting in the

sense that voters submit cardinal data rather than ordinal rankings. He shows that Majority

Judgment avoids many of the axiomatic pitfalls, such as IIA, that plague classical voting.
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It is pertinent, therefore, to evaluate its Price of Deception to see how it compares, in

this sense, with classical voting rules. The result is that Majority Judgment has Price of

Deception of the same order of magnitude as Borda and Copeland voting. Hence, by this

measure, Majority Judgment is similar to some classic voting rules, but substantially poorer

than approval voting.

5.1.2 Random Tie-Breaking

We established that mechanisms can have significantly different Prices of Deception and

that we are able to discriminate between different mechanisms based upon how badly they

can be manipulated. We also establish that making even a small change to a decision

mechanism such as changing how ties are handled can significantly impact the Price of

Deception.

For mechanisms such as veto, approval, Borda count with a risk-neutral society, and α-

Copeland the Price of Deception remains unchanged when we switch from a lexicographic

tie breaking rule to a random tie breaking rule. For each of these mechanisms the best

lower bound for the Price of Deception was achieved when there was a unique candidate

with a high score at equilibrium – no tie breaking rule was needed to determine the winner.

However, as shown in Table 5.2, the Price of Deception can change depending on the tie

breaking rule.

Tie Breaking Rule

Voting Mechanism Lexico Random Unique Winner

Majority Judgment u− 1 max{ um−m
u+m−2

, u−1
2
}∗ u−1

2

Majority Judgment† um−2m+1
u−1

max{ um2−2m2+m
2um−u−3m+2

, um−2m+1
u+m−2

}∗ um−2m+1
u+m−2

Plurality ∞ ∞ ∞
Plurality† 2m+1

3
m 2m+1

3

Table 5.2: Prices of Deception May Vary Depending on how Ties are Broken.
∗ Assumes Society is Risk-Neutral. † Denotes Normalized Price of Deception.

For sufficiently small m (m ≤ u−2
α−1

), Majority Judgment when breaking ties lexico-
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graphically has a Price of Deception that is at least α times as bad when compared to

breaking ties randomly. It is not surprising that lexicographic tie breaking has a worse

Price of Deception; by definition, it is a biased mechanism that violates either neutrality or

anonymity. Voters may be able to take advantage of the bias in the mechanism to yield a

more extreme result.

In contrast, the Price of Deception for a plurality election is significantly better when

ties are broken lexicographically. If ties are broken randomly, a candidate can lose the

election even if the candidate is sincerely the unanimous favorite.

Not only does the type of tie breaking rule potentially have an impact on the Price of

Deception, this impact is not always same. In one case (Majority Judgment) we see that

lexicographic tie breaking leads to a worse Price of Deception. However, for plurality elec-

tion, the exact opposite occurs – random tie breaking leads to a worse Price of Deception.

5.2 The Model

As in Chapters 3 and 4 we reinforce the notation and definitions from Chapter 2 by redefin-

ing them in context of the Voting Problem.

An instance of the Voting Problem consists of

• Set V = {v1, ..., vn} and C = {c1, ..., cm} of voters and candidates, respectively.

• For each v ∈ V , a total ordering πv on C, representing voter v’s preferences on the

candidates. Denote by Pi as the set of all possible preferences. For the procedures

Dictatorship, Veto, Borda Count, α-Copeland, and Plurality the preferences πv are

strict. For Approval voting, πv is a strict ordering over a subset of C where c ∈ πv if

v approves of candidate c. For Majority Judgment voting, πv = {πv1, ..., πvm} where

πvc ∈ {1, ..., u} for some predefined u is voter v’s valuation of candidate c.

• Denote by Π the collection of πv over all v ∈ V . Π is called the preference profile.
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• The profile Π is submitted to a publically known procedure r. The outcome r(Π)

corresponds to a single candidate c ∈ C or a distribution over the set of candidates.

We begin by defining a large family of voting procedures that includes Borda, approval,

plurality, and veto. These are procedures in which each voter assigns an integer score

within a bounded range to each candidate, and a candidate with largest sum of scores wins

the election.

Definition 5.2.1. For candidate set C, a score voting procedure bounded by K is a social

choice procedure to select a winning candidate as follows: For each voter v ∈ V there

exists a score function gv : C 7→ {0, 1, . . . , K − 1}. The social choice is a member of the

set

arg max
c∈C

Sc ≡ arg max
c∈C

∑
v∈V

gv(c). (5.1)

Denote by G the set of possible score functions1. Hence |G| ≤ K |C|.

With exception of the α-Copeland voting procedure, every algorithm we analyze in

this chapter is a score voting procedure. The α-Copeland winner is determined from a

tournament graph where the weights on edges are determined by plurality, a score voting

procedure.

Example 5.2.2. Borda count as a score voting procedure.

For Borda count, gv(c) = |C| − k if v’s kth favorite candidate. For example, if voter v’s

preference list is πv = (c1, c2, c3) then v’s favorite candidate is c1 followed by c2 and then c3. In

this case, gv(c1) = 2, gv(c2) = 1 and gv(c3) = 0. Furthermore, if we have five voters, v1, v2, v3, v4

1The score function g is not the same as the individual utility function u. We assume that gv(c) ≥ gv(c′)
if and only if uv(πv, c) ≥ uv(πv, c

′). However, g does not specify individual v’s utility for a probability
distribution over a subset of the candidates.
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and v5 with the following sincere preferences:

πv1 = (c1, c2, c3) (5.2)

πv2 = (c1, c2, c3) (5.3)

πv3 = (c3, c1, c2) (5.4)

πv4 = (c3, c1, c2) (5.5)

πv5 = (c3, c1, c2) (5.6)

Then the score for candidate c1 is

5∑
i=1

gvi(c1) = 2 + 2 + 1 + 1 + 1 = 7. (5.7)

Similarly, the scores for candidates c2 and c3 are 2 and 6 respectively. Therefore if Π is

submitted to a decision mechanism using Borda count, then c1 is selected. In this example each

voter assigns each candidate a value between 0 and |C| − 1. Therefore, in Definition 5.2.1,

K > |C| − 1 = 2.

It is well known that every reasonable voting procedure is manipulable [28, 65, 27].

For instance in Example 5.2.2, voter v4 could instead submit π̄v4 = (c3, c2, c1) causing

candidates c1 and c3 to tie. Under certain tie-breaking rules, this yields a better outcome

for voter v4 since voter 4 prefers c3 to c1. As a result, we cannot expect that voters are

submitting truthful information. The voters are actually submitting strategic preferences in

the Strategic Voting Game.

Strategic Voting Game

• Each voter v has information πv ∈ Pv describing their preferences. The collection of

all information is the (sincere) profile Π = {πv}nv=1.

• To play the game, voter v submits putative preference data π̄v ∈ Pv. The collection
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of all submitted data is denoted Π̄ = {π̄v}nv=1.

• It is common knowledge that a central decision mechanism will select candidate

r(Π̄, ω) ∈ C when given input Π̄ and random event ω.

• The random event ω ∈ Ω is selected according to µ. We denote r(Π̄) as the distribu-

tion of outcomes according to Ω and µ.

• Voter v evaluates r(Π̄) according to v’s sincere preferences πv. Specifically, voter v’s

utility of the set of outcomes r(Π̄) is uv(πv, r(Π̄)).

Voter utilities are consistent with Π; ui(πi, c) > ui(πi, c
′) only if c appears prior to c′ in

the preferences πi. For single-valued voting rules (i.e. r(Π̄) = r(Π̄, ω) = r(Π̄, ω′) for all

ω, ω′ ∈ Ω) it suffices to consider only the preferences πi and not the utilities ui since they

are consistent. However, when r is not single valued, ui is necessary to determine a voter’s

valuation of probability distribution over a set of candidates. We begin by considering r

single-valued.

By the definition of the strategic voting game, a set of submitted preferences Π̄ forms a

pure strategy Nash equilibrium if no individual v would obtain an outcome they sincerely

prefer to r(Π̄) (with respect to πv) by altering π̄v.

Example 5.2.3. A Nash equilibrium of the Strategic Voting Game.

Suppose there are five voters, three candidates and the Borda count is used to select the winning

candidate. Suppose further that the preferences from Example 5.2.2 are the sincere preferences of
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the five voters. Then the following submitted preferences correspond to a Nash equilibrium:

π̄v1 = (c1, c2, c3) (5.8)

π̄v2 = (c1, c2, c3) (5.9)

π̄v3 = (c3, c2, c1) (5.10)

π̄v4 = (c3, c2, c1) (5.11)

π̄v5 = (c3, c1, c2) (5.12)

Only voters v3 and v4’s submitted preferences deviate from their sincere preferences. As a

result, the scores for candidates c1, c2 and c3 are 5, 4, and 6 respectively and candidate c3 wins

the election with respect to the submitted preferences. Voters v3, v4, and v5 receive their sincere

first choice and therefore have no further incentive to alter their submitted preferences. Though

voters v1 and v2 receive their last choice, neither voter can alter the results of the election and the

submitted preferences form a Nash equilibrium.

5.3 Strategic Voting Equilibria without Minimal Dishonesty

In Example 5.2.2, using Borda count would cause c1 to win the election if everyone is

sincere. However, in Example 5.2.3, we see that we may obtain a different result when

individuals behave strategically; the strategic voters select candidate c3, the sincere Con-

dorcet winner. This equilibrium makes sense in that a majority of voters prefer c3 to c1 and

a majority prefer c3 to c2. Furthermore, if all voters were honest, then both c1 and c3 have

similar Borda counts – 7 and 6 respectively. However, we see in the next example that not

all equilibria make sense.

Example 5.3.1. A Second Nash equilibrium of the Strategic Voting Game.
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Once again suppose the sincere preferences are given in Example 5.2.2. Then the following

preferences are a Nash equilibrium where c2 wins the election.

π̄v1 = (c2, c1, c3) (5.13)

π̄v2 = (c2, c1, c3) (5.14)

π̄v3 = (c2, c3, c1) (5.15)

π̄v4 = (c2, c3, c1) (5.16)

π̄v5 = (c2, c3, c1) (5.17)

With respect to the submitted preferences candidates c1,c2 and c3 have Borda counts of 2, 10

and 3 respectively and c2 wins the election. These preferences correspond to an equilibrium since

each voter can change a candidate’s score by at most two.

Unlike Example 5.2.3, the voters in Example 5.3.1 are lying spuriously to obtain poor

results – voters v3, v4 and v5 all indicate that they most prefer their least preferred candidate,

c2, causing c2 to win the election. We see in the next theorem that this oddity is unique to

neither the preferences in Example 5.2.2 nor the Borda count.

Theorem 5.3.2. For each of the non-dictatorial voting rules, Kemeny, Borda, approval,

Dodgson, STV, and any Condorcet-consistent rule, there exist instances of the Strategic

Voting Game in which:

(i) there is a single candidate c1 (respectively cm) who is most (respectively least) preferred

by every voter;

(ii) there is a pure strategy Nash equilibrium that elects cm.

Proof. Let C = {c1, c2, . . . , cm}. Let πv = (c1, c2, . . . , cm) ∀v ∈ N . Property (i) holds

by construction. For any m ≥ 2 and |N | ≥ m + 1 unanimity implies that the submitted

preference profile Π̄ where π̄v = (cm, cm−1, . . . , c1) ∀v yields social choice r(Π̄) = cm.

Moreover, if any one voter v alters π̄v, cm remains the Condorcet winner, the Kemeny

winner, the Borda winner, etc. Therefore, Π̄ corresponds to a pure Nash equilibrium of the
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strategic voting game. Incidentally, by unanimity r(Π) = c1 and hence Π corresponds to a

pure Nash equilibrium of the game, though that is not needed for the proof.

The Nash equilibrium strategy set Π̄ in the proof of Theorem 5.3.2 is absurd because

the voters are dishonest to their own disbenefit. It is not plausible that voters would lie in

order to achieve a less preferable outcome. The strategic voting game admits many other

nonsensical pure strategy equilibria. For example, most submitted profiles that are unan-

imous yield Nash equilibria. These observations call for a refinement concept to remove

such equilibria.

5.3.1 Dynamic Cournot Equilibria

Branzei et al. [13] propose to refine the set of equilibria by retaining only pure strategy

equilibria reachable from sincere voting by a sequence of best responses of the voters. We

refer to these as dynamic Cournot equilibria. This refinement does eliminate the absurd

equilibrium in Example 5.3.1. However, it also eliminates the equilibrium in Example

5.2.3. With respect to the sincere preferences in Example 5.2.2, everyone is honest in the

only dynamic Cournot equilibrium.

Example 5.3.3. A Dynamic Cournot Equilibrium

Consider the sincere preferences from Example 5.2.2.

πv1 = (c1, c2, c3) (5.18)

πv2 = (c1, c2, c3) (5.19)

πv3 = (c3, c1, c2) (5.20)

πv4 = (c3, c1, c2) (5.21)

πv5 = (c3, c1, c2) (5.22)
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Suppose further that we select the winning candidate using Borda count and break ties by se-

lecting the best candidate with the lowest index. With respect to the sincere preferences the Borda

counts for candidates c1, c2, and c3 are 7, 2, and 6 respectively. Candidate c1 wins the election and

neither v1 nor v2 have a desire to change the outcome of the election. The remaining voters prefer

c3. However, no individual can change the result of the election; v3 cannot increase the score of

c3 and can only decrease the score of c1 by one which does not cause c3 to win the election. Thus,

voters have no incentive to deviate from their sincere preferences and the sincere preferences are

the only dynamic Cournot equilibrium.

Example 5.3.3 demonstrates that the dynamic Cournot refinement is too stringent. We

show in Theorem 5.3.4 and Corollary 5.3.5 that, with probability converging to 1, only

one dynamic Cournot equilibrium exists, and in that equilibrium all voters are truthful.

Hence the restriction to dynamic Cournot equilibria is, with high probability, tantamount

to forbidding manipulation. Definition 5.2.1 puts no requirement on how ties are broken.

To detect unavoidable ties, we say voter v distinguishes candidates c, d is iff gv(c) 6= gv(d).

Theorem 5.3.4. Let a score voting procedure bounded by K be employed to select from

candidate set C. Let p be any probability distribution on G, the set of possible score func-

tions, such that every pair of candidates is distinguishable with positive probability. Let

a population of n voters be sampled independently according to p. Then as n → ∞ the

probability converges to 1 that the only dynamic Cournot equilibrium is for all voters to be

truthful.

Proof: Let random variable Sc be the score of c ∈ C. By assumptionE[Sc

n
] =

∑
g∈G p(g)g(c).

Hence if the candidate pair c, d is distinguishable there must exist g ∈ G such that p(g) > 0

and g(c) 6= g(d). By Lemma 5.6.1 with ε = 1
2
,

∀k lim
n→∞

P (|Sc − Sd| < k) = 0. (5.23)

The proof of the lemma is deferred to the appendix. The idea is that if E[Sc

n
] 6= E[Sd

n
]
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then |Sc− Sd]→∞ with probability 1 by the law of large numbers. If the expected values

are equal, Sc − Sd is the sum of n i.i.d. non-trivial random variables with mean 0, which

by the central limit theorem has probability tending to zero of being within order less than

1/
√
n of 0.

Set k = 2K to conclude

lim
n→∞

P

( ⋃
c1 6=c2∈C

|Sc1 − Sc2| ≥ k

)
≤

∑
c1 6=c2∈C

lim
n→∞

P (|Sc1 − Sc2| ≥ 2K) = 0. (5.24)

Therefore, if all voters are truthful, the probability converges to 1 that there is a unique

winning candidate who wins by at least 2K.

A single voter can change Sc − Sd by at most 2K − 2. (In fact w.p. 1 no coalition

of order n.5−ε voters could change the outcome.) Therefore, if all voters are truthful, the

probability converges to 1 that the outcome is a Nash equilibrium, which therefore is the

unique dynamic Cournot equilibrium.

We now extend Theorem 5.3.4 to voting procedures that are based the outcomes of

pairwise elections. A Condorcet winner is a candidate who is preferred to every other

candidate by more than half of the voters. The principle is often accepted that the Condorcet

winner, if it exists, should be the social choice. Several voting procedures take this principle

as a point of departure and thereby operate on the tournament graph on vertex set C where

a directed edge (c, d) exists iff c defeats d and an undirected edge {c, d} exists iff c and d

tie, i.e. are preferred by an equal number of voters. For example, in α-Copeland scoring

candidate c gets 1 point for each outgoing edge and 0 ≤ α < 1 points for each incident

undirected edge.

Corollary 5.3.5. Theorem 5.3.4 holds for social choice rules that select a winning subset

of the candidates based only on the tournament graph, and perform tie-breaking within

that subset either independent of V or based on a scoring function according to Definition

5.2.1.
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Proof: A pairwise election between c, d ∈ C is equivalent to a score voting procedure with

K = 2 and gv(c)+gv(d) ≤ 2 ∀v ∈ N . By Lemma 5.6.1 P (|Sc−Sd| ≤ 2)→ 0 as n→∞.

Hence the probability of a pairwise tie goes to zero. Moreover, since a single voter can only

change the difference of the scores within a pairwise election by 2, the probability goes to 0

that any voter can alter the tournament graph. If tie-breaking is based on a scoring function,

then by Theorem 5.3.4 the probability goes to 0 that any voter can change the tie-breaking

outcome.

5.3.2 Minimally Dishonest Voting and the Price of Deception

Theorem 5.3.2 shows that we must refine the set of equilibria of the strategic voting game.

Theorem 5.3.4 and its corollary show that the dynamic Cournot refinement of Branzei et

al. [13] is too restrictive. We propose a different refinement based on the hypothesis that

although people may lie for a purpose, they do not lie spuriously. It follows that a voter

would lie “just enough” to achieve a more-preferred outcome, but would not lie more than

necessary to achieve it. We call such behavior minimal dishonesty as defined in Section

2.3. We begin by measuring honesty.

Definition 5.3.6 (Bubble Sort or Kendall Tau Distance). For all ci, cj ∈ C, denote by

R(π, ci, cj) the relationship between ci and cj with respect to π. The the distance between

π1 and π2 is defined as

d(π1, π2) := |{i, j} : 1 ≤ i < j ≤ |C|;R(π1, ci, cj) 6= R(π2, ci, cj)}|. (5.25)

Example 5.3.7. Calculating d(π1, π2).

In Example 5.3.1, voter v3’s sincere prefererences were πv3 = (c3, c1, c2). With respect to the

sincere preferences voter v3 prefers c1 to c2 (i.e. c1 � c2 and R(πv3 , c1, c2) = {�}). However,

with respect to the submitted preferences list π′v3 = (c2, c3, c1), voter v3 indicates they prefer c2

to c1 and R(π′v3 , c1, c2) = {≺} 6= R(πv3 , c1, c2). Similarly, R(π′v3 , c2, c3) 6= R(πv3 , c2, c3) and
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d(πv3 , π
′
v3) = 2.

Definition 5.3.8. Let Π be the sincere preferences and let Π̄ be a Nash equilibrium in the

Strategic Voting Game. A voter v ∈ V is minimally dishonest if d(π̄′v, πv) < d(π̄v, πv)

implies that v’s utility of the more honest outcome, uv(πv, r([Π̄−v, π̄′v])), is less than v’s

utility of the equilibrium outcome, uv(πv, r(Π̄)).

A pure strategy Nash equilibrium is minimally dishonest if every voter is minimally

dishonest.

Stated in the contrapositive, players are not minimally dishonest if a small change to

their purported preference π̄ is more truthful and yields at least as (truthfully) preferred an

outcome.

We can now precisely define the Price of Deception in strategic voting games.

Definition 5.3.9. Let r be the single-valued voting rule of a strategic voting game. Let U

be an associated real-valued function that, given a profile Π of voter preferences over C,

outputs for each c ∈ C a societal utility U(Π, c) of candidate c respect to Π. The function r

must be such that for all Π, r(Π) ∈ arg maxc∈C U(Π, c). When voting is characterized as a

score voting procedure (according to Definition 5.2.1) U(Π, c) is taken to be the candidate

score SΠ
c ≡

∑
v∈V g

Π
v (c).

Let NE(Π) denote the set of purported preference profiles of the minimally dishonest

equilibria of the strategic voting game. Then the Price of Deception is

max
Π̄∈NE(Π)

U(Π, r(Π))

U(Π, r(Π̄))
. (5.26)

Normalized Price of Deception

The Price of Deception as defined is not a fine enough measure to discriminate among

scenarios with unbounded Price of Deception. For example, suppose that the sincere winner

gets 40% of the votes in one plurality election and gets 20% of the votes in another. Suppose
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in both elections there is a strategic equilibrium in which the winner is no voter’s top choice.

The Price of Deception is equally bad – infinity – in both elections, yet we might wish it

to be measured as worse in the first election. In Section 3.3 we handle this by bounding

how close preferences can get to zero. However, our voting rules are integer valued and

therefore such a trick will not work.

Another potential shortcoming of the Price of Deception is that its value can be greatly

altered by changing a score’s scale. For instance, in a plurality election it is possible for

a winning candidate in the strategic voting game to be no voter’s first choice. The Price

of Deception can be 1/0 = ∞. Create a new decision mechanism, plurality+, where a

candidate receives 2 points for being most favored by a voter, and 1 point from the voter

otherwise. Plurality and plurality+ always yield the same outcome, yet they have signifi-

cantly different Prices of Deception. With respect to plurality+, every candidate receives

between n and 2n votes and the Price of Deception is at most 2.

To address both of these issues, we can normalize the Price of Deception so that its

value is at most m for all voting mechanisms. We apply an affine transformation to the

scoring function such that each candidate receives at least 1 and at most m points. While

Price of Deception without normalization gives a pure measure of how much a voting rule

can be manipulated, we believe that normalization is appropriate for comparing Prices of

Deception of different mechanisms. For example, plurality and plurality+ have the same

Prices of Deception after normalization.

5.4 Prices of Deception for Voting Rules with Lexicographic-Tie Breaking

This section derives exact values or estimates of the Price of Deception of several well-

known voting procedures, and also the Price of Deception of Balinski’s recently proposed

“majority judgement” procedure [7]. We include proofs of several lower and upper bounds

that illustrate the ideas and types of reasoning employed. We defer to Section 5.6 proofs

that are technical but require no additional concepts.
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Since r is single-valued, the winning candidate, r(Π) ∈ argmaxc∈C U(Π, c), is uniquely

selected even though their may be multiple candidates that maximize social utility. We as-

sume that ties are broken lexicographically according to some predetermined list. For each

voting mechanism the predetermined list is described and an example is given to demon-

strate the lower bound for the Price of Deception. Throughout this section, m = |C|

denotes the number of candidates and n denotes the number of voters.

5.4.1 Dictatorship

Since dictatorship is immune to strategic voting, its Price of Deception equals 1.

5.4.2 Veto

The veto rule is a score voting procedure in which each voter gives zero points to their least

preferred candidate and one point to all other candidates. The winning candidate has the

highest number of points. Given n voters and m candidates, the score for each candidate is

between 0 and n and each voter gives out m− 1 points.

Theorem 5.4.1. The Price of Deception for veto voting is 1 + 1
m−1

.

Proof: First, we show that the Price of Deception is at most 1 + 1
m−1

. Suppose that at a

minimally dishonest equilibrium candidate cm is the winning candidate. Let A be the set

of voters that would veto cm if everyone was sincere. The sincere score for cm is n− |A|.

For all v ∈ A, at the equilibrium, v must veto cm. If not, v is not minimally dishonest

since v can be more honest and veto cm which either causes cm to lose the election, a strict

improvement for v, or has no result on the outcome.

Therefore, the equilibrium score for cm is at most n − |A|. For cm to win the election,

cm must receive at least the average number of votes. Hence n − |A| ≥ n(m−1)
m

implying

that |A| ≤ n
m

and that cm’s sincere score is at least n − n
m

. Since the sincere winner can

receive at most n points, the Price of Deception is at most n
n− n

m
= 1 + 1

m−1
.
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Finally, we give an example showing that the Price of Deception is at least 1+ 1
m−1

. The

predetermined list for tie breaking is such that if c1 and cj 6= c1 both have the same score,

then c1 will not be the winner of the election. There are m groups of voters A1, ..., Am. Let

k be a multiple of m and consider the following preference profiles for each group:

πi = (c2, ..., cm, c1) ∀i ∈ A1 where |A1| =
k

m
(5.27)

πji = (c1, c2, ..., cm) ∀i ∈ Aj where |Aj| =
k

m
+ 1 ∀j ∈ {2, ...,m}. (5.28)

If everyone is sincere, c2 through cm−1 tie for first place with k + m − 1 points and

candidate c1 would receive
(
1− 1

m

)
k + m − 1 points. We now give a set of submitted

preferences describing a minimally dishonest equilibrium where c1 is the unique winner

giving a Price of Deception of k+m−1

(1− 1
m)k+m−1

which approaches 1 + 1
m−1

as k grows large.

All voters in group i will veto candidate ci. Since A1 is the smallest set, c1 is the winner

in this equilibrium. Every voter in A1 is honest and cannot cause c1 to lose points and

cannot cause any other candidate to gain points. Therefore no one in A1 can alter their

submitted preferences to be more honest or get a better result. Every voter in Am is honest

and their favorite candidate is the unique winner therefore no one in Am has incentive to

change their submitted preference. For all other i, their favorite candidate is the unique

winner, so only honesty could motivate them to alter their vote. If voter v ∈ Ai is more

honest, then candidate ci will tie with c1 resulting in a worse outcome for v, who prefers

c1 to all other candidates. Therefore these preferences describe a minimally dishonest

equilibrium and the Price of Deception can be arbitrarily close to 1 + 1
m−1

.

To normalize the score of any voting mechanism, we need to apply a affine transfor-

mation to the points given by the voters such that the ratio of the maximum to minimum

number of total points a candidate can receive is m. For veto, this is achieved by having a

voter give 1
n

points to the candidate whom they veto and m
n

points to all other candidates.

Theorem 5.4.2. The normalized Price of Deception for veto voting is 1 + m−1
m2−m+1

.
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Proof: This proof follows in the same fashion as the proof for Theorem 5.4.1. As before,

|A| ≤ n
m

and, updating the scores in the upper bound, the Price of Deception is at most
n·m

n

(n− n
m

)·m
n

+ n
m
· 1
n

= 1 + m−1
m2−m+1

. Similarly, updating the scores in the lower bound, the Price

of Deception is at least m2

(m−1)2(1+ 1
k+m−1

) +m
which approaches 1 + m−1

m2−m+1
as k grows

large.

5.4.3 Approval

Approval voting is a score voting procedure in which candidate c receives one point from

every voter who approves of c. As with veto voting, the winning candidate has the highest

number of points. For n voters and m candidates, each candidates receives between 0 and

n points. We assume that voter v has no preferences over the set of candidates whom v

does not approve of.

Theorem 5.4.3. The Price of Deception for approval voting is 2.

Proof: We begin by giving the upper bound. Suppose that c1 would get the most points if

everyone were sincere and that cm wins the election at a minimally dishonest equilibrium.

Let A and B be the set of individuals who sincerely approve of c1 and cm respectively. The

Price of Deception is |A||B| .

We claim that for all v ∈ A \ B, v declares approval of c1 at the equilibrium. If not,

consider the consequences of v being more honest by declaring approval of c1. This either

has no effect on the outcome or causes c1 to win the election. Thus, by minimal dishonesty,

the claim holds. By a symmetric argument, for all v /∈ B, v declares disapproval of cm at

the equilibrium.

This implies that c1 receives at least |A \ B| points and cm receives at most |B| points

at an equilibrium. Since cm receives the most points at an equilibrium, |B| ≥ |A \ B| ≥

|A| − |B| which implies that |B| ≥ |A|
2

and that the Price of Deception is at most 2.

Finally, we show by construction that the Price of Deception is at least 2. Consider

k + 1 voters who prefer cm to c1 and who disapprove of all other candidates and k voters
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who only approve of c1. If voters were sincere, c1 would receive 2k points and cm would

receive k points. We now give an equilibrium where cm wins the election yielding a Price

of Deception of 2k+1
k+1

which approaches 2 as k grows large.

Each of the first k + 1 voters purports to approve only of cm. The remaining k voters

are honest. The first k voters receive their first choice and if they are more honest then they

receive a strictly worse outcome. The remaining k voters are honest and cannot change the

result of the election. Therefore these submitted preferences form a minimally dishonest

equilibrium and the Price of Deception is at least 2.

Since the maximum and minimum scores for any candidate are n and 0 respectively, the

scoring function for approval voting is not normalized. We normalize by giving m
n

points

to candidate ci for each voter who approves of ci, and 1
n

points for each voter who does not

approve. Each candidate now receives between 1 and m points.

Theorem 5.4.4. The normalized Price of Deception for approval voting is 2m
m+1

.

Proof: Once again this proof follows in the same fashion as the previous proof. Updating

the upper bound from Theorem 5.4.3, the Price of Deception is at most 2m
m+1

. Updating the

lower bound, the Price of Deception is at least (2k+1)m
(k+1)m+k

which approaches 2m
m+1

as k grows

large.

5.4.4 Borda Count

Borda count is a score voting procedure where gv(c) = |C| − k if c is v’s kth favorite

candidate. The winning candidate is a candidate that receives the most points. Given n

voters and m candidates, the points for each candidate are between 0 and n(m − 1) and

each voter gives out
(
m
2

)
points.

Theorem 5.4.5. The Price of Deception for Borda count voting is m.

Proof: Suppose c1 = r(Π) and that c2 = r(Π̄) is the winner at an equilibrium. Let xij

be the number of voters who would give i − 1 points to c1 and j − 1 points to c2 if they
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were honest for i, j ∈ {1, ...,m}. The sincere scores for the candidates are then given by

SΠ
c1

=
∑

i 6=j(i− 1)xij and SΠ
c2

=
∑

i 6=j(j − 1)xij and the Price of Deception is

SΠ
c1

SΠ
c2

=

∑
i 6=j(i− 1)xij∑
i 6=j(j − 1)xij

. (5.29)

Due to minimal dishonesty, voter v is honest if c2 is v’s sincerely least preferred can-

didate. Because of this and Lemma 5.6.2 in Section 5.6.1, the following holds for the

equilibrium scores, SΠ′
c1

and SΠ̄
c2

, for c1 and c2 respectively:

SΠ̄
c1
≥
∑
i>j>1

(i− 2)xij +
m∑
i=2

(i− 1)xi1, (5.30)

SΠ̄
c2
≤
∑
j>1

∑
i 6=j

(m− 1)xij. (5.31)

Since SΠ̄
c2
≥ SΠ̄

c1
, the following mathematical program gives an upper bound on the

Price of Deception:

max z =

∑
i 6=j(i− 1)xij∑
i 6=j(j − 1)xij

(5.32)

subject to:
∑
i>j>1

(i−m− 1)xij +
∑
j>i

(1−m)xij +
m∑
i=2

(i− 1)xi1 ≤ 0 (5.33)

xij ∈ Z≥0. (5.34)
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This mathematical program can be relaxed to the following linear program:

max z′ =
∑
i 6=j

(i− 1)xij (5.35)

subject to:
∑
i>j>1

(i−m− 1)xij +
∑
j>i

(1−m)xij +
m∑
i=2

(i− 1)xi1 ≤ 0 (5.36)

∑
i 6=j

(j − 1)xij = 1 (5.37)

xij ∈ R≥0. (5.38)

The dual to this linear program is

min w′ = y2 (5.39)

subject to : (i−m− 1)y1 +(j − 1)y2 ≥ i− 1 ∀ i > j > 1 (5.40)

(1−m)y1 +(j − 1)y2 ≥ i− 1 ∀ j > i (5.41)

(i− 1)y1 ≥ i− 1 ∀i = 2, ...,m (5.42)

y1 ∈ R≥0. (5.43)

A feasible solution to the dual is y1 = 1 and y2 = m with objective value m. By weak

duality [66], for every feasible z′ and w′, z′ ≤ w′ and the Price of Deception is at most m.

To realize the lower bound we give three groups of voters, A1 A2 and A3, with sincere

preferences Π. The predetermined list for tie breaking is such that if c2 and cj 6= c2 have

the same score, then c2 will not win the election.

πi = (c1, c3, c4, ..., cm, c2) ∀i ∈ A1 where |A1| = n (5.44)

πi = (cm, cm−1, ..., c1) ∀i ∈ A2 where |A2| = n− 1 (5.45)

πi = (c2, c1, cm, cm−1, ..., c3) ∀i ∈ A3 where |A3| = m (5.46)

For sufficiently large n, SΠ
ci
< SΠ

cm = nm + m2 − 4m + 1 for all i 6= m and SΠ
c2

=
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n − 1 + m2 − m. If c2 is the winner at a Nash equilibrium, then the Price of Deception

of Borda count voting is at least nm+m2−4m+1
n−1+m2−m which approaches m as n grows large. We

claim that the following preferences Π̄ form a minimally dishonest equilibrium:

π̄i = (c1, c3, c4, ..., cm, c2) (honest) ∀i ∈ A1 (5.47)

π̄i = (c2, cm, cm−1, ..., c3, c1) ∀i ∈ A2 (5.48)

π̄i = (c2, c1, cm, cm−1, ..., c3) (honest) ∀i ∈ A3 (5.49)

For all i ≥ 3, SΠ̄
ci

= nm − n + 2 − i + (m − 1)i − 3m ≤ nm − n + 2 + m2 − 4m

and SΠ̄
c2

= SΠ̄
c1

+ 1 = nm + m2 − 2m − n + 1 and thus c2 wins the election. Candidate

c2 defeats c1 by one point and all other candidates by at least 2m − 1 points. Since any

single voter can cause a candidate’s score to change by at most m − 1, no candidate can

cause ci to win for i ∈ {3, ...,m}. Furthermore, voters in A1 can neither increase c1’s score

nor decrease c2’s score. Therefore, no one can alter their preferences to get a strictly better

result. Finally, if a voter v ∈ A2 is more honest, then it will cause c1 to at least tie which

results in a worse outcome for v. Thus, the Price of Deception is at least m.

To normalize the Borda count, we let ḡv(c) = |C| − k + 1 if c is v’s kth favorite

candidate. The points for each candidate are now between n and nm and the Price of

Deception is trivially at most m.

Theorem 5.4.6. The normalized Price of Deception for Borda count voting is between m+2
3

and m2

2m−1
.

When updating Theorem 5.4.5, the lower bound becomes m+2
3

. When updating the

proof for the upper bound, since all scores increase by one point, only the second column

and right hand sides will change. They will both increase by one and a new dual feasible

solution is y1 = m
2m−1

and y2 = m2

2m−1
and the normalized Price of Deception is at most

m2

2m−1
.
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5.4.5 Majority Judgment

Majority Judgment [7] is a scoring social choice mechanism where each voter v has a

sincere valuation of candidate c given by gΠ
v (c) ∈ {1, ..., u}. As before, voter v may act

strategically and submit a value of gΠ̄
v (c) ∈ {1, ..., u} for candidate instead. The winning

candidate is a candidate with the highest median score. The highest and lowest score for

any candidate is u and 1 respectively.

Unlike other mechanisms analyzed in this paper, Majority Judgment does not rely on

ordinal information from the voters. As a result, we must alter the definition of minimal

dishonesty for this mechanism. A voter v is minimally dishonest if for every candidate c

and for every x ∈ {1, ..., u} where |gΠ
v (c) − x| < |gΠ

v (c) − gΠ̄
v (c)|, v prefers the outcome

obtained by submitting a value of gΠ′
v (c) for candidate c over the outcome obtained by

submitting a value of x for candidate c.

Theorem 5.4.7. The Price of Deception for Majority Judgment is u− 1.

Proof: If any voter has a sincere value of u for candidate c, then voter v will be honest

about c. Similarly, if a voter has a sincere value of 1 for candidate c, then v will be honest

about c. Thus, if candidate c has a sincere median score of u (1), then c will also have a

median score of u (1 respectively) at equilibrium. Therefore if the sincere winner has a

sincere score of u, then then equilibrium winner must have a sincere median score of at

least 2 and the Price of Deception is at most u
2
. Alternatively, the sincere winner may have

a sincere score of u − 1, the equilibrium winner may have a score of 1 and the Price of

Deception is at most u− 1.

We now show that the Price of Deception is at least u − 1. Let gΠ
v (c) be v’s sincere

value for candidate c and gΠ̄
v (c) be v’s submitted value for candidate c at an equilibrium.

The predetermined list for tie breaking is such that if c1 has the highest median score, then

c1 will win the election. Consider three groups of voters, A1, A2, and A3. Their sincere and
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submitted preferences are as follows:

v ∈ A1 : gΠ
v (c1) = gΠ̄

v (c1) = 1, gΠ
v (ci) = gΠ̄

v (ci) = u, (5.50)

v ∈ A2 : gΠ
v (c1) = gΠ̄

v (c1) = 1, gΠ
v (ci) = gΠ̄

v (ci) = 1, (5.51)

v = A3 : gΠ
v (c1) = gΠ̄

v (c1) = u, gΠ
v (ci) = u− 1, gΠ̄

v (ci) = 1, (5.52)

where |A1| = n, |A2| = n and |A3| = 1.

For some i 6= 1, ci wins the election if everyone is honest with a median score of u− 1

while c1 only has a median score of 1. Due to the tie breaking rule c1 is selected with the

submitted preferences. Furthermore, no individual can change their preferences to get a

better candidate and all individuals are minimally dishonest and the Price of Deception is

u− 1.

If voter v’s score for candidate c is x, then v’s normalized score for c is m−1
u−1

(x−1) + 1.

After the transformation, the maximum score for any candidate is m and the minimum

score for any candidate is 1. The bound for the Price of Deception can be obtained by

updating Theorem 5.4.7.

Theorem 5.4.8. The normalized Price of Deception for Majority Judgment is um−2m+1
u−1

.

5.4.6 α-Copeland

In α-Copland voting, each voter has a strict ordering over all candidates. For each pair of

candidates ci and cj , if the majority prefers ci to cj , then ci gets one point. In the event of a

tie, each candidate receives α points where 0 ≤ α < 1. Each candidate receives between 0

and m− 1 points in total.

Theorem 5.4.9. The Price of Deception for α-Copland voting is at least m− 2.

Proof: The predetermined list for tie breaking is such that if c2 and cj 6= c2 have the same

score, then c2 does not win the election. Again let SΠ
ci

be the sincere Copeland score for
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candidate ci and let SΠ̄
ci

be the Copeland score for candidate ci with respect to the submitted

preferences. A set of sincere preferences to achieve this lower bound is as follows:

π1 = (c3, c4, c5, ..., cm−2, cm−1, c2, c1, cm) (5.53)

π2 = (c4, c5, c6, ..., cm−1, cm, c2, c1, c3) (5.54)

... (5.55)

πm−2 = (cm, c3, c4, ..., cm−3, cm−2, c2, c1, cm−1) (5.56)

πi = (c1, c3, c4, ..., cm−3, cm−2, cm−1, cm, c2) ∀i ∈ A (5.57)

πi = (c1, cm, cm−1, ..., c6, c5, c4, c3, c2) ∀i ∈ B (5.58)

where |A| = |B| = m−3
2

wherem is odd. With these preferences, SΠ
c1

= m−2, SΠ
c2

= 1 and

SΠ
ci

= m−1
2

for all other i. Candidate c1 is the winner if everyone is sincere. A minimally

dishonest equilibrium is as follows:

π̄1 = (c2, c3, c4, c5, ..., cm−2, cm−1, c1, cm) (5.59)

π̄2 = (c2, c4, c5, c6, ..., cm−1, cm, c1, c3) (5.60)

... (5.61)

π̄m−2 = (c2, cm, c3, c4, ..., cm−3, cm−2, c1, cm−1) (5.62)

π̄i = (c1, c3, c4, ..., cm−3, cm−2, cm−1, cm, c2) ∀i ∈ A (5.63)

π̄i = (c1, cm, cm−1, ..., c6, c5, c4, c3, c2) ∀i ∈ B (5.64)

In this equilibrium, SΠ̄
c2

= SΠ̄
c1

+ 1 = m − 1 and SΠ̄
ci

= m−3
2

for all other i. Letting

C be the directed cycle defined by c3 → c4 → ... → cm → c3, candidate ci wins a

majority over the m−3
2

candidates appearing before ci and loses to the m−3
2

appearing after

ci. Furthermore, if cj appears k ≤ m−3
2

positions prior to ci, then ci would lose a majority

election to cj by m − 2k votes. For i where 3 ≤ i ≤ m, candidate ci loses to c2 by 1 vote

and to c1 by 1 vote. We now show that the solution is an equilibrium.
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Voters in A and B, they cannot decrease c2’s score, cannot increase c1’s score and for

all other i, can only increase ci’s score by 1 point by placing ci ahead of c1. Therefore, for

any permutation, candidate c2 still wins the election. Furthermore, voters in A and B are

minimally dishonest.

By symmetry, it now suffices to show that voter 1 can do no better. The voter will only

change their preferences if they can make ci win where 3 ≤ i ≤ m − 1 or if they can be

more honest and get at least as good a result. However, for i where 3 ≤ i ≤ m − 1, the

voter can only increase the score of ci by 1 since ci already appears ahead of c1. Since c2

has a score of m− 1 and ci has a score of m−3
2

, the voter cannot make ci win. Furthermore,

the voter will be more honest only if they switch ci with c2 for some iwhere 3 ≤ i ≤ m−1.

However, this will cause the score of c2 to decrease by 1 and thus c1 and c2 will tie resulting

in a strictly worse solution for the voter. Thus, the submitted preferences form a minimally

dishonest equilibrium and the Price of Deception is at least m− 2.

To normalize 1st order Copeland scores, we add one to the score of every candidate.

Every candidate receives between 1 and m points and the normalized Price of Deception

is by definition at most m. After updating the proof for Theorem 5.4.9, we obtain the

following bound on the Price of Deception.

Theorem 5.4.10. The normalized Price of Deception for 1st Order Copeland voting is

between m−1
2

and m.

5.4.7 Plurality

Plurality voting is a scoring voter mechanism where each voter give only one point to

their favorite candidate and zero points to all other candidates. The winning candidate is

a candidate that receives the most points. The maximum and minimum number of points

that a candidate may receive is n and 0 respectively.

Theorem 5.4.11. The Price of Deception for plurality voting is∞.
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Proof: The predetermined list for tie breaking is such that if c2 and cj 6= c2 have the same

score, then c2 does not win the election. Suppose that the sincere and putative preferences

are given by

πi = (c1, ..., cm) π̄i = πi ∀i ∈ A1 (5.65)

πi = (c1, ..., cm) π̄i = (c2, c1, c3, c4, ..., cm) ∀i ∈ A2 (5.66)

πi = (c3, c4, ..., cm, c1, c2) π̄i = πi ∀i ∈ A3 (5.67)

where |A1| = k − 2, |A2| = k + 1 and |A3| = k. When everyone is honest, c1 wins the

election with 2k − 1 points and c2 receives zero points. With the submitted preferences c2

wins the election with k + 1 points. Since c2 defeats c3 by one point and c1 by 3 points, no

voter can alter their preferences to receive a strictly better outcome. Furthermore, if anyone

in A2 is more honest, then c3 would win the election. Thus the submitted preferences form

a Nash equilibrium and the Price of Deception is∞.

To normalize the scoring for plurality voting candidate ci would receive m
n

points from

a voter that lists ci as their favorite candidate and 1
n

from all other voters.

Theorem 5.4.12. The normalized Price of Deception for plurality voting is 2m+1
3

.

Proof: Updating the proof of Theorem 5.4.11, the Price of Deception is at least (2m+1)k−m
3k−1

which converges to 2m+1
3

as k grows large.

It remains to prove the upper bound. Suppose that c1 is a winner if everyone is sincere

and that c2 is the winner at equilibrium. We may assume that c2 is not the sincere winner

since this would yield a Price of Deception of one.

First we claim that if voter v most prefers candidate ci then v either indicates that they

most prefer ci or c2. For contradiction, suppose that v indicates that they most prefer cj /∈

{c2, ci}. If v is completely honest, then cj’s score decreases and ci’s score increases. This

cannot yield a worse solution for v contradicting that the submitted preferences formed a

minimally dishonest equilibrium. Thus, if voter v most prefers candidate ci then v indicates
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that they most prefer either ci or c2.

Next we claim there is a candidate ci that loses to c2 by at most one vote. For con-

tradiction suppose that every candidate loses to c2 by at least two votes. Since c2 is not a

sincere winner and by the previous claim, there must be a voter v who most prefers ci for

some i 6= 2 but indicates that they most prefer c2. If v were honest then c2 would lose one

vote and ci would gain one vote. Since c2 wins by at least two votes, either c2 will remain

the unique winner or ci and c2 will tie. Neither outcome is worse for v contradicting that

the preferences formed a minimally dishonest equilibrium. Thus there is a candidate ci that

loses to c2 by exactly one vote.

Now we break the problem into two cases. In Case 1 c1 comes in second at equilibrium

and in Case 2 c3 comes in second but c1 does not.

Case 1: c1 finishes in second. Let A be the set of voters that most prefer c1, W be the

set of voters that indicate that they most prefer c2 and let B = W ∩ A. Since c1 loses to c2

by at most one vote, |B| = 0. Thus |W | ≥ |A| and |W |+ |A| ≤ n, and |A| ≤ n
2
. If c2 was

sincerely most preferred by no one, then the Price of Deception is |A|
m
n

+(n−|A|) 1
n

n 1
n

≤ m+1
2

.

Case 2: c3 finishes in second but c1 does not. Let A be the set of voters that most prefer

c1, W be the set of voters that indicate that they most prefer c2, B = W ∩ A and let D be

the set of voters that indicate that they most prefer c3. Since there are n voters, we have

that |W | + |D| + |A| − |B| ≤ n. Since c3 is in second place, |D| + 1 ≥ |W | ≥ |D|.

By definition, |W | ≥ |B|. Furthermore, c1 loses to c3 by at least one vote and we have

that |D| ≥ |A| − |B| + 1. Using Fourier-Motzkin elimination, we obtain that |A| ≤ 2
3
n.

Once again if c2 was sincerely most preferred by no one, then the Price of Deception is
|A|m

n
+(n−|A|) 1

n

n 1
n

≤ 2m+1
3

.

5.5 Prices of Deception for Voting Rules with Random-Tie Breaking

To this point, like Gibbard and Satterthwaite, we have examined decision mechanisms that

are single-valued. Neutral (anonymous) voting mechanisms are such that relabeling the
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candidates (respectively voters) does not change the outcome of an election. In general,

single-valued voting mechanisms cannot be both neutral and anonymous [68]. By breaking

ties lexicographically according to a predetermined list of candidates in Section 5.4, we

have violated neutrality. Alternatively every theorem in Section 5.4 holds if we break ties

by violating only anonymity and select the most preferred candidate by a particular voter

from the set of candidates with the highest score.

In this section, we consider neutral and anonymous decision mechanisms where ties

are broken randomly. One option is to randomly select a tie breaking rule that violates

neutrality or anonymity and report the rule to the voters. For example, in Section 5.4,

instead of breaking ties by selecting the first possible candidate from a predetermined list,

ties would be broken by selecting from a randomly chosen list. The selected list however

would be reported to candidates prior to voting. Thus, from the perspective of the voters at

the time that they cast their ballots the decision mechanism is single-valued and all upper

bounds from Section 5.4 hold.

More interesting however is when voters do not know the result of the randomness prior

to voting. We now consider voting mechanisms where the winner is selected uniformly at

random from the set of candidates that have the highest score. Instead of being single

valued, f(Π) ⊆ C is the set of candidates that have positive probability of winning2.

5.5.1 Valuation of Risk and the Price of Deception

An immediate consequence of allowing r to be set-valued is that ordinal preferences over

C are no longer sufficient to characterize a voters’ preferences. Ordinal preferences over

C are insufficient to determine whether voter v prefers their 2nd most preferred candidate

to an outcome yielding their most preferred candidate half the time and their 3rd most

preferred candidate the rest of the time. Instead, each candidate needs to have ordinal

2For non-uniform distributions we should view r(Π) ∈ [0, 1]|C| as a probability distribution where r(Π)i
denotes the probability that ci wins the election. However since we are selecting the candidate uniformly at
random, giving only the set of candidates that have positive probability of winning is sufficient to characterize
the outcome.
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preferences over all 2|C| − 1 non-empty subsets of C3.

Alternatively, as in Definition 5.2.1 for score voting procedures, we can always cast

individual preferences as cardinal values. However, a voter v must have a value for gv(C ′)

for all C ′ ⊆ C. An individual’s expected utility, 1
|r(Π)|

∑
c∈r(Π) uv(c), is not necessarily

equal to the utility of the outcome, uv(r(Π)). An individual is risk-neutral if the two are

equal. An individual is risk-prone (risk-averse) if the utility of the outcome r(Π) is more

(respectively less) than the expected utility of r(Π).

Let Pv(C ′, k) =
∑

c∈C′
1
|C′|1{uv(c)≥k} be the probability that the randomly selected can-

didate will have a utility is at least k given outcome C ′ for voter v. Voter v is rational only

if uv(C ′) ≥ uv(C
′′) whenever Pv(C ′, k) ≥ Pv(C

′′, k) for all k. Individual valuations of

risk can greatly impact the set of equilibria and in general may greatly alter the Price of

Deception. However, all results in this section only require that voters are rational.

Society also has its own valuation of risk that may not correlate with the voters’ val-

uations of risk. Unlike the voters, society’s valuation of risk has no impact on the set of

equilibria. It does, however, impact the Price of Deception. As society becomes more risk-

averse (prone) the Price of Deception will not decrease (respectively increase). Generally,

we only assume that society is rational.

Definition 5.3.8 for minimal dishonesty is unchanged when r becomes set-valued and

Definition 5.3.9 for the Price of Deception is easily updated for set-valued functions given

society’s valuation of risk. We now analyze how the Prices of Deception from Section 5.4

change when ties are broken randomly. In addition, we find the Price of Deception when

the winner is uniquely determined.

5.5.2 Random Dictator

Given that there is never a tie when the winning candidate is determined by a dictator, we

instead analyze the random dictator rule. A voter is selected uniformly at random and the

3For non-uniform distributions, a voter may need to have preferences over all distributions over the set of
candidates, {x ∈ [0, 1]|C| : ||x||1 = 1}.
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voter’s most preferred candidate is selected as the winning candidate. Furthermore, since

honesty is the only minimally dishonest response for any dictator, every individual will be

honest and the Price of Deception is one.

5.5.3 Veto

The key step in Theorem 5.4.1 was showing that if cm has the most points at an equilibrium,

then the sincere score of for cm is at least n − n
m

. However, this holds for all candidates

who have positive probability of winning in an election where ties are broken randomly

and the upper bound for the Price of Deception remains unchanged assuming society is

rational. Furthermore, the lower bound presented in Theorem 5.4.1 is still valid and the

(normalized) Price of Deception remains 1 + 1
m−1

(respectively 1 + m−1
m2−m+1

). The example

in Theorem 5.4.1 has a unique candidate with high score. Thus, the Price of Deception

remains unchanged even if there is no unique winner.

5.5.4 Approval

Like veto, the key step in Theorem 5.4.3 was showing if cm has the most points at an equi-

librium and c1 was the sincere winner, then the sincere score for cm is at least half the

sincere score of c1. Once again this holds for all candidates that have positive probability

of winning and the upper bound for the Price of Deception remains unchanged assuming

society is rational. The lower bound in Theorem 5.4.3 remains valid with random tie break-

ing and the (normalized) Price of Deception remains 2 (respectively 2m
m+1

). Once again the

Price of Deception remains unchanged in the event of no unique winner.

5.5.5 Borda Count

The preferences given in Theorem 5.4.5 remain valid and the (normalized) Price of Decep-

tion is at least m (respectively m+2
3

).
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Theorem 5.5.1. Given that two individuals tie at an equilibrium and that society is risk-

neutral or risk-prone, the (normalized) Price of Deception for Borda count is at most

2m2−6m+4
3m−7

(respectively 2m2−4m
5m−11

).

The proof of Theorem 5.5.1 is similar to Theorem 5.4.5 and can be found in Section

5.6.1.

Theorem 5.5.2. Given that at least three individuals tie at an equilibrium and that society

is risk-neutral or risk-prone, the (normalized) Price of Deception for Borda count is at most

m− 1 (respectively m
2

).

Proof: Since society is risk-neutral or risk-prone the societal utility of the outcome r(Π̄) is

U(Π, r(Π̄)) ≥ (|r(Π̄)|−1)n+(|r(Π̄)|−2)n+...+n+0

|r(Π̄)| ≥ n. Since a winning candidate can receive at

most n(m− 1) points, the Price of Deception is at most m− 1. The proof for normalized

Price of Deception is similar.

It remains to establish the upper bound when there is a unique winner. The proof

technique in Theorem 5.4.5 applies when there is a unique winner and the (normalized)

Price of Deception is m (respectively in [m+2
3
, m2

2m−1
]). However, when ties are broken

randomly and there is a unique winner, we are able to establish that the normalized Price

of Deception is at most m
3−2m2+3m−3

2m2−3m
giving us that the bound m+2

3
is tight for m = 3.

Theorem 5.5.3. If there is a unique winner, then the normalized Price of Deception for

Borda count voting is m+2
3

for m = 3 and between m+2
3

and m3−2m2+3m−3
2m2−3m

for m > 3.

We replace the model from Theorem 5.4.5 with two new models. Let c be a sincere

winner. In the first model, we assume that c is the only candidate to come in second place

at a minimally dishonest equilibrium and obtain an upper bound of m+1
3

. In the second

model, we assume there is some c′ 6= c that comes in second place at a minimally dishonest

equilibrium. In the second model we obtain a bound of m+2
3

for m = 3 and m3−2m2+3m−3
2m2−3m

for m > 3. Both models can be found in the Section 5.6.1.
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We also conjecture that the m+2
3

bound is tight. There are two reasons why m3−2m2+3m−3
2m2−3m

is likely to be loose. In the proof of Theorem 5.4.6 we create a variable xijk representing

the number of sincere voters that give i points to c1, j points to c2 and k points to c3. In

the case when m = 3, this enumerates all types of voters. However, we lose quite a bit of

information when adding more candidates. In addition, we only consider two models. In

this first model the sincere winner comes in second place and in the second model there

is at least one other candidate that comes in second place. For m = 3, this describes all

possible outcomes. However, when there are more candidates there are many more models

to consider. Not only are there multiple possibilities for what place a sincere winner could

come in, there are many possibilities for how many candidates tie for second, third, etc.

5.5.6 Majority Judgment

Theorem 5.5.4. The (normalized) Price of Deception for Majority Judgment is u − 1 (re-

spectively um−2m+1
u−1

) when society is completely risk-averse.

Proof: The proof for the standard score is symmetric to the normalized score. Thus we

consider only the standard score. We consider two cases. In the first we assume that there

is a sincere winner with median score u. In the second case we assume a sincere winner’s

median score is at most u− 1.

If the sincere winner has a sincere median score of u then by minimal dishonesty that

candidate will have an equilibrium median score of u. Furthermore, if a candidate has a

sincere median score of 1, they will also have an equilibrium median score of 1. As a result

every candidate that comes in first at equilibrium must have a sincere median score of at

least 2 and the Price of Deception is at most u
2
.

If the sincere winner has a sincere median score of u − 1 or less, then it may be pos-

sible for for an equilibrium winner to have a sincere median score of one and the Price of

Deception is at most u− 1.

The preferences given in the proof of Theorem 5.4.7 give a valid lower bound of u− 1
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completing the proof of this theorem.

Theorem 5.5.5. Given a unique winner, the Price of Deception for (normalized) Majority

Judgment is u−1
2

(respectively um−2m+1
u+m−2

).

Proof. The argument for normalized Price of Deception is similar so we only examine the

standard score. As shown in Theorem 5.5.4, if a candidate has a sincere median of 1, then

the candidate will have a score of 1 at equilibrium. Since there are no ties and 1 is the

smallest possible, the candidate cannot win the election. Similarly, if a candidate has a

sincere median score of u, the candidate is the unique winner with a score of u at every

equilibrium and the Price of Deception is one. Thus, if the Price of Deception is more than

one, u − 1 is the highest possible sincere score for the sincere winner and 2 is the lowest

possible sincere score for the equilibrium winner and the Price of Deception is at most

u−1
2

. It remains to give a set of preferences achieving this value. Consider the following

preferences

v ∈ A1 : gΠ
v (c1) = gΠ′

v (c1) = u− 1, gΠ
v (c2) = gΠ̄

v (c2) = u, (5.68)

v ∈ A2 : gΠ
v (c1) = gΠ′

v (c1) = u− 1, gΠ
v (c2) = gΠ̄

v (c2) = 1, (5.69)

v = A3 : gΠ
v (c1) = gΠ′

v (c1) = 1, gΠ
v (c2) = 2, gΠ̄

v (c2) = u, (5.70)

where |A1| = n, |A2| = n and |A3| = 1. All unlisted values are one. The sincere

winner is c1 with a score of u − 1 while c2 has a sincere score of only 2. The winner

given the submitted preferences is c2. Voters in A1 and A2 are honest and cannot alter their

preferences to obtain a better outcome. If voter v′ is more honest, then v′ will obtain a

strictly worse outcome (assuming ties are broken such that c2 has positive probability of

losing given that c2 ties with c1).

Theorem 5.5.6. If society is risk-neutral, then the (normalized) Price of Deception is

max{ um−m
u+m−2

, u−1
2
} (respectively max{ um2−2m2+m

2um−u−3m+2
, um−2m+1

u+m−2
}).
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Proof. Once again we only consider the standard scores. The bound of u−1
2

comes from

Theorem 5.5.5 when there is a unique winner. We now assume there is not a unique winner

and the remainder of the proof follows in a similar fashion to Theorem 5.5.4. The lower

bound um−m
u+m−2

comes directly from the example in Theorem 5.4.7.

Once again if a sincere winner has a sincere score of u, then the sincere winner will tie

for first at equilibrium and every other candidate tied for first will have a sincere score of at

least 2. Thus, society’s value of the outcome is at least 1
m
u + m−1

m
2 = u+2m−2

m
since there

is at least one candidate tied for first at equilibrium with a score of u. Thus the Price of

Deception is at most um
u+2m−2

.

Alternatively, an equilibrium winner can have a sincere score of 1. This candidate will

also have an equilibrium score of 1 and thus every candidate must tie for first place. Since

every candidate has an equilibrium score of 1, there can be no candidates with a sincere

score of u. Let x ≤ u − 1 denote the highest sincere score for any candidate. Society’s

value of the outcome is at least 1
m
x + m−1

m
= x+m−1

m
yielding a Price of Deception of at

most xm
x+m−1

. This quantity is maximized when x = u − 1 giving a Price of Deception of

um−m
u+m−2

.

5.5.7 α-Copeland

There were no ties given in the proof of Theorem 5.4.9 and the lower bound given is still

valid when ties are broken randomly. Thus the Price of Deception remains unchanged.

5.5.8 Plurality

The lower bound given in Theorem 5.4.11 remains valid and the Price of Deception is∞

even if ties are broken randomly. However, the normalized Price of Deception changes.

Theorem 5.5.7. The normalized Price of Deception for plurality voting is m.

Proof: The upper bound ism by definition. To obtain the lower bound suppose that we have

k voters with sincere preferences (cm, c1, c2, ..., cm−1) and k voters with sincere preferences
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(cm, cm−1, ..., c1). Candidate cm is the only candidate that would receive any points if

candidates were honest.

We now describe an equilibrium where c1 and cm−1 have a probability of .5 each of be-

ing the winning candidate. The first k voters submit the preference list (c1, cm, c2, ..., cm−1)

while the second set of voters submit the preference list (cm−1, cm, cm−2, ..., c1). No voter

can cause cm to win and if any voter is more honest, they would get a worse solution. Thus

the Price of Deception is m
1

= m.

Finally we note that the proof for Theorem 5.4.12 remains valid if there is a unique

winner even when ties are broken randomly. Thus, given a unique winner, the normalized

Price of Deception is at most 2m+1
3

.

5.6 Additional Proofs

Lemma 5.6.1. Let c, d ∈ C be a pair of candidates in an election with n random voters

sampled from a probability distribution p on G(C, g). Suppose there exists g ∈ G(C, g)

such that g(c) 6= g(d) and p(g) > 0. Then for any constants k and ε > 0,

lim
n→∞

n.5−εP (|Sc − Sd| ≤ k) = 0. (5.71)

Proof: For i = 1, . . . , n define the random variable Yi = gvi(c) − gvi(d), where vi is the

ith sample voter drawn according to µ. Let Y =
∑n

i=1 Yi. On the one hand, Y = Sc − Sd.

On the other hand, Y is a sum of n i.i.d. random variables each with nonzero mean or

with nonzero variance σ2. The variance σ2 is finite because the range of |Yi| is bounded by

g(|C|).

If E[Yi] 6= 0 then, by the strong law of large numbers, with probability 1

limn→∞
Y

n
a.s.
= E[Yi]. (5.72)
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Then with probability 1,

lim
n→∞

|Sc − Sd|
a.s.
>

n

2
(|E[Yi])� 2g(|C|). (5.73)

If E[Yi] = 0 then σ2 6= 0 and by the central limit theorem Y/
√
nσ2 converges in dis-

tribution to the standard Gaussian (normal) distribution N(0, 1). The density of a standard

Gaussian distribution variable X , 1√
2π
e−

1
2
x2 , attains its maximum value 1√

2π
at x = 0.

Therefore

P (|X| ≤ k/nε) ≤ k

√
2

π
/nε 0

n→∞
. (5.74)

5.6.1 Borda Count

Lemma 5.6.2. Given a sincere profile Π and a profile Π̄ forming a minimally dishonest

equilibrium where |r(Π̄)| ≤ 2, let ωv = maxc∈r(Π̄) g
Π
v (c) + 1. If gΠ

v (c) ≥ ωv, then gΠ̄
v (c) ≥

gΠ
v (c)− 1.

Proof: For contradiction, assume there is a c such that gΠ
v (c) ≥ ωv but gΠ̄

v (c) ≤ gΠ
v (c)− 2.

If c ∈ r(Π̄), then the result immediately holds since v could move c up one position in their

preference list and c would be the unique winner. We now split the problem into two cases

and show that we have a contradiction in both cases.

Case 1: There is a c′ /∈ r(Π̄) such that gΠ̄
v (c′) ≥ gΠ

v (c) − 1 but gΠ
v (c′) ≤ gΠ

v (c) − 2.

Voter v can be more honest by switching the location of c and c in π̄v which either has no

effect on the election, causes c to be added to r(Π̄) or causes c to be the unique winner. All

three possibilities yield at least as good an outcome for v, a contradiction. Thus, Case 1

cannot occur.

Case 2: If |r(Π̄)| = 1 then Case 1 must occur. Thus we may assume that r(Π̄) =

{c′, c′′}. Without loss of generality we assume that v prefers c′ to c′′.
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Both gΠ̄
v (c′) ≥ gΠ

v (c) − 1 and gΠ̄
v (c′′) ≥ gΠ

v (c) − 1. Voter v can be more honest by

switching the locations of c′′ and c in π′v. After the switch, either c′ will win, c will win or

c′ and c will tie. All three possibilities result in a strict improvement for v since gΠ
v (c) ≥

ωv > gΠ
v (c′) > gΠ

v (c′′). This is a contradiction since Π′ describes an equilibrium and the

lemma holds.

Lemma 5.6.3. When ties are broken randomly, if r(Π̄) ∩ r(Π) = ∅ and {c2, c3} = r(Π̄),

then there is a candidate c /∈ r(Π̄) such that SΠ̄
c = SΠ̄

c2
− 1 = SΠ̄

c3
− 1.

Proof: Without loss of generality we examine only standard scores. For contradiction

assume Lemma 5.6.3 is not true and that for all c /∈ r(Π̄), SΠ̄
c ≤ SΠ̄

c2
− 2. Let A be the

set of voters that prefer c2 to c3 and let B be everyone else. We claim that for all v ∈ V ,

gΠ̄
v (c2) = m−1 and gΠ̄

v (c3) = 0. If not, then v can either move c2 up in their preference list

causing c2 to be the unique winner, or v can move c3 down in their preference list causing

c2 to be the unique winner since all other candidates lose by at least 2. Thus the claim

holds.

A symmetric claim holds for B and thus |A| = |B|. This implies that SΠ̄
c2

= n
m

(
m
2

)
.

Since this is the average score, every candidate must have this score contradicting that there

were only two candidates with positive probability of winning completing the proof.

Theorem 5.5.1. If ties are broken randomly, two individuals tie at an equilibrium and that

society is risk-neutral or risk-prone, the (normalized) Price of Deception for Borda count

is at most 2m2−6m+4
3m−7

(respectively 2m2−4m
5m−11

).

Proof: If r(Π̄) ∩ f(Π) 6= ∅ the Price of Deception is at most 2 since society is either

risk-neutral or risk prone. Thus we assume that c1 ∈ r(Π) \ r(Π̄) and that r(Π̄) = {c2, c3}.

Let xijk be the number of voters that would give i − 1 points to c1, j − 1 points to

c2 and k − 1 points to c3 if they were honest for i, j, k ∈ {1, ...,m}. Let M be the set

{{i, j, k} ∈ {1, ...,m}3 : i 6= j 6= k 6= i}. The Price of Deception is given by
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∑
{i,j,k}∈M

2(i− 1)xijk∑
{i,j,k}∈M

(j + k − 2)xijk
(5.75)

We begin by claiming that xi21 = xi12 = 0 for all i. For contradiction, suppose that

xi21 > 0 and let v be such a voter. Due to Lemma 5.6.3, there is a candidate c /∈ {c2, c3}

such that SΠ′
c = SΠ′

c2
− 1. First, gΠ̄

v (c2) = m − 1, since otherwise v can move c2 up in

their preference list resulting in a better solution. Similarly, since c loses by only one point,

gΠ̄
v (c) = m − 1 implying that c = c2, a contradiction. Thus we may omit xijk from the

model when max{j, k} = 2.

The remainder of this proof follows in the same fashion as Theorem 5.4.5. As before

we can show that if voter v would sincerely give c2 or c3 no points, then v would also do this

at an equilibrium. Furthermore, if v sincerely prefers c2 over c3, v’s submitted preferences

will also indicate this. Due to all this and Lemma 5.6.2, we know the following about the

scores of each candidate:

SΠ̄
c1
≥

∑
{i,j,k}∈M

i≥max{j,k}>2

(i− 2)xijk +
∑

{i,j,k}∈M, j=1
∨

k=1
i<max{j,k}>2

xijk (5.76)

SΠ̄
c2
≤

∑
{i,j,k}∈M

j>k, max{j,k}>2

(m− 1)xijk +
∑

{i,j,k}∈M
k>j>1, max{j,k}>2

(m− 2)xijk, (5.77)

SΠ̄
c3
≤

∑
{i,j,k}∈M

j>k>1, max{j,k}>2

(m− 2)xijk +
∑

{i,j,k}∈M
k>j, max{j,k}>2

(m− 1)xijk. (5.78)

We generate a mathematical program maximizing the Price of Deception where SΠ̄
ci
≥

SΠ̄
c1

for i ∈ {2, 3}. After relaxing the problem into a linear program and taking the dual, we

get that every feasible solution to the following linear program creates an upper bound on

the Price of Deception:
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min w′ = y3 (5.79)

subject to :

(i−m− 1)y1 +(i−m)y2 +(j + k − 2)y3 ≥ 2(i− 1) ∀ {i, j, k} ∈M, j > k > 1, i ≥ max{j, k} > 2 (5.80)

(1−m)y1 +(2−m)y2 +(j + k − 2)y3 ≥ 2(i− 1) ∀ {i, j, k} ∈M, j > k > 1, i < max{j, k} > 2 (5.81)

(i−m)y1 +(i−m− 1)y2 +(j + k − 2)y3 ≥ 2(i− 1) ∀ {i, j, k} ∈M, k > j > 1, i ≥ max{j, k} > 2 (5.82)

(2−m)y1 +(1−m)y2 +(j + k − 2)y3 ≥ 2(i− 1) ∀ {i, j, k} ∈M, k > j > 1, i < max{j, k} > 2 (5.83)

(i− 2)y1 +(i−m− 1)y2 +(1 + k − 2)y3 ≥ 2(i− 1) ∀ {i, 1, k} ∈M,, i ≥ max{1, k} > 2 (5.84)

y1 +(3−m)y2 +(1 + k − 2)y3 ≥ 2(i− 1) ∀ {i, 1, k} ∈M,, i < max{1, k} > 2 (5.85)

(i−m− 1)y1 +(i− 2)y2 +(j + 1− 2)y3 ≥ 2(i− 1) ∀ {i, j, 1} ∈M,, i ≥ max{j, 1} > 2 (5.86)

(3−m)y1 +y2 +(j + 1− 2)y3 ≥ 2(i− 1) ∀ {i, j, 1} ∈M,, i < max{j, 1} > 2 (5.87)

y1, y2 ∈ R≥0. (5.88)
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The coefficients for y1 correspond to the constraint SΠ̄
c2
≥ SΠ̄

c1
, and the coefficients for y2

correspond to the constraint SΠ̄
c3
≥ SΠ̄

c1
, the coefficients for y3 correspond to the constraint

created by setting the denominator of the Price of Deception to one. Finally, the lower

bounds for each of the constraints come from the numerator of the Price of Deception.

A feasible solution to this linear program is y1 = y2 = 2m−2
3m−7

and y3 = 2m2−6m+4
3m−7

and

thus the Price of Deception when there are exactly two individuals tied is at most 2m2−6m+4
3m−7

.

When updating the linear program for normalized scores only the third column and right

hand side of the dual linear program will change since the first two columns correspond to

the differences of two candidates scores. Each entry in the third column and right hand sides

will increase by two. A new feasible solution to the linear program is y1 = y2 = 2m
5m−11

and

y3 = 2m2−4m
5m−11

and the normalized Price of Deception is at most 2m2−4m
5m−11

.

Theorem 5.5.3. If ties are broken randomly and there is a unique winner, the normal-

ized Price of Deception for Borda count voting is m+2
3

for m = 3 and between m+2
3

and

m3−2m2+3m−3
2m2−3m

for m > 3.

Prior to proving Theorem 5.5.3, we establish that if the sincere winner does not win at

equilibrium, then there must be another candidate that barely loses.

Lemma 5.6.4. If c′ = r(Π̄) and c′ /∈ r(Π) then there is a candidate c 6= c′ such that

SΠ̄
c = SΠ̄

c′ − 1.

Proof: For contradiction, suppose that every candidate loses by at least two points. Since

c′ is not a sincere winner, there must be some voter v that moved c′ up in their list of prefer-

ences. Let c be the candidate that appears immediately after c′ in v’s submitted preferences

list. By Lemma 5.6.2, v prefers c to c′. As a result v is more honest if they switches the

location of c and c′. Since c′ wins by at least two votes, either c′ will remain the unique

winner or only c and c′ will tie for first. Neither possibility is worse for v. This contra-

dicts that the set of preferences formed an minimally dishonest equilibrium and the lemma

holds.
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We now prove Theorem 5.5.3 in two parts.

Lemma 5.6.5. The normalized Price of Deception for Borda count voting (breaking ties

lexicographically) is at most m+1
3

if the sincere winner is the only candidate in second

place.

Proof: As with Theorem 5.4.5, let c1 = r(Π) and c2 = r(Π̄). Let xij be the number of

voters that would give i points to candidate c1 and j points to candidate c2. The sincere

scores for the candidates are given by SΠ
c1

=
∑

i 6=j ixij and SΠ
c2

=
∑

i 6=j jxij . The Price of

Deception is

SΠ
c1

SΠ
c2

=

∑
i 6=j i · xij∑
i 6=j j · xij

(5.89)

Claim 1: xij = 0 for all i and j where m > i > j.

For contradiction, suppose that there is some voter v that would give c1 i points and c2

j points if sincere where m > i > j. By Lemma 5.6.2, v gives c1 either i or i − 1 points

at equilibrium. However, since i < m, by Lemma 5.6.4 c1 loses by at most one point and v

can get a strictly better solution by moving c1 up one position in their submitted preference

list. This contradicts that the preferences formed an equilibrium and thus xij = 0 for all i

and j where m > i > j.

Claim 2: If voter v would sincerely give m points to c1 and j points to c2, then voter v

gives at most j points to candidate c2 at equilibrium.

For contradiction, suppose this is not the case. Let c3 (c3 6= c1 in an argument similar

to Claim 1) be the candidate appearing directly after c2 in v’s submitted preference list. By

Lemma 5.6.2, v prefers c3 to c2. Voter v could move c2 down one position in their submitted

preference list causing candidate c3 to move up one position. Since c1 is the only candidate

in second place, only c1, c2 and possibly c3 can tie first after the move. However since v

prefers both c1 and c3 to c2, v will prefer the outcome obtained after moving c2 down one

position. This contradicts that that the preferences form an equilibrium. Thus, v gives c2 at
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most j points.

When these two claims are combined with Lemma 5.6.2 the following holds for the

equilibrium scores, SΠ̄
c1

and SΠ̄
c2

, for c1 and c2 respectively:

SΠ
c1
≥
∑
j<m

m · xmj +
m∑
j>i

xij (5.90)

SΠ̄
c2
≤
∑
j<m

j · xij +
∑
j>i

m · xij (5.91)

As in Theorem 5.4.5, since SΠ
c1
≤ SΠ

c2
the following mathematical program gives an

upper bound on the Price of Deception:

max z =

∑
i 6=j i · xij∑
i 6=j j · xij

=

∑
j<mm · xmj +

∑
j>i i · xij∑

j<m j · xmj +
∑

j>i j · xij
(5.92)

subject to:
∑
j<m

(m− j)xmj +
∑
j>i

(1−m)xij ≤ 0 (5.93)

xij ∈ Z≥0. (5.94)

This problem can be relaxed to the following linear program:

max z =
∑
j<m

m · xmj +
∑
j>i

i · xij (5.95)

subject to:
∑
j<m

(m− j)xmj +
∑
j>i

(1−m)xij ≤ 0 (5.96)

∑
j<m

j · xmj +
∑
j>i

j · xij = 1 (5.97)

xij ∈ R≥0. (5.98)
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The dual of this problem is given by

min w = y2 (5.99)

subject to: (m− j)y1 + j · y2 ≥ m ∀j < m (5.100)

(1−m)y1 + j · y2 ≥ i ∀j > i (5.101)

y1 ∈ R≥0. (5.102)

A feasible solution to this problem is y1 = 2m−1
3m−3

and y2 = m+1
3

with value m+1
3

com-

pleting the proof of the lemma.

Lemma 5.6.6. Given a unique winner, the normalized Price of Deception for Borda count

voting is at most m+2
3

for m = 3 and m3−2m2+3m−3
2m2−3m

for m > 3 if c1 is a sincere winner and

c3 6= c1 comes in second at equilibrium.

Proof: As with Theorem 5.4.5, let c2 = r(Π̄). Let xijk be the number of voters that

would give i points to candidate c1, j points to candidate c2 and k points to candidate

c3. Let M = {{i, j, k} ∈ {1, ...,m}3 : i 6= j, j 6= k, i 6= k}. All sums include only

elements from M . The sincere scores for the candidates are given by SΠ
c1

=
∑
{i,j,k} i ·xijk,

SΠ
c2

=
∑
{i,j,k} j · xijk and SΠ

c2
=
∑
{i,j,k} k · xijk. The Price of Deception is

SΠ
c1

SΠ
c2

=

∑
{i,j,k} i · xijk∑
{i,j,k} j · xijk

(5.103)

Claim 1: xijk = 0 for all j and k where m > i > j. This claim follows in the same

fashion as Claim 1 in Lemma 5.6.5.

Claim 2: If v would sincerely give candidate c2 1 point, then voter v is honest. This is

a trivial consequence of minimal dishonesty since v receives their worst outcome.

Claim 3: If v would sincere give c3 m points, the v will give c3 m points at an equilib-

rium.

For contradiction, suppose this is not the case. Since c3 is currently in second places
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and only loses by one point by Lemma 5.6.4, v can receive a strictly better outcome by

moving c3 up one position. This contradicts that the preferences formed an equilibrium

and the claim must hold.

When these three claims are combined with Lemma 5.6.2 the following holds for the

equilibrium scores, SΠ̄
c1

, SΠ̄
c2

and SΠ̄
c3

, for c1, c2 and c3 respectively:

SΠ′

c1
≥
∑
{i,j,k}:
i>j>k

(i− 1)xijk +
∑
{i,j,m}:

m>i>j>1

(i− 1)xijm +
∑
{i,1,m}:
m>i>1

i · xi1m

+
∑
{i,j,m}:
m>j>i

xijm +
∑
{i,j,m}:

j>max{i,k}

xijk

(5.104)

SΠ′

c2
≤
∑
{i,j,k}:
i>j>k

m · xijk +
∑
{i,j,m}:

m>i>j>1

(m− 1)xijm +
∑
{i,1,m}:
m>i>1

xi1m

+
∑
{i,j,m}:
m>j>i

(m− 1)xijm +
∑
{i,j,m}:

j>max{i,k}

m · xijk
(5.105)

SΠ′

c3
≥
∑
{i,j,k}:
i>j>k

xijk +
∑
{i,j,m}:

m>i>j>1

m · xijm +
∑
{i,1,m}:
m>i>1

m · xi1m

+
∑
{i,j,m}:
m>j>i

m · xijm +
∑
{i,j,m}:

j>max{i,k}

xijk

(5.106)

SΠ′

c3
≤
∑
{i,j,k}:
i>j>k

(j − 1)xijk +
∑
{i,j,m}:

m>i>j>1

m · xijm +
∑
{i,1,m}:
m>i>1

m · xi1m

+
∑
{i,j,m}:
m>j>i

m · xijm +
∑
{i,j,m}:

j>max{i,k}

(j − 1)xijk

(5.107)

Since SΠ̄
c2
≥ SΠ̄

c3
≥ SΠ̄

c1
, the following mathematical program gives us an upper bound
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on the Price of Deception:

max z =

∑
{i,j,k} i · xijk∑
{i,j,k} j · xijk

(5.108)

subject to:∑
{i,j,k}:
i>j>k

(i− j) · xijk +
∑
{i,j,m}:

m>i>j>1

(i− 1−m)xijm +
∑
{i,1,m}:
m>i>1

(i−m)xi1m (5.109)

+
∑
{i,j,m}:
m>j>i

(2−m)xijm +
∑
{i,j,m}:

j>max{i,k}

(2− j)xijk ≤ 0 (5.110)

∑
{i,j,k}:
i>j>k

(1−m) · xijk +
∑
{i,j,m}:

m>i>j>1

xijm +
∑
{i,1,m}:
m>i>1

(m− 1)xi1m (5.111)

+
∑
{i,j,m}:
m>j>i

xijm +
∑
{i,j,m}:

j>max{i,k}

(1−m)xijk ≤ 0 (5.112)

xijk ∈ Z≥0 ∀{i, j, k} ∈M (5.113)

By relaxing integrality, fixing the denominator of the objective to be one by scaling,

and by taking the dual, we obtain the following linear program:

min w =y3 (5.114)

subject to:

(i− j)y1 +(1−m)y2 + j · y3 ≥ i ∀{i, j, k} where i > j > k (5.115)

(i− 1−m)y1 +y2 + j · y3 ≥ i ∀{i, j,m} where m > i > j > 1 (5.116)

(i−m)y1 +(m− 1)y2 + j · y3 ≥ i ∀{i, 1,m} where m > i > 1 (5.117)

(2−m)y1 +y2 + j · y3 ≥ i ∀{i, j,m} where m > j > i (5.118)

(2− j)y1 +(1−m)y2 + j · y3 ≥ i ∀{i, j, k} where j > max{i, k} (5.119)

y1, y2 ∈ R≥0 (5.120)

A feasible solution to this problem is y1 = m2+m−3
2m2−3m

, y2 = m−1
2m−3

and y3 = m3−2m2+3m−3
2m2−3m
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and the Price of Deception is at most m3−2m2+3m−3
2m2−3m

. For m = 3, this bound evaluates to

5
3

= m+2
3

.
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6

STRATEGIC STABLE MARRIAGE

6.1 Introduction

Stable marriage has an illustrious history in both theory and application. Gale and Shap-

ley introduced the concept of stability and invented the first algorithm that always finds a

stable marriage, given the preferences of the men and women [25]. Knuth [39] also pio-

neered theoretical analysis of stable marriage. Applications of stable marriage including

Roth’s celebrated design of the resident matching and kidney-exchange markets [59, 3] are

surveyed in Section 6.1.4.

In general, theoretical studies of stable marriage assume that individuals’ preferences

are known. But in many situations an individual’s preferences are private information. This

opens up the troublesome possibility that individuals may behave strategically. A putatively

stable marriage based on strategically submitted preference data could be sincerely unsta-

ble, that is, unstable with respect to the true preferences of the individuals. Gusfield and

Irving posed the question of strategic submission of preference data in their classic text on

stable marriage [31]. However, little progress has been made and Manlove’s recent text

[45] reports that this question remains open.

A series of results in the literature provides a fairly satisfactory answer to the question

for the Gale-Shapley algorithm. We describe these results in detail in Section 6.1.4. The

main points are that the men have no incentive to lie, and, if the men are honest and the

women are strategic, the women can collude to manipulate the algorithm to arrive at any

given sincerely stable marriage. The question of strategic preference data is unanswered

for all other algorithms. Applications of the Stable Marriage Problem and its variants tend

to employ the Gale-Shapley algorithm, often citing the concern for sincere stability.
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This paper addresses Gusfield and Irving’s general question of achieving a sincerely

stable marriage when individuals submit private preference data strategically. We identify

what we believe to have been the primary obstacle to stability and propose a natural means

of overcoming it.

To examine this problem, we consider the Strategic Stable Marriage (SSM) game. Each

individual x has private information πx which describes x’s preferences for members of

the opposite gender. The set of all private information is the profile Π. Each individuals

submits a putative preference list π̄x to a publicly known stable marriage algorithm r. The

mechanism r then selects the marriage r(Π̄) that is stable with respect to Π̄. The outcome

for x is the individual who is married to x in r(Π̄) and is evaluated by x according x’s

sincere preferences πx.

Our first result (Theorem 6.3.4), is that regardless of r, the set of pure strategy Nash

equilibrium outcomes of SSM is the set of all individually rational marriages (with respect

to the sincere preferences). This is discouraging because no matter how one designs the

public mechanism r, there will be Nash equilibria with poor outcomes. For example, let

M	 be a minimax stable marriage for Π, meaning that the highest ranked partner anyone

gets has the lowest rank possible. M	 is a worst possible stable marriage in the sense that it

makes the happiest person as unhappy as possible. Yet, for every r, there is a pure strategy

Nash equilibrium with outcome M	.

But that is not the worst implication of the result. The worst thing is that M may not

be stable with respect to the sincere preferences. The only marriages not attainable by pure

Nash equilibria are those that are egregiously unstable by assigning to at least one person

an individual whom they are unwilling to marry. Therefore, all of the unstable marriages,

as long as they are rational, are outcomes of pure Nash equilibria of SSM, no matter what

the stable marriage mechanism r. We believe that this has been the principal obstacle

to progress on the general question of strategic stable marriage. From a normative point

of view, this obstacle is deleterious because there is no mechanism r that guarantees a
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stable marriage when players are strategic about their private preference information. It

is also unfortunate from a empirical point of view, for it inhibits predictive power. The

equilibria include bizarre ones wherein people omit all but their least favored partner from

their submitted preference list, and thereby get a poor outcome. To accommodate for the

bizarre equilibria we once again apply the minimal dishonest refinement from Section 2.3

to SSM.

We also require that r, when cast as maximizing a societal value f , satisfy two rational-

ity criteria, f must be monotonic and independent of non-spouses (INS). Monotonicity in

this context means that the societal value of a marriage M does not decrease if an individ-

ual increases their preference for the spouse M assigns to them. INS in this context means

that the societal value does not change if an individual exchanges two non-spouses in their

preference list.

With these conditions, we show that stability is assured. Specifically, we show (The-

orem 6.3.14) that if r is monotonic and INS representable, then for every minimally dis-

honest equilibrium Π̄, the marriage r(Π̄) is stable with respect to the sincere preferences

Π.

To clarify the definition of a monotonic INS representable decision mechanism, it is

only necessary that r has a representation that is monotonic and INS. The mechanism r

must behave as if society has a value for all marriages and r chooses a stable marriage

with maximum value. For example, in the case of the Gale-Shapley algorithm, there is no a

priori defined societal value. However, the Gale-Shapley algorithm always selects the man-

optimal marriage and there exists a function that the man-optimal marriage uniquely opti-

mizes among the set of stable marriages [31]. Furthermore, this function is monotonic and

INS and therefore the Gale-Shapley algorithm is a monotonic INS representable stable mar-

riage mechanism. With the exception of the sex-equal decision mechanism that minimizes

the absolute difference between the utility of men and women, we provide a monotonic INS

representation for every stable marriage mechanism (Theorem 6.3.13) we have found to be
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commonly referenced in the literature [31, 36]. These include the Gale-Shapley algorithm,

egalitarian stable marriage mechanisms, minimum regret stable marriage mechanisms and

decision mechanisms that maximize the minimum of men and women’s utilities.

We believe that Theorem 6.3.14 has the potential for significant impact on applications

of stable marriage. As mechanism designers, we no longer need to be limited to only the

man-optimal or woman-optimal marriage if we desire a sincerely stable outcome. Instead

we now have a wide array of algorithms to choose from, algorithms that are not completely

biased against either the women or the men. It is true that the man-optimal algorithm has

the additional property that men will tend to reveal their sincere preferences. However, the

goal of mechanism design should be a good societal outcome, rather than the elicitation of

honesty. If the latter were the goal, mechanism design would be solved by the revelation

principle.

In addition to raising the general issue of strategic submission of private information in

Stable Marriage Problems, Gusfield and Irving [31] ask specifically for an algorithm that

always selects a sincere egalitarian stable marriage even when individuals behave strategi-

cally. Here we prove a negative result: there is no monotonic INS representable r such that

there is always a minimally dishonest equilibrium of SSM and where for every minimally

dishonest equilibrium Π̄ the marriage r(Π̄) is an egalitarian stable marriage with respect to

the sincere preferences (Theorem 6.3.15).

This means that in SSM, no r with these rationality criteria is guaranteed to always get

an egalitarian stable marriage from a minimally dishonest equilibrium. Theorem 6.3.15

doesn’t mean that no algorithm r ever yields a sincere egalitarian stable marriage. Indeed,

we prove that there are mechanisms r for which the egalitarian marriage does come from

a minimally dishonest equilibrium. But there may be other minimally dishonest equilibria

that yield different marriages.
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6.1.1 The Gale-Shapley Algorithm and Never-One-Sided Mechanisms

Next, we take a closer examination of the Gale-Shapley algorithm. When Gale and So-

tomayor first showed that when men are honest any stable marriage can be obtained, they

also considered the set of strong equilibrium points [26]. Strong equilibrium points are

obtained from a refinement on the set of equilibria – in addition to no individual being able

to alter their preferences to get a better outcome, there also cannot be a coalition that can

collude to strictly improve the outcome for every coalition member.

Gale and Sotomayor show that the woman-optimal marriage is the outcome of a strong

equilibrium when using the Gale-Shapley algorithm [26]. Given that honesty is a best re-

sponse for men, and that when men are honest, the women can always work together to

obtain the woman-optimal marriage, one could hope that all strong equilibria yield the

woman-optimal marriage. However, Gale and Sotomayor prove an additional result which

they remark is “unfortunate”: the woman-optimal marriage is not the only marriage ob-

tained from the set of strong equilibria.

Minimal dishonesty provides the perverse, yet satisfying result that Gale and Sotomayor

desired. When both men and women are minimally dishonest, the Gale-Shapley algorithm

produces the woman-optimal sincerely stable marriage at all equilibria (Theorem 6.4.2).

Moreover, we show there is always a minimally dishonest equilibrium.

We also consider mechanisms that are fairer than the biased Gale-Shapley algorithm.

A stable marriage mechanism r is never-one-sided if, when given a preference profile Π

with at least two stable marriages, there is positive probability of avoiding the man-optimal

marriage and positive probability of avoiding the woman-optimal marriage.

Let r be an arbitrary monotonic, INS and never-one-sided representable stable marriage

algorithm. Let M be a marriage and let Π be a sincere preference profile. We show that

M is sincerely stable if and only if there exists a minimally dishonest equilibrium Π̄ in the

strategic stable marriage game where r(Π̄) = M (Theorem 6.4.4).
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6.1.2 Extensions to Student Placement and College Admissions

We consider extending our results to both the Admissions Problem and the Student Place-

ment Problem.

The College Admissions Problem is a polyandrous generalization of the Stable Marriage

Problem. Each man may be married to at most one woman, but each woman w may be

married to any number of men up to her quota qw. It is traditional to refer to the men as

students and the women as colleges. Both have preferences over the other set and stability

is still a necessary condition. The most famous application of the Admissions Problem is

the Nobel Prize winning National Resident Matching Program (NRMP) [59] which assigns

residents to hospitals.

The Student Placement Problem is a variant of the Admissions Problem where the

colleges’ preferences are publicly known, or, equivalently, colleges must be honest. Ap-

plications of the Student Placement Problem include assigning students to universities in

Turkey [6], and to primary schools in New York [1], and Boston [2]. If players are honest,

both the admissions and Student Placement Problems can readily be transformed into Sta-

ble Marriage Problems by making multiple copies of the colleges. The question at hand is

whether sincerely stable marriages can be obtained if players are strategic.

We prove that Theorem 6.3.14 also holds for student placement. As long as a monotonic

INS representable stable marriage mechanism is used, the outcome will be a sincerely

stable marriage. In addition, the result still holds even if some of the students commit

to telling the truth even when they could act strategically to get a better outcome. As a

consequence, we urge the community to consider mechanisms besides the Gale-Shapley

algorithm for assigning students to schools. At the very least, the desire for a sincerely

stable marriage should not be the sole reason for selecting the Gale-Shapley algorithm.

Rather, we should seek to obtain a sincerely stable marriage that optimizes societal utility

in some sense.

Roth has long claimed that the Admissions Problem is not equivalent to the Stable
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Marriage Problem [60]. He proves that, unlike in the Stable Marriage Problem, a sin-

gle college may be able to alter its preferences to obtain a marriage that it prefers over

the college-optimal marriage. Hence, when students and colleges are strategic, the Gale-

Shapley algorithm may yield an equilibrium marriage that is not sincerely stable. We prove

a considerably more general statement: When students and colleges are strategic, no stable

marriage algorithm always yields an equilibrium marriage that is sincerely stable, with

or without minimal dishonesty refinement. This result strongly confirms Roth’s distinction

between college admissions and the other Stable Marriage Problems.

6.1.3 Other Extensions

Finally, we describe some other extensions which generalize results or weaken assump-

tions. All of the results hold if there are unequal numbers of men and women. The minimal

dishonesty refinement can be replaced by a weaker “locally minimal dishonesty” refine-

ment without affecting the results. Individuals are minimally dishonest if every change

to their putative preferences that increases honesty decreases utility. Individuals are lo-

cally minimally dishonest if every small change to their putative preferences that increases

honesty decreases utility.

The results also extend to strategic stable marriage games that permit collusion. Per-

mitting collusion is equivalent to the strong equilibrium refinement discussed in Section

6.1.1. We show that every minimally dishonest equilibrium is also a strong equilibrium.

Thus, minimal dishonesty is sufficient to guarantee that a coalition cannot manipulate the

outcome of an equilibrium.

6.1.4 Related Literature

The Stable Marriage Problem was originally examined by Gale and Shapley [25]. They

proved the existence of stable marriages via the Gale-Shapley algorithm that completes

in O(n2). The Stable Marriage Problem has since received much attention and has been
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applied to a variety of areas including the Nobel Prize winning work by Roth and Shapley

on the theory of stable allocations and the practice of market design including the design

of the National Resident Matching Program (NRMP) [51]. Other applications include:

Canadian Resident Matching Service (CVaRMS) [17],

Japan Residency Matching Program (JRMP) [37],

US Navy has a web-based multi-agent system for assigning sailors to ships [41],

Design of the kidney exchange market [3],

Assigning stundents to universities in Turkey [6],

Assigning students to primary schools in New York [1] and Boston [2].

Types of Stable Marriages

The Gale-Shapley algorithm [25] proves the existence of a stable marriage by finding the

man-optimal stable marriage – the stable marriage that is simultaneously best for all men

[25]. Roth later shows that the man-optimal stable marriage is also woman-pessimal [58] –

the man-optimal marriage is the stable marriage that is simultaneously worst for all women.

This suggests that there may be more than one stable marriage. This is true and Knuth

[39] motivates a study on the number of stable marriages. Irving and Leather [34] show

that if there are n men and n women where n = 2k then there is an instance with at least

2.28n/(1 +
√

3) stable marriages. Although the number of stable marriages can therefore

be exponential, Pittel proves that the expected number of stable marriages is asymptotic to

e−1n lnn [55]. No non-trivial upper bounds are known.

With so many stable marriages, it is natural that we would look for a “best stable mar-

riage”. A natural partial ordering on the set of stable marriages has M ≥ M ′ if every man

likes his M -partner at least as much as his M ′-partner. Knuth proves that this partial order-

ing induces a distributive lattice [39]. Furthermore, Knuth shows that the lattice remains
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intact if ≥ is replaced with ≤ and if man is replaced with woman. Thus for two stable

marriages M and M ′ if there is man who prefers M then there is a woman who prefers M ′

and there may be no universally agreed-upon “best” stable marriage.

Several types of stable marriages are often considered in the literature. Most mech-

anisms depend on the ordinal preferences π̄y for each individual y. However, there are

mechanisms that depend on a cardinal cost cy(z) individual y assigns to being married to

individual z. Specific types of stable marriages are often defined as optimizers of an ob-

jective. Letting σ(X, x) = i if x is in the ith position in X , we give five common examples

below.

Man-Optimal min
∑
{m,w}∈M σ(π̄m, w)

Minimum Regret min max{m,w}∈M{max{σ(π̄m, w), σ(π̄w,m)}}

Egalitarian min
∑
{m,w}∈M(σ(π̄m, w) +

∑
{m,w}∈M σ(π̄m, w))

Optimal Marriage min
∑
{m,w}∈M(cm(w) + cw(m))

Sex-Equal min |
∑
{m,w}∈M σ(π̄m, w)−

∑
{m,w}∈M σ(π̄m, w)|

The man-optimal marriage minimizes the sum of the men’s costs and is found by the

Gale-Shapley algorithm in O(n2) time. A minimum regret stable marriage maximizes

the happiness of the least happy individual. Gusfield shows that a minimum regret stable

marriage can also be found in O(n2) time [30]. An egalitarian stable marriage places

equal weight on every individual and minimizes the sum of everyone’s cost. The optimal

marriage is a stable marriage that minimizes the sum of all individual costs, where the

costs are specified by the individuals’ cardinal preferences. Irving, Leather and Gusfield

give a polyhedral description of the set of stable marriages [35] that allows for a O(n4)

(O(n4 lnn)) algorithm to find an egalitarian (optimal respectively) stable marriage. A sex-

equal marriage is a stable marriage that minimizes the absolute difference between the

cost for the men and the cost for the women. Gusfield and Irving proposed the problem

of finding a polynomial time algorithm to give a sex-equal marriage as the 6th of 12 open

problems for the Stable Marriage Problem in [31]. This problem has been resolved by Kato
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who proved that finding a sex-equal stable marriage is NP-hard [38].

Strategic Behavior in the Stable Marriage Game

Much of the literature related to the Stable Marriage Problems deals with the many-to-

one marriages seen in the college admissions and Student Placement Problems. In these

problems each woman w is allowed to marry up to qw men. All decision mechanisms

that select a stable marriage for the college Admissions Problem can be simulated by a

one-to-one stable marriage mechanism after creating qw copies of each woman. Thus it

is unsurprising that many properties for the Stable Marriage Problem also apply to the

many-to-one marriage problems [31]. For instance, Gale and Sotomayor show that if an

individual is unmarried in one stable marriage then that individual is unmarried in every

stable marriage [26]. This results translates to the many-to-one settings and guarantees that

every college will be assigned the same number of applicants in every stable marriage [61].

While the college Admissions Problem can be simulated via the Stable Marriage Problem,

the two are vastly different once we consider manipulation.

Regarding the Stable Marriage Problem, Roth shows that every stable marriage mech-

anism is manipulable [57]. Men have no incentive to lie if the decision mechanism always

selects the man-optimal marriage [20] (Gale-Shapley algorithm). In addition, if the men

are honest, the algorithm will select a sincerely stable marriage [26]. Furthermore, the

women can collectively manipulate their preferences to obtain the woman-optimal (or any

other stable) marriage. However, in general this is not the only equilibrium even if we

only examine “strong” equilibria (where no coalition can collectively strategize to strictly

improve the outcome for each coalition member) [IBID].

Roth’s result showing that every stable marriage mechanism is manipulable also applies

to the college Admissions Problem. However, it does not apply to to the Student Placement

Problem. In the Student Placement Problem, women by definition are always honest. Since

it is in the best interest of men to be honest when running the Gale-Shapley algorithm, there
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exists an incentive compatible mechanism.

For the Stable Marriage Problem, it is known that no subset of men can manipulate their

preferences to obtain a result they all strictly prefer to the man-optimal marriage [31]. Once

again, this result also applies to the Student Placement Problem. However, Roth showed

that the result does not hold for the college Admissions Problem – a single college may

be able to alter its preferences to obtain a marriage that it strictly prefers to the college-

optimal marriage [60]. This raises the disquieting possibility that the results from [26] may

not apply to the college Admissions Problem and that the decision mechanism may select

a marriage that is sincerely unstable at an equilibrium even when we use the Gale-Shapley

algorithm.

Other literature considers manipulation in a different way. In the computational social

choice literature, strategic behavior is analyzed for its computational complexity, the worst-

case amount of computational effort needed to find a beneficial manipulation [9]. Teo

proves that the Gale-Shapley algorithm is computationally easy to manipulate [67]. Pini

proves that certain other mechanisms are NP-hard to manipulate [54]. However, with the

exception of the Gale-Shapley algorithm, it is not known what type of marriage is obtained

at an equilibrium, or even if the marriage will be sincerely stable.

6.2 The Model

We redefine the Game of Deception and minimal dishonesty from Chapter 2 as they pertain

to the Stable Marriage Problem.

Definition 6.2.1. An instance of the Stable Marriage Problem consists of

• Sets V = {m1,m2, ...mn} and W = {w1, w2, ...wn} of “men” and “women”, re-

spectively.

• For each m ∈ V , a total ordering πm on a subset of W , representing man m’s strict

preferences on the subset of women he is willing to be married to; symmetrically, for
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each w ∈ W , a preference list πw.

For all y ∈ V ∪W , if α precedes β in πy, we write α �πy β to indicate that y prefers α

to β. Following tradition, we use u to represent “unmarried” and we extend πy to a partial

order on W ∪ {u} or V ∪ {u} as follows:

• α �πy u for all α whom y is willing to marry;

• u �πy z for all z of the other gender whom y is not willing to marry;

• Enforce transitivity of preferences;

• Denote by Π the collection of πy over all y ∈ V ∪ W . π is called the preference

profile.

Definition 6.2.2. A marriage is a partial injection M ⊂ V ×W . That is, M is a set of

disjoint pairs {m,w} ∈ V ×W . If {m,w} ∈ M , we say M weds m to w, or equivalently

M weds w to m, and we define the M -partner of w to be sM(w) = m and the M -partner

of m to be sM(m) = w. If for y ∈ V ∪W there is no z ∈ V ∪W such that {y, z} ∈M or

{z, y} ∈ M , then we say y is unmatched or unmarried and we define the M -partner of y

to be sM(y) = u.

Definition 6.2.3. A marriage M is individually rational with respect to Π if sM(y) �πy u

for every individual y.

Definition 6.2.4. A pair {m,w} is a blocking pair forM with respect to π̄ ifw �πm sM(m)

and m �πw sM(w).

Definition 6.2.5. The marriage M is stable with respect to Π if M is rational and has no

blocking pairs according to Π.

Stability is a necessary condition for any solution [39, 31, 45]. If either condition does

not hold, the marriage is unstable. If the marriage is not rational, some y prefers being
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unmarried over their M -partner and would leave sM(y) to be unmarried. If there is a

blocking pair {m,w}, then both m and w prefer each other to their respective M -partners

and would leave their M -partners to be together.

A stable marriage mechanism takes a preference profile Π, selects a stable marriage M

and assigns each individual their M -partner. The process for selecting M is not necessarily

deterministic. Let S be the set of all marriages (not necessarily stable) between V and W .

Let P be the set of all possible preference profiles for V and W . Every stable marriage

mechanism that selects a stable marriage based on Π can be characterized by

M.1 A discrete sample space Ω comprising a finite set of atoms ω ∈ Ω;

M.2 A probability measure µ on Ω where µ(ω) > 0 for all atoms ω ∈ Ω,

M.3 A function f : S × P× Ω→ R,

where the stable marriage mechanism selects ω ∈ Ω according to µ and then selects a

marriage stable with respect to Π that maximizes f(M,Π, ω). All tie-breaking can be

incorporated into f , Ω and µ. Thus, without loss of generality, we require

M.4 | argmaxM∈S{f(M,Π, ω) : M is stable}| = 1 ∀ω ∈ Ω.

Let r(Π) be the set of marriages that have positive probability of being selected when using

the stable marriage mechanism r = {f,Ω, µ}. That is,

r(Π) =
⋃
ω∈Ω:

{
argmax
M∈S

{f(M,Π, ω) : M is stable}
}
. (6.1)

As defined, r is not necessarily deterministic and |r(Π)|may be greater than one. Corol-

lary 6.3.3 establishes that |r(Π̄)| = 1 at every equilibrium. After completing the proof of

Corollary 6.3.3, we treat r(Π̄) as a singleton if Π̄ is an equilibrium.

The two most commonly studied types of stable marriages are the man-optimal and

woman-optimal stable marriages, and egalitarian stable marriages. Without loss of gen-
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erality, by gender symmetry the Gale-Shapley algorithm always selects the man-optimal

marriage with respect to the submitted preference profile.

Example 6.2.6. r1 = {f1,Ω, µ} that selects the man-optimal marriage (Gale-Shapley al-

gorithm).

Define

σ(X,x) = i if x is in the ith position in X. (6.2)

The man-optimal marriage with respect to Π is the stable marriage that maximizes f1(M,Π, ω) =

−
∑
{m,w}∈M σ(πm, w) for all ω ∈ Ω [57]. The man-optimal marriage is known to be unique

and the decision mechanism r1 = {f1,Ω, µ} selects the man-optimal marriage regardless of the

selection of Ω and µ. It is also known [25] that in the man-optimal marriage, each man weds his

most-preferred woman among all women he weds in the set of all stable marriages.

Example 6.2.7. r2 = {f2,Ω, µ} that selects a egalitarian marriage uniformly at random.

Define σ(X,x) as in Equation 6.2. An egalitarian marriage with respect to Π is a stable mar-

riage that maximizes g(M,Π) = −
∑
{m,w}∈M

(
σ(π̄m, w)+σ(π̄w,m)

)
[31]. Let Ω be the set of all

permutations of all possible marriages, let f2(M,Π, ω) ≡ g(M,Π)+ σ(ω,M)
|ω|+1 and let µ(ω) = µ(ω′)

for all ω, ω′ ∈ Ω. We claim that r2 = {f2,Ω, µ} selects an egalitarian marriage uniformly at

random.

Since σ(ω,M)
|ω|+1 < 1, M maximizes f2(M,Π, ω) only if M also maximizes g(M,Π). Hence r(Π)

is a subset of the set of egalitarian marriages. Since σ(ω,M) takes a unique value for each M , r2

always selects a unique marriage given ω ∈ Ω and r2 is well-defined.

Let p(M) be the probability that the marriage M is selected by r andM be the set of all stable

marriages. By symmetry, p(M) = p(M ′) for all M,M ′ ∈ M. Therefore r2 = {f2,Ω, µ} selects

an egalitarian marriage uniformly at random.

Individuals may act strategically and submit insincere preferences to r. We examine

the Strategic Stable Marriage game to analyze the effect of strategic behavior.
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Strategic Stable Marriage Game (SSM)

• Each individual i has information πi ∈ Pi describing their preferences. The collec-

tion of all information is the (sincere) profile Π.

• To play the game, individual i submits putative preference data π̄i ∈ Pi. The collec-

tion of all submitted data is denoted Π̄.

• It is common knowledge that a central decision mechanism will select the marriage

r(Π̄, ω) that is stable with respect to Π̄ when given the random event ω.

• The random event ω ∈ Ω is selected according to µ. We denote r(Π̄) as the distribu-

tion of outcomes according to Ω and µ.

• Individual i evaluates r(Π̄, ω) according to i’s partner in the marriage r(Π̄, ω) and i’s

sincere preferences πi.

Definition 6.2.8. A marriage M is a sincerely (putatively) stable marriage is if it is stable

with respect to Π (Π̄ respectively).

Example 6.2.9. Honesty can fail to be an equilibrium strategy in SSM

Let there be two men, m1,m2 and two women w1, w2. Let the sincere preferences π be

πm1 = w1 �πm1
w2 πw1 = m2 �πw1

m1 (6.3)

πm2 = w2 �πm2
w1 πw2 = m1 �πw2

m2 (6.4)

There are two sincerely stable marriages given by M1 = {{m1, w1}, {m2, w2}} and M2 =

{{m1, w2}, {m2, w1}}. The Gale-Shapley algorithm would yield M1, which is the man-optimal

marriage in the sense that each man is married to his most-preferred woman among all those to
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whom he could be married to in some stable marriage. Were Gale-Shapley run with the roles of

women and men reversed, it would yield M2, which is the woman-optimal marriage. In this small

example there are no other stable marriages.

Suppose M1 ∈ r(Π). If all players are truthful (if Π̄ = Π) then there is positive probability

of selecting M1. However, Π̄ = Π would not be a Nash equilibrium in the game SSM, because w1

can improve her outcome by altering her putative preference data to π̄w1 = m2. The only stable

marriage with respect to the altered preference data would be M2. The other marriages would not

be stable by the following reasoning: M1 is not rational because w1 prefers u to m1; {{m1, w2}}

is not stable because m2 and w1 both prefer each other to u; {{m2, w2}} is unstable because

{m1, w2} is a blocking pair. Therefore r will select M2, an outcome that w1 prefers to M1. A

symmetric argument proves that if r(Π) = M2 the SSM game is not at equilibrium at Π̄ = Π.

Therefore no algorithm r makes SSM an incentive-compatible game.

We continue Example 6.2.9 by exhibiting a Nash equilibrium to this instance of SSM.

Example 6.2.10. An equilibrium strategy π̄ in an instance of SSM

For the SSM game defined in Example 6.2.9, consider the strategically submitted putative pref-

erences π̄:

π̄m1 = w1 π̄w1 = m2 �π̄w1
m1 (6.5)

π̄m2 = w2 π̄w2 = m1 �π̄w2
m2 (6.6)

The only stable marriage with respect to π̄ is M1, which weds each man to his sincerely most-

preferred woman. Therefore neither man can improve his outcome by submitting different preference

data. If w1 alters π̄w1 to m1 or m1 �π̄w1
m2, M1 continues to be the only putative stable marriage.

Any algorithm r must select M1 and so w1 receives the same outcome. If w1 were to alter π̄w1 to

m2 or the empty list ∅, the only stable marriage would be {{m2, w2}}, which is a worse sincere

outcome for w1. By symmetry, w2 cannot alter π̄w2 to get a better outcome for herself. Hence Π̄ is

an equilibrium set of strategies for this instance of SSM.
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6.3 Equilibria of the Strategic Stable Marriage Game

We begin by examining pure strategy equilibria of SSM. Given that it is well known that

there is no strategy-proof stable marriage mechanism, it is unsurprising that there are equi-

libria with sincerely unstable outcomes.

Example 6.3.1. Strategic behavior can lead to unstable outcomes.

For three men a, b, c and three women w, x, y let the true preferences be given by Π and the

putative preferences be be given by Π̄ below.

πm1 = w1 �πm1
w2 �πm1

w3 πw1 = m3 �πw1
m1 �πw1

m2 (6.7)

πm2 = w2 �πm2
w3 πw2 = m2 �πw2

m3 �πw2
m1 (6.8)

πm3 = w3 �πm3
w1 �πm3

w2 πw3 = m1 �πw3
m3 �πw3

m2 (6.9)

π̄m1 = w1 �π̄m1
w2 π̄w1 = m3 (6.10)

π̄m2 = w3 π̄w2 = m1 (6.11)

π̄m3 = w1 π̄w3 = m2 (6.12)

The stable marriages with respect to Π are the man-optimalM1 = {{m1, w1}, {m2, w2}, {m3, w3}}

and woman-optimal M2 = {{m1, w3}, {m2, w2}, {m3, w1}}. The only stable marriage with re-

spect to Π̄ is M = {{m1, w2}, {m2, w3}, {m3, w1}}. Hence, regardless of r, r will choose M even

though {{m1, w1}, {m2, w2}, {m3, w3}} dominates it with respect to Π.

Moreover, Π̄ is a Nash equilibrium in SSM. No man can improve his outcome because he is now

married to the only woman willing to marry him, and he prefers her to being unmarried. Similarly,

neither w2 nor w3 can improve her outcome. Woman w1 cannot improve her outcome because she

is now married to her (sincerely) most-preferred man.

We show that at every equilibrium a marriage will be selected deterministically regard-

less of which stable marriage mechanism is used. We build on this determinism to prove
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that a marriage M is the outcome of an SSM equilibrium iff M is rational with respect to

the sincere preferences.

Lemma 6.3.2. Let r and Π be arbitrary. Suppose Π̄ is an equilibrium of the Strategic

Stable Marriage game (SSM). Then there cannot exist a marriage M ∈ r(Π̄), another

putatively stable marriage M ′ (i.e. M ′ is stable with respect to π̄), and an individual y ∈

V ∪W who prefers their M ′-partner to their M -partner, i.e., such that sM ′(y) �πy sM(y).

Furthermore, for all M ∈ r(Π̄), M is individually rational with respect to Π.

Proof. We prove the first statement by contradiction. Assume such Π̄, M ∈ r(Π̄), M ′ and

y exist. Without loss of generality make the maximality assumption that M ′ is such that

sM ′(y) is y’s most preferred partner among all putatively stable marriages.

As in previous chapters, let [Π̄−y, π̄
′
y] denote the profile obtained after replacing π̄y with

π̄′y in the profile Π̄.

Suppose y were to strategically submit π̄′y consisting only of sM ′(y). The marriage M ′

would be stable with respect to [Π̄−y, π̄
′
y] since deleting elements from a preference list

cannot create a new blocking pair. By the Rural Hospitals Theorem [61] (Lemma 6.6.1),

y is married in every marriage that is stable with respect to [Π̄−y, π̄
′
y]. Moreover, in each

of these marriages y weds sM ′(y) because, according to π̄′y, y is not willing to wed anyone

else. If instead y submits π̄y, M ∈ r(Π̄) and property M.2 imply that y weds the less

preferred sM(y) with strictly positive probability. By the maximality assumption, r(Π̄)

never weds y to someone y prefers to sM ′(y). Therefore, y strictly prefers to submit π̄′y

than to submit π̄y, contradicting Π̄ being a Nash equilibrium.

To prove the second statement, suppose that M ∈ r(Π̄) is not individually rational with

respect to Π. Then for some individual y, M weds y to someone y is sincerely unwilling

to marry. That is, u �πy sM(y). The first part of the lemma implies that for all M ′ ∈ r(Π̄),

u �πy sM ′(y). In words, r always weds y to someone y is sincerely unwilling to marry.

Therefore, y can get the strictly better outcome u by submitting an empty preference list,

contradicting Π̄ being a Nash equilibrium.
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Corollary 6.3.3. For every stable marriage mechanism r and every equilibrium Π̄ of the

SSM game, the putatively stable marriage is deterministically selected.

Proof. Suppose to the contrary there areM,M ′ ∈ r(Π̄) and an individual y where sM(y) 6=

sM ′(y). By the second part of Lemma 6.3.2, M and M ′ are individually rational. Since

preferences are strict, sM(y) �πy sM ′(y) or sM ′(y) �πy sM(y), a contradiction to the first

part of Lemma 6.3.2.

Theorem 6.3.4. For every instance of SSM, regardless of the stable marriage mechanism

r, there exists a pure strategy Nash equilibrium whose outcome is the marriage M if and

only if M is individually rational (with respect to the sincere preferences π).

Proof. Lemma 6.3.2 guarantees that every possible outcomeM of r is individually rational.

It remains to show existence. Let M be a rational marriage with respect to Π. For each

married individual y, let π̄y = sM(y); for each unmarried individual y let π̄y = ∅. M

is the only stable marriage with respect to π̄ and hence, regardless of r, r(Π̄) = M . If

sM(y) = u, the putative profile Π̄ indicates that no one is willing to wed y. Hence y cannot

improve by altering π̄y. If y is married in M , only sM(y) is putatively willing to marry y.

Hence y can only alter his/her preferences to become unmarried. By rationality this is not

an improvement for y. Hence Π̄ is an equilibrium.

6.3.1 Minimal Dishonesty

The proof of Theorem 6.3.4 can require individuals to lie in absurd ways to obtain results

that they least prefer. For instance, Theorem 6.3.4 implies that everyone reporting that

they would be prefer to be unmarried is a perfectly reasonable outcome regardless of the

sincere profile. This is unsatisfactory in a predictive sense - any rational marriage can

eventuate - and in a normative sense - as discussed in Section 2.3 individuals tend to lie

only if they benefit. To improve the theory, we refine the set of equilibria to those where

individuals are minimally dishonest. Empirical justification for this refinement was given
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in Section 2.3. Here we define a metric on the set of preference lists, and employ that

metric to formally define minimal dishonesty (Definition 6.3.7). With this refinement, we

will establish in Theorem 6.3.14 that every monotonic and INS stable marriage mechanism

yields a sincerely stable marriage when individuals behave strategically.

As stated in the introduction, Gusfield and Irving specifically ask for a mechanism

that selects an egalitarian stable marriage in the face of strategic behavior. We will give a

negative answer, proving in Theorem 6.3.15 that no monotonic INS stable marriage mech-

anism always selects a sincere egalitarian stable marriage when strategic individuals are

minimally dishonest.

According to minimal dishonesty, individuals prefer to be as little dishonest as possible

without worsening their outcome. To apply this concept, one needs a way to measure

dishonesty. Once again, we will use the Bubble Sort or Kendall Tau distance – the most

common way to evaluate the distance between two ordered lists.

Definition 6.3.5 (Bubble Sort or Kendall Tau Distance.). Let π1
m and π2

m be two prefer-

ence lists over the set W = {w1, w2, . . . , wn}. Let wn+1 ≡ u so that {W ∪ {u}} =

{w1, w2, . . . , wn+1}. For all wi, wj ∈ {W ∪ {u}} denote by R(πm, wi, wj) the relationship

between wi and wj with respect to πm. Then the distance between π1
m and π2

m is defined as

d(π1
m, π

2
m) ≡ |{i, j} : 1 ≤ i < j ≤ n+ 1;R(π1

m, w1, w2) 6= R(π2
m, w1, w2)}|. (6.13)

Example 6.3.6. Calculating the distance between two preference lists.

Consider the following preference lists πm and π̄m for the set of womenW = {w1, w2, w3, w4}:

πm = w1 �πm w2 �πm w3 π̄m = w4 �π̄m w2 (6.14)

With respect to the sincere preferences πm,m sincerely prefersw1 to all other partners and he is

willing to marryw1. However, in his submitted list π̄m, he indicates that he prefersw4 andw2 tow1,

he is indifferent between w1 and w3 and that he prefers being unmarried to w1. Thus for each z ∈
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{w2, w3, w4, u}, π̄m and πm describe different relationships between w1 and z and Rπ̄m(w1, z) 6=

Rπm(w1, z). Similarly π̄m and πm indicate different relationships for each of the following pairs:

{w2, w4}, {w3, w4}, {w3, u} and {w4, u}. Thus there are 8 distinct pairwise disparities between

π̄m and πm and d(π̄m, πm) = 8.

The formal definition of minimal dishonesty can now be stated succinctly in the notation

of Definition 6.3.5.

Definition 6.3.7. Let Π be the sincere preferences and let Π̄ be an equilibrium in the Strate-

gic Stable Marriage game. Individual y is minimally dishonest if d(π̄′y, πy) < d(π̄y, πy)

implies r(Π̄) = M �πy M ′ for some M ′ ∈ r([Π̄−y, π̄′y]).

If there is a π̄′y such that d(π̄′y, πy) < d(π̄y, πy) and y does not sincerely prefer r(Π̄) to

r([Π̄−y, π̄
′
y]), then y can obtain at least as good a result by submitting the more honest π̄′y.

If an individual is able to be more honest and obtain at least as good a result, we assume

the individual would do so since individuals prefer being honest. Thus we only examine

minimally dishonest equilibria – equilibria where every individual is minimally dishonest.

Example 6.3.8. Not every equilibrium is a minimally dishonest equilibrium.

Recall the sincere preferences Π and putative preferences Π̄ from Example 6.3.1.

πm1 = w1 �πm1
w2 �πm1

w3 πw1 = m3 �πw1
m1 �πw1

m2 (6.15)

πm2 = w2 �πm2
w3 πw2 = m2 �πw2

m3 �πw2
m1 (6.16)

πm3 = w3 �πm3
w1 �πm3

w2 πw3 = m1 �πw3
m3 �πw3

m2 (6.17)

π̄m1 = w1 �π̄m1
w2 π̄w1 = m3 (6.18)

π̄m2 = w3 π̄w2 = m1 (6.19)

π̄m3 = w1 π̄w3 = m2 (6.20)

When using the Gale-Shapley algorithm with the putative preferences Π̄, the marriage M =
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{{m1, w2}, {m2, w3}, {m3, w1}} is selected. Example 6.3.1 established that Π̄ is a Nash equi-

librium. We now show that Π̄ is a not minimally dishonest equilibrium, according to Definitions

6.3.5 and 6.3.7.

Consider the preference list π̄′m3
= w3 �π̄′m3

w2 �π̄′m3
w1. Since d(π̄m3 , πm3) = 4 (the

disparities are {w3, w1}, {w3, w2}, {w3, u}, {w2, u}) and d(π̄′m3
, πm3) = 1 ({w2, w3}), man m3

would be more honest if he submitted π̄′m3
. The marriageM is the only stable marriage with respect

to [π̄−m3 , π̄
′
m3

] and m3 obtains the same result if he is more honest. Thus Π̄ is not a minimally

dishonest equilibrium.

In Example 6.3.8 we could equally well have let m3 submit preference list π̄′′m3
=

w1 �π̄′′m3
w3, which also must result in the marriage M . This would disprove minimal

dishonesty because d(π̄′′m3
, πm3) = 3 < 4 = d(π̄m3 , πm3). One could argue that m3 would

more readily choose π̄′′m3
than π̄′m3

because the former differs from π̄m3 in a particularly

simple way, namely by changing the location of one woman. Later, in Section 6.5, we

define a weaker “local” version of minimal dishonesty, and show that our results extend to

it.

We continue Example 6.3.8 by providing all minimally dishonest equilibria.

Example 6.3.9. Minimally dishonest equilibria can yield a sincerely stable marriage.

In Examples 6.2.9 and 6.3.8, we have seen both a non-equilibrium solution and an equilibrium

solution that is not minimally dishonest. Let r be the Gale-Shapley algorithm. Let the sincere

preferences Π be as in Examples 6.3.1 and 6.3.8. By enumeration one can verify there are only two

minimally dishonest equilibria. In both equilibria the men are honest. The two women’s putative

preference profiles are:

π̄w1 = m3 �π̄w1
m1 �π̄w1

m2 (6.21)

π̄w2 = m2 �π̄w2
m3 �π̄w2

m1 (6.22)

π̄w3 = m1 �π̄w3
m2 (6.23)

and
π̄w1 = m3 �π̄w1

m2 (6.24)

π̄w2 = m2 �π̄w2
m3 �π̄w2

m1 (6.25)

π̄w3 = m1 �π̄w3
m3 �π̄w3

m2 (6.26)
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both of which yield the woman-optimal sincerely stable M2 = {{m1, w3}, {m2, w2}, {m3, w1}}.

We will later show in Theorem 6.4.2 that the woman-optimal outcome is not a coincidence.

In what follows we will frequently consider swapping the locations of two members of

a preference list. For convenience we employ the following notation:

δ(Π̄, y, {z−1, z1}) =


Π̄ after swapping z−1 and z1 in π̄y if z±1 �π̄y u

Π̄ after removing zi from π̄y if zi �π̄y u, z−i = u

Π̄ after adding zi to the end of π̄y if u �π̄y zi, z−i = u

(6.27)

We require two more formal definitions, one for monotonicity, the other for INS.

Definition 6.3.10. A function f is monotonic if for every Π̄ ∈ P, ω ∈ Ω, M ∈ S, and

{y, z} ∈M , then

f(δ(Π̄, y, {z, z1}),M, ω) ≥ f(Π̄,M, ω) if z1 �π̄y z. (6.28)

Monotonicity means that if an individual y indicates that if they prefer their M -partner

more than they previously indicated, the value of M should not decrease. Decision mech-

anisms are often used to maximize social welfare. Thus, it seems natural for the value of

a marriage to respond positively (or at least not negatively) when an individual alters their

preferences in this way.

Definition 6.3.11. A function f is independent of non-spouses (INS) if for every Π̄ ∈ P,

ω ∈ Ω, M ∈ S, and {y, z} ∈M , then

f(Π̄,M, ω) = f(δ(Π̄, y, {z1, z−1}),M, ω) if z 6= z±1 and z±1 �π̄y u, (6.29)

f(Π̄,M, ω) = f(δ(Π̄, y, {z1, u}),M, ω) if z 6= z1, u �π̄y z1. (6.30)
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INS here is an adaptation of the independence of irrelevant alternatives definition used

in voting [4]. Essentially, it states that the value of a marriage should depend only on

the spouses’ valuations of each other. To be precise, INS requires (1) if y exchanges the

positions of z1 and z−1 then the value of any marriage that weds y to z /∈ {z1, z−1} doesn’t

change, and (2) if y adds z1 onto the end of their preference list then the value of any

marriage that does not wed y to z 6= z1 remains unchanged. Although changing the position

of z1 and z−1 does not change the value of a marriage, it may alter the stability.

Definition 6.3.12. r = {f,Ω, µ} is a monotonic INS representable stable marriage mech-

anism if f is both monotonic and INS.

Theorem 6.3.13. Each of the following stable marriage selection criteria can be repre-

sented by a monotonic INS stable marriage mechanism:

1. Man-Optimal

2. Egalitarian

3. Maximize the minimum individual utility

4. Maximize the minimum of the women’s total utility and the men’s total utility

when using any of the following tie-breaking rules:

a. Uniformly at random

b. Lexicographically based on a predetermined list L of marriages

c. Lexicographically giving the lowest indexed mi his most preferred partner available

Proof. The proof of Theorem 6.3.13 presents a monotonic INS function gi where the only

stable marriages that maximize gi are the stable marriages described by criterion i. Then

a sample space Ωj , a probability measure µj and a monotonic INS function tj are given
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that discriminate between marriages according to tie-breaking rule j. Finally, fij = gi + tj

is such that rij = {fij,Ωj, µj} selects a stable marriage satisfying criterion i according to

tie-breaking rule j.

Define σ(X, x) as in Equation 6.2. Let S(Π) be the set of marriages stable with respect

to Π. By definition [31], the marriages satisfying the above criteria are described by the

following sets respectively:

1. S1 = argmax
M∈S(Π)

g1(π,M) =
∑

{m,w}∈M

−σ(πm, w)


2. S2 = argmax

M∈S(Π)

g2(π,M) =
∑

{m,w}∈M

(
− σ(πm, w)− σ(πw,m)

)
3. S3 = argmax

M∈S(Π)

{
g3(π,M) = min

{m,w}∈M
min

{
− σ(πm, w),−σ(πw,m)

}}

4. S4 = argmax
M∈S(Π)

g4(π,M) = min

{ ∑
{m,w}∈M

−σ(πm, w),
∑

{m,w}∈M

−σ(πw,m)

}
We show that the tie-breaking rules are given by the following functions, sample spaces

and probability measures:

a. ta(M,Π, ω) =
σ(ω,M)

|ω|+ 1
where Ωa is the set of all permutations of S and µa(ω) =

µa(ω
′) for all ω, ω′ ∈ Ωa.

b. tb(M,Π, ω) =
|L| − σ(M,L)

|L|
where Ωb and µb are arbitrary.

c. tc(M,Π, ω) =
∑

{mi,w}∈M

|W | − σ(πmi
, w)

|W |i
where Ωc and µc are arbitrary.

For each selection criterion i ∈ {1, ..., 4}, we show gi(Π,M) is monotonic and INS. We

then show the function tj(Π,M, ω) is monotonic INS and discriminates between optimal

marriages according to tie-breaking rule j for each j ∈ {a, b, c} given Ωj and µj . Mono-

tonicity and INS are preserved through addition. Therefore fij(Π,M, ω) = gi(Π,M) +
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tj(Π,M, ω) is monotonic and INS. Thus the decision mechanism rij = {fij,Ωj, µj} se-

lects a stable marriage according to criterion i and tie-breaking rule j.

Each gi is monotonic and INS: Let f and g be two monotonic INS functions. First we

show that f + g and min{f, g} are also monotonic and INS. INS means that under certain

conditions, f and g will not change. Therefore, functions of f and g such as f + g and

min{f, g} will will not change under those conditions, and are also INS. Both summing

and taking the minimum are well known to be monotonic operators. Therefore both f + g

and min{f, g} are monotonic INS functions.

Next we show −σ(πm, w) and −σ(πw,m) are monotonic and INS for each {m,w} ∈

M . By symmetry, consider only −σ(πm, w). If m moves w up (or down) in πm then

−σ(πm, w) increases (respectively decreases) and therefore −σ(πm, w) is strictly mono-

tonic. The value of −σ(πm, w) depends only on w’s location and remains unchanged if m

swaps two other women, adds a woman onto the end of π̄m or if anyone else changes their

preferences. Therefore −σ(πm, w) is both monotonic and INS.

Each gi consists only of sums and minima of monotonic INS functions and therefore is

monotonic and INS.

Each tj is monotonic and INS: Both ta and tb are independent of Π and therefore are

monotonic and INS. Like each gi, tc is also monotonic and INS.

Each tj discriminates between optimal marriages according to tie-breaking rule j:

Since each gi is integer and 0 ≤ tj < 1, a marriage that maximizes fij = gi + tj also

maximizes gi. Therefore, the marriages that maximize fij for some ω ∈ Ωj are a subset of

S i. Furthermore, for every ω ∈ Ωj , tj(M,Π, ω) has a unique value for each M implying

fij has a unique optimizer and rij(Π) ⊆ S i is well defined. It remains to show that that the

probability of selectingM given criterion i and tie-breaking rule j is equal to the probability

of selecting M given rij .

In Example 6.2.7, we demonstrated that ta, Ωa and µa correctly discriminate between
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optimal marriages. Thus ria = {fia,Ωa, µa} is a monotonic INS representable decision

mechanism that selects a marriage according to criterion i while breaking ties uniformly at

random.

Breaking ties lexicographically by a predetermined list of marriages is a deterministic

tie-breaking rule. Given Π, let Mi be the marriage that is selected according to criterion

i and tie-breaking rule b. Let M ∈ rib(Π) ⊆ S i be any marriage selected with positive

probability by rib. Since Mi satisfies criterion i, Mi ∈ S i and gi(Mi,Π) = gi(M,Π).

Furthermore, since Mi is selected according to tie-breaking rule b, Mi appears no later

than M in L and σ(L,Mi) ≤ σ(L,M). These two inequalities imply fib(Mi,Π, ω) ≥

fib(M,Π, ω) for all ω. Since every M ′ ∈ rib(Π) maximizes fib for some ω, rib(Π) = Mi

as desired. Therefore rib is a monotonic INS decision mechanism that selects a marriage

according to criterion i while breaking ties lexicographically according to L.

Once again, breaking ties lexicographically by giving the lowest indexed mi his most

preferred partner available is a deterministic tie-breaking rule. Let Mi be the marriage

selected according to criterion i and tie-breaking rule c. As before, let M ∈ ric(π̄) ⊆ S i.

Once again, gi(Mi,Π) = gi(M,Π). Suppose M 6= Mi and let j be the lowest index such

that sM(mj) 6= sMi
(mj). Thus, for all k < j, mk has the same partner in M and Mi. Since

Mi is selected according to tie-breaking rule c, mj prefers his Mi-partner to his M -partner

according to Π implying that σ(πmj
, sMi

(mj)) ≤ σ(πmj
, sM(mj))− 1. This implies
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t3(M,Π, ω) =
∑

{mk,w}∈M

|W | − σ(πmk
, w)

|W |k
(6.31)

=
∑

{mk,w}∈M :
k<j

|W | − σ(πmk
, w)

|W |k
+
|W | − σ(πmj

, sM(mj))

|W |j
+

∑
{mk,w}∈M :

k>j

|W | − σ(πmk
, w)

|W |k

(6.32)

≤
∑

{mk,w}∈M :
k<j

|W | − σ(πmk
, w)

|W |k
+
|W | − σ(πmj

, sM(mj))

|W |j
+

1

|W |j
(6.33)

≤
∑

{mk,w}∈M :
k<j

|W | − σ(πmk
, w)

|W |k
+
|W | − σ(πmj

, sMi
(mj))

|W |j
(6.34)

=
∑

{mk,w}∈Mi:
k≤j

|W | − σ(πmk
, w)

|W |k
≤ t3(Mi,Π, ω) (6.35)

and fic(Mi,Π, ω) ≥ fic(M,Π, ω) for all ω. As in the previous instance, this implies

ric(Π) = Mi and ric is a monotonic INS representable decision mechanism that selects

a marriage according to criterion i while breaking lexicographically by giving the lowest

indexed mi his most preferred partner available.

We come now to our principal positive result.

Theorem 6.3.14. If r is monotonic and INS representable, then for every minimally dis-

honest equilibrium Π̄ of the strategic stable marriage game, the marriage r(Π̄) is stable

with respect to the sincere preferences Π.

Proof. The bulk of the proof is a sequence of nine lemmas that gradually reveal the nec-

essary structure of Π̄ at a minimally dishonest equilibrium. These are stated and proved

in 6.6.1. The early lemmas consider a marriage M that is stable with respect to a putative

profile Π̄, and identify changes to π̄y that retain the stability of M by not interfering with

the ranking of y’s M -partner. These lemmas depend mainly on the transitivity of prefer-

ences and do not invoke monotonicity or INS. In the succeeding lemmas, the main ideas
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are essentially as follows:

• If y is unmarried in a putatively stable M , y can only be helped by adding people y is

willing to marry to π̄y, and can not be hurt by removing unacceptable partners from

π̄y. Therefore more honesty does not harm y.

• If y is married inM , the Rural Hospitals Theorem [61] and retention of stability from

the early lemmas assure that y remains married when y makes certain alterations to

π̄y. If y has falsely purported to prefer x less than z, altering π̄y by swapping x and

z in π̄y keeps M stable, and by INS and monotonicity, the value of marriages that y

likes at least as much as M will not decrease while the value of all other marriages

will not increase and the mechanism still selects a marriage that y likes as least as

much as M .

• Similarly, monotonicity and INS permit y to elevate y’s M -partner to a more honest

rank without losing M ’s optimality.

• These arguments imply that Π̄ must be quite similar to Π at any minimally dishonest

equilibrium.

• Given that Π̄ is constrained to be similar to Π, Lemma 6.3.2 in turn constrains the

set of stable marriages – not just r(Π̄) – to be a singleton and have other useful

properties.

For readability, we state three critical lemmas here.

Lemma 6.6.4. If y is unmarried at a minimally dishonest equilibrium then π̄y = πy.

Lemma 6.6.8. At any minimally dishonest equilibrium for a monotonic INS representable

stable marriage mechanism, if y is married to the kth member of πy, then the first k elements

of π̄y are identical to and appear in the same order as the first k elements of πy.
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Lemma 6.6.9. For preference profiles Π and Π̄, and a marriage M that is stable with

respect to Π̄, if π̄y agrees with πy up to y’s M -partner, then M is stable with respect to Π.

Lemmas 6.6.4 and 6.6.8 show that Π̄ meets the conditions of Lemma 6.6.9. Therefore,

Π̄ yields a marriage that is stable with respect to Π, proving the theorem.

However, there is no monotonic INS representable stable marriage mechanism that

always selects an egalitarian stable marriage.

Theorem 6.3.15. There is no monotonic INS representable r such that there is always

a minimally dishonest equilibrium and where for every minimally dishonest equilibrium Π̄

the marriage r(Π̄) is an egalitarian stable marriage with respect to the sincere preferences.

Proof. Suppose by contradiction there is a monotonic INS representable mechanism r =

{f,Ω, µ} that always selects a sincere egalitarian stable marriage. The proof begins by

presenting a set of sincere preferences Π1 with stable marriagesM1,M2 andM3. To ensure

that a sincere egalitarian marriage is selected at an equilibrium, for j ∈ {1, 3} there must

exist a sample path ωj , where a non-egalitarian stable marriage Mj has a higher value than

the unique egalitarian stable marriage M2 when everyone is honest and Π1 is submitted.

We then analyze a second set of sincere preferences Π2, obtained by slightly modifying

Π1. The set of stable marriages remains unchanged but every marriage that was egalitarian

for Π1 (respectively Π2) is not egalitarian for Π2 (respectively Π1). By INS and monotonic-

ity, Mj still has a higher value than M2 for the sample path ωj if individuals are honest and

submit Π2. However, this allows the construction of a minimally dishonest equilibrium Π̄

for the sincere preferences Π2 where M2, a marriage that is not egalitarian with respect to

Π2, is selected. This implies there is no r that always selects a sincere egalitarian stable

marriage.

Consider the preference profile Π1. With respect to Π1 the set of stable marriages is
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given in Table 6.1. The unique egalitarian stable marriage is M2.

π1
m1

= w1 �π1
m1
w2 �π1

m1
w4 �π1

m1
w3 π1

w1
= m2 �π1

w1
m3 �π1

w1
m4 �π1

w1
m1 (6.36)

π1
m2

= w2 �π1
m2
w3 �π1

m2
w4 �π1

m2
w1 π1

w2
= m3 �π1

w2
m1 �π1

w2
m4 �π1

w2
m2 (6.37)

π1
m3

= w3 �π1
m3
w1 �π1

m3
w4 �π1

m3
w2 π1

w3
= m1 �π1

w3
m2 �π1

w3
m4 �π1

w3
m3 (6.38)

π1
m4

= w4 �π1
m4
w1 �π1

m4
w2 �π1

m4
w3 π1

w4
= m4 �π1

w4
m1 �π1

w4
m2 �π1

w4
m3 (6.39)

Marriage Spouses
M1 {m1, w1} {m2, w2} {m3, w3} {m4, w4}
M2 {m1, w2} {m2, w3} {m3, w1} {m4, w4}
M3 {m1, w3} {m2, w1} {m3, w2} {m4, w4}

Table 6.1: Set of Stable Marriages With Respect to Π1 and Π2.

Claim 1: For each j ∈ {1, 3} there is ωj ∈ Ω such that f(Mj,Π
1, ωj) > f(M2,Π

1, ωj).

By symmetry let j = 1. Suppose instead f(M1,Π
1, ω) ≤ f(M2,Π

1, ω) for all ω ∈

Ω. Suppose the sincere preferences are given by Π1 and that Π̄ is a minimally dishonest

equilibrium. Since r always selects a sincere egalitarian stable marriage, M2 is stable with

respect to Π̄. Furthermore by Corollary 6.6.7, M2 is the only stable marriage with respect

to Π̄. We now show that π1
wi

= π̄wi
for i ∈ {1, 2, 3} implying that M1 is also stable with

respect to Π̄, a contradiction to Lemma 6.3.2 since m1 prefers M1 to M2.

Subclaim 1: If Claim 1 does not hold, then m4 �π̄w u for each w ∈ {w1, w2, w3}.

Suppose there is w such that u �π̄w m4. By Lemma 6.6.8, π1
w and π̄w agree on the first

two elements. Womanw is more honest in the profile Π̄′ = δ(Π̄, w, {m4, u}). Furthermore,

by Lemma 6.6.3 M2 remains stable and all new marriages wed w to m4. However, by

Lemma 6.6.8. π1
j , π̄j and π̄′j agree on the first element for j ∈ {m4, w4} and m4 and

w4 must wed in every marriage. Therefore no new stable marriages are created when w

becomes more honest by adding m4 onto her preference list and w receives at least as

good an outcome after becoming more honest, a contradiction to minimal dishonesty. This

177



completes Subclaim 1.

Subclaim 2: If Claim 1 does not hold, then m4 is the third element of π̄w for each w ∈

{w1, w2, w3}.

Suppose without loss of generality this does not hold for w1. By Lemma 6.6.8, π1
w1

and

π̄w1 agree on the first two elements. By Subclaim 1, π̄w1 is then given bym2 �π̄w1
m3 �π̄w1

m1 �π̄w1
m4. Similar to the proof of Subclaim 1, w1 can be more honest by swapping m1

and m4 without obtaining a worse result. Once again this contradicts minimal dishonesty

and Subclaim 2 holds.

Subclaim 3: If Claim 1 does not hold, then π̄1
w = π̄′w for each w ∈ {w1, w2, w3}.

Once again, without loss of generality assume this subclaim does not hold for w1.

By Lemma 6.6.8 and Subclaims 1 and 2, π̄w1 is given by m2 �π̄w1
m3 �π̄w1

m4 and

woman w1 can only be more honest by adding m1 onto π̄w1 – by updating Π̄ to Π̄′ =

δ(Π̄, w1, {m1, u}). If adding m1 onto w1’s list creates no new stable marriages, then w1

violates minimal dishonesty. If adding m1 creates a new stable marriage, then by Lemma

6.6.3 the only new stable marriage is M1 and π1
w = π̄w for w ∈ {w2, w3}. Since f is INS,

f(Mi,Π
1, ω) = f(Mi, Π̄

′, ω) for i ∈ {1, 2}. Furthermore, since Claim 1 is assumed to be

false, f(M1, Π̄
′, ω) = f(M1,Π

1, ω) ≤ f(M2,Π
1, ω) = f(M2, Π̄

′, ω) for all ω ∈ Ω. Since

M1 andM2 are the only two stable marriage and since given any ω the mechanism r always

selects a unique marriage, f(M1, Π̄
′, ω) < f(M2, Π̄

′, ω) implying that M2 is still selected

if w1 is more honest, a contradiction to minimal dishonesty completing the proof of the

subclaim.

By Subclaims 1, 2 and 3, if Claim 1 is false then π̄1
wi

= π̄wi
for i ∈ {1, 2, 3} and M1

is stable with respect to Π̄, a contradiction to Lemma 6.3.2. Therefore, Claim 1 holds.

We have established the first part of the proof; for j ∈ {1, 3} there is some sample path

ωj , where a non-egalitarian stable marriage Mj must have a higher value than the unique

egalitarian stable marriage M2 if everyone honest and π1 is submitted.
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Now consider a second set of sincere preferences Π2 pbtained by moving w4 (m4) up

one position in m1, m2 and m3’s preference lists (w1, w2 and w3 respectively). Once again

the marriages M1,M2 and M3 in Table 6.1 are stable. However, unlike Π1, M1 and M3 are

the only egalitarian stable marriages.

π2
m1

= w1 �π2
m1
w4 �π2

m1
w2 �π2

m1
w3 π2

w1
= m2 �π2

w1
m4 �π2

w1
m3 �π2

w1
m1 (6.40)

π2
m2

= w2 �π2
m1
w4 �π2

m2
w3 �π2

m2
w1 π2

w2
= m3 �π2

w1
m4 �π2

w2
m1 �π2

w2
m2 (6.41)

π2
m3

= w3 �π2
m1
w4 �π2

m3
w1 �π2

m3
w2 π2

w3
= m1 �π2

w1
m4 �π2

w3
m2 �π2

w3
m3 (6.42)

π2
m4

= w4 �π2
m1
w1 �π2

m4
w2 �π2

m4
w3 π2

w4
= m4 �π2

w1
m1 �π2

w4
m2 �π2

w4
m3 (6.43)

Claim 2: For each j ∈ {1, 3} there is an ωj ∈ Ω such that f(Mj,Π
2, ωj) > f(M2,Π

2, ωj).

By symmetry, assume j = 1. Since f is monotonic and INS, f(M1,Π
2, ω) = f(M1,Π

1, ω)

and f(M2,Π
1, ω) ≥ f(M2,Π

2, ω). By Claim 1, there is an ω1 ∈ Ω such that f(M1,Π
1, ω1) >

f(M2,Π
1, ω1). Thus ω1 is such that f(M1,Π

2, ω1) = f(M1,Π
1, ω1) > f(M2,Π

1, ω1) ≥

f(M2,Π
2, ω1) and Claim 2 holds.

Given Claims 1 and 2, we can now construct a minimally dishonest equilibrium Π̄ with

respect to the sincere preferences Π2 where M2 is selected by r. This is a contradiction

since r always selects an egalitarian stable marriage and thus no such r can exist.

The preference Π̄ below has the unique stable marriage M2 and corresponds to a mini-

mally dishonest equilibrium with respect to the sincere profile Π2, a contradiction sinceM2

is not an egalitarian stable marriage with respect to Π2.

π̄m1 = w1 �π̄m1
w4 �π̄m1

w2 π̄w1 = m2 �π̄w1
m4 �π̄w1

m3 (6.44)

π̄m2 = w2 �π̄m2
w4 �π̄m2

w3 �π̄m2
w1 π̄w2 = m3 �π̄w2

m4 �π̄w2
m1 �π̄w2

m2 (6.45)

π̄m3 = w3 �π̄m3
w4 �π̄m3

w1 �π̄m3
w2 π̄w3 = m1 �π̄w3

m4 �π̄w3
m2 �π̄w3

m3 (6.46)

π̄m4 = w4 �π̄m4
w1 �π̄m4

w2 �π̄m4
w3 π̄w4 = m4 �π̄w4

m1 �π̄w4
m2 �π̄w4

m3 (6.47)
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With respect to Π̄,M2 is the only stable marriage and therefore is both man and woman-

optimal. By [20, Theorem 17] no man can alter his preferences to obtain a marriage he

prefers to his man-optimal partner. Since the sincere and putative preferences agree up to

each man’s partner in M2, no man can alter his putative preferences to obtain a marriage he

sincerely prefers. A symmetric argument holds for the women and Π̄ is an equilibrium.

It remains to show that everyone is minimally dishonest. Onlym1 and w1 are dishonest.

Examine m1. To be more honest, man m1 can only change Π̄ to Π̄′ = δ(Π̄,m1, {w3, u}).

However, this makes M3 stable. By Claim 2 and since f is a monotonic and INS, there is

an ω3 ∈ Ω such that f(M3, Π̄
′, ω3) = f(M3,Π

2, ω3) > f(M2,Π
2, ω3) = f(M2, Π̄

′, ω3).

Thus, the alteration would generate a worse solution for m1. A symmetric argument holds

for w1 with M1 and ω1. Hence m1 and w1 are both minimally dishonest. The minimally

dishonest equilibrium Π̄ has the unique stable marriage M2, a contradiction since M2 is not

an egalitarian stable marriage for Π2. This completes the proof of Theorem 6.3.15.

6.4 The Gale-Shapley Algorithm and Never-One-Sided Mechanisms

In Section 6.3.1, we examined pure strategy minimally dishonest Nash equilibria of the

SSM game. However, such an equilibrium may not exist. In this section, we first establish

that not every mechanism has a minimally dishonest equilibrium. We then characterize

the set of minimally dishonest equilibria for the Gale-Shapley algorithm and never-one-

sided mechanisms and show both types of mechanisms always have minimally dishonest

equilibria.

Proposition 6.4.1. If r in SSM uniformly randomly selects an egalitarian stable marriage,

then it is possible that no minimally dishonest equilibrium exists.

Proof. In Theorem 6.3.13, r was shown to be monotonic and INS representable. Consider
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the set of sincere preferences Π.

πm1 = w1 �πm1
w2 �πm1

w3 πw1 = m3 �πw1
m1 �πw1

m2 (6.48)

πm2 = w2 �πm2
w3 �πm2

w1 πw2 = m1 �πw2
m2 �πw2

m3 (6.49)

πm3 = w3 �πm3
w1 �πm3

w2 πw3 = m2 �πw3
m3 �πw3

m1 (6.50)

Π is perfectly symmetric between genders and among individuals. Each gender’s set of

preferences is a standard Condorcet cycle. By Theorem 6.3.14, one of the sincerely stable

marriages,M1 = {{m1, w1}, {m2, w2}, {m3, w3}} andM2 = {{m3, w1}, {m1, w2}, {m2, w3}},

is selected at equilibrium. Suppose Π̄ is a minimally dishonest equilibrium. By the gender

symmetry of Π, without loss of generality marriage M1 is selected. By Lemma 6.6.8, π̄mi

and πmi
agree on the first element and π̄wi

and πwi
agree on the first two elements.

The idea of the proof is that minimal dishonesty leads the men to admit that they are

willing to marry their second choice. They remain assured of outcome M1 by dishonestly

ranking a second choice third, which makes M1 the unique egalitarian stable marriage,

because the women are honest about their second choices. However, once Π̄ shows that all

three men are so willing, equilibrium is lost. Any woman can make M2 the unique stable

marriage, simply by purporting to be willing to wed only her first choice. By symmetry

between the genders, no such equilibrium exists.

To show that each man admits he is willing to marry his second choice, we show π̄mi

omits no wj for each i. By symmetry, it suffices to only analyze π̄m1 .

Claim 1: w3 �π̄m1
u.

Suppose instead that u �π̄m1
w3. Consider Π̄′ = δ(Π̄,m1, {w3, u}). If any new stable

marriages appear, then m1 weds w3 in the new marriage. However, by Lemma 6.6.8 m3

(w3) is honest about the first (respectively two) element(s) in the submitted profile Π̄ and

{m3, w3} still blocks any marriage that weds m1 to w3 with respect to Π̄′ and no new

stable marriages appear implying m1’s partner does not change, a contradiction to minimal
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dishonesty. Thus w3 �π̄m1
u.

Claim 2: w2 �π̄m1
u.

Suppose that this is not the case and, by Claim 1,m1’s preferences are given byw1 �π̄m1

w3. Consider Π̄′′ = δ(Π̄,m1, {w2, u}). The only new stable marriage that can appear in Π̄′′

is M2. Using f2 from Example 6.2.7, the value of M1 is more than the value of M2 (since

w3 appears prior to w2 in π̄′′m1
). SinceM1 andM2 are the only marriages stable with respect

to Π̄′′, m1’s outcome does not change contradicting minimal dishonesty. Thus, w2 �π̄m1
u.

Since Claims 1 and 2 hold, π̄mi
contains every wj . By Lemma 6.6.8, π̄wj

agrees with

πwj
on the first two elements and M2 is also stable with respect to π̄. Thus, if there is an

equilibrium Π̄ then there are two stable marriages. This contradicts Corollary 6.6.7 and

there can be no such equilibrium.

We now consider two types of mechanisms that always have equilibria: the Gale-

Shapley algorithm and more fair never-one-sided mechanisms.

6.4.1 Gale-Shapley Algorithm

In this section, we characterize the set of minimally dishonest equilibria obtained when r

is the Gale-Shapley algorithm. We prove that the woman-optimal sincerely stable marriage

will always be obtained.

Theorem 6.4.2. If r always selects the man-optimal marriage (Gale-Shapley algorithm),

there exists a minimally dishonest equilibrium for any sincere preference profile Π. More-

over, all minimally dishonest equilibria yield the woman-optimal sincerely stable marriage.

Proof. To show existence of an equilibrium that yields the woman-optimal sincerely stable

marriage M with respect to Π, consider the preference profile Π̄M obtained by having

men be honest and having women truncate their sincere profiles after their woman-optimal

partner. By construction, M will be the only stable marriage with respect to Π̄M .
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In 6.6.2, an algorithm is presented to find a minimally dishonest equilibrium Π̄ given

Π̄M where r(Π̄) = M . Each iteration of the algorithm corrects a violation to minimal

dishonesty and decreases the distance between an individual’s putative and sincere pref-

erences. Since the distances are finite and integer, the algorithm terminates in finite time

(Lemma 6.6.10). Next we show that if Π̄ is the profile obtained at the end of an iteration,

then Π̄ is an equilibrium and M is the unique stable marriage with respect to Π̄ (Lemma

6.6.11). This implies the algorithm outputs an equilibrium Π̄ that yields the sincerely sta-

ble marriage M . We show that the equilibrium is minimally dishonest by showing that

the algorithm does not terminate until all violations to minimal dishonesty are corrected

(Lemma 6.6.12). Thus there is at least one minimally dishonest equilibrium Π̄ that yields

the woman-optimal M .

It remains to show that no other marriage can be obtained at an equilibrium. In Section

6.3.1 we showed that the Gale-Shapley algorithm is monotonic and INS representable and

thus any equilibrium must yield a sincerely stable marriage. Suppose the sincerely stable

M is obtained given the equilibrium Π̄.

We begin by showing that the minimally dishonest refinement implies that all men

will be honest at equilibrium. For contradiction suppose man m is not honest and that

π̄m 6= πm. By Lemma 6.6.8, π̄m and πm agree up to m’s partner in M . Thus, any disparity

between π̄m and πm must appear after sM(m). However, by Lemmas 6.6.2 and 6.6.3, the

marriage M remains stable (and man-optimal) after m corrects the disparity. Since the

Gale-Shapley algorithm always selects the man-optimal marriage, man m obtains the same

result contradicting minimal dishonesty. Thus all men are honest at a minimally dishonest

equilibrium.

Now since the men are honest and, by Lemma 6.6.8, every woman is honest up to her

partner in M , the woman-optimal marriage is stable with respect to the putative prefer-

ences. By Corollary 6.6.7, there is only one marriage stable with respect to the putative

preferences and M is the woman-optimal marriage.
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6.4.2 Never-One-Sided Mechanisms

Fairness is often a legitimate concern in decision-making. The Gale-Shapley algorithm

is arguably the most unfair way to select a stable marriage, because it exclusively favors

one side – the group that is sexually identified as men. Therefore, until now, concern for

sincere stability has in a sense maximized unfairness! Our next result offers a broad set of

less unfair mechanisms that are sure to yield sincere stability, and do so in every minimally

dishonest equilibrium.

Definition 6.4.3. r is never-one-sided if for all Π̄ that admit more than one stable marriage,

there exist M1,M2 ∈ r(Π̄) (possibly M1 = M2) where M1 is not man-optimal and M2 is

not woman-optimal.

Theorem 6.4.4. Let r be an arbitrary monotonic, INS and never-one-sided representable

stable marriage algorithm. Let M be a marriage and let Π be a sincere preference profile.

Then M is sincerely stable if and only if there exists a minimally dishonest equilibrium Π̄

in the strategic stable marriage game where r(Π̄) = M .

The proof of existence follows in the same fashion as Theorem 6.4.2. For a sincerely

stable M , when given Π̄M obtained by having every individual truncate Π̄ after their M -

partner, Algorithm 2 in 6.6.2 returns a minimally dishonest equilibrium Π̄ where r(Π̄) =

M . Furthermore, every outcome is guaranteed to be stable by Theorem 6.3.14.

6.5 Extensions

In this section, we consider extensions to the Stable Marriage Problem. We first consider

the college Admissions Problem. In this setting we label the women as “colleges” and

men as “students”. Unlike the Stable Marriage Problem, each college is allowed to marry

multiple students. Each college has a quota indicating the maximum number of students

that they are willing to marry. We show that our positive results fail to hold in this setting.
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The Student Placement Problem is a special case of the college Admissions Problem

where each college is assumed to be honest. Since the college Admissions Problem can be

modeled by a Stable Marriage Problem by duplicating the colleges, the Student Placement

Problem is also a special case of the Stable Marriage Problem where all women are honest.

We consider a more general model of the Stable Marriage Problem where any subset of

individuals are allowed to be honest. Furthermore, we show that the positive results still

hold in this setting.

6.5.1 College Admissions Problem

Roth has long claimed that the Admissions Problem is significantly different than the Sta-

ble Marriage Problem by showing that unlike the Stable Marriage Problem, a single college

is able to alter their preferences to obtain a marriage that they prefer to the college-optimal

marriage [60]. Very few of our results extend to the college Admissions Problem. We

provide the unsettling result that no stable marriage mechanism can guarantee a sincerely

stable marriage is selected at a minimally dishonest equilibrium and, like Roth, we must

emphasize that the college Admissions Problem is different than the Stable Marriage Prob-

lem.

Without knowing colleges’ preferences between groups of students, we cannot can-

not guarantee that a marriage is deterministically selected at every equilibrium (Corollary

6.3.3). Consider a set of preferences where a college has a 50% chance of obtaining their

1st and 4th choice in students and a 50% chance of obtaining their 2nd and 3rd choice in

students. If the college is indifferent between these two outcomes, these preferences may

correspond to an equilibrium. However, Corollary 6.3.3 does hold if every college has strict

preferences between every mixture of students.

The most unsettling disparity between the Stable Marriage Problem and the College

Admissions Problem is that we may obtain a marriage at an equilibrium that is not sincerely

stable, as shown in Theorem 6.5.1. Mimicking Roth, Theorem 6.5.1 demonstrates there is
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a set of preferenes where a college can alter their preferences to obtain a marriage that

they prefer to the college-optimal marriage even at a minimally dishonest equilibrium,

regardless of the stable marriage mechanism used. This implies that no stable marriage

mechanism guarantees that a sincerely stable marriage is selected.

Theorem 6.5.1. There is a sincere profile Π for the college admissions strategic game

where for every stable marriage mechanism r, no minimally dishonest equilibrium yields a

sincerely stable marriage.

Proof. Consider the sincere preferences

πc1 = s1 �πc1 s2 �πc1 s3 �πc1 s4 πs1 = c3 �πs1 c1 �πs1 c2 (6.51)

πc2 = s1 �πc2 s2 �πc2 s3 �πc2 s4 πs2 = c2 �πs2 c1 �πs2 c3 (6.52)

πc3 = s3 �πc3 s1 �πc3 s2 �πc3 s4 πs3 = c1 �πs3 c3 �πs3 c2 (6.53)

πs4 = c1 �πs4 c2 �πs4 c3 (6.54)

where college c1 has capacity for two students and colleges c2 and c3 have room for

only one student. The only stable marriage with respect to these preferences is M =

{{c1, s3}, {c1, s4}, {c2, s2}, {c3, s1}}.

For contradiction, suppose there is a minimally dishonest Π̄ where r(Π̄) = M . We

now that show there are enough completely honest colleges and students to guarantee that

c1 is able to alter π̄c1 to obtain a marriage that c1 prefers to the college-optimal marriage,

contradicting that Π̄ is an equilibrium.

Claim 1: M is the only marriage stable with respect to Π̄.

Suppose that M ′ is stable with respect to Π̄. Lemma 6.3.2 still applies in this setting

and every individual must sincerely like their M -partner(s) as much as their M ′-partner(s).

By Lemma 6.6.1, every college is married to the same number of students in every stable

marriage. Thus, c1 is always wed to two students. Students s3 and s4 are c1’s least preferred
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partners and {c1, s3}, {c1, s4} ∈ M ′ since otherwise c1 prefers M ′ to M . This implies

that either {c2, s1} or {c2, s2} is in M ′. Since c2 sincerely prefers s1 to s2 = sM(c2),

{c2, s2} ∈M ′ implying that M ′ = M .

Claim 2: Colleges c2 and c3 and all students are honest up to theirM -partner. Furthermore,

c1 is completely honest.

Suppose this isn’t true for some individual y 6= c1 (student or college). Lemma 6.6.5

and Lemma 6.6.8 describe a process for correcting disparities between π̄y and πy where

(1) M remains stable, (2) any newly created stable marriage will be sincerely preferred by

the individual updating their preferences, and (3) by monotonicity and INS, the values of

marriages that y sincerely likes as much asM will not decrease while the values of all other

marriages will not increase. These three properties together imply that each individual is

honest up to their M -partner. In this setting we have assumed neither monotonicity nor

INS and thus only (1) and (2) apply. However, by Claim 1, M is the only stable marriage

with respect to Π̄ and therefore after correcting a disparity, the mechanism will still select a

marriage that y sincerely likes as much asM and we can still apply the results from Lemma

6.6.5 and Lemma 6.6.8. Thus each individual is honest up to their partner in M .

Unfortunately, Lemmas 6.6.5 and 6.6.8 only apply to individuals that are allowed only

a single spouse. We now show that c1 is honest. If c1 is dishonest, it implies that c1 receives

a less preferred marriage M ′ if they submit the more honest πc1 . However, this implies

that c1 is married to at most one student since s3 and s4 are their least preferred partners.

Without loss of generality, suppose that c1 is not married to s3. By the first part of Claim

2, s3 indicates that college c1 is their first choice. This implies {c1, s3} is a blocking pair

contradicting that M ′ was obtained after c1 updated their preferences to πc1 . Therefore c1

is honest and Claim 2 holds.

Claim 3: All college are honest.

Suppose that c2 is not honest and submitting the more honest πc2 yields a worse result

for c2. This implies there is a stable marriage M ′ where c2 is married to neither s1 nor s2.
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However by Claim 2, s2 indicates c2 is their most preferred partner and {c2, s2} blockM ′, a

contradiction. Thus c2 is honest. An identical argument using c3 and s1 shows c3 is honest.

Claim 4: Students s1 and s3 are honest.

Once again suppose there is a stable M ′ when s1 submits πs1 that is worse for s1.

By Claim 3, college c3 is honest and indicates that they only prefer s3 to s1. Thus,

{c3, s3} ∈ M ′ since otherwise {c3, s1} blocks M ′. Similarly using Claim 2, this implies

that {c1, s1}, {c1, s2} ∈M ′ since otherwise {c1, s3} blocks M ′. However, this implies that

{c2, s2} blocksM ′, a contradiction implying that s1 is honest. Similarly for s3, if πs3 yields

a worse result M ′ for s3, then {c1, s1}, {c1, s2} ∈ M ′ and {c2, s2} blocks M ′. Therefore

Claim 4 holds.

Claims 2-4 imply that Π̄ is similar to

π̄c1 = s1 �π̄c1 s2 �π̄c1 s3 �π̄c1 s4 π̄s1 = c3 �π̄s1 c1 �π̄s1 c2 (6.55)

π̄c2 = s1 �π̄c2 s2 �π̄c2 s3 �π̄c2 s4 π̄′s2 = c2 (6.56)

π̄c3 = s3 �π̄c3 s1 �π̄c3 s2 �π̄c3 s4 π̄s3 = c1 �π̄s3 c3 �π̄s3 c2 (6.57)

π̄′s4 = c1 (6.58)

where π̄s2 (π̄s4) and π̄′s2 (π̄′s4) agree on the first element. However, these preferences are not

an equilibrium since college c1 can update their preferences to s1 � s4 in order to obtain

the marriage M ′ = {{c1, s1}, {c1, s4}, {c2, s2}, {c3, s3}} – a marriage that c1 prefers to M .

This contradicts that Π̄ is an equilibrium. Therefore there is no mechanism that guarantees

a sincerely stable marriage for the college Admissions Problem.

6.5.2 Truth-Tellers and the Student Placement Problem

In practice, some individuals may prefer to be honest regardless of whether they can ma-

nipulate their preferences to obtain a partner they strictly prefer. Such individuals are often

called truth-tellers, and there is experimental evidence that they exist [29, 32]. The Student
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Placement Problem is an instance of the Stable Marriage (College Admissions) Problem

where all women (colleges) are truth-tellers and where all the men (students) are strategic.

Corollary 6.3.3 does not hold in this setting and a marriage is not always selected de-

terministically at an equilibrium. If all individuals are truth-tellers and the decision mecha-

nisms selects a marriage uniformly at random, then at the unique equilibrium π̄ = π every

sincerely stable marriage has positive probability of being selected. As a result, we do not

treat r(Π̄) as a singleton in this section. However, through the same proof technique in

Corollary 6.3.3, we can prove that if an individual is strategic then their partner is selected

deterministically at every equilibrium.

Corollary 6.6.7 also does not hold in this setting and there may be more than one mar-

riage stable with respect to the equilibrium preferences. While the proof of Theorem 6.3.14

relies on Corollary 6.6.7, the positive result that every equilibrium stable marriage is also a

sincerely stable marriage does apply to this setting.

Theorem 6.5.2. Let a subset of players in SSM be truth-tellers. If r is monotonic and INS

representable, then for every minimally dishonest equilibrium Π̄, every marriage in r(Π̄) is

stable with respect to the sincere preferences Π.

The proof of Theorem 6.5.2 can be found in 6.6.3. Theorem 6.5.2 immediately implies

that a sincerely stable marriage will be selected in the the Student Placement Problem since

the Student Placement Problem is an instance of the Stable Marriage Problem where all

women are honest.

Without making conditions on the number of truth-tellers we still cannot guarantee

that there is a mechanism that always selects a sincere egalitarian stable marriage or that

there always exists a minimally dishonest equilibrium and our negative results still hold.

The never-one-sided property still ensures that an equilibrium exists that selects a sincerely

stable marriage but it is not guaranteed there is an equilibrium for each sincerely stable mar-

riage. When running the Gale-Shapley algorithm an equilibrium exists and every strategic

woman receives her sincere woman-optimal partner at every equilibrium. However, the
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selected marriage is not necessarily woman-optimal.

Theorem 6.5.3. Let a subset of players in SSM be truth-tellers. Suppose r always selects

the man-optimal marriage. Then there exists a minimally dishonest equilibrium for any

sincere preference profile Π, and in every minimally dishonest equilibrium every strategic

woman receives her woman-optimal partner.

Theorem 6.5.4. Let a subset of players in SSM be truth-tellers. If r is monotonic, INS and

never-one-sided representable, then there exists at least one minimally dishonest equilib-

rium Π̄. Moreover for every minimally dishonest equilibrium Π̄ and every M ∈ r(Π̄), M

is sincerely stable.

No additional techniques are required to prove these results and we defer the proofs to

6.6.3.

6.5.3 Coalitions

Gale and Sotomayor also specifically motivate the study of manipulation when collusion is

allowed [31]. In this section we consider coalitions and strong equilibria – equilibria where

no group of individuals can collude such that every member of the group obtains a strictly

better outcome. We show that for any monotonic INS representable stable marriage mech-

anism, every minimally dishonest equilibrium is also a strong equilibrium. This implies

that all the results from previous sections apply even when collusion is allowed. In addi-

tion, it implies that the core of the SSM game is non-empty when using the Gale-Shapley

algorithm or a monotonic INS never-one-sided representable stable marriage mechanism

even when we refine the set of equilibria to those where everyone is minimally dishonest.

Theorem 6.5.5. Let r be a monotonic and INS representable stable marriage mechanism

and let Π be arbitrary. Every minimally dishonest equilibrium Π̄ is a strong equilibrium.

Proof. By Corollary 6.6.7, r(Π̄) = M is the unique putatively stable marriage and there-

fore is putatively both man and woman-optimal. By [18], no coalition of men and women
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can alter Π̄ such that every one of them prefers the outcome to M . By Lemma 6.6.8, each

individual prefers M with respect to Π̄ if and only if he/she prefers M with respect to

Π. Therefore no coalition can alter Π̄ to obtain a marriage they all sincerely prefer to M .

Therefore Π̄ is a strong equilibrium.

The converse does not necessarily hold, as discussed previously.

Lemma 6.5.6. Let r and Π be arbitrary. For any strong equilibrium Π̄, r(Π̄) is a sincerely

stable marriage.

Proof. The profile Π̄ is a Nash equilibrium and by Corollary 6.3.3 and Lemma 6.3.4,

r(Π̄) = M is a sincerely rational marriage. If M is not stable with respect to Π then

there is a blocking pair {m,w}. Moreover, m and w could obtain a strictly better solution

by indicating that they are only willing to marry each other contradicting that Π̄ is a strong

equilibrium. Thus, M is sincerely stable.

Theorem 6.5.5 and Lemma 6.5.6 also allow us to construct a slightly different proof

of Theorem 6.3.14. Since every minimally dishonest equilibrium of a monotonic INS rep-

resentable r is a strong equilibrium and since every strong equilibrium yields a sincerely

stable marriage, every minimally dishonest equilibrium of a monotonic INS representable

r yields a sincerely stable marriage.

If a mechanism has a minimally dishonest equilibrium, then it also has a strong equi-

librium and the core is non-empty. For instance, when using the Gale-Shapley algorithm

or a monotonic INS never-one-sided representable r, the SSM game has a non-empty core.

Corollary 6.5.7. Let Π be arbitrary and r be the Gale-Shapley algorithm or a monotonic

INS never-one-sided representable stable marriage mechanism. The SSM game with r and

the minimally dishonest refinement has a non-empty core.

Corollary 6.5.7 follows immediately from Theorems 6.4.2, 6.4.4 and 6.5.5.
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6.5.4 Locally Minimal Dishonesty

In this section we consider a weaker version of minimal dishonesty for which our results

apply. To be locally minimally dishonest there may not be a pairwise change to the putative

preference list that is more honest and results in as good an outcome.

Definition 6.5.8. Let Π be the sincere preferences and let Π̄ be an equilibrium in the Strate-

gic Stable Marriage game. Manm is locally minimally dishonest if a {w, z} ∈ ×W×{W∪

{u}} where d(δ(Π,m, {w, z})m, π′m) < d(π̄m, π
′
m) implies r(Π̄) = M �πm M ′ for some

M ′ ∈ r(δ(Π̄,m, {w, z})).

Once again, if the condition fails to hold, then m could obtain at least as good a re-

sult when the more honest δ(Π̄,m, {w, z})m is submitted. Woman w is locally minimally

dishonest if symmetric conditions hold for her.

A Nash equilibrium is a locally minimally dishonest equilibrium if every individual

is locally minimally dishonest and a marriage M is a locally minimally dishonest stable

marriage with respect to r and Π if there is a locally minimally dishonest equilibrium Π̄

where M = r(Π̄).

Recall Example 6.3.8. Both π̄′m3
and π̄′′m3

suffice to show that m3 is not minimally

dishonest. However, π̄′m3
does not indicate that m3 is locally minimally dishonest because

π̄′m3
cannot be obtained from π̄m3 by correcting a single discrepancy. Since π̄′′m3

is obtained

by correcting a single discrepancy, it does show that m3 is not locally minimally dishonest.

If an individual is not locally minimally dishonest then the individual is also not mini-

mally dishonest. However, an individual may be locally minimally dishonest without being

minimally dishonest. Thus every minimally dishonest equilibrium is also a locally mini-

mally dishonest equilibrium but the converse does not necessarily hold. Now we explain

why all of our results hold for both minimally dishonest equilibria and locally minimally

dishonest equilibria. If a result describes a property of all minimally dishonest equilibria

it suffices to show this when individuals are locally minimally dishonest. We have rigged

192



the proofs of such results in this paper to rely only on pairwise changes to Π̄. On the other

hand, when we have shown that an equilibrium with a certain property exists, it sufficed to

show this when individuals are minimally dishonest.

6.6 Additional Proofs

6.6.1 Equilibria of the Strategic Stable Marriage Game

Lemma 6.6.1 (Rural Hospitals Theorem [61]). Let Π̄ be a profile. If there exists a marriage

M that is stable with respect to Π̄ where sM(y) = u, then y is unmarried in every stable

marriage with respect to Π̄.

For the following proofs let Qy(z, Π̄) := {z′ : z′ �π̄y z}, the set of individuals that y

prefers over z with respect to the preference Π̄. If {y, z} is a blocking pair of marriage M

with respect to Π̄ then y ∈ Qz(sM(z), Π̄) and z ∈ Qy(sM(y), Π̄).

We begin by establishing how the set of stable marriages changes when an individuals

swaps two individuals in their putative preference list Π̄.

Lemma 6.6.2. Suppose M is a marriage such that sM(y) = z3 where z1 �π̄y z2 �π̄y u

and either z2 �π̄y z3 or z3 �π̄y z1. Then M is stable with respect to Π̄ if and only if M is

stable with respect to Π̄′ = δ(Π̄, y, {z1, z2}).

Proof. Consider individual rationality first. Since π̄y and π̄′y do not differ as to which

individuals y is willing to marry, and Π̄′ differs from Π̄ only at y’s preferences, M is

individually rational with respect to Π̄ iff M is rational with respect to Π̄′.

Second, consider blocking pairs. The pair {y, z} blocks M with respect to Π̄ iff z ∈

Qy(z3, Π̄) and y ∈ Qz(sM(z), Π̄). With respect to Π̄, by hypothesis either y strictly prefers

both z1 and z2 to z3, or y does not strictly prefer either z1 or z2 to z3. Swapping z1 and z2

in π̄y cannot not affect Qy(z3, Π̄). Hence Qy(z3, Π̄) = Qy(z3, Π̄
′). Also, Qz(sM(z), Π̄) =

Qz(sM(z), Π̄′) since π̄z = π̄′z. Therefore, {y, z} blocks M with respect to Π̄ iff it blocks

M with respect to Π̄′.
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Lemma 6.6.3. Suppose M is a marriage such that sM(y) = z3 where z3 �π̄y u, and

suppose u �π̄y z1. Then M is stable with respect to to Π̄ iff M is stable with respect to

Π̄′ = δ(Π̄, y, {z1, u}).

Proof. (⇒) Suppose to the contrary that M is stable with respect to Π̄ but not with respect

to Π̄′. Since Π̄′ is created by adding an element to Π̄, if M is individually rational with

respect to Π̄ then it is also individually rational with respect to Π̄′. Therefore there exists

a blocking pair {y, z} with respect to Π̄′. However, as in Lemma 6.6.2, both Qy(z3, Π̄) =

Qy(z3, Π̄
′) and Qz(sM(z), Π̄) = Qz(sM(z), Π̄′). Therefore {y, z} must also block M with

respect to Π̄, a contradiction.

(⇐) Suppose by the contrapositive that M is not stable with respect to Π̄. Then M

is not individually rational or it admits a blocking pair with respect to Π̄. Suppose the

former. Since Π̄ and Π̄′ only differ as to whether or not z1 is acceptable to y, and sM(y) =

z3 �π̄y u �π̄y z1 implies z3 6= z1, M is not individually rational with respect to Π̄′. If

the pair {y, z} blocks M with respect to Π̄, then as above Qy(z3, Π̄) = Qy(z3, Π̄
′) and

Qz(sM(z), Π̄) = Qz(sM(z), Π̄′) imply that {y, z} blocks M with respect to Π̄′. Hence M

is not stable with respect to Π̄′.

Lemma 6.6.4. At a minimally dishonest equilibrium if y is unmarried, then π̄y = πy.

Proof. We begin by showing there is no z such that z �π̄y u but u �πy z. For contradiction,

let Z be the set of z such that z �π̄y u but u �πy z. Furthermore let z∗ ∈ Z be such that

z �π̄y z∗ for all z ∈ Z. Suppose that y considers being more honest by removing z∗ from

their preference list and updating the preference profile to Π̄′ = δ(Π̄, y, {z, u}). Since y is

minimally dishonest, this must generate a worse outcome for y. However, y was unmarried

before the update and M must wed y to some individual z′ ∈ Z for some M ∈ r(Π̄′).

This implies there is a x where {y, x} blocks M with respect to Π̄ but not with respect

to Π̄′. Therefore x �π̄y z′ and y �π̄z′ sM(z′). However, since z′ �π̄y z∗, x �π̄′y z′ and

y �π̄′
z′
sM(z′) and {y, x} blocks M with respect to Π̄′, a contradiction.
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Since stable marriages mechanisms select a marriage that is individaully rational and

π̄y contains no individual y is unwilling to marry, if y becomes more honest then y will

prefer any newly created marriage to being unmarried. Thus y is completely honest.

Lemma 6.6.5. At any minimally dishonest equilibrium Π̄ for a monotonic INS repre-

sentable stable marriage mechanism, if y is married to the kth member of πy, then the

first k elements of π̄y are a permutation of the first k elements of πy.

Proof. We show this in two steps. By Corollary 6.3.3, r(Π̄) = M is a singleton.

Claim 1: If x �πy sM(y) then x �π̄y u.

For contradiction, assume this is not the case. LetM be the set of marriages stable with

respect to Π̄. Now suppose that y is more honest and adds x to the end of π̄y updating Π̄ to

Π̄′ = δ(Π̄, y, {x, u}). By the “if” part of Lemma 6.6.3, for all M ′ ∈M, M ′ remains stable

and since the decision mechanism is INS representable the value ofM ′ remains unchanged.

Furthermore, by Lemma 6.6.1 [61], y is married in every stable marriage with respect to

Π̄′. Then by the “only if” part of Lemma 6.6.3, appending x to π̄y can only create new

stable marriages that weds y and x. Hence, r(Π̄′) can only consist of marriages that wed y

to sM(y) or x. Since x �πy sM(y), y is not worse off, contradicting minimal dishonesty.

Thus Claim 1 holds.

Claim 2: If x �πy sM(y) �πy z then x �π̄y z.

Assume to the contrary that z �π̄y x, and select x and z so that they appear as close as

possible in π̄y. This selection forces x and z to be adjacent in π̄y, for if z �π̄y α �π̄y x then

either α can replace x or α can replace z.

Now suppose that y is more honest and switches x and z, updating Π̄ to Π̄′ = δ(Π̄, y, {x, z}.

For x 6= sM(y), since z and x are adjacent, Lemma 6.6.2 applies, hence M remains sta-

ble. If x = sM(y), similar to Lemma 6.6.2, M remains stable since Q(sM(y), Π̄′) ⊂

Q(sM(y), Π̄).

By monotonicity and INS, the values of marriages that wed y to x (respectively z) do
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not decrease (respectively increase) and the values of all other marriages are unchanged.

By Lemma 6.6.2 all new stable marriages wed y to x. Consequently, r(Π̄′) can only consist

of marriages that wed y to sM(y) or x. Since x �πy sM(y), y is not worse off with r(Π̄′),

contradicting minimal dishonesty.

Since both claims hold, the first k elements of π̄y are a permutation of the first k ele-

ments of πy.

Lemma 6.6.6. At any minimally dishonest equilibrium for a monotonic INS representable

stable marriage mechanism, the man-optimal stable marriage M̃ with respect to the puta-

tive preferences Π̄ is selected.

Proof. Suppose this is not the case and there is a stable M = r(Π̄), where M 6= M̃ . Then

there exists a manm such that sM̃(m) �π̄m sM(m). By Lemma 6.6.5, sM̃(m) �πm sM(m),

a contradiction to Lemma 6.3.2.

Corollary 6.6.7. At any minimally dishonest equilibrium for a monotonic INS representable

stable marriage mechanism, there is only one stable marriage with respect to the putative

preferences.

Proof. Symmetric to Lemma 6.6.6, the marriage selected must also be woman-optimal

with respect to the submitted preferences. Since the man-optimal (woman-optimal) mar-

riage is simultaneously the best (respectively worst) stable marriage for every man [25, 58],

there can be only one stable marriage with respect to the putative preferences.

Lemma 6.6.8. At any minimally dishonest equilibrium for a monotonic INS representable

stable marriage mechanism, if y is married to the kth member of πy, then the first k elements

of π̄y are identical to and appear in the same order as the first k elements of πy.

Proof. Let M = r(Π̄). For contradiction, suppose there are x and z such that x �πy

z �πy sM(y) but z �π̄y x. As in the proof of Lemma 6.6.5, select x and z such that they

are adjacent in π̄y. Suppose that y is more honest by switching x and z, updating Π̄ to
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Π̄′ = δ(Π̄, y, {x, z}). By Lemma 6.6.2, any newly created stable marriages wed y to x. By

Corollary 6.6.7, there is only one stable marriage with respect to Π̄. Therefore, r(Π̄′) weds

y to x or sM(y). This contradicts minimal dishonesty since y does no worse.

Lemma 6.6.9. For preference profiles Π and Π̄, and a marriage M that is stable with

respect to Π̄, if πy agrees with π̄y up to y’s M -partner, then M is stable with respect to Π.

Proof. Assume to the contrary that M is stable with respect to Π̄ but not with respect to

Π. Either (1) there exists a married man or woman y such that u �πy sM(y) (M is not

individually rational) or (2) there is an unmarried pair {m,w} such that m �πw sM(w) and

w �πm sM(m) (there is a blocking pair). If (1) then u �π̄y sM(y) since πy and π̄y agree

up to sM(y), contradicting that M was stable with respect to Π̄. If (2) then m �π̄w sM(w)

and w �π̄m sM(m) since πy and π̄y agree up to sM(y) for each y, contradicting that M was

stable with respect to Π̄. Thus, M must be stable with respect to Π.

6.6.2 The Gale-Shapley Algorithm and Never-One-Sided Mechanisms

Let Inv(r, Π̄,Π) be the set of violations to the minimally dishonest criterion given equilib-

rium Π̄. Formally,

Inv(r, Π̄,Π) =
{
{y, π̄′y} : d(π̄′y, πy) < d(π̄y, πy) and r([Π̄−y, π̄′y]) �πy r(Π̄)

}
. (6.59)

Let Inv′(r, Π̄,Π) be the set of {y, π̄′y} ∈ Inv(r, Π̄,Π) where π̄′y agrees with πy up to

y’s partner in r([Π̄−y, π̄′y]).

We now have sufficient definitions to give an algorithm than finds a minimally dishonest

equilibrium that yields a sincerely stable marriage for the Gale-Shapley algorithm. Let M

be the woman-optimal marriage with respect to the sincere preferences. For each man m,

let π̄Mm = πm. For each woman w, if w is married in M then let π̄Mw be the formed by

truncating πw after sM(w). If w is unmarried then let π̄Mw = πw. When given the Gale-

Shapley algorithm r, sincere preferences Π and the putative preferences Π̄M , Algorithm 2
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will output a minimally dishonest equilibrium for Π that yields the since woman-optimal

marriage M .

Furthermore if r is instead monotonic, INS representable and never-one-sided then for

any sincerely stable marriage M , Algorithm 2 can output a minimially dishonest equilib-

rium that yields M . For individual y let π̄My be the preferences obtained after y truncates

πy after their M partner. This process was decribed above for the women and the woman-

optimal marriage M . Algorithm 2 will output a minimally dishonest equilibrium for Π that

yields the marriage M .

Algorithm 2 Equilibrium Finding Algorithm for Gale-Shapley and never-one-sided Mech-
anisms

1: procedure EQUILIBRIUMFIND

2: while Inv′(r, Π̄,Π) 6= ∅ do
3: Select {y, π̄′y} ∈ Inv′(r, Π̄,Π)
4: Π̄← [Π̄−y, π̄

′
y)]

5: end while
6: Output Π̄
7: end procedure

We first show that the algorithm terminates regardless of the input.

Lemma 6.6.10. Algorithm 2 terminates.

Proof. Consider the potential function counting the number of differences between Π̄ and

Π:

φ(r, Π̄,Π) =
∑
m∈V

d(π̄m, πm) +
∑
w∈W

d(π̄w, πw) (6.60)

where φ(r, Π̄,Π) ≥ 0 in each iteration of Algorithm 2. If individual y updates their

preferences in an iteration then d(π̄y, πy) decreases by at least one and d(π̄z, πz) remains

unchanged for z 6= y. Thus Algorithm 2 must terminate. Furthermore, d(π̄m, πm) ≤(|W |+1
2

)
and d(π̄w, πw) ≤

(|V |+1
2

)
and Algorithm 2 terminates in O(|V ||W |2 + |V |2|W |)

iterations.

Next we show that at the end of each iteration, Π̄ is a equilibrium and that M is the
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only marriage stable with respect to Π̄. Thus, when Algorithm 2 terminates, it outputs an

equilibrium that yields the sincerely stable marriage M .

Lemma 6.6.11. Suppose Algorithm 2 is given input Π, Π̄M whereM is the woman-optimal

sincerely stable marriage and the Gale-Shapley algorithm r. At the end of each iteration,

Π̄ is an equilibrium and M is the only marriage stable with respect to Π̄.

Proof. By construction of Π̄M , M is the only stable marriage at the beginning of the first

iteration. Thus M is both man and woman-optimal. No man can alter his preferences to

obtain an outcome he prefers to the man-optimal marriage [20, Theorem 17]. Thus no man

m can alter π̄Mm to obtain a marriage he prefers with respect to Π̄M . By construction of Π̄M ,

m also cannot alter π̄Mm to obtain a marriage he prefers with respect to Π. Symmetrically,

no woman can alter her preference to obtain a better outcome and Π̄M is an equilibrium.

We now show that if Π̄ is an equilibrium with the unique stable marriage M at the

beginning of an iteration, then the condition holds at the end of the iteration completing the

proof of the lemma.

Suppose that {y, π̄′y} ∈ Inv′(r, Π̄,Π) is updated in an iteration. Let Π̄′ = [Π̄−y, π̄
′
y]

be the preference profile at the end of the iteration. Since Π̄ is an equilibrium, y does not

receive a better partner with respect to Π̄′. Since {y, π̄′y} ∈ Inv′(r, Π̄,Π), y does not obtain

a worse partner with respect to Π̄′ and y is married to sM(y) in every marriage in r(Π̄′).

Let M ′ be any marriage stable with respect to Π̄′. We first claim that sM ′(y) = sM(y).

Since every man is honest, y is a woman. By construction, both π̄y and π̄′y match πy up

to sM(y). Since Π̄ is an equilibrium that weds y to sM(y), sM(y) is y’s woman-optimal

partner with respect to Π̄′. Thus if there was a M ′ such that sM ′(y) 6= sM(y) then y would

would obtain worse result since r always selects a marriage that is not woman-optimal1.

1Lemma 6.6.11 also applies to a never-one-sided r for any stable marriageM (not just the woman-optimal
M ). However, the individual y who is updating π̄y can be either a man or a woman. Like the Gale-Shapley
algorithm, if any new marriage is created when an individual becomes more honest, the resulting marriage
will be worse for the individual updating their preferences. Since r is never-one-sided, it will yield a worse
outcome for the individual updating their preferences. Therefore no new stable marriages can be created in
an iteration of Algorithm 2.
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Therefore sM ′(y) = sM(y) for any stable M ′.

We now claim that M is the only marriage stable with respect to Π̄′. Suppose instead

M ′ 6= M is stable with respect to Π̄′ but not Π̄. Individual y is married to sM(y) in M ′.

Since only y alters his/her preferences, M ′ is individually rational with respect to Π̄ if and

only ifM ′ is rational for Π̄′. Thus assume there is a pair {m,w} that blocksM ′ with respect

to Π̄ but not Π̄′. Once again since y is the individual that alters her preferences, y = w.

However, by construction of Inv′, {m, y} must also block M ′ with respect to Π̄′ since the

set of individuals y prefers to sM(y) is the same given Π̄ and Π̄′. This is a contradiction

and M is the only stable marriage with respect to Π̄′.

It remains to show that Π̄′ is an equilibrium. This again follows directly from [20,

Theorem 17] and the lemma holds.

It only remains to show that each individual is minimally dishonest. All individuals are

minimally dishonest if and only if Inv(r, Π̄,Π) = ∅. Thus it suffices to show that in each

iteration Inv(r, Π̄,Π) = ∅ if and only if Inv′(r, Π̄,Π) = ∅.

Lemma 6.6.12. Suppose Algorithm 2 is given input Π, Π̄M and a monotonic INS repre-

sentable r. In each iteration, Inv(r, Π̄,Π) = ∅ if and only if Inv′(r, Π̄,Π) = ∅.

Proof. Since Inv′(r, Π̄,Π) ⊆ Inv(r, Π̄,Π), one direction holds immediately. Suppose that

{y, π̄′y} ∈ Inv(r, Π̄,Π) and let Π̄′ = [Π̄−y, π̄
′
y].

Let k be such that y’s M -partner is the kth individual in πy. First we claim there is

a {y, π̄′′y} ∈ Inv(r, Π̄,Π) such that the first k elements π̄′′y are a permutation of the first

k elements of πy. This claim follows in the same fashion as Lemma 6.6.5. Suppose the

first k elements of π̄′y are not a permutation of the first k elements πy, then one of the

two disparities in the proof of Lemma 6.6.5 can be corrected. For each disparity corrected

y becomes more honest and, since r is monotonic and INS representable, any new stable

marriages created yield at least as good an outcome (with respect to the sincere preferences)

for y. Let π̄′′y be the preference list obtained from π̄′y after correcting all disparities described
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in Lemma 6.6.5. Since π̄′′y is more honest than π̄′y and yields the same outcome for y,

{y, π̄′′y} ∈ Inv(r, Π̄,Π) as desired. Now without loss of generality we may assume the first

k elements of π̄′y are a permutation of the first k elements of πy.

Next we claim we there is a {y, π̄∗y} ∈ Inv(r, Π̄,Π) such that the first k elements π̄∗y

appear in the same order as the first k elements of πy. Similar to Lemma 6.6.11, M is

unique marriage stable with respect to π̄′y. The remainder of this claim follows in the same

fashion as Lemma 6.6.8. By correcting the disparities highlighted in Lemma 6.6.8, the

preferences π̄′y can be altered to generate a more honest π̄∗y that produces the same outcome

for y as π̄′y. Moreover, this implies that {y, π̄∗y} ∈ Inv′(r, Π̄,Π) completing the proof of

the lemma.

As mentioned in the Section 6.4, Lemmas 6.6.10, 6.6.11 and 6.6.12 imply that there is

a minimally dishonest equilibrium that yields the woman-optimal sincerely stable marriage

M .

Only Lemma 6.6.11 is specific to the Gale-Shapley algorithm. However, as mentioned

in the proof of Lemma 6.6.11, the result can easily be modified for a never-one-sided r and

any stable marriageM . Instead of starting with Π̄M , Algorithm 2 is given the putative pref-

erence profile Π̄M where π̄My is obtained from truncating πy after y’sM -partner. Algorithm

2 then outputs a minimally dishonest Π̄ that yields the sincerely stable marriage M .

6.6.3 Truth-Tellers and the Student Assignment Problem

Theorem 6.5.2. Let a subset of players in SSM be truth-tellers. If r is monotonic and INS

representable, then for every minimally dishonest equilibrium Π̄, every marriage in r(Π̄) is

stable with respect to the sincere preferences Π.

Proof. Let Π̄ be the preferences at equilibrium and let Π correspond to the sincere prefer-

ences. For contradiction, assume there is a M ∈ r(Π̄) such that M is not sincerely stable.

For each individual y we may assume y is willing to marry sM(y). If this was not the case
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for some individual y then y indicates that he/she is willing to marry sM(y). This implies

that y is strategic. Similar to Corollary 6.3.3, y’s partner is deterministically selected and

y could obtain a better result by reporting an empty preference list. Thus M is sincerely

individually rational.

Since M is individually rational but not sincerely stable there is a man m and a woman

w such that w �πm sM(m) and m �πw sM(w). The pair {m,w} remains a blocking pair

regardless of all other individuals’ sincere and putative preferences. Thus, without loss of

generality assume all other individuals are truth-tellers and thus honest. We now break the

problem into three cases.

Case 1: m and w are both truth-tellers. Since Π̄ = Π, M must be a sincerely stable

marriage completing this case.

Case 2: m and w are both strategic. Since both individuals are strategic, their partner

must be selected deterministically and thus for all M ′ ∈ r(Π̄), m and w are married.

Assume that w is the kth element in πm. Lemma 6.6.5 still applies in this setting and the

first k elements of π̄m are a permutation of the first k elements of πm. Thus, similar to

Lemma 6.6.6, man m is assigned his man-optimal partner. Similarly w is assigned her

woman-optimal partner and, similar to Corollary 6.6.7, m and w must be married in every

putatively stable marriage. Thus, similar to Lemma 6.6.8, the first k elements of π̄m must

appear in the same order as the first k elements of πm and by Lemma 6.6.9 the marriage M

is stable with respect to the sincere preferences.

Case 3: m is strategic but w is a truth-teller. Man m is the only individual that is

dishonest and he can obtain his man-optimal w′ by submitting a preference list consisting

only of w′. As a result, m must like sM(m) at least as much as w′. By [20, Theorem 17],

m cannot alter his preference to get someone he prefers to w′ and thus sM(m) = w′ and M

is sincerely stable.

In all three cases we determine that M is sincerely stable and the theorem holds.
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Theorem 6.5.3. Let a subset of players in SSM be truth-tellers. Suppose r always selects

the man-optimal marriage. Then there exists a minimally dishonest equilibrium for any

sincere preference profile Π, and in every minimally dishonest equilibrium every strategic

woman receives her woman-optimal partner.

Proof. The proof that every strategic woman receives her woman-optimal partner at every

equilibrium is identical to the proof of Theorem 6.4.2. To determine at least one equilibrium

exists, we start with the preference Π̄ obtained from Π by having every strategic woman

truncate her list after her woman-optimal partner. In the same fashion as Theorem 6.4.2,

when given Π̄ Algorithm 2 returns a minimally dishonest equilibrium.

Theorem 6.5.4. Let a subset of players in SSM be truth-tellers. If r is monotonic, INS

representable and never-one-sided, then there exists at least one minimally dishonest equi-

librium Π̄. Moreover for every minimally dishonest equilibrium Π̄ and M ∈ r(Π̄), M is

sincerely stable.

Proof. Let M be a sincerely stable marriage and let Q(πy,M) be the preference list ob-

tained by truncating πy after y’s M -partner. Let π̄M be such that π̄My = πy for every

truth-teller y and such that π̄My = Q(πy,M) for all other y. We now claim that we can se-

lect a sincerely stable marriage M such that sM(y) = sM ′(y) for each strategic individual

y and each marriage M ′ that is stable with respect to Π̄M .

Let k > 0 be the minimum integer for which this does not always hold for k strategic

individuals. Let y be such an individual and let M ′ be such a marriage. Furthermore,

assume M ′ is such that sM ′(y) is y’s optimal partner with respect to Π̄M . By Lemma 6.6.9,

M ′ is sincerely stable. By construction of Π̄M and Π̄M ′ , every marriage stable with respect

to Π̄M ′ is also stable with respect to Π̄M . Furthermore, by selection of M ′ individual y is

married to sM ′(y) in every marriage stable with respect to Π̄M ′ and no new stable marriages

are created by the additional truncation. However this contradicts the minimality of k and
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thus we can select a sincerely stable marriage M such that for each strategic individual y

and for each marriage M ′ that is stable with respect to π̄My that sM(y) = sM ′(y).

In the same fashion as Theorem 6.4.4, when given the input Π̄M Algorithm 2 finds a

minimally dishonest equilibrium Π̄ such that every M ′ ∈ r(Π̄) is sincerely stable. Further-

more, for everyM ′ ∈ r(Π̄) and every strategic individual y, y is married to theirM -partner

in M ′.

The second part of the theorem statement follows directly from Theorem 6.5.2.
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