
Part 1: ACO Comprehensive Exam, Fall 2021

Graduate Algorithms

Professor G likes to relax sitting in the Clough roof garden while watching the Midtown skyline.
From his point of view, the buildings are abstracted as rectangles with one side touching the
ground (the x axis), and the skyline is the upper contour of the building, or the boundary of the
union of these rectangles, minus the ground. Given the locations and heights of all the buildings
in Midtown, help professor G compute the skyline formed by these buildings collectively.

Your input is the array buildings where buildings[i] = [lefti, righti, heighti]:

• lefti is the x-coordinate of the left edge of the ith building.

• righti is the x-coordinate of the right edge of the ith building.

• heighti is the height of the ith building.

For example, consider three buildings, [1, 10] with height 4, [2, 7] with height 6, and [3, 5]
with height 7:

+-------+

| +---|------+

| | | |

+-----+---|---+------|--------+

| | | | | |

| | | | | |

| | | | | |

____+_____+___+___+______+________+_

The skyline consist of the line segments passing through the points (1, 0)− (1, 4)− (3, 4)−
(3, 7)− (5, 7)− (5, 6)− (7, 6)− (7, 4)− (10, 4)− (10, 0)

You may assume all buildings are perfect rectangles grounded on an absolutely flat surface
at height 0.

1. Show that the skyline consists of O(n) segments.

2. Given the description of the buildings as above, output a description of the skyline.

To earn full credit, you must describe your design in detail and justify its correctness. You
should also state and analyse its runtime, aiming for the most efficient algorithm.

Your output must be a list of points contour= [x1, y1], [x2, y2], . . . , [xk, yk] sorted by their
x−coordinate. Each point is the left endpoint of some horizontal segment in the skyline except
the last point in the list, which always has a y-coordinate 0 and is used to mark the skyline’s
termination where the rightmost building ends. There must be no consecutive horizontal lines
of equal height in the output skyline.

Example:
Input: buildings= [[0, 2, 3], [2, 5, 3]].
Output: [[0, 3], [5, 0]].

Example:
Input: buildings= [[2, 9, 10], [3, 7, 15], [5, 12, 12], [15, 20, 10], [19, 24, 8]].
Output: [[2, 10], [3, 15], [7, 12], [12, 0], [15, 10], [20, 8], [24, 0]].
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Solution:

1. [2points] Consider the 2n coordinates on the x−axis limiting the buildings: {x1, x2, . . . , x2n}.
The claim follows if one can show that only O(1) many intervals in the skyline have
x−coordinate at xi for 1 ≤ i ≤ 2n. Clearly there can be only one vertical segment at
xi. For the horizontal direction, note that distinct intervals have distinct y−coordinate
(otherwise they would merge into one) and hence, only two such intervals can “share” an
x−coordinate. This concludes the proof.

2. [8points] Sort the x−coordinates from left to right. We loop through these values keeping
track of the visible horizon in the skyline at each xi. When at xi, the horizon will result
from the tallest building with left edge ≤ xi and right edge > xi. This can be implemented
efficiently using a priority queue with the following update: label the top corners of each
building as (lefti, heighti, up) and (righti, heighti, down). When processing xi, remove all
(xi, heighti, down) and include all (xi, heighti, up). The horizon at xi is given by the
highest value on the queue. Finally, one must merge consecutive segments with the same
height.

This design runs in timeO(n log(n)). The sorting steps achieves this time using MergeSort.
The pre-processing (up/down events) takes linear time. Each building is added and re-
moved once, thus the final loop also runs in linear time.

Note: a suboptimal solution using Dynamic Programming will receive partial credit. The
student must realize that the worst case performance of DP is O(n2).
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Graph Theory

Problem: Let T be a tree on t ≥ 1 vertices. Prove the following statements.

(1) If G is a graph with minimum degree at least t then, for any v ∈ V (G), G has a subgraph
containing v and isomorphic to T .

(2) If G is graph with at least t|V (G)| edges then G has a subgraph isomorphic to T .

Solution. To prove (1), we apply induction on t. The assertion clearly holds when t = 1. Now
assume that t ≥ 2 and that (1) holds for trees on fewer than t vertices. Let w be a leaf of T .
Consider the tree T −w on t−1 vertices. Note that δ(G− v) ≥ t−1, and let u be a neighbor of
v in G. By induction hypothesis, we see that G− v contains a subgraph H such that u ∈ V (H)
and H is isomorphic to T − w. Now, H + {u, uv} gives the desired subgraph of G.

For (2), we note that any graph G with e(G) ≥ t|V (G)| contains a subgraph H with
δ(H) ≥ t. (This can be shown by repeatedly deleting vertices of degree smaller than t, or by
taking a minimum counterexample and deriving a contradiction.) Thus, we derive (2) from (1).
(Note: (2) implies that the Turán number ex(n, T ) ≤ tn.)
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Linear Inequalities

Let Seven
n := {x ∈ {0, 1}n : x has even number of 1’s}. In this problem, you will derive two

different formulations for convex hull of Seven
n .

1. (2 points) Let Skn = {x ∈ {0, 1}n : x has exactly k 1’s}. Show that

conv(Skn) = {x ∈ Rn :
n∑
i=1

xi = k, 0 ≤ xi ≤ 1 ∀1 ≤ i ≤ n}

2. (3 points) Let Q be the polyhedron (in higher dimensions (x, y, λ) ∈ Rn×Rn×b
n
2
c×Rb

n
2
c)

defined by the following set of inequalities.

xi =
∑

k:k is even

yki ∀1 ≤ i ≤ n

n∑
i=1

yki = kλk ∀k even∑
k:k even

λk = 1

yki ≤ λk ∀1 ≤ i ≤ n, k even

yki ≥ 0 ∀1 ≤ i ≤ n, k even

λk ≥ 0 ∀k even

Show that conv(Seven
n ) = projx(Q).

3. (5 points) The above formulation gives the description of conv(Seven
n ) in higher dimensions.

Now we give a description of conv(Seven
n ) in the x space. Let

P = {x ∈ Rn :
∑
i∈O

xi −
∑
i 6∈O

xi ≤ |O| − 1, ∀O ⊆ [n], |O| odd, 0 ≤ x ≤ 1}.

To show P = conv(Seven
n ), prove the following claims.

(a) (2 points) For any c ∈ Rn, give a simple characterization of max{cTx : x ∈ Seven
n }.

(b) (3 points) Show that max{cTx : x ∈ P} = max{cTx : x ∈ Seven
n }. (Hint: Use

Duality).

Solution:

1. Observe that constraint matrix of the single constraint in {x ∈ Rn :
∑n

i=1 xi = k, 0 ≤ xi ≤
1 ∀1 ≤ i ≤ n} is totally unimodular. Thus the polytope is integer. Since integer points
are exactly Skn, we have the statement.

2. Observe that Seven
n = ∪k is evenS

k
n. Let x ∈ Skn for some k even. Then set λk = 1 and

λj = 0 for all j 6= k. Moreover set yk = x and yj = 0 for all other j. It is easy to
check that (x, y, λ) ∈ Q. Thus, we have projx(Q) ⊇ ∪kevenS

k
n = S even

n and therefore,
projx(Q) ⊇ conv(Seven

n ).
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For the other direction, let (x, y, λ) ∈ Q. For every λk > 0, we have zk := yk

λk
∈ conv(Skn) ⊆

conv(Seven
n ). But we have x =

∑
k:k even,λk>0 λkz

k, i.e. x is a convex combination of points
in conv(Seven

n ) and thus x ∈ conv(Seven
n ) as required.

3. (a) Now, for any c ∈ Rn, we compute max{cTx : x ∈ Seven
n }. For simplicity, we assume

that c1 ≥ c2 ≥ cl ≥ 0 > cl+1 ≥ . . . ≥ cn for some l. More generally, the indices can
be renumbered to sort them in this order. We have three cases. The optimality in
all three cases is trivial to check.

i. l is even. Then xi = 1 for 1 ≤ i ≤ l and 0 otherwise is an optimal solution.

ii. l is odd and cl + cl+1 ≥ 0. Then xi = 1 for 1 ≤ i ≤ l + 1 and 0 otherwise is an
optimal solution.

iii. l is odd and cl + cl+1 < 0. Then xi = 1 for 1 ≤ i ≤ l − 1 and 0 otherwise is an
optimal solution.

(b) Now we show that in each of the three cases the value of the LP relaxation matches
the integral optimum. First check that P ⊇ Seven

n . Indeed any x with even number
of ones satisfies the constraint for each odd sized O. Thus it is enough to show that
max{cTx : x ∈ P} ≤ max{cTx : x ∈ Seven

n } to show equality. To compute the value
of LP relaxation, we compute its dual.

The primal is given by

max cTx

s.t.∑
i∈O

xi −
∑
i 6∈O

xi ≤ |O| − 1, ∀O ⊆ [n], |O| odd,

xi ≤ 1 ∀1 ≤ i ≤ n
xi ≥ 0 ∀1 ≤ i ≤ n.

Let O denote the set of all odd sized sets of {1, . . . , n}. The dual is given by

min
∑
O∈O

(|O| − 1)yO +
n∑
i=1

zi

s.t.∑
O∈O:i∈O

yO −
∑

O∈O:i 6∈O
yO + zi ≥ ci ∀1 ≤ i ≤ n

yO ≥ 0 ∀O ∈ O
zi ≥ 0 ∀1 ≤ i ≤ n

We now give a feasible solution to the dual of the objective that equals max{cTx :
x ∈ Seven

n }. This will show that max{cTx : x ∈ P} is at most the dual objective (by
weak duality) and therefore at most max{cTx : x ∈ Seven

n }. The dual solution will
vary depending on the case. Recall, we assume c1 ≥ c2 ≥ cl ≥ 0 > cl+1 ≥ . . . ≥ cn.
(To define the dual solution, we can use the complementary slackness condition with
the candidate optimal solution. This gives us hint on which dual variables can take
non-zero values.)

i. l is even. Then set zi = ci for 1 ≤ i ≤ l and 0 otherwise. We set y = 0. It is
easy to check feasibility and the objective value.
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ii. l is odd and cl + cl+1 ≥ 0. Then zi = ci + cl+1 for 1 ≤ i ≤ l and 0 otherwise.
Define y{1,...,l} = −cl+1 and yO = 0 for all other O ∈ O. Observe that (y, z) is

feasible and its objective is exactly the same as objective of the primal
∑l+1

i=1 ci.

iii. l is odd and cl + cl+1 < 0. Then zi = ci − cl for 1 ≤ i ≤ l − 1 and 0 otherwise.
Define y{1,...,l} = cl and yO = 0 for all other O ∈ O. Observe that (y, z) is feasible

and its objective is exactly the same as objective of the primal
∑l−1

i=1 ci.

Since the equality holds for every c ∈ Rn, we have P = conv(Seven
n ) as claimed.

6



Part 2: ACO Comprehensive Exam, Fall 2021

Design and Analysis of Algorithms

Consider the following game played between two players A and B on n ≥ 2 integer counters:

1. Initially all the counters start at 0.

2. At each step, A can take two of the counters, increment each by 1.

3. At each step, B can take a single counter, and decrease it by at most 10, without making
it negative.

For this process, show the following:

1. (4 points) No matter how B plays, A can make some counter’s value at least blog2 nc.

2. (6 points) For an unbounded game length, no matter how A plays, B can ensure that no
counter’s value exceeds 100 log2 n.

Solution:
We first show the first part about the lower bound on the value that A can ensure to occur.
If A starts with 2k numbers of value x, A can guarantee getting back k numbers of value

x + 1. The strategy is to pair these numbers arbitrarily, and increase both from a pair by 1.
This takes k steps, during which B can decrease at most k of these 2k counters. So at least k
of the numbers have value at least x+ 1.

Repeatedly applying this argument to the n counters initially at 0 gives that A can guarantee
at least one counter at value blog2 nc.

We now give a proof of the second part based on potential functions. Define the potential
function ∑

i

1.1xi .

We will show that if this potential is more than (1.1)11n, then B can ensure that it does not
increase by repeatedly decreasing the largest value. It then follows that any xi is at most

log1.1

(
(1.1)11 n

)
< 11 + 25 log n < 50 log n

for n >= 2.
There are two cases to consider:
(1) If the potential is less than (1.1)10n, then in one step it can increase by at most a factor

of 1.1, and hence it is always at most (1.1)11n.
(2) If the potentail is more than (1.1)10n. Let the entry of largest value among x1 . . . xn be

y. Without loss of generality, we have 1.1y ≥ 1.110 by the pigeon hole principle. Then A can
increase the potential function by at most

2 ·
(
(1.1)y+1 − 1.1y

)
= 0.2(1.1)y.

On the other hand, because (1.1)y ≥ (1.1)10, we have y ≥ 10. So the decrease is at least

(1.1)y − (1.1)y−10 =
(
1− 1.1−10

)
1.1y ≥ 0.5 · 1.1y.

So in this case, the potential function can only decrease.
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Probabilistic Combinatorics

Prove that for any ε > 0 there is ∆0 > 0 such that the following holds: if G is a ∆-regular
graph (i.e., in which every vertex has degree exactly ∆) with ∆ ≥ ∆0, then there is a partition
V (G) = V1 ∪ V2 of the vertex set of G such that every vertex of G has between (1 − ε)∆/2
and (1 + ε)∆/2 many neighbors in each Vi.

Solution: Pick a random subset V1 ⊆ V (G) by including each v ∈ V (G) independently with
probability 1/2, and set V2 := V (G) \ V1. Let Bv denote the ‘bad’ event that v has fewer
than (1− ε)∆/2 or more than (1 + ε)∆/2 many neighbors in V1. Let

B :=
⋃

v∈V (G)

Bv.

Using standard Chernoff bounds, it is easy to see that for some c = c(ε) > 0 we have

Pr(Bv) ≤ 2 · e−c∆ =: p.

Note that Bv is mutually independent of all other events Bw except for at most ∆2 many
(corresponding to events Bu for which u shares a neighbor with v), say. Since e−cx(x2 + 1)→ 0
as x→∞, we infer that for sufficiently large ∆ ≥ ∆0 = ∆0(c) we have

ep(∆2 + 1) = 2e · e−c∆(∆2 + 1) < 1.

Hence (the symmetric form of) the Lovász Local Lemma implies that

Pr
(
¬B) = Pr

( ⋂
v∈V (G)

¬Bv
)
> 0.

By the probabilistic method, there thus exists a choice of V1 ⊆ V (G) for which ¬B holds, i.e.,
such that every vertex v ∈ V (G) has between (1− ε)∆/2 and (1 + ε)∆/2 many neighbors in V1.
Since G is ∆-regular, using V2 = V (G) \ V1 this also implies that every vertex v ∈ V (G) has
between (1− ε)∆/2 and (1 + ε)∆/2 many neighbors in V2, completing the proof.
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Combinatorial Optimization

(i) Let f be a set function defined on the subsets of S. Let T ⊆ S, and define a new
set-function as follows. Construct a new dummy element at (so that at /∈ S), and set
S′ = S ∪ {aT }. Define an extension of f into a new set function f ′:

f ′(X) =f(X), (1)

f ′(X ∪ {aT }) =f(X ∪ T ), for X ⊆ S. (2)

Here, the function f is said to be extended parallel to T . Construct an example so that
f ′ is not submodular. (4 points)

(ii) Let an element a ∈ S be called increasing with respect to f if f(X ∪ {a}) ≥ f(X) for all
X ⊆ S. Show that f ′ defined above is submodular if and only if every element of T is
increasing with respect to f . (6 points)

Solution.

(i) There can be many such examples. One such example is: consider f(1, 2) = 0, f(2) = 3,
f(1) = 1.5, f(∅) = 0. Note that f is submodular since f(1, 2) + f(∅) ≤ f(2) + f(1).
Consider T = {1}, f(1, 2) < f(2), and note that T is not increasing with respect to f .
Consider the parallel extension of f with respect to T = {1} as f ′ : 2{1,2,aT } → R, where
f ′(1, 2) = 0, f ′(2) = 3, f ′(1) = 1.5, f ′(∅) = 0, f ′(1, 2, aT ) = 0, f ′(1, aT ) = 1.5, f ′(2, aT ) =
0, f ′(aT ) = 1.5. But f ′ violates submodularity since f ′(1, 2) + f ′(2, aT ) = 0 < 3 =
f ′(1, 2, aT ) + f ′(2).

(ii) Consider the parallel extension of f : 2S → R with respect to a set T so that every element
of T is increasing with respect to f . Due to the latter property, we can show using an
inductive argument that:

f(X ∪ T ) ≥ f(X ∪ (T \W )) ≥ f(X), for any W ⊆ T. (3)

To show submodularity of f ′, the only non-trivial case is to consider two subsets X∪{aT }
and Y so that X,Y ⊆ S:

f ′(X ∪ aT ) + f ′(Y )− f ′(X ∪ Y ∪ aT )− f ′(X ∩ Y ) (4)

= f(X ∪ T ) + f(Y )− f(X ∪ Y ∪ T )− f(X ∩ Y ) (5)

≥ f((X ∪ T ) ∩ Y )− f(X ∩ Y ) (using submodularity) (6)

= f((X ∩ Y ) ∪ (T ∩ Y ))− f(X ∩ Y ) ≥ 0. (using (3)) (7)
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